executor.rs

  1use crate::{AppContext, PlatformDispatcher};
  2use futures::{channel::mpsc, pin_mut};
  3use smol::prelude::*;
  4use std::{
  5    fmt::Debug,
  6    marker::PhantomData,
  7    mem,
  8    pin::Pin,
  9    sync::Arc,
 10    task::{Context, Poll},
 11    time::Duration,
 12};
 13use util::TryFutureExt;
 14use waker_fn::waker_fn;
 15
 16#[derive(Clone)]
 17pub struct Executor {
 18    dispatcher: Arc<dyn PlatformDispatcher>,
 19}
 20
 21#[must_use]
 22pub enum Task<T> {
 23    Ready(Option<T>),
 24    Spawned(async_task::Task<T>),
 25}
 26
 27impl<T> Task<T> {
 28    pub fn ready(val: T) -> Self {
 29        Task::Ready(Some(val))
 30    }
 31
 32    pub fn detach(self) {
 33        match self {
 34            Task::Ready(_) => {}
 35            Task::Spawned(task) => task.detach(),
 36        }
 37    }
 38}
 39
 40impl<E, T> Task<Result<T, E>>
 41where
 42    T: 'static + Send,
 43    E: 'static + Send + Debug,
 44{
 45    pub fn detach_and_log_err(self, cx: &mut AppContext) {
 46        cx.executor().spawn(self.log_err()).detach();
 47    }
 48}
 49
 50impl<T> Future for Task<T> {
 51    type Output = T;
 52
 53    fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
 54        match unsafe { self.get_unchecked_mut() } {
 55            Task::Ready(val) => Poll::Ready(val.take().unwrap()),
 56            Task::Spawned(task) => task.poll(cx),
 57        }
 58    }
 59}
 60
 61impl Executor {
 62    pub fn new(dispatcher: Arc<dyn PlatformDispatcher>) -> Self {
 63        Self { dispatcher }
 64    }
 65
 66    /// Enqueues the given closure to be run on any thread. The closure returns
 67    /// a future which will be run to completion on any available thread.
 68    pub fn spawn<R>(&self, future: impl Future<Output = R> + Send + 'static) -> Task<R>
 69    where
 70        R: Send + 'static,
 71    {
 72        let dispatcher = self.dispatcher.clone();
 73        let (runnable, task) =
 74            async_task::spawn(future, move |runnable| dispatcher.dispatch(runnable));
 75        runnable.schedule();
 76        Task::Spawned(task)
 77    }
 78
 79    /// Enqueues the given closure to run on the application's event loop.
 80    /// Returns the result asynchronously.
 81    pub fn run_on_main<F, R>(&self, func: F) -> Task<R>
 82    where
 83        F: FnOnce() -> R + Send + 'static,
 84        R: Send + 'static,
 85    {
 86        if self.dispatcher.is_main_thread() {
 87            Task::ready(func())
 88        } else {
 89            self.spawn_on_main(move || async move { func() })
 90        }
 91    }
 92
 93    /// Enqueues the given closure to be run on the application's event loop. The
 94    /// closure returns a future which will be run to completion on the main thread.
 95    pub fn spawn_on_main<F, R>(&self, func: impl FnOnce() -> F + Send + 'static) -> Task<R>
 96    where
 97        F: Future<Output = R> + 'static,
 98        R: Send + 'static,
 99    {
100        let (runnable, task) = async_task::spawn(
101            {
102                let this = self.clone();
103                async move {
104                    let task = this.spawn_on_main_local(func());
105                    task.await
106                }
107            },
108            {
109                let dispatcher = self.dispatcher.clone();
110                move |runnable| dispatcher.dispatch_on_main_thread(runnable)
111            },
112        );
113        runnable.schedule();
114        Task::Spawned(task)
115    }
116
117    /// Enqueues the given closure to be run on the application's event loop. Must
118    /// be called on the main thread.
