1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, Priority, PromptButton,
13 PromptLevel, Quad, Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams,
14 Replay, ResizeEdge, SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y,
15 ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style, SubpixelSprite,
16 SubscriberSet, Subscription, SystemWindowTab, SystemWindowTabController, TabStopMap,
17 TaffyLayoutEngine, Task, TextRenderingMode, TextStyle, TextStyleRefinement,
18 TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
19 WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
20 point, prelude::*, px, rems, size, transparent_black,
21};
22use anyhow::{Context as _, Result, anyhow};
23use collections::{FxHashMap, FxHashSet};
24#[cfg(target_os = "macos")]
25use core_video::pixel_buffer::CVPixelBuffer;
26use derive_more::{Deref, DerefMut};
27use futures::FutureExt;
28use futures::channel::oneshot;
29use itertools::FoldWhile::{Continue, Done};
30use itertools::Itertools;
31use parking_lot::RwLock;
32use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
33use refineable::Refineable;
34use slotmap::SlotMap;
35use smallvec::SmallVec;
36use std::{
37 any::{Any, TypeId},
38 borrow::Cow,
39 cell::{Cell, RefCell},
40 cmp,
41 fmt::{Debug, Display},
42 hash::{Hash, Hasher},
43 marker::PhantomData,
44 mem,
45 ops::{DerefMut, Range},
46 rc::Rc,
47 sync::{
48 Arc, Weak,
49 atomic::{AtomicUsize, Ordering::SeqCst},
50 },
51 time::{Duration, Instant},
52};
53use util::post_inc;
54use util::{ResultExt, measure};
55use uuid::Uuid;
56
57mod prompts;
58
59use crate::util::atomic_incr_if_not_zero;
60pub use prompts::*;
61
62pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
63
64/// A 6:5 aspect ratio minimum window size to be used for functional,
65/// additional-to-main-Zed windows, like the settings and rules library windows.
66pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
67 width: Pixels(900.),
68 height: Pixels(750.),
69};
70
71/// Represents the two different phases when dispatching events.
72#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
73pub enum DispatchPhase {
74 /// After the capture phase comes the bubble phase, in which mouse event listeners are
75 /// invoked front to back and keyboard event listeners are invoked from the focused element
76 /// to the root of the element tree. This is the phase you'll most commonly want to use when
77 /// registering event listeners.
78 #[default]
79 Bubble,
80 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
81 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
82 /// is used for special purposes such as clearing the "pressed" state for click events. If
83 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
84 /// outside of the immediate region may rely on detecting non-local events during this phase.
85 Capture,
86}
87
88impl DispatchPhase {
89 /// Returns true if this represents the "bubble" phase.
90 #[inline]
91 pub fn bubble(self) -> bool {
92 self == DispatchPhase::Bubble
93 }
94
95 /// Returns true if this represents the "capture" phase.
96 #[inline]
97 pub fn capture(self) -> bool {
98 self == DispatchPhase::Capture
99 }
100}
101
102struct WindowInvalidatorInner {
103 pub dirty: bool,
104 pub draw_phase: DrawPhase,
105 pub dirty_views: FxHashSet<EntityId>,
106}
107
108#[derive(Clone)]
109pub(crate) struct WindowInvalidator {
110 inner: Rc<RefCell<WindowInvalidatorInner>>,
111}
112
113impl WindowInvalidator {
114 pub fn new() -> Self {
115 WindowInvalidator {
116 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
117 dirty: true,
118 draw_phase: DrawPhase::None,
119 dirty_views: FxHashSet::default(),
120 })),
121 }
122 }
123
124 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
125 let mut inner = self.inner.borrow_mut();
126 inner.dirty_views.insert(entity);
127 if inner.draw_phase == DrawPhase::None {
128 inner.dirty = true;
129 cx.push_effect(Effect::Notify { emitter: entity });
130 true
131 } else {
132 false
133 }
134 }
135
136 pub fn is_dirty(&self) -> bool {
137 self.inner.borrow().dirty
138 }
139
140 pub fn set_dirty(&self, dirty: bool) {
141 self.inner.borrow_mut().dirty = dirty
142 }
143
144 pub fn set_phase(&self, phase: DrawPhase) {
145 self.inner.borrow_mut().draw_phase = phase
146 }
147
148 pub fn take_views(&self) -> FxHashSet<EntityId> {
149 mem::take(&mut self.inner.borrow_mut().dirty_views)
150 }
151
152 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
153 self.inner.borrow_mut().dirty_views = views;
154 }
155
156 pub fn not_drawing(&self) -> bool {
157 self.inner.borrow().draw_phase == DrawPhase::None
158 }
159
160 #[track_caller]
161 pub fn debug_assert_paint(&self) {
162 debug_assert!(
163 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
164 "this method can only be called during paint"
165 );
166 }
167
168 #[track_caller]
169 pub fn debug_assert_prepaint(&self) {
170 debug_assert!(
171 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
172 "this method can only be called during request_layout, or prepaint"
173 );
174 }
175
176 #[track_caller]
177 pub fn debug_assert_paint_or_prepaint(&self) {
178 debug_assert!(
179 matches!(
180 self.inner.borrow().draw_phase,
181 DrawPhase::Paint | DrawPhase::Prepaint
182 ),
183 "this method can only be called during request_layout, prepaint, or paint"
184 );
185 }
186}
187
188type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
189
190pub(crate) type AnyWindowFocusListener =
191 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
192
193pub(crate) struct WindowFocusEvent {
194 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
195 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
196}
197
198impl WindowFocusEvent {
199 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
200 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
201 }
202
203 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
204 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
205 }
206}
207
208/// This is provided when subscribing for `Context::on_focus_out` events.
