open_ai.rs

   1use anyhow::{Result, anyhow};
   2use collections::{BTreeMap, HashMap};
   3use futures::Stream;
   4use futures::{FutureExt, StreamExt, future::BoxFuture};
   5use gpui::{AnyView, App, AsyncApp, Context, Entity, SharedString, Task, Window};
   6use http_client::HttpClient;
   7use language_model::{
   8    ApiKeyState, AuthenticateError, EnvVar, IconOrSvg, LanguageModel, LanguageModelCompletionError,
   9    LanguageModelCompletionEvent, LanguageModelId, LanguageModelImage, LanguageModelName,
  10    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  11    LanguageModelProviderState, LanguageModelRequest, LanguageModelRequestMessage,
  12    LanguageModelToolChoice, LanguageModelToolResult, LanguageModelToolResultContent,
  13    LanguageModelToolUse, LanguageModelToolUseId, MessageContent, RateLimiter, Role, StopReason,
  14    TokenUsage, env_var,
  15};
  16use menu;
  17use open_ai::{
  18    ImageUrl, Model, OPEN_AI_API_URL, ReasoningEffort, ResponseStreamEvent,
  19    responses::{
  20        Request as ResponseRequest, ResponseOutputItem, ResponseSummary as ResponsesSummary,
  21        ResponseUsage as ResponsesUsage, StreamEvent as ResponsesStreamEvent, stream_response,
  22    },
  23    stream_completion,
  24};
  25use serde_json::{Value, json};
  26use settings::{OpenAiAvailableModel as AvailableModel, Settings, SettingsStore};
  27use std::pin::Pin;
  28use std::str::FromStr as _;
  29use std::sync::{Arc, LazyLock};
  30use strum::IntoEnumIterator;
  31use ui::{ButtonLink, ConfiguredApiCard, List, ListBulletItem, prelude::*};
  32use ui_input::InputField;
  33use util::ResultExt;
  34
  35const PROVIDER_ID: LanguageModelProviderId = language_model::OPEN_AI_PROVIDER_ID;
  36const PROVIDER_NAME: LanguageModelProviderName = language_model::OPEN_AI_PROVIDER_NAME;
  37
  38const API_KEY_ENV_VAR_NAME: &str = "OPENAI_API_KEY";
  39static API_KEY_ENV_VAR: LazyLock<EnvVar> = env_var!(API_KEY_ENV_VAR_NAME);
  40
  41#[derive(Default, Clone, Debug, PartialEq)]
  42pub struct OpenAiSettings {
  43    pub api_url: String,
  44    pub available_models: Vec<AvailableModel>,
  45}
  46
  47pub struct OpenAiLanguageModelProvider {
  48    http_client: Arc<dyn HttpClient>,
  49    state: Entity<State>,
  50}
  51
  52pub struct State {
  53    api_key_state: ApiKeyState,
  54}
  55
  56impl State {
  57    fn is_authenticated(&self) -> bool {
  58        self.api_key_state.has_key()
  59    }
  60
  61    fn set_api_key(&mut self, api_key: Option<String>, cx: &mut Context<Self>) -> Task<Result<()>> {
  62        let api_url = OpenAiLanguageModelProvider::api_url(cx);
  63        self.api_key_state
  64            .store(api_url, api_key, |this| &mut this.api_key_state, cx)
  65    }
  66
  67    fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
  68        let api_url = OpenAiLanguageModelProvider::api_url(cx);
  69        self.api_key_state
  70            .load_if_needed(api_url, |this| &mut this.api_key_state, cx)
  71    }
  72}
  73
  74impl OpenAiLanguageModelProvider {
  75    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
  76        let state = cx.new(|cx| {
  77            cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
  78                let api_url = Self::api_url(cx);
  79                this.api_key_state
  80                    .handle_url_change(api_url, |this| &mut this.api_key_state, cx);
  81                cx.notify();
  82            })
  83            .detach();
  84            State {
  85                api_key_state: ApiKeyState::new(Self::api_url(cx), (*API_KEY_ENV_VAR).clone()),
  86            }
  87        });
  88
  89        Self { http_client, state }
  90    }
  91
  92    fn create_language_model(&self, model: open_ai::Model) -> Arc<dyn LanguageModel> {
  93        Arc::new(OpenAiLanguageModel {
  94            id: LanguageModelId::from(model.id().to_string()),
  95            model,
  96            state: self.state.clone(),
  97            http_client: self.http_client.clone(),
  98            request_limiter: RateLimiter::new(4),
  99        })
 100    }
 101
 102    fn settings(cx: &App) -> &OpenAiSettings {
 103        &crate::AllLanguageModelSettings::get_global(cx).openai
 104    }
 105
 106    fn api_url(cx: &App) -> SharedString {
 107        let api_url = &Self::settings(cx).api_url;
 108        if api_url.is_empty() {
 109            open_ai::OPEN_AI_API_URL.into()
 110        } else {
 111            SharedString::new(api_url.as_str())
 112        }
 113    }
 114}
 115
 116impl LanguageModelProviderState for OpenAiLanguageModelProvider {
 117    type ObservableEntity = State;
 118
 119    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
 120        Some(self.state.clone())
 121    }
 122}
 123
 124impl LanguageModelProvider for OpenAiLanguageModelProvider {
 125    fn id(&self) -> LanguageModelProviderId {
 126        PROVIDER_ID
 127    }
 128
 129    fn name(&self) -> LanguageModelProviderName {
 130        PROVIDER_NAME
 131    }
 132
 133    fn icon(&self) -> IconOrSvg {
 134        IconOrSvg::Icon(IconName::AiOpenAi)
 135    }
 136
 137    fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
 138        Some(self.create_language_model(open_ai::Model::default()))
 139    }
 140
 141    fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
 142        Some(self.create_language_model(open_ai::Model::default_fast()))
 143    }
 144
 145    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 146        let mut models = BTreeMap::default();
 147
 148        // Add base models from open_ai::Model::iter()
 149        for model in open_ai::Model::iter() {
 150            if !matches!(model, open_ai::Model::Custom { .. }) {
 151                models.insert(model.id().to_string(), model);
 152            }
 153        }
 154
 155        // Override with available models from settings
 156        for model in &OpenAiLanguageModelProvider::settings(cx).available_models {
 157            models.insert(
 158                model.name.clone(),
 159                open_ai::Model::Custom {
 160                    name: model.name.clone(),
 161                    display_name: model.display_name.clone(),
 162                    max_tokens: model.max_tokens,
 163                    max_output_tokens: model.max_output_tokens,
 164                    max_completion_tokens: model.max_completion_tokens,
 165                    reasoning_effort: model.reasoning_effort.clone(),
 166                    supports_chat_completions: model.capabilities.chat_completions,
 167                },
 168            );
 169        }
 170
 171        models
 172            .into_values()
 173            .map(|model| self.create_language_model(model))
 174            .collect()
 175    }
 176
 177    fn is_authenticated(&self, cx: &App) -> bool {
 178        self.state.read(cx).is_authenticated()
 179    }
 180
 181    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 182        self.state.update(cx, |state, cx| state.authenticate(cx))
 183    }
 184
 185    fn configuration_view(
 186        &self,
 187        _target_agent: language_model::ConfigurationViewTargetAgent,
 188        window: &mut Window,
 189        cx: &mut App,
 190    ) -> AnyView {
 191        cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
 192            .into()
 193    }
 194
 195    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
 196        self.state
 197            .update(cx, |state, cx| state.set_api_key(None, cx))
 198    }
 199}
 200
 201pub struct OpenAiLanguageModel {
 202    id: LanguageModelId,
 203    model: open_ai::Model,
 204    state: Entity<State>,
 205    http_client: Arc<dyn HttpClient>,
 206    request_limiter: RateLimiter,
 207}
 208
 209impl OpenAiLanguageModel {
 210    fn stream_completion(
 211        &self,
 212        request: open_ai::Request,
 213        cx: &AsyncApp,
 214    ) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponseStreamEvent>>>>
 215    {
 216        let http_client = self.http_client.clone();
 217
 218        let (api_key, api_url) = self.state.read_with(cx, |state, cx| {
 219            let api_url = OpenAiLanguageModelProvider::api_url(cx);
 220            (state.api_key_state.key(&api_url), api_url)
 221        });
 222
 223        let future = self.request_limiter.stream(async move {
 224            let provider = PROVIDER_NAME;
 225            let Some(api_key) = api_key else {
 226                return Err(LanguageModelCompletionError::NoApiKey { provider });
 227            };
 228            let request = stream_completion(
 229                http_client.as_ref(),
 230                provider.0.as_str(),
 231                &api_url,
 232                &api_key,
 233                request,
 234            );
 235            let response = request.await?;
 236            Ok(response)
 237        });
 238
 239        async move { Ok(future.await?.boxed()) }.boxed()
 240    }
 241
 242    fn stream_response(
 243        &self,
 244        request: ResponseRequest,
 245        cx: &AsyncApp,
 246    ) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponsesStreamEvent>>>>
 247    {
 248        let http_client = self.http_client.clone();