119    pub fn spawn_on_main_local<R>(&self, future: impl Future<Output = R> + 'static) -> Task<R>
120    where
121        R: 'static,
122    {
123        assert!(
124            self.dispatcher.is_main_thread(),
125            "must be called on main thread"
126        );
127
128        let dispatcher = self.dispatcher.clone();
129        let (runnable, task) = async_task::spawn_local(future, move |runnable| {
130            dispatcher.dispatch_on_main_thread(runnable)
131        });
132        runnable.schedule();
133        Task::Spawned(task)
134    }
135
136    pub fn block<R>(&self, future: impl Future<Output = R>) -> R {
137        pin_mut!(future);
138        let (parker, unparker) = parking::pair();
139        let waker = waker_fn(move || {
140            unparker.unpark();
141        });
142        let mut cx = std::task::Context::from_waker(&waker);
143
144        loop {
145            match future.as_mut().poll(&mut cx) {
146                Poll::Ready(result) => return result,
147                Poll::Pending => {
148                    // todo!("call tick on test dispatcher")
149                    parker.park();
150                }
151            }
152        }
153    }
154
155    pub fn block_with_timeout<R>(
156        &self,
157        duration: Duration,
158        future: impl Future<Output = R>,
159    ) -> Result<R, impl Future<Output = R>> {
160        let mut future = Box::pin(future);
161        let timeout = {
162            let future = &mut future;
163            async {
164                let timer = async {
165                    self.timer(duration).await;
166                    Err(())
167                };
168                let future = async move { Ok(future.await) };
169                timer.race(future).await
170            }
171        };
172        match self.block(timeout) {
173            Ok(value) => Ok(value),
174            Err(_) => Err(future),
175        }
176    }
177
178    pub async fn scoped<'scope, F>(&self, scheduler: F)
179    where
180        F: FnOnce(&mut Scope<'scope>),
181    {
182        let mut scope = Scope::new(self.clone());
183        (scheduler)(&mut scope);
184        let spawned = mem::take(&mut scope.futures)
185            .into_iter()
186            .map(|f| self.spawn(f))
187            .collect::<Vec<_>>();
188        for task in spawned {
189            task.await;
190        }
191    }
192
193    pub fn timer(&self, duration: Duration) -> Task<()> {
194        let (runnable, task) = async_task::spawn(async move {}, {
195            let dispatcher = self.dispatcher.clone();
196            move |runnable| dispatcher.dispatch_after(duration, runnable)
197        });
198        runnable.schedule();
199        Task::Spawned(task)
200    }
201
202    #[cfg(any(test, feature = "test-support"))]
203    pub fn start_waiting(&self) {
204        todo!("start_waiting")
205    }
206
207    #[cfg(any(test, feature = "test-support"))]
208    pub async fn simulate_random_delay(&self) {
209        todo!("simulate_random_delay")
210    }
211
212    pub fn num_cpus(&self) -> usize {
213        num_cpus::get()
214    }
215
216    pub fn is_main_thread(&self) -> bool {
217        self.dispatcher.is_main_thread()
218    }
219}
220
221pub struct Scope<'a> {
222    executor: Executor,
223    futures: Vec<Pin<Box<dyn Future<Output = ()> + Send + 'static>>>,
224    tx: Option<mpsc::Sender<()>>,
225    rx: mpsc::Receiver<()>,
226    lifetime: PhantomData<&'a ()>,
227}
228
229impl<'a> Scope<'a> {
230    fn new(executor: Executor) -> Self {
231        let (tx, rx) = mpsc::channel(1);
232        Self {
233            executor,
234            tx: Some(tx),
235            rx,
236            futures: Default::default(),
237            lifetime: PhantomData,
238        }
239    }
240
241    pub fn spawn<F>(&mut self, f: F)
242    where
243        F: Future<Output = ()> + Send + 'a,
244    {
245        let tx = self.tx.clone().unwrap();
246
247        // Safety: The 'a lifetime is guaranteed to outlive any of these futures because
248        // dropping this `Scope` blocks until all of the futures have resolved.
249        let f = unsafe {
250            mem::transmute::<
251                Pin<Box<dyn Future<Output = ()> + Send + 'a>>,
252                Pin<Box<dyn Future<Output = ()> + Send + 'static>>,
253            >(Box::pin(async move {
254                f.await;
255                drop(tx);
256            }))
257        };
258        self.futures.push(f);
259    }
260}
261
262impl<'a> Drop for Scope<'a> {
263    fn drop(&mut self) {
264        self.tx.take().unwrap();
265
266        // Wait until the channel is closed, which means that all of the spawned
267        // futures have resolved.
268        self.executor.block(self.rx.next());
269    }
270}