209pub struct FocusOutEvent {
210 /// A weak focus handle representing what was blurred.
211 pub blurred: WeakFocusHandle,
212}
213
214slotmap::new_key_type! {
215 /// A globally unique identifier for a focusable element.
216 pub struct FocusId;
217}
218
219thread_local! {
220 /// Fallback arena used when no app-specific arena is active.
221 /// In production, each window draw sets CURRENT_ELEMENT_ARENA to the app's arena.
222 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
223
224 /// Points to the current App's element arena during draw operations.
225 /// This allows multiple test Apps to have isolated arenas, preventing
226 /// cross-session corruption when the scheduler interleaves their tasks.
227 static CURRENT_ELEMENT_ARENA: Cell<Option<*const RefCell<Arena>>> = const { Cell::new(None) };
228}
229
230/// Allocates an element in the current arena. Uses the app-specific arena if one
231/// is active (during draw), otherwise falls back to the thread-local ELEMENT_ARENA.
232pub(crate) fn with_element_arena<R>(f: impl FnOnce(&mut Arena) -> R) -> R {
233 CURRENT_ELEMENT_ARENA.with(|current| {
234 if let Some(arena_ptr) = current.get() {
235 // SAFETY: The pointer is valid for the duration of the draw operation
236 // that set it, and we're being called during that same draw.
237 let arena_cell = unsafe { &*arena_ptr };
238 f(&mut arena_cell.borrow_mut())
239 } else {
240 ELEMENT_ARENA.with_borrow_mut(f)
241 }
242 })
243}
244
245/// RAII guard that sets CURRENT_ELEMENT_ARENA for the duration of a draw operation.
246/// When dropped, restores the previous arena (supporting nested draws).
247pub(crate) struct ElementArenaScope {
248 previous: Option<*const RefCell<Arena>>,
249}
250
251impl ElementArenaScope {
252 /// Enter a scope where element allocations use the given arena.
253 pub(crate) fn enter(arena: &RefCell<Arena>) -> Self {
254 let previous = CURRENT_ELEMENT_ARENA.with(|current| {
255 let prev = current.get();
256 current.set(Some(arena as *const RefCell<Arena>));
257 prev
258 });
259 Self { previous }
260 }
261}
262
263impl Drop for ElementArenaScope {
264 fn drop(&mut self) {
265 CURRENT_ELEMENT_ARENA.with(|current| {
266 current.set(self.previous);
267 });
268 }
269}
270
271/// Returned when the element arena has been used and so must be cleared before the next draw.
272#[must_use]
273pub struct ArenaClearNeeded {
274 arena: *const RefCell<Arena>,
275}
276
277impl ArenaClearNeeded {
278 /// Create a new ArenaClearNeeded that will clear the given arena.
279 pub(crate) fn new(arena: &RefCell<Arena>) -> Self {
280 Self {
281 arena: arena as *const RefCell<Arena>,
282 }
283 }
284
285 /// Clear the element arena.
286 pub fn clear(self) {
287 // SAFETY: The arena pointer is valid because ArenaClearNeeded is created
288 // at the end of draw() and must be cleared before the next draw.
289 let arena_cell = unsafe { &*self.arena };
290 arena_cell.borrow_mut().clear();
291 }
292}
293
294pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
295pub(crate) struct FocusRef {
296 pub(crate) ref_count: AtomicUsize,
297 pub(crate) tab_index: isize,
298 pub(crate) tab_stop: bool,
299}
300
301impl FocusId {
302 /// Obtains whether the element associated with this handle is currently focused.
303 pub fn is_focused(&self, window: &Window) -> bool {
304 window.focus == Some(*self)
305 }
306
307 /// Obtains whether the element associated with this handle contains the focused
308 /// element or is itself focused.