 249
 250        let (api_key, api_url) = self.state.read_with(cx, |state, cx| {
 251            let api_url = OpenAiLanguageModelProvider::api_url(cx);
 252            (state.api_key_state.key(&api_url), api_url)
 253        });
 254
 255        let provider = PROVIDER_NAME;
 256        let future = self.request_limiter.stream(async move {
 257            let Some(api_key) = api_key else {
 258                return Err(LanguageModelCompletionError::NoApiKey { provider });
 259            };
 260            let request = stream_response(
 261                http_client.as_ref(),
 262                provider.0.as_str(),
 263                &api_url,
 264                &api_key,
 265                request,
 266            );
 267            let response = request.await?;
 268            Ok(response)
 269        });
 270
 271        async move { Ok(future.await?.boxed()) }.boxed()
 272    }
 273}
 274
 275impl LanguageModel for OpenAiLanguageModel {
 276    fn id(&self) -> LanguageModelId {
 277        self.id.clone()
 278    }
 279
 280    fn name(&self) -> LanguageModelName {
 281        LanguageModelName::from(self.model.display_name().to_string())
 282    }
 283
 284    fn provider_id(&self) -> LanguageModelProviderId {
 285        PROVIDER_ID
 286    }
 287
 288    fn provider_name(&self) -> LanguageModelProviderName {
 289        PROVIDER_NAME
 290    }
 291
 292    fn supports_tools(&self) -> bool {
 293        true
 294    }
 295
 296    fn supports_images(&self) -> bool {
 297        use open_ai::Model;
 298        match &self.model {
 299            Model::FourOmni
 300            | Model::FourOmniMini
 301            | Model::FourPointOne
 302            | Model::FourPointOneMini
 303            | Model::FourPointOneNano
 304            | Model::Five
 305            | Model::FiveCodex
 306            | Model::FiveMini
 307            | Model::FiveNano
 308            | Model::FivePointOne
 309            | Model::FivePointTwo
 310            | Model::O1
 311            | Model::O3
 312            | Model::O4Mini => true,
 313            Model::ThreePointFiveTurbo
 314            | Model::Four
 315            | Model::FourTurbo
 316            | Model::O3Mini
 317            | Model::Custom { .. } => false,
 318        }
 319    }
 320
 321    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 322        match choice {
 323            LanguageModelToolChoice::Auto => true,
 324            LanguageModelToolChoice::Any => true,
 325            LanguageModelToolChoice::None => true,
 326        }
 327    }
 328
 329    fn telemetry_id(&self) -> String {
 330        format!("openai/{}", self.model.id())
 331    }
 332
 333    fn max_token_count(&self) -> u64 {
 334        self.model.max_token_count()
 335    }
 336
 337    fn max_output_tokens(&self) -> Option<u64> {
 338        self.model.max_output_tokens()
 339    }
 340
 341    fn count_tokens(
 342        &self,
 343        request: LanguageModelRequest,
 344        cx: &App,
 345    ) -> BoxFuture<'static, Result<u64>> {
 346        count_open_ai_tokens(request, self.model.clone(), cx)
 347    }
 348
 349    fn stream_completion(
 350        &self,
 351        request: LanguageModelRequest,
 352        cx: &AsyncApp,
 353    ) -> BoxFuture<
 354        'static,
 355        Result<
 356            futures::stream::BoxStream<
 357                'static,
 358                Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
 359            >,
 360            LanguageModelCompletionError,
 361        >,
 362    > {
 363        if self.model.supports_chat_completions() {
 364            let request = into_open_ai(
 365                request,
 366                self.model.id(),
 367                self.model.supports_parallel_tool_calls(),
 368                self.model.supports_prompt_cache_key(),
 369                self.max_output_tokens(),
 370                self.model.reasoning_effort(),
 371            );
 372            let completions = self.stream_completion(request, cx);
 373            async move {
 374                let mapper = OpenAiEventMapper::new();
 375                Ok(mapper.map_stream(completions.await?).boxed())
 376            }
 377            .boxed()
 378        } else {
 379            let request = into_open_ai_response(
 380                request,
 381                self.model.id(),
 382                self.model.supports_parallel_tool_calls(),
 383                self.model.supports_prompt_cache_key(),
 384                self.max_output_tokens(),
 385                self.model.reasoning_effort(),
 386            );
 387            let completions = self.stream_response(request, cx);
 388            async move {
 389                let mapper = OpenAiResponseEventMapper::new();
 390                Ok(mapper.map_stream(completions.await?).boxed())
 391            }
 392            .boxed()
 393        }
 394    }
 395}
 396
 397pub fn into_open_ai(
 398    request: LanguageModelRequest,
 399    model_id: &str,
 400    supports_parallel_tool_calls: bool,
 401    supports_prompt_cache_key: bool,
 402    max_output_tokens: Option<u64>,
 403    reasoning_effort: Option<ReasoningEffort>,
 404) -> open_ai::Request {
 405    let stream = !model_id.starts_with("o1-");
 406
 407    let mut messages = Vec::new();
 408    for message in request.messages {
 409        for content in message.content {
 410            match content {
 411                MessageContent::Text(text) | MessageContent::Thinking { text, .. } => {
 412                    if !text.trim().is_empty() {
 413                        add_message_content_part(
 414                            open_ai::MessagePart::Text { text },
 415                            message.role,
 416                            &mut messages,
 417                        );
 418                    }
 419                }
 420                MessageContent::RedactedThinking(_) => {}
 421                MessageContent::Image(image) => {
 422                    add_message_content_part(
 423                        open_ai::MessagePart::Image {
 424                            image_url: ImageUrl {
 425                                url: image.to_base64_url(),
 426                                detail: None,
 427                            },
 428                        },
 429                        message.role,
 430                        &mut messages,
 431                    );
 432                }
 433                MessageContent::ToolUse(tool_use) => {
 434                    let tool_call = open_ai::ToolCall {
 435                        id: tool_use.id.to_string(),
 436                        content: open_ai::ToolCallContent::Function {
 437                            function: open_ai::FunctionContent {
 438                                name: tool_use.name.to_string(),
 439                                arguments: serde_json::to_string(&tool_use.input)
 440                                    .unwrap_or_default(),
 441                            },
 442                        },
 443                    };
 444
 445                    if let Some(open_ai::RequestMessage::Assistant { tool_calls, .. }) =
 446                        messages.last_mut()
 447                    {
 448                        tool_calls.push(tool_call);
 449                    } else {
 450                        messages.push(open_ai::RequestMessage::Assistant {
 451                            content: None,
 452                            tool_calls: vec![tool_call],
 453                        });
 454                    }
 455                }
 456                MessageContent::ToolResult(tool_result) => {
 457                    let content = match &tool_result.content {
 458                        LanguageModelToolResultContent::Text(text) => {
 459                            vec![open_ai::MessagePart::Text {
 460                                text: text.to_string(),
 461                            }]
 462                        }
 463                        LanguageModelToolResultContent::Image(image) => {
 464                            vec![open_ai::MessagePart::Image {
 465                                image_url: ImageUrl {
 466                                    url: image.to_base64_url(),
 467                                    detail: None,
 468                                },
 469                            }]
 470                        }
 471                    };
 472
 473                    messages.push(open_ai::RequestMessage::Tool {
 474                        content: content.into(),
 475                        tool_call_id: tool_result.tool_use_id.to_string(),
 476                    });
 477                }
 478            }
 479        }
 480    }
 481
 482    open_ai::Request {
 483        model: model_id.into(),
 484        messages,
 485        stream,
 486        stop: request.stop,
 487        temperature: request.temperature.or(Some(1.0)),
 488        max_completion_tokens: max_output_tokens,
 489        parallel_tool_calls: if supports_parallel_tool_calls && !request.tools.is_empty() {
 490            // Disable parallel tool calls, as the Agent currently expects a maximum of one per turn.
 491            Some(false)
 492        } else {
 493            None
 494        },
 495        prompt_cache_key: if supports_prompt_cache_key {
 496            request.thread_id
 497        } else {
 498            None
 499        },
 500        tools: request
 501            .tools
 502            .into_iter()
 503            .map(|tool| open_ai::ToolDefinition::Function {
 504                function: open_ai::FunctionDefinition {
 505                    name: tool.name,
 506                    description: Some(tool.description),
 507                    parameters: Some(tool.input_schema),
 508                },
 509            })
 510            .collect(),
 511        tool_choice: request.tool_choice.map(|choice| match choice {
 512            LanguageModelToolChoice::Auto => open_ai::ToolChoice::Auto,
 513            LanguageModelToolChoice::Any => open_ai::ToolChoice::Required,
 514            LanguageModelToolChoice::None => open_ai::ToolChoice::None,
 515        }),
 516        reasoning_effort,
 517    }
 518}
 519
 520pub fn into_open_ai_response(
 521    request: LanguageModelRequest,
 522    model_id: &str,
 523    supports_parallel_tool_calls: bool,
 524    supports_prompt_cache_key: bool,
 525    max_output_tokens: Option<u64>,
 526    reasoning_effort: Option<ReasoningEffort>,
 527) -> ResponseRequest {
 528    let stream = !model_id.starts_with("o1-");
 529
 530    let LanguageModelRequest {
 531        thread_id,
 532        prompt_id: _,
 533        intent: _,
 534        mode: _,
 535        messages,
 536        tools,
 537        tool_choice,
 538        stop: _,
 539        temperature,
 540        thinking_allowed: _,
 541    } = request;
 542
 543    let mut input_items = Vec::new();
 544    for (index, message) in messages.into_iter().enumerate() {
 545        append_message_to_response_items(message, index, &mut input_items);
 546    }
 547
 548    let tools: Vec<_> = tools
 549        .into_iter()
 550        .map(|tool| open_ai::responses::ToolDefinition::Function {
 551            name: tool.name,
 552            description: Some(tool.description),
 553            parameters: Some(tool.input_schema),
 554            strict: None,
 555        })
 556        .collect();
 557
 558    ResponseRequest {
 559        model: model_id.into(),
 560        input: input_items,
 561        stream,
 562        temperature,
 563        top_p: None,
 564        max_output_tokens,
 565        parallel_tool_calls: if tools.is_empty() {
 566            None
 567        } else {
 568            Some(supports_parallel_tool_calls)
 569        },
 570        tool_choice: tool_choice.map(|choice| match choice {
 571            LanguageModelToolChoice::Auto => open_ai::ToolChoice::Auto,
 572            LanguageModelToolChoice::Any => open_ai::ToolChoice::Required,
 573            LanguageModelToolChoice::None => open_ai::ToolChoice::None,
 574        }),
 575        tools,
 576        prompt_cache_key: if supports_prompt_cache_key {
 577            thread_id
 578        } else {
 579            None
 580        },
 581        reasoning: reasoning_effort.map(|effort| open_ai::responses::ReasoningConfig { effort }),
 582    }
 583}
 584
 585fn append_message_to_response_items(
 586    message: LanguageModelRequestMessage,
 587    index: usize,
 588    input_items: &mut Vec<Value>,
 589) {
 590    let mut content_parts: Vec<Value> = Vec::new();
 591
 592    for content in message.content {
 593        match content {
 594            MessageContent::Text(text) => {
 595                push_response_text_part(&message.role, text, &mut content_parts);
 596            }
 597            MessageContent::Thinking { text, .. } => {
 598                push_response_text_part(&message.role, text, &mut content_parts);
 599            }
 600            MessageContent::RedactedThinking(_) => {}
 601            MessageContent::Image(image) => {
 602                push_response_image_part(&message.role, image, &mut content_parts);
 603            }
 604            MessageContent::ToolUse(tool_use) => {
 605                flush_response_parts(&message.role, index, &mut content_parts, input_items);
 606                let call_id = tool_use.id.to_string();
 607                input_items.push(json!({
 608                    "type": "function_call",
 609                    "call_id": call_id,
 610                    "name": tool_use.name,
 611                    "arguments": tool_use.raw_input,
 612                }));
 613            }
 614            MessageContent::ToolResult(tool_result) => {
 615                flush_response_parts(&message.role, index, &mut content_parts, input_items);
 616                input_items.push(json!({
 617                    "type": "function_call_output",
 618                    "call_id": tool_result.tool_use_id.to_string(),
 619                    "output": tool_result_output(&tool_result),
 620                }));
 621            }
 622        }
 623    }
 624
 625    flush_response_parts(&message.role, index, &mut content_parts, input_items);
 626}
 627
 628fn push_response_text_part(role: &Role, text: impl Into<String>, parts: &mut Vec<Value>) {
 629    let text = text.into();
 630    if text.trim().is_empty() {
 631        return;
 632    }
 633
 634    match role {
 635        Role::Assistant => parts.push(json!({
 636            "type": "output_text",
 637            "text": text,
 638            "annotations": [],
 639        })),
 640        _ => parts.push(json!({
 641            "type": "input_text",
 642            "text": text,
 643        })),
 644    }
 645}
 646
 647fn push_response_image_part(role: &Role, image: LanguageModelImage, parts: &mut Vec<Value>) {
 648    match role {
 649        Role::Assistant => parts.push(json!({
 650            "type": "output_text",
 651            "text": "[image omitted]",
 652            "annotations": [],
 653        })),
 654        _ => parts.push(json!({
 655            "type": "input_image",
 656            "image_url": image.to_base64_url(),
 657        })),
 658    }
 659}
 660
 661fn flush_response_parts(
 662    role: &Role,
 663    _index: usize,
 664    parts: &mut Vec<Value>,
 665    input_items: &mut Vec<Value>,
 666) {
 667    if parts.is_empty() {
 668        return;
 669    }
 670
 671    let item = match role {
 672        Role::Assistant => json!({
 673            "type": "message",
 674            "role": "assistant",
 675            "status": "completed",
 676            "content": parts.clone(),
 677        }),
 678        Role::User => json!({
 679            "type": "message",
 680            "role": "user",
 681            "content": parts.clone(),
 682        }),
 683        Role::System => json!({
 684            "type": "message",
 685            "role": "system",
 686            "content": parts.clone(),
 687        }),
 688    };
 689
 690    input_items.push(item);
 691    parts.clear();
 692}
 693
 694fn tool_result_output(result: &LanguageModelToolResult) -> String {
 695    if let Some(output) = &result.output {
 696        match output {
 697            serde_json::Value::String(text) => text.clone(),
 698            serde_json::Value::Null => String::new(),
 699            _ => output.to_string(),
 700        }
 701    } else {
 702        match &result.content {
 703            LanguageModelToolResultContent::Text(text) => text.to_string(),
 704            LanguageModelToolResultContent::Image(image) => image.to_base64_url(),
 705        }
 706    }
 707}
 708
 709fn add_message_content_part(
 710    new_part: open_ai::MessagePart,
 711    role: Role,
 712    messages: &mut Vec<open_ai::RequestMessage>,
 713) {
 714    match (role, messages.last_mut()) {
 715        (Role::User, Some(open_ai::RequestMessage::User { content }))
 716        | (
 717            Role::Assistant,
 718            Some(open_ai::RequestMessage::Assistant {
 719                content: Some(content),
 720                ..