309 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
310 window
311 .focused(cx)
312 .is_some_and(|focused| self.contains(focused.id, window))
313 }
314
315 /// Obtains whether the element associated with this handle is contained within the
316 /// focused element or is itself focused.
317 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
318 let focused = window.focused(cx);
319 focused.is_some_and(|focused| focused.id.contains(*self, window))
320 }
321
322 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
323 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
324 window
325 .rendered_frame
326 .dispatch_tree
327 .focus_contains(*self, other)
328 }
329}
330
331/// A handle which can be used to track and manipulate the focused element in a window.
332pub struct FocusHandle {
333 pub(crate) id: FocusId,
334 handles: Arc<FocusMap>,
335 /// The index of this element in the tab order.
336 pub tab_index: isize,
337 /// Whether this element can be focused by tab navigation.
338 pub tab_stop: bool,
339}
340
341impl std::fmt::Debug for FocusHandle {
342 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
343 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
344 }
345}
346
347impl FocusHandle {
348 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
349 let id = handles.write().insert(FocusRef {
350 ref_count: AtomicUsize::new(1),
351 tab_index: 0,
352 tab_stop: false,
353 });
354
355 Self {
356 id,
357 tab_index: 0,
358 tab_stop: false,
359 handles: handles.clone(),
360 }
361 }
362
363 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
364 let lock = handles.read();
365 let focus = lock.get(id)?;
366 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
367 return None;
368 }
369 Some(Self {
370 id,
371 tab_index: focus.tab_index,
372 tab_stop: focus.tab_stop,
373 handles: handles.clone(),
374 })
375 }
376
377 /// Sets the tab index of the element associated with this handle.
378 pub fn tab_index(mut self, index: isize) -> Self {
379 self.tab_index = index;
380 if let Some(focus) = self.handles.write().get_mut(self.id) {
381 focus.tab_index = index;
382 }
383 self
384 }
385
386 /// Sets whether the element associated with this handle is a tab stop.
387 ///
388 /// When `false`, the element will not be included in the tab order.
389 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
390 self.tab_stop = tab_stop;
391 if let Some(focus) = self.handles.write().get_mut(self.id) {
392 focus.tab_stop = tab_stop;
393 }
394 self
395 }
396
397 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
398 pub fn downgrade(&self) -> WeakFocusHandle {
399 WeakFocusHandle {
400 id: self.id,
401 handles: Arc::downgrade(&self.handles),
402 }
403 }
404
405 /// Moves the focus to the element associated with this handle.
406 pub fn focus(&self, window: &mut Window, cx: &mut App) {
407 window.focus(self, cx)
408 }
409
410 /// Obtains whether the element associated with this handle is currently focused.
411 pub fn is_focused(&self, window: &Window) -> bool {
412 self.id.is_focused(window)
413 }
414
415 /// Obtains whether the element associated with this handle contains the focused
416 /// element or is itself focused.
417 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
418 self.id.contains_focused(window, cx)
419 }
420
421 /// Obtains whether the element associated with this handle is contained within the
422 /// focused element or is itself focused.
423 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
424 self.id.within_focused(window, cx)
425 }
426
427 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
428 pub fn contains(&self, other: &Self, window: &Window) -> bool {
429 self.id.contains(other.id, window)
430 }
431
432 /// Dispatch an action on the element that rendered this focus handle
433 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
434 if let Some(node_id) = window
435 .rendered_frame
436 .dispatch_tree
437 .focusable_node_id(self.id)
438 {
439 window.dispatch_action_on_node(node_id, action, cx)
440 }
441 }
442}
443
444impl Clone for FocusHandle {
445 fn clone(&self) -> Self {
446 Self::for_id(self.id, &self.handles).unwrap()
447 }
448}
449
450impl PartialEq for FocusHandle {
451 fn eq(&self, other: &Self) -> bool {
452 self.id == other.id
453 }
454}
455
456impl Eq for FocusHandle {}
457
458impl Drop for FocusHandle {
459 fn drop(&mut self) {
460 self.handles
461 .read()
462 .get(self.id)
463 .unwrap()
464 .ref_count
465 .fetch_sub(1, SeqCst);
466 }
467}
468
469/// A weak reference to a focus handle.