 721            }),
 722        )
 723        | (Role::System, Some(open_ai::RequestMessage::System { content, .. })) => {
 724            content.push_part(new_part);
 725        }
 726        _ => {
 727            messages.push(match role {
 728                Role::User => open_ai::RequestMessage::User {
 729                    content: open_ai::MessageContent::from(vec![new_part]),
 730                },
 731                Role::Assistant => open_ai::RequestMessage::Assistant {
 732                    content: Some(open_ai::MessageContent::from(vec![new_part])),
 733                    tool_calls: Vec::new(),
 734                },
 735                Role::System => open_ai::RequestMessage::System {
 736                    content: open_ai::MessageContent::from(vec![new_part]),
 737                },
 738            });
 739        }
 740    }
 741}
 742
 743pub struct OpenAiEventMapper {
 744    tool_calls_by_index: HashMap<usize, RawToolCall>,
 745}
 746
 747impl OpenAiEventMapper {
 748    pub fn new() -> Self {
 749        Self {
 750            tool_calls_by_index: HashMap::default(),
 751        }
 752    }
 753
 754    pub fn map_stream(
 755        mut self,
 756        events: Pin<Box<dyn Send + Stream<Item = Result<ResponseStreamEvent>>>>,
 757    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 758    {
 759        events.flat_map(move |event| {
 760            futures::stream::iter(match event {
 761                Ok(event) => self.map_event(event),
 762                Err(error) => vec![Err(LanguageModelCompletionError::from(anyhow!(error)))],
 763            })
 764        })
 765    }
 766
 767    pub fn map_event(
 768        &mut self,
 769        event: ResponseStreamEvent,
 770    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
 771        let mut events = Vec::new();
 772        if let Some(usage) = event.usage {
 773            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
 774                input_tokens: usage.prompt_tokens,
 775                output_tokens: usage.completion_tokens,
 776                cache_creation_input_tokens: 0,
 777                cache_read_input_tokens: 0,
 778            })));
 779        }
 780
 781        let Some(choice) = event.choices.first() else {
 782            return events;
 783        };
 784
 785        if let Some(delta) = choice.delta.as_ref() {
 786            if let Some(content) = delta.content.clone() {
 787                events.push(Ok(LanguageModelCompletionEvent::Text(content)));
 788            }
 789
 790            if let Some(tool_calls) = delta.tool_calls.as_ref() {
 791                for tool_call in tool_calls {
 792                    let entry = self.tool_calls_by_index.entry(tool_call.index).or_default();
 793
 794                    if let Some(tool_id) = tool_call.id.clone() {
 795                        entry.id = tool_id;
 796                    }
 797
 798                    if let Some(function) = tool_call.function.as_ref() {
 799                        if let Some(name) = function.name.clone() {
 800                            entry.name = name;
 801                        }
 802
 803                        if let Some(arguments) = function.arguments.clone() {
 804                            entry.arguments.push_str(&arguments);
 805                        }
 806                    }
 807                }
 808            }
 809        }
 810
 811        match choice.finish_reason.as_deref() {
 812            Some("stop") => {
 813                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
 814            }
 815            Some("tool_calls") => {
 816                events.extend(self.tool_calls_by_index.drain().map(|(_, tool_call)| {
 817                    match serde_json::Value::from_str(&tool_call.arguments) {
 818                        Ok(input) => Ok(LanguageModelCompletionEvent::ToolUse(
 819                            LanguageModelToolUse {
 820                                id: tool_call.id.clone().into(),
 821                                name: tool_call.name.as_str().into(),
 822                                is_input_complete: true,
 823                                input,
 824                                raw_input: tool_call.arguments.clone(),
 825                                thought_signature: None,
 826                            },
 827                        )),
 828                        Err(error) => Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
 829                            id: tool_call.id.into(),
 830                            tool_name: tool_call.name.into(),
 831                            raw_input: tool_call.arguments.clone().into(),
 832                            json_parse_error: error.to_string(),
 833                        }),
 834                    }
 835                }));
 836
 837                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
 838            }
 839            Some(stop_reason) => {
 840                log::error!("Unexpected OpenAI stop_reason: {stop_reason:?}",);
 841                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
 842            }
 843            None => {}
 844        }
 845
 846        events
 847    }
 848}
 849
 850#[derive(Default)]
 851struct RawToolCall {
 852    id: String,
 853    name: String,
 854    arguments: String,
 855}
 856
 857pub struct OpenAiResponseEventMapper {
 858    function_calls_by_item: HashMap<String, PendingResponseFunctionCall>,
 859    pending_stop_reason: Option<StopReason>,
 860}
 861
 862#[derive(Default)]
 863struct PendingResponseFunctionCall {
 864    call_id: String,
 865    name: Arc<str>,
 866    arguments: String,
 867}
 868
 869impl OpenAiResponseEventMapper {
 870    pub fn new() -> Self {
 871        Self {
 872            function_calls_by_item: HashMap::default(),
 873            pending_stop_reason: None,
 874        }
 875    }
 876
 877    pub fn map_stream(
 878        mut self,
 879        events: Pin<Box<dyn Send + Stream<Item = Result<ResponsesStreamEvent>>>>,
 880    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 881    {
 882        events.flat_map(move |event| {
 883            futures::stream::iter(match event {
 884                Ok(event) => self.map_event(event),
 885                Err(error) => vec![Err(LanguageModelCompletionError::from(anyhow!(error)))],
 886            })
 887        })
 888    }
 889
 890    fn map_event(
 891        &mut self,
 892        event: ResponsesStreamEvent,
 893    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
 894        match event {
 895            ResponsesStreamEvent::OutputItemAdded { item, .. } => {
 896                let mut events = Vec::new();
 897
 898                match &item {
 899                    ResponseOutputItem::Message(message) => {
 900                        if let Some(id) = &message.id {
 901                            events.push(Ok(LanguageModelCompletionEvent::StartMessage {
 902                                message_id: id.clone(),
 903                            }));
 904                        }
 905                    }
 906                    ResponseOutputItem::FunctionCall(function_call) => {
 907                        if let Some(item_id) = function_call.id.clone() {
 908                            let call_id = function_call
 909                                .call_id
 910                                .clone()
 911                                .or_else(|| function_call.id.clone())
 912                                .unwrap_or_else(|| item_id.clone());
 913                            let entry = PendingResponseFunctionCall {
 914                                call_id,
 915                                name: Arc::<str>::from(
 916                                    function_call.name.clone().unwrap_or_default(),
 917                                ),
 918                                arguments: function_call.arguments.clone(),
 919                            };
 920                            self.function_calls_by_item.insert(item_id, entry);
 921                        }
 922                    }
 923                    ResponseOutputItem::Unknown => {}
 924                }
 925                events
 926            }
 927            ResponsesStreamEvent::OutputTextDelta { delta, .. } => {
 928                if delta.is_empty() {
 929                    Vec::new()
 930                } else {
 931                    vec![Ok(LanguageModelCompletionEvent::Text(delta))]
 932                }
 933            }
 934            ResponsesStreamEvent::FunctionCallArgumentsDelta { item_id, delta, .. } => {
 935                if let Some(entry) = self.function_calls_by_item.get_mut(&item_id) {
 936                    entry.arguments.push_str(&delta);
 937                }
 938                Vec::new()
 939            }
 940            ResponsesStreamEvent::FunctionCallArgumentsDone {
 941                item_id, arguments, ..
 942            } => {
 943                if let Some(mut entry) = self.function_calls_by_item.remove(&item_id) {
 944                    if !arguments.is_empty() {
 945                        entry.arguments = arguments;
 946                    }
 947                    let raw_input = entry.arguments.clone();
 948                    self.pending_stop_reason = Some(StopReason::ToolUse);
 949                    match serde_json::from_str::<serde_json::Value>(&entry.arguments) {
 950                        Ok(input) => {
 951                            vec![Ok(LanguageModelCompletionEvent::ToolUse(
 952                                LanguageModelToolUse {
 953                                    id: LanguageModelToolUseId::from(entry.call_id.clone()),
 954                                    name: entry.name.clone(),
 955                                    is_input_complete: true,
 956                                    input,
 957                                    raw_input,
 958                                    thought_signature: None,
 959                                },
 960                            ))]
 961                        }
 962                        Err(error) => {
 963                            vec![Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
 964                                id: LanguageModelToolUseId::from(entry.call_id.clone()),
 965                                tool_name: entry.name.clone(),
 966                                raw_input: Arc::<str>::from(raw_input),
 967                                json_parse_error: error.to_string(),
 968                            })]
 969                        }
 970                    }
 971                } else {
 972                    Vec::new()
 973                }
 974            }
 975            ResponsesStreamEvent::Completed { response } => {
 976                self.handle_completion(response, StopReason::EndTurn)
 977            }
 978            ResponsesStreamEvent::Incomplete { response } => {
 979                let reason = response
 980                    .status_details
 981                    .as_ref()
 982                    .and_then(|details| details.reason.as_deref());
 983                let stop_reason = match reason {
 984                    Some("max_output_tokens") => StopReason::MaxTokens,
 985                    Some("content_filter") => {
 986                        self.pending_stop_reason = Some(StopReason::Refusal);
 987                        StopReason::Refusal
 988                    }
 989                    _ => self
 990                        .pending_stop_reason
 991                        .take()
 992                        .unwrap_or(StopReason::EndTurn),
 993                };
 994
 995                let mut events = Vec::new();
 996                if self.pending_stop_reason.is_none() {
 997                    events.extend(self.emit_tool_calls_from_output(&response.output));
 998                }
 999                if let Some(usage) = response.usage.as_ref() {
1000                    events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(
1001                        token_usage_from_response_usage(usage),
1002                    )));
1003                }
1004                events.push(Ok(LanguageModelCompletionEvent::Stop(stop_reason)));
1005                events
1006            }
1007            ResponsesStreamEvent::Failed { response } => {
1008                let message = response
1009                    .status_details
1010                    .and_then(|details| details.error)
1011                    .map(|error| error.to_string())
1012                    .unwrap_or_else(|| "response failed".to_string());
1013                vec![Err(LanguageModelCompletionError::Other(anyhow!(message)))]
1014            }
1015            ResponsesStreamEvent::Error { error }
1016            | ResponsesStreamEvent::GenericError { error } => {
1017                vec![Err(LanguageModelCompletionError::Other(anyhow!(format!(
1018                    "{error:?}"
1019                ))))]
1020            }
1021            ResponsesStreamEvent::OutputTextDone { .. } => Vec::new(),
1022            ResponsesStreamEvent::OutputItemDone { .. }
1023            | ResponsesStreamEvent::ContentPartAdded { .. }
1024            | ResponsesStreamEvent::ContentPartDone { .. }
1025            | ResponsesStreamEvent::Created { .. }
1026            | ResponsesStreamEvent::InProgress { .. }
1027            | ResponsesStreamEvent::Unknown => Vec::new(),
1028        }
1029    }
1030
1031    fn handle_completion(
1032        &mut self,
1033        response: ResponsesSummary,
1034        default_reason: StopReason,
1035    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
1036        let mut events = Vec::new();
1037
1038        if self.pending_stop_reason.is_none() {
1039            events.extend(self.emit_tool_calls_from_output(&response.output));
1040        }
1041
1042        if let Some(usage) = response.usage.as_ref() {
1043            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(
1044                token_usage_from_response_usage(usage),
1045            )));
1046        }
1047
1048        let stop_reason = self.pending_stop_reason.take().unwrap_or(default_reason);
1049        events.push(Ok(LanguageModelCompletionEvent::Stop(stop_reason)));
1050        events
1051    }
1052
1053    fn emit_tool_calls_from_output(
1054        &mut self,
1055        output: &[ResponseOutputItem],
1056    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
1057        let mut events = Vec::new();
1058        for item in output {
1059            if let ResponseOutputItem::FunctionCall(function_call) = item {
1060                let Some(call_id) = function_call
1061                    .call_id
1062                    .clone()
1063                    .or_else(|| function_call.id.clone())
1064                else {
1065                    log::error!(
1066                        "Function call item missing both call_id and id: {:?}",
1067                        function_call
1068                    );
1069                    continue;
1070                };
1071                let name: Arc<str> = Arc::from(function_call.name.clone().unwrap_or_default());
1072                let arguments = &function_call.arguments;
1073                if !arguments.is_empty() {
1074                    self.pending_stop_reason = Some(StopReason::ToolUse);
1075                    match serde_json::from_str::<serde_json::Value>(arguments) {
1076                        Ok(input) => {
1077                            events.push(Ok(LanguageModelCompletionEvent::ToolUse(
1078                                LanguageModelToolUse {
1079                                    id: LanguageModelToolUseId::from(call_id.clone()),
1080                                    name: name.clone(),
1081                                    is_input_complete: true,
1082                                    input,
1083                                    raw_input: arguments.clone(),
1084                                    thought_signature: None,
1085                                },
1086                            )));
1087                        }
1088                        Err(error) => {
1089                            events.push(Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
1090                                id: LanguageModelToolUseId::from(call_id.clone()),
1091                                tool_name: name.clone(),
1092                                raw_input: Arc::<str>::from(arguments.clone()),
1093                                json_parse_error: error.to_string(),
1094                            }));
1095                        }
1096                    }
1097                }
1098            }
1099        }
1100        events
1101    }
1102}
1103
1104fn token_usage_from_response_usage(usage: &ResponsesUsage) -> TokenUsage {
1105    TokenUsage {
1106        input_tokens: usage.input_tokens.unwrap_or_default(),
1107        output_tokens: usage.output_tokens.unwrap_or_default(),
1108        cache_creation_input_tokens: 0,
1109        cache_read_input_tokens: 0,
1110    }
1111}
1112
1113pub(crate) fn collect_tiktoken_messages(
1114    request: LanguageModelRequest,
1115) -> Vec<tiktoken_rs::ChatCompletionRequestMessage> {
1116    request
1117        .messages
1118        .into_iter()
1119        .map(|message| tiktoken_rs::ChatCompletionRequestMessage {
1120            role: match message.role {
1121                Role::User => "user".into(),
1122                Role::Assistant => "assistant".into(),
1123                Role::System => "system".into(),
1124            },
1125            content: Some(message.string_contents()),
1126            name: None,
1127            function_call: None,
1128        })
1129        .collect::<Vec<_>>()
1130}
1131
1132pub fn count_open_ai_tokens(
1133    request: LanguageModelRequest,
1134    model: Model,
1135    cx: &App,
1136) -> BoxFuture<'static, Result<u64>> {
1137    cx.background_spawn(async move {
1138        let messages = collect_tiktoken_messages(request);
1139        match model {
1140            Model::Custom { max_tokens, .. } => {
1141                let model = if max_tokens >= 100_000 {
1142                    // If the max tokens is 100k or more, it is likely the o200k_base tokenizer from gpt4o
1143                    "gpt-4o"
1144                } else {
1145                    // Otherwise fallback to gpt-4, since only cl100k_base and o200k_base are
1146                    // supported with this tiktoken method
1147                    "gpt-4"
1148                };
1149                tiktoken_rs::num_tokens_from_messages(model, &messages)
1150            }
1151            // Currently supported by tiktoken_rs
1152            // Sometimes tiktoken-rs is behind on model support. If that is the case, make a new branch
1153            // arm with an override. We enumerate all supported models here so that we can check if new
1154            // models are supported yet or not.
1155            Model::ThreePointFiveTurbo
1156            | Model::Four
1157            | Model::FourTurbo
1158            | Model::FourOmni
1159            | Model::FourOmniMini
1160            | Model::FourPointOne
1161            | Model::FourPointOneMini
1162            | Model::FourPointOneNano
1163            | Model::O1
1164            | Model::O3
1165            | Model::O3Mini
1166            | Model::O4Mini
1167            | Model::Five
1168            | Model::FiveCodex
1169            | Model::FiveMini
1170            | Model::FiveNano => tiktoken_rs::num_tokens_from_messages(model.id(), &messages),
1171            // GPT-5.1 and 5.2 don't have dedicated tiktoken support; use gpt-5 tokenizer
1172            Model::FivePointOne | Model::FivePointTwo => {
1173                tiktoken_rs::num_tokens_from_messages("gpt-5", &messages)
1174            }
1175        }
1176        .map(|tokens| tokens as u64)
1177    })
1178    .boxed()
1179}
1180
1181struct ConfigurationView {
1182    api_key_editor: Entity<InputField>,
1183    state: Entity<State>,
1184    load_credentials_task: Option<Task<()>>,
1185}
1186
1187impl ConfigurationView {
1188    fn new(state: Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
1189        let api_key_editor = cx.new(|cx| {
1190            InputField::new(
1191                window,
1192                cx,
1193                "sk-000000000000000000000000000000000000000000000000",
1194            )
1195        });
1196
1197        cx.observe(&state, |_, _, cx| {
1198            cx.notify();
1199        })
1200        .detach();
1201
1202        let load_credentials_task = Some(cx.spawn_in(window, {
1203            let state = state.clone();
1204            async move |this, cx| {
1205                if let Some(task) = Some(state.update(cx, |state, cx| state.authenticate(cx))) {
1206                    // We don't log an error, because "not signed in" is also an error.