470#[derive(Clone, Debug)]
471pub struct WeakFocusHandle {
472 pub(crate) id: FocusId,
473 pub(crate) handles: Weak<FocusMap>,
474}
475
476impl WeakFocusHandle {
477 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
478 pub fn upgrade(&self) -> Option<FocusHandle> {
479 let handles = self.handles.upgrade()?;
480 FocusHandle::for_id(self.id, &handles)
481 }
482}
483
484impl PartialEq for WeakFocusHandle {
485 fn eq(&self, other: &WeakFocusHandle) -> bool {
486 self.id == other.id
487 }
488}
489
490impl Eq for WeakFocusHandle {}
491
492impl PartialEq<FocusHandle> for WeakFocusHandle {
493 fn eq(&self, other: &FocusHandle) -> bool {
494 self.id == other.id
495 }
496}
497
498impl PartialEq<WeakFocusHandle> for FocusHandle {
499 fn eq(&self, other: &WeakFocusHandle) -> bool {
500 self.id == other.id
501 }
502}
503
504/// Focusable allows users of your view to easily
505/// focus it (using window.focus_view(cx, view))
506pub trait Focusable: 'static {
507 /// Returns the focus handle associated with this view.
508 fn focus_handle(&self, cx: &App) -> FocusHandle;
509}
510
511impl<V: Focusable> Focusable for Entity<V> {
512 fn focus_handle(&self, cx: &App) -> FocusHandle {
513 self.read(cx).focus_handle(cx)
514 }
515}
516
517/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
518/// where the lifecycle of the view is handled by another view.
519pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
520
521impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
522
523/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
524pub struct DismissEvent;
525
526type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
527
528pub(crate) type AnyMouseListener =
529 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
530
531#[derive(Clone)]
532pub(crate) struct CursorStyleRequest {
533 pub(crate) hitbox_id: Option<HitboxId>,
534 pub(crate) style: CursorStyle,
535}
536
537#[derive(Default, Eq, PartialEq)]
538pub(crate) struct HitTest {
539 pub(crate) ids: SmallVec<[HitboxId; 8]>,
540 pub(crate) hover_hitbox_count: usize,
541}
542
543/// A type of window control area that corresponds to the platform window.
544#[derive(Clone, Copy, Debug, Eq, PartialEq)]
545pub enum WindowControlArea {
546 /// An area that allows dragging of the platform window.
547 Drag,
548 /// An area that allows closing of the platform window.
549 Close,
550 /// An area that allows maximizing of the platform window.
551 Max,
552 /// An area that allows minimizing of the platform window.
553 Min,
554}
555
556/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
557#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
558pub struct HitboxId(u64);
559
560impl HitboxId {
561 /// Checks if the hitbox with this ID is currently hovered. Except when handling
562 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
563 /// events or paint hover styles.
564 ///
565 /// See [`Hitbox::is_hovered`] for details.
566 pub fn is_hovered(self, window: &Window) -> bool {
567 let hit_test = &window.mouse_hit_test;
568 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
569 if self == *id {
570 return true;
571 }
572 }
573 false
574 }
575
576 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
577 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
578 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
579 /// this distinction.
580 pub fn should_handle_scroll(self, window: &Window) -> bool {
581 window.mouse_hit_test.ids.contains(&self)
582 }
583
584 fn next(mut self) -> HitboxId {
585 HitboxId(self.0.wrapping_add(1))
586 }
587}
588
589/// A rectangular region that potentially blocks hitboxes inserted prior.
590/// See [Window::insert_hitbox] for more details.
591#[derive(Clone, Debug, Deref)]
592pub struct Hitbox {
593 /// A unique identifier for the hitbox.
594 pub id: HitboxId,
595 /// The bounds of the hitbox.
596 #[deref]
597 pub bounds: Bounds<Pixels>,
598 /// The content mask when the hitbox was inserted.
599 pub content_mask: ContentMask<Pixels>,
600 /// Flags that specify hitbox behavior.
601 pub behavior: HitboxBehavior,
602}
603
604impl Hitbox {
605 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
606 /// typically what you want when determining whether to handle mouse events or paint hover
607 /// styles.
608 ///
609 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
610 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
611 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
612 ///
613 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
614 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
615 /// non-interactive while still allowing scrolling. More abstractly, this is because
616 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
617 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
618 /// container.
619 pub fn is_hovered(&self, window: &Window) -> bool {
620 self.id.is_hovered(window)
621 }
622
623 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
624 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
625 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
626 ///
627 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
628 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
629 pub fn should_handle_scroll(&self, window: &Window) -> bool {
630 self.id.should_handle_scroll(window)
631 }
632}
633
634/// How the hitbox affects mouse behavior.
635#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
636pub enum HitboxBehavior {
637 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
638 #[default]
639 Normal,
640
641 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
642 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
643 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
644 /// [`InteractiveElement::occlude`].