1207                    let _ = task.await;
1208                }
1209                this.update(cx, |this, cx| {
1210                    this.load_credentials_task = None;
1211                    cx.notify();
1212                })
1213                .log_err();
1214            }
1215        }));
1216
1217        Self {
1218            api_key_editor,
1219            state,
1220            load_credentials_task,
1221        }
1222    }
1223
1224    fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
1225        let api_key = self.api_key_editor.read(cx).text(cx).trim().to_string();
1226        if api_key.is_empty() {
1227            return;
1228        }
1229
1230        // url changes can cause the editor to be displayed again
1231        self.api_key_editor
1232            .update(cx, |editor, cx| editor.set_text("", window, cx));
1233
1234        let state = self.state.clone();
1235        cx.spawn_in(window, async move |_, cx| {
1236            state
1237                .update(cx, |state, cx| state.set_api_key(Some(api_key), cx))
1238                .await
1239        })
1240        .detach_and_log_err(cx);
1241    }
1242
1243    fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
1244        self.api_key_editor
1245            .update(cx, |input, cx| input.set_text("", window, cx));
1246
1247        let state = self.state.clone();
1248        cx.spawn_in(window, async move |_, cx| {
1249            state
1250                .update(cx, |state, cx| state.set_api_key(None, cx))
1251                .await
1252        })
1253        .detach_and_log_err(cx);
1254    }
1255
1256    fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
1257        !self.state.read(cx).is_authenticated()
1258    }
1259}
1260
1261impl Render for ConfigurationView {
1262    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1263        let env_var_set = self.state.read(cx).api_key_state.is_from_env_var();
1264        let configured_card_label = if env_var_set {
1265            format!("API key set in {API_KEY_ENV_VAR_NAME} environment variable")
1266        } else {
1267            let api_url = OpenAiLanguageModelProvider::api_url(cx);
1268            if api_url == OPEN_AI_API_URL {
1269                "API key configured".to_string()
1270            } else {
1271                format!("API key configured for {}", api_url)
1272            }
1273        };
1274
1275        let api_key_section = if self.should_render_editor(cx) {
1276            v_flex()
1277                .on_action(cx.listener(Self::save_api_key))
1278                .child(Label::new("To use Zed's agent with OpenAI, you need to add an API key. Follow these steps:"))
1279                .child(
1280                    List::new()
1281                        .child(
1282                            ListBulletItem::new("")
1283                                .child(Label::new("Create one by visiting"))
1284                                .child(ButtonLink::new("OpenAI's console", "https://platform.openai.com/api-keys"))
1285                        )
1286                        .child(
1287                            ListBulletItem::new("Ensure your OpenAI account has credits")
1288                        )
1289                        .child(
1290                            ListBulletItem::new("Paste your API key below and hit enter to start using the agent")
1291                        ),
1292                )
1293                .child(self.api_key_editor.clone())
1294                .child(
1295                    Label::new(format!(
1296                        "You can also set the {API_KEY_ENV_VAR_NAME} environment variable and restart Zed."
1297                    ))
1298                    .size(LabelSize::Small)
1299                    .color(Color::Muted),
1300                )
1301                .child(
1302                    Label::new(
1303                        "Note that having a subscription for another service like GitHub Copilot won't work.",
1304                    )
1305                    .size(LabelSize::Small).color(Color::Muted),
1306                )
1307                .into_any_element()
1308        } else {
1309            ConfiguredApiCard::new(configured_card_label)
1310                .disabled(env_var_set)
1311                .on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx)))
1312                .when(env_var_set, |this| {
1313                    this.tooltip_label(format!("To reset your API key, unset the {API_KEY_ENV_VAR_NAME} environment variable."))
1314                })
1315                .into_any_element()
1316        };
1317
1318        let compatible_api_section = h_flex()
1319            .mt_1p5()
1320            .gap_0p5()
1321            .flex_wrap()
1322            .when(self.should_render_editor(cx), |this| {
1323                this.pt_1p5()
1324                    .border_t_1()
1325                    .border_color(cx.theme().colors().border_variant)
1326            })
1327            .child(
1328                h_flex()
1329                    .gap_2()
1330                    .child(
1331                        Icon::new(IconName::Info)
1332                            .size(IconSize::XSmall)
1333                            .color(Color::Muted),
1334                    )
1335                    .child(Label::new("Zed also supports OpenAI-compatible models.")),
1336            )
1337            .child(
1338                Button::new("docs", "Learn More")
1339                    .icon(IconName::ArrowUpRight)
1340                    .icon_size(IconSize::Small)
1341                    .icon_color(Color::Muted)
1342                    .on_click(move |_, _window, cx| {
1343                        cx.open_url("https://zed.dev/docs/ai/llm-providers#openai-api-compatible")
1344                    }),
1345            );
1346
1347        if self.load_credentials_task.is_some() {
1348            div().child(Label::new("Loading credentials…")).into_any()
1349        } else {
1350            v_flex()
1351                .size_full()
1352                .child(api_key_section)
1353                .child(compatible_api_section)
1354                .into_any()
1355        }
1356    }
1357}
1358
1359#[cfg(test)]
1360mod tests {
1361    use super::*;
1362    use futures::{StreamExt, executor::block_on};
1363    use gpui::TestAppContext;
1364    use language_model::{LanguageModelRequestMessage, LanguageModelRequestTool};
1365    use open_ai::responses::{
1366        ResponseFunctionToolCall, ResponseOutputItem, ResponseOutputMessage, ResponseStatusDetails,
1367        ResponseSummary, ResponseUsage, StreamEvent as ResponsesStreamEvent,
1368    };
1369    use pretty_assertions::assert_eq;
1370
1371    fn map_response_events(events: Vec<ResponsesStreamEvent>) -> Vec<LanguageModelCompletionEvent> {
1372        block_on(async {
1373            OpenAiResponseEventMapper::new()
1374                .map_stream(Box::pin(futures::stream::iter(events.into_iter().map(Ok))))
1375                .collect::<Vec<_>>()
1376                .await
1377                .into_iter()
1378                .map(Result::unwrap)
1379                .collect()
1380        })
1381    }
1382
1383    fn response_item_message(id: &str) -> ResponseOutputItem {
1384        ResponseOutputItem::Message(ResponseOutputMessage {
1385            id: Some(id.to_string()),
1386            role: Some("assistant".to_string()),
1387            status: Some("in_progress".to_string()),
1388            content: vec![],
1389        })
1390    }
1391
1392    fn response_item_function_call(id: &str, args: Option<&str>) -> ResponseOutputItem {
1393        ResponseOutputItem::FunctionCall(ResponseFunctionToolCall {
1394            id: Some(id.to_string()),
1395            status: Some("in_progress".to_string()),
1396            name: Some("get_weather".to_string()),
1397            call_id: Some("call_123".to_string()),
1398            arguments: args.map(|s| s.to_string()).unwrap_or_default(),
1399        })
1400    }
1401
1402    #[gpui::test]
1403    fn tiktoken_rs_support(cx: &TestAppContext) {
1404        let request = LanguageModelRequest {
1405            thread_id: None,
1406            prompt_id: None,
1407            intent: None,
1408            mode: None,
1409            messages: vec![LanguageModelRequestMessage {
1410                role: Role::User,
1411                content: vec![MessageContent::Text("message".into())],
1412                cache: false,
1413                reasoning_details: None,
1414            }],
1415            tools: vec![],
1416            tool_choice: None,
1417            stop: vec![],
1418            temperature: None,
1419            thinking_allowed: true,
1420        };
1421
1422        // Validate that all models are supported by tiktoken-rs
1423        for model in Model::iter() {
1424            let count = cx
1425                .executor()
1426                .block(count_open_ai_tokens(
1427                    request.clone(),
1428                    model,
1429                    &cx.app.borrow(),
1430                ))
1431                .unwrap();
1432            assert!(count > 0);
1433        }
1434    }
1435
1436    #[test]
1437    fn responses_stream_maps_text_and_usage() {
1438        let events = vec![
1439            ResponsesStreamEvent::OutputItemAdded {
1440                output_index: 0,
1441                sequence_number: None,
1442                item: response_item_message("msg_123"),
1443            },
1444            ResponsesStreamEvent::OutputTextDelta {
1445                item_id: "msg_123".into(),
1446                output_index: 0,
1447                content_index: Some(0),
1448                delta: "Hello".into(),
1449            },
1450            ResponsesStreamEvent::Completed {
1451                response: ResponseSummary {
1452                    usage: Some(ResponseUsage {
1453                        input_tokens: Some(5),
1454                        output_tokens: Some(3),
1455                        total_tokens: Some(8),
1456                    }),
1457                    ..Default::default()
1458                },
1459            },
1460        ];
1461
1462        let mapped = map_response_events(events);
1463        assert!(matches!(
1464            mapped[0],
1465            LanguageModelCompletionEvent::StartMessage { ref message_id } if message_id == "msg_123"
1466        ));
1467        assert!(matches!(
1468            mapped[1],
1469            LanguageModelCompletionEvent::Text(ref text) if text == "Hello"
1470        ));
1471        assert!(matches!(
1472            mapped[2],
1473            LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
1474                input_tokens: 5,
1475                output_tokens: 3,
1476                ..
1477            })
1478        ));
1479        assert!(matches!(
1480            mapped[3],
1481            LanguageModelCompletionEvent::Stop(StopReason::EndTurn)
1482        ));
1483    }
1484
1485    #[test]
1486    fn into_open_ai_response_builds_complete_payload() {
1487        let tool_call_id = LanguageModelToolUseId::from("call-42");
1488        let tool_input = json!({ "city": "Boston" });
1489        let tool_arguments = serde_json::to_string(&tool_input).unwrap();
1490        let tool_use = LanguageModelToolUse {
1491            id: tool_call_id.clone(),
1492            name: Arc::from("get_weather"),
1493            raw_input: tool_arguments.clone(),
1494            input: tool_input,
1495            is_input_complete: true,
1496            thought_signature: None,
1497        };
1498        let tool_result = LanguageModelToolResult {
1499            tool_use_id: tool_call_id,
1500            tool_name: Arc::from("get_weather"),
1501            is_error: false,
1502            content: LanguageModelToolResultContent::Text(Arc::from("Sunny")),
1503            output: Some(json!({ "forecast": "Sunny" })),
1504        };
1505        let user_image = LanguageModelImage {
1506            source: SharedString::from("aGVsbG8="),
1507            size: None,
1508        };
1509        let expected_image_url = user_image.to_base64_url();
1510
1511        let request = LanguageModelRequest {
1512            thread_id: Some("thread-123".into()),
1513            prompt_id: None,
1514            intent: None,
1515            mode: None,
1516            messages: vec![
1517                LanguageModelRequestMessage {
1518                    role: Role::System,
1519                    content: vec![MessageContent::Text("System context".into())],
1520                    cache: false,
1521                    reasoning_details: None,
1522                },
1523                LanguageModelRequestMessage {
1524                    role: Role::User,
1525                    content: vec![
1526                        MessageContent::Text("Please check the weather.".into()),
1527                        MessageContent::Image(user_image),
1528                    ],
1529                    cache: false,
1530                    reasoning_details: None,
1531                },
1532                LanguageModelRequestMessage {
1533                    role: Role::Assistant,
1534                    content: vec![
1535                        MessageContent::Text("Looking that up.".into()),
1536                        MessageContent::ToolUse(tool_use),
1537                    ],
1538                    cache: false,
1539                    reasoning_details: None,
1540                },
1541                LanguageModelRequestMessage {
1542                    role: Role::Assistant,
1543                    content: vec![MessageContent::ToolResult(tool_result)],
1544                    cache: false,
1545                    reasoning_details: None,
1546                },
1547            ],
1548            tools: vec![LanguageModelRequestTool {
1549                name: "get_weather".into(),
1550                description: "Fetches the weather".into(),
1551                input_schema: json!({ "type": "object" }),
1552            }],
1553            tool_choice: Some(LanguageModelToolChoice::Any),
1554            stop: vec!["<STOP>".into()],
1555            temperature: None,
1556            thinking_allowed: false,
1557        };
1558
1559        let response = into_open_ai_response(
1560            request,
1561            "custom-model",
1562            true,
1563            true,
1564            Some(2048),
1565            Some(ReasoningEffort::Low),
1566        );
1567
1568        let serialized = serde_json::to_value(&response).unwrap();
1569        let expected = json!({
1570            "model": "custom-model",
1571            "input": [
1572                {
1573                    "type": "message",
1574                    "role": "system",
1575                    "content": [
1576                        { "type": "input_text", "text": "System context" }
1577                    ]
1578                },
1579                {
1580                    "type": "message",
1581                    "role": "user",
1582                    "content": [
1583                        { "type": "input_text", "text": "Please check the weather." },
1584                        { "type": "input_image", "image_url": expected_image_url }
1585                    ]
1586                },
1587                {
1588                    "type": "message",
1589                    "role": "assistant",
1590                    "status": "completed",
1591                    "content": [
1592                        { "type": "output_text", "text": "Looking that up.", "annotations": [] }
1593                    ]
1594                },
1595                {
1596                    "type": "function_call",
1597                    "call_id": "call-42",
1598                    "name": "get_weather",
1599                    "arguments": tool_arguments
1600                },
1601                {
1602                    "type": "function_call_output",
1603                    "call_id": "call-42",
1604                    "output": "{\"forecast\":\"Sunny\"}"
1605                }
1606            ],
1607            "stream": true,
1608            "max_output_tokens": 2048,
1609            "parallel_tool_calls": true,
1610            "tool_choice": "required",
1611            "tools": [
1612                {
1613                    "type": "function",
1614                    "name": "get_weather",
1615                    "description": "Fetches the weather",
1616                    "parameters": { "type": "object" }
1617                }
1618            ],
1619            "prompt_cache_key": "thread-123",
1620            "reasoning": { "effort": "low" }
1621        });
1622
1623        assert_eq!(serialized, expected);
1624    }
1625
1626    #[test]
1627    fn responses_stream_maps_tool_calls() {
1628        let events = vec![
1629            ResponsesStreamEvent::OutputItemAdded {
1630                output_index: 0,
1631                sequence_number: None,
1632                item: response_item_function_call("item_fn", Some("{\"city\":\"Bos")),
1633            },
1634            ResponsesStreamEvent::FunctionCallArgumentsDelta {
1635                item_id: "item_fn".into(),
1636                output_index: 0,
1637                delta: "ton\"}".into(),
1638                sequence_number: None,
1639            },
1640            ResponsesStreamEvent::FunctionCallArgumentsDone {
1641                item_id: "item_fn".into(),
1642                output_index: 0,
1643                arguments: "{\"city\":\"Boston\"}".into(),
1644                sequence_number: None,
1645            },
1646            ResponsesStreamEvent::Completed {
1647                response: ResponseSummary::default(),
1648            },
1649        ];
1650
1651        let mapped = map_response_events(events);
1652        assert!(matches!(
1653            mapped[0],
1654            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse {
1655                ref id,
1656                ref name,
1657                ref raw_input,
1658                ..
1659            }) if id.to_string() == "call_123"
1660                && name.as_ref() == "get_weather"
1661                && raw_input == "{\"city\":\"Boston\"}"
1662        ));
1663        assert!(matches!(
1664            mapped[1],
1665            LanguageModelCompletionEvent::Stop(StopReason::ToolUse)
1666        ));
1667    }
1668
1669    #[test]
1670    fn responses_stream_uses_max_tokens_stop_reason() {
1671        let events = vec![ResponsesStreamEvent::Incomplete {
1672            response: ResponseSummary {
1673                status_details: Some(ResponseStatusDetails {
1674                    reason: Some("max_output_tokens".into()),
1675                    r#type: Some("incomplete".into()),
1676                    error: None,
1677                }),
1678                usage: Some(ResponseUsage {
1679                    input_tokens: Some(10),
1680                    output_tokens: Some(20),
1681                    total_tokens: Some(30),
1682                }),
1683                ..Default::default()
1684            },
1685        }];
1686
1687        let mapped = map_response_events(events);
1688        assert!(matches!(
1689            mapped[0],
1690            LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
1691                input_tokens: 10,
1692                output_tokens: 20,
1693                ..