645 ///
646 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
647 /// bubble-phase handler for every mouse event type:
648 ///
649 /// ```ignore
650 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
651 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
652 /// cx.stop_propagation();
653 /// }
654 /// })
655 /// ```
656 ///
657 /// This has effects beyond event handling - any use of hitbox checking, such as hover
658 /// styles and tooltips. These other behaviors are the main point of this mechanism. An
659 /// alternative might be to not affect mouse event handling - but this would allow
660 /// inconsistent UI where clicks and moves interact with elements that are not considered to
661 /// be hovered.
662 BlockMouse,
663
664 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
665 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
666 /// interaction except scroll events to be ignored - see the documentation of
667 /// [`Hitbox::is_hovered`] for details. This flag is set by
668 /// [`InteractiveElement::block_mouse_except_scroll`].
669 ///
670 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
671 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
672 ///
673 /// ```ignore
674 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
675 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
676 /// cx.stop_propagation();
677 /// }
678 /// })
679 /// ```
680 ///
681 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
682 /// handled differently than other mouse events. If also blocking these scroll events is
683 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
684 ///
685 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
686 /// hover styles and tooltips. These other behaviors are the main point of this mechanism.
687 /// An alternative might be to not affect mouse event handling - but this would allow
688 /// inconsistent UI where clicks and moves interact with elements that are not considered to
689 /// be hovered.
690 BlockMouseExceptScroll,
691}
692
693/// An identifier for a tooltip.
694#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
695pub struct TooltipId(usize);
696
697impl TooltipId {
698 /// Checks if the tooltip is currently hovered.
699 pub fn is_hovered(&self, window: &Window) -> bool {
700 window
701 .tooltip_bounds
702 .as_ref()
703 .is_some_and(|tooltip_bounds| {
704 tooltip_bounds.id == *self
705 && tooltip_bounds.bounds.contains(&window.mouse_position())
706 })
707 }
708}
709
710pub(crate) struct TooltipBounds {
711 id: TooltipId,
712 bounds: Bounds<Pixels>,
713}
714
715#[derive(Clone)]
716pub(crate) struct TooltipRequest {
717 id: TooltipId,
718 tooltip: AnyTooltip,
719}
720
721pub(crate) struct DeferredDraw {
722 current_view: EntityId,
723 priority: usize,
724 parent_node: DispatchNodeId,
725 element_id_stack: SmallVec<[ElementId; 32]>,
726 text_style_stack: Vec<TextStyleRefinement>,
727 element: Option<AnyElement>,
728 absolute_offset: Point<Pixels>,
729 prepaint_range: Range<PrepaintStateIndex>,
730 paint_range: Range<PaintIndex>,
731}
732
733pub(crate) struct Frame {
734 pub(crate) focus: Option<FocusId>,
735 pub(crate) window_active: bool,
736 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
737 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
738 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
739 pub(crate) dispatch_tree: DispatchTree,
740 pub(crate) scene: Scene,
741 pub(crate) hitboxes: Vec<Hitbox>,
742 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
743 pub(crate) deferred_draws: Vec<DeferredDraw>,
744 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
745 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
746 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
747 #[cfg(any(test, feature = "test-support"))]
748 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
749 #[cfg(any(feature = "inspector", debug_assertions))]
750 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
751 #[cfg(any(feature = "inspector", debug_assertions))]
752 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
753 pub(crate) tab_stops: TabStopMap,
754}
755
756#[derive(Clone, Default)]
757pub(crate) struct PrepaintStateIndex {
758 hitboxes_index: usize,
759 tooltips_index: usize,
760 deferred_draws_index: usize,
761 dispatch_tree_index: usize,
762 accessed_element_states_index: usize,
763 line_layout_index: LineLayoutIndex,
764}
765
766#[derive(Clone, Default)]
767pub(crate) struct PaintIndex {
768 scene_index: usize,
769 mouse_listeners_index: usize,
770 input_handlers_index: usize,
771 cursor_styles_index: usize,
772 accessed_element_states_index: usize,
773 tab_handle_index: usize,
774 line_layout_index: LineLayoutIndex,
775}
776
777impl Frame {
778 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
779 Frame {
780 focus: None,
781 window_active: false,
782 element_states: FxHashMap::default(),
783 accessed_element_states: Vec::new(),
784 mouse_listeners: Vec::new(),
785 dispatch_tree,
786 scene: Scene::default(),
787 hitboxes: Vec::new(),
788 window_control_hitboxes: Vec::new(),
789 deferred_draws: Vec::new(),
790 input_handlers: Vec::new(),
791 tooltip_requests: Vec::new(),
792 cursor_styles: Vec::new(),
793
794 #[cfg(any(test, feature = "test-support"))]
795 debug_bounds: FxHashMap::default(),
796
797 #[cfg(any(feature = "inspector", debug_assertions))]
798 next_inspector_instance_ids: FxHashMap::default(),
799
800 #[cfg(any(feature = "inspector", debug_assertions))]
801 inspector_hitboxes: FxHashMap::default(),
802 tab_stops: TabStopMap::default(),
803 }
804 }
805
806 pub(crate) fn clear(&mut self) {
807 self.element_states.clear();
808 self.accessed_element_states.clear();
809 self.mouse_listeners.clear();
810 self.dispatch_tree.clear();
811 self.scene.clear();
812 self.input_handlers.clear();
813 self.tooltip_requests.clear();
814 self.cursor_styles.clear();
815 self.hitboxes.clear();
816 self.window_control_hitboxes.clear();
817 self.deferred_draws.clear();
818 self.tab_stops.clear();
819 self.focus = None;
820
821 #[cfg(any(feature = "inspector", debug_assertions))]
822 {
823 self.next_inspector_instance_ids.clear();
824 self.inspector_hitboxes.clear();
825 }
826 }
827
828 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
829 self.cursor_styles
830 .iter()
831 .rev()
832 .fold_while(None, |style, request| match request.hitbox_id {
833 None => Done(Some(request.style)),
834 Some(hitbox_id) => Continue(
835 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
836 ),
837 })
838 .into_inner()
839 }
840
841 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
842 let mut set_hover_hitbox_count = false;
843 let mut hit_test = HitTest::default();
844 for hitbox in self.hitboxes.iter().rev() {
845 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
846 if bounds.contains(&position) {
847 hit_test.ids.push(hitbox.id);
848 if !set_hover_hitbox_count
849 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
850 {
851 hit_test.hover_hitbox_count = hit_test.ids.len();
852 set_hover_hitbox_count = true;
853 }
854 if hitbox.behavior == HitboxBehavior::BlockMouse {
855 break;
856 }
857 }
858 }
859 if !set_hover_hitbox_count {
860 hit_test.hover_hitbox_count = hit_test.ids.len();
861 }
862 hit_test
863 }
864
865 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
866 self.focus
867 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
868 .unwrap_or_default()
869 }
870
871 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
872 for element_state_key in &self.accessed_element_states {
873 if let Some((element_state_key, element_state)) =
874 prev_frame.element_states.remove_entry(element_state_key)
875 {
876 self.element_states.insert(element_state_key, element_state);
877 }
878 }
879
880 self.scene.finish();
881 }
882}
883
884#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
885enum InputModality {
886 Mouse,
887 Keyboard,
888}
889
890/// Holds the state for a specific window.
891pub struct Window {
892 pub(crate) handle: AnyWindowHandle,
893 pub(crate) invalidator: WindowInvalidator,
894 pub(crate) removed: bool,
895 pub(crate) platform_window: Box<dyn PlatformWindow>,
896 display_id: Option<DisplayId>,
897 sprite_atlas: Arc<dyn PlatformAtlas>,
898 text_system: Arc<WindowTextSystem>,
899 text_rendering_mode: Rc<Cell<TextRenderingMode>>,
900 rem_size: Pixels,
901 /// The stack of override values for the window's rem size.
902 ///
903 /// This is used by `with_rem_size` to allow rendering an element tree with
904 /// a given rem size.
905 rem_size_override_stack: SmallVec<[Pixels; 8]>,
906 pub(crate) viewport_size: Size<Pixels>,
907 layout_engine: Option<TaffyLayoutEngine>,
908 pub(crate) root: Option<AnyView>,
909 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
910 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
911 pub(crate) rendered_entity_stack: Vec<EntityId>,
912 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
913 pub(crate) element_opacity: f32,
914 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
915 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
916 pub(crate) image_cache_stack: Vec<AnyImageCache>,
917 pub(crate) rendered_frame: Frame,
918 pub(crate) next_frame: Frame,
919 next_hitbox_id: HitboxId,
920 pub(crate) next_tooltip_id: TooltipId,
921 pub(crate) tooltip_bounds: Option<TooltipBounds>,
922 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
923 pub(crate) dirty_views: FxHashSet<EntityId>,
924 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
925 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
926 default_prevented: bool,
927 mouse_position: Point<Pixels>,
928 mouse_hit_test: HitTest,
929 modifiers: Modifiers,
930 capslock: Capslock,
931 scale_factor: f32,
932 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
933 appearance: WindowAppearance,
934 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
935 active: Rc<Cell<bool>>,
936 hovered: Rc<Cell<bool>>,
937 pub(crate) needs_present: Rc<Cell<bool>>,
938 /// Tracks recent input event timestamps to determine if input is arriving at a high rate.
939 /// Used to selectively enable VRR optimization only when input rate exceeds 60fps.
940 pub(crate) input_rate_tracker: Rc<RefCell<InputRateTracker>>,
941 last_input_modality: InputModality,
942 pub(crate) refreshing: bool,
943 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
944 pub(crate) focus: Option<FocusId>,
945 focus_enabled: bool,
946 pending_input: Option<PendingInput>,
947 pending_modifier: ModifierState,
948 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
949 prompt: Option<RenderablePromptHandle>,
950 pub(crate) client_inset: Option<Pixels>,
951 #[cfg(any(feature = "inspector", debug_assertions))]
952 inspector: Option<Entity<Inspector>>,
953}
954
955#[derive(Clone, Debug, Default)]
956struct ModifierState {
957 modifiers: Modifiers,
958 saw_keystroke: bool,
959}
960
961/// Tracks input event timestamps to determine if input is arriving at a high rate.
962/// Used for selective VRR (Variable Refresh Rate) optimization.
963#[derive(Clone, Debug)]
964pub(crate) struct InputRateTracker {
965 timestamps: Vec<Instant>,
966 window: Duration,
967 inputs_per_second: u32,
968 sustain_until: Instant,
969 sustain_duration: Duration,
970}
971
972impl Default for InputRateTracker {
973 fn default() -> Self {
974 Self {
975 timestamps: Vec::new(),
976 window: Duration::from_millis(100),
977 inputs_per_second: 60,
978 sustain_until: Instant::now(),
979 sustain_duration: Duration::from_secs(1),
980 }
981 }
982}
983
984impl InputRateTracker {
985 pub fn record_input(&mut self) {
986 let now = Instant::now();
987 self.timestamps.push(now);
988 self.prune_old_timestamps(now);
989
990 let min_events = self.inputs_per_second as u128 * self.window.as_millis() / 1000;
991 if self.timestamps.len() as u128 >= min_events {
992 self.sustain_until = now + self.sustain_duration;
993 }
994 }
995
996 pub fn is_high_rate(&self) -> bool {
997 Instant::now() < self.sustain_until
998 }
999
1000 fn prune_old_timestamps(&mut self, now: Instant) {
1001 self.timestamps
1002 .retain(|&t| now.duration_since(t) <= self.window);
1003 }
1004}
1005
1006#[derive(Clone, Copy, Debug, Eq, PartialEq)]
1007pub(crate) enum DrawPhase {
1008 None,
1009 Prepaint,
1010 Paint,
1011 Focus,
1012}
1013
1014#[derive(Default, Debug)]
1015struct PendingInput {
1016 keystrokes: SmallVec<[Keystroke; 1]>,
1017 focus: Option<FocusId>,
1018 timer: Option<Task<()>>,
1019 needs_timeout: bool,
1020}
1021
1022pub(crate) struct ElementStateBox {
1023 pub(crate) inner: Box<dyn Any>,
1024 #[cfg(debug_assertions)]
1025 pub(crate) type_name: &'static str,
1026}
1027
1028fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> WindowBounds {
1029 // TODO, BUG: if you open a window with the currently active window
1030 // on the stack, this will erroneously fallback to `None`
1031 //
1032 // TODO these should be the initial window bounds not considering maximized/fullscreen
1033 let active_window_bounds = cx
1034 .active_window()
1035 .and_then(|w| w.update(cx, |_, window, _| window.window_bounds()).ok());
1036
1037 const CASCADE_OFFSET: f32 = 25.0;
1038
1039 let display = display_id
1040 .map(|id| cx.find_display(id))
1041 .unwrap_or_else(|| cx.primary_display());
1042
1043 let default_placement = || Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE);
1044
1045 // Use visible_bounds to exclude taskbar/dock areas
1046 let display_bounds = display
1047 .as_ref()
1048 .map(|d| d.visible_bounds())
1049 .unwrap_or_else(default_placement);
1050
1051 let (
1052 Bounds {
1053 origin: base_origin,
1054 size: base_size,
1055 },
1056 window_bounds_ctor,
1057 ): (_, fn(Bounds<Pixels>) -> WindowBounds) = match active_window_bounds {
1058 Some(bounds) => match bounds {
1059 WindowBounds::Windowed(bounds) => (bounds, WindowBounds::Windowed),
1060 WindowBounds::Maximized(bounds) => (bounds, WindowBounds::Maximized),
1061 WindowBounds::Fullscreen(bounds) => (bounds, WindowBounds::Fullscreen),
1062 },
1063 None => (
1064 display
1065 .as_ref()
1066 .map(|d| d.default_bounds())
1067 .unwrap_or_else(default_placement),
1068 WindowBounds::Windowed,
1069 ),
1070 };
1071
1072 let cascade_offset = point(px(CASCADE_OFFSET), px(CASCADE_OFFSET));
1073 let proposed_origin = base_origin + cascade_offset;
1074 let proposed_bounds = Bounds::new(proposed_origin, base_size);
1075
1076 let display_right = display_bounds.origin.x + display_bounds.size.width;
1077 let display_bottom = display_bounds.origin.y + display_bounds.size.height;
1078 let window_right = proposed_bounds.origin.x + proposed_bounds.size.width;
1079 let window_bottom = proposed_bounds.origin.y + proposed_bounds.size.height;
1080
1081 let fits_horizontally = window_right <= display_right;
1082 let fits_vertically = window_bottom <= display_bottom;
1083
1084 let final_origin = match (fits_horizontally, fits_vertically) {
1085 (true, true) => proposed_origin,
1086 (false, true) => point(display_bounds.origin.x, base_origin.y),
1087 (true, false) => point(base_origin.x, display_bounds.origin.y),
1088 (false, false) => display_bounds.origin,
1089 };
1090 window_bounds_ctor(Bounds::new(final_origin, base_size))
1091}
1092
1093impl Window {
1094 pub(crate) fn new(
1095 handle: AnyWindowHandle,
1096 options: WindowOptions,
1097 cx: &mut App,
1098 ) -> Result<Self> {
1099 let WindowOptions {
1100 window_bounds,
1101 titlebar,
1102 focus,
1103 show,
1104 kind,
1105 is_movable,
1106 is_resizable,
1107 is_minimizable,
1108 display_id,
1109 window_background,
1110 app_id,
1111 window_min_size,
1112 window_decorations,
1113 #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
1114 tabbing_identifier,
1115 } = options;
1116
1117 let window_bounds = window_bounds.unwrap_or_else(|| default_bounds(display_id, cx));
1118 let mut platform_window = cx.platform.open_window(
1119 handle,
1120 WindowParams {
1121 bounds: window_bounds.get_bounds(),
1122 titlebar,
1123 kind,
1124 is_movable,
1125 is_resizable,
1126 is_minimizable,
1127 focus,
1128 show,
1129 display_id,
1130 window_min_size,
1131 #[cfg(target_os = "macos")]
1132 tabbing_identifier,
1133 },
1134 )?;
1135
1136 let tab_bar_visible = platform_window.tab_bar_visible();
1137 SystemWindowTabController::init_visible(cx, tab_bar_visible);
1138 if let Some(tabs) = platform_window.tabbed_windows() {
1139 SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
1140 }
1141
1142 let display_id = platform_window.display().map(|display| display.id());
1143 let sprite_atlas = platform_window.sprite_atlas();
1144 let mouse_position = platform_window.mouse_position();
1145 let modifiers = platform_window.modifiers();
1146 let capslock = platform_window.capslock();
1147 let content_size = platform_window.content_size();
1148 let scale_factor = platform_window.scale_factor();
1149 let appearance = platform_window.appearance();
1150 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
1151 let invalidator = WindowInvalidator::new();
1152 let active = Rc::new(Cell::new(platform_window.is_active()));
1153 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1154 let needs_present = Rc::new(Cell::new(false));
1155 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1156 let input_rate_tracker = Rc::new(RefCell::new(InputRateTracker::default()));
1157
1158 platform_window
1159 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1160 platform_window.set_background_appearance(window_background);
1161
1162 match window_bounds {
1163 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1164 WindowBounds::Maximized(_) => platform_window.zoom(),
1165 WindowBounds::Windowed(_) => {}
1166 }
1167
1168 platform_window.on_close(Box::new({
1169 let window_id = handle.window_id();
1170 let mut cx = cx.to_async();
1171 move || {
1172 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1173 let _ = cx.update(|cx| {
1174 SystemWindowTabController::remove_tab(cx, window_id);
1175 });
1176 }
1177 }));
1178 platform_window.on_request_frame(Box::new({
1179 let mut cx = cx.to_async();
1180 let invalidator = invalidator.clone();
1181 let active = active.clone();
1182 let needs_present = needs_present.clone();
1183 let next_frame_callbacks = next_frame_callbacks.clone();
1184 let input_rate_tracker = input_rate_tracker.clone();
1185 move |request_frame_options| {
1186 let next_frame_callbacks = next_frame_callbacks.take();
1187 if !next_frame_callbacks.is_empty() {
1188 handle
1189 .update(&mut cx, |_, window, cx| {
1190 for callback in next_frame_callbacks {
1191 callback(window, cx);
1192 }
1193 })
1194 .log_err();
1195 }
1196
1197 // Keep presenting if input was recently arriving at a high rate (>= 60fps).
1198 // Once high-rate input is detected, we sustain