1694            })
1695        ));
1696        assert!(matches!(
1697            mapped[1],
1698            LanguageModelCompletionEvent::Stop(StopReason::MaxTokens)
1699        ));
1700    }
1701
1702    #[test]
1703    fn responses_stream_handles_multiple_tool_calls() {
1704        let events = vec![
1705            ResponsesStreamEvent::OutputItemAdded {
1706                output_index: 0,
1707                sequence_number: None,
1708                item: response_item_function_call("item_fn1", Some("{\"city\":\"NYC\"}")),
1709            },
1710            ResponsesStreamEvent::FunctionCallArgumentsDone {
1711                item_id: "item_fn1".into(),
1712                output_index: 0,
1713                arguments: "{\"city\":\"NYC\"}".into(),
1714                sequence_number: None,
1715            },
1716            ResponsesStreamEvent::OutputItemAdded {
1717                output_index: 1,
1718                sequence_number: None,
1719                item: response_item_function_call("item_fn2", Some("{\"city\":\"LA\"}")),
1720            },
1721            ResponsesStreamEvent::FunctionCallArgumentsDone {
1722                item_id: "item_fn2".into(),
1723                output_index: 1,
1724                arguments: "{\"city\":\"LA\"}".into(),
1725                sequence_number: None,
1726            },
1727            ResponsesStreamEvent::Completed {
1728                response: ResponseSummary::default(),
1729            },
1730        ];
1731
1732        let mapped = map_response_events(events);
1733        assert_eq!(mapped.len(), 3);
1734        assert!(matches!(
1735            mapped[0],
1736            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse { ref raw_input, .. })
1737            if raw_input == "{\"city\":\"NYC\"}"
1738        ));
1739        assert!(matches!(
1740            mapped[1],
1741            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse { ref raw_input, .. })
1742            if raw_input == "{\"city\":\"LA\"}"
1743        ));
1744        assert!(matches!(
1745            mapped[2],
1746            LanguageModelCompletionEvent::Stop(StopReason::ToolUse)
1747        ));
1748    }
1749
1750    #[test]
1751    fn responses_stream_handles_mixed_text_and_tool_calls() {
1752        let events = vec![
1753            ResponsesStreamEvent::OutputItemAdded {
1754                output_index: 0,
1755                sequence_number: None,
1756                item: response_item_message("msg_123"),
1757            },
1758            ResponsesStreamEvent::OutputTextDelta {
1759                item_id: "msg_123".into(),
1760                output_index: 0,
1761                content_index: Some(0),
1762                delta: "Let me check that".into(),
1763            },
1764            ResponsesStreamEvent::OutputItemAdded {
1765                output_index: 1,
1766                sequence_number: None,
1767                item: response_item_function_call("item_fn", Some("{\"query\":\"test\"}")),
1768            },
1769            ResponsesStreamEvent::FunctionCallArgumentsDone {
1770                item_id: "item_fn".into(),
1771                output_index: 1,
1772                arguments: "{\"query\":\"test\"}".into(),
1773                sequence_number: None,
1774            },
1775            ResponsesStreamEvent::Completed {
1776                response: ResponseSummary::default(),
1777            },
1778        ];
1779
1780        let mapped = map_response_events(events);
1781        assert!(matches!(
1782            mapped[0],
1783            LanguageModelCompletionEvent::StartMessage { .. }
1784        ));
1785        assert!(matches!(
1786            mapped[1],
1787            LanguageModelCompletionEvent::Text(ref text) if text == "Let me check that"
1788        ));
1789        assert!(matches!(
1790            mapped[2],
1791            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse { ref raw_input, .. })
1792            if raw_input == "{\"query\":\"test\"}"
1793        ));
1794        assert!(matches!(
1795            mapped[3],
1796            LanguageModelCompletionEvent::Stop(StopReason::ToolUse)
1797        ));
1798    }
1799
1800    #[test]
1801    fn responses_stream_handles_json_parse_error() {
1802        let events = vec![
1803            ResponsesStreamEvent::OutputItemAdded {
1804                output_index: 0,
1805                sequence_number: None,
1806                item: response_item_function_call("item_fn", Some("{invalid json")),
1807            },
1808            ResponsesStreamEvent::FunctionCallArgumentsDone {
1809                item_id: "item_fn".into(),
1810                output_index: 0,
1811                arguments: "{invalid json".into(),
1812                sequence_number: None,
1813            },
1814            ResponsesStreamEvent::Completed {
1815                response: ResponseSummary::default(),
1816            },
1817        ];
1818
1819        let mapped = map_response_events(events);
1820        assert!(matches!(
1821            mapped[0],
1822            LanguageModelCompletionEvent::ToolUseJsonParseError {
1823                ref raw_input,
1824                ..
1825            } if raw_input.as_ref() == "{invalid json"
1826        ));
1827    }
1828
1829    #[test]
1830    fn responses_stream_handles_incomplete_function_call() {
1831        let events = vec![
1832            ResponsesStreamEvent::OutputItemAdded {
1833                output_index: 0,
1834                sequence_number: None,
1835                item: response_item_function_call("item_fn", Some("{\"city\":")),
1836            },
1837            ResponsesStreamEvent::FunctionCallArgumentsDelta {
1838                item_id: "item_fn".into(),
1839                output_index: 0,
1840                delta: "\"Boston\"".into(),
1841                sequence_number: None,
1842            },
1843            ResponsesStreamEvent::Incomplete {
1844                response: ResponseSummary {
1845                    status_details: Some(ResponseStatusDetails {
1846                        reason: Some("max_output_tokens".into()),
1847                        r#type: Some("incomplete".into()),
1848                        error: None,
1849                    }),
1850                    output: vec![response_item_function_call(
1851                        "item_fn",
1852                        Some("{\"city\":\"Boston\"}"),
1853                    )],
1854                    ..Default::default()
1855                },
1856            },
1857        ];
1858
1859        let mapped = map_response_events(events);
1860        assert!(matches!(
1861            mapped[0],
1862            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse { ref raw_input, .. })
1863            if raw_input == "{\"city\":\"Boston\"}"
1864        ));
1865        assert!(matches!(
1866            mapped[1],
1867            LanguageModelCompletionEvent::Stop(StopReason::MaxTokens)
1868        ));
1869    }
1870
1871    #[test]
1872    fn responses_stream_incomplete_does_not_duplicate_tool_calls() {
1873        let events = vec![
1874            ResponsesStreamEvent::OutputItemAdded {
1875                output_index: 0,
1876                sequence_number: None,
1877                item: response_item_function_call("item_fn", Some("{\"city\":\"Boston\"}")),
1878            },
1879            ResponsesStreamEvent::FunctionCallArgumentsDone {
1880                item_id: "item_fn".into(),
1881                output_index: 0,
1882                arguments: "{\"city\":\"Boston\"}".into(),
1883                sequence_number: None,
1884            },
1885            ResponsesStreamEvent::Incomplete {
1886                response: ResponseSummary {
1887                    status_details: Some(ResponseStatusDetails {
1888                        reason: Some("max_output_tokens".into()),
1889                        r#type: Some("incomplete".into()),
1890                        error: None,
1891                    }),
1892                    output: vec![response_item_function_call(
1893                        "item_fn",
1894                        Some("{\"city\":\"Boston\"}"),
1895                    )],
1896                    ..Default::default()
1897                },
1898            },
1899        ];
1900
1901        let mapped = map_response_events(events);
1902        assert_eq!(mapped.len(), 2);
1903        assert!(matches!(
1904            mapped[0],
1905            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse { ref raw_input, .. })
1906            if raw_input == "{\"city\":\"Boston\"}"
1907        ));
1908        assert!(matches!(
1909            mapped[1],
1910            LanguageModelCompletionEvent::Stop(StopReason::MaxTokens)
1911        ));
1912    }
1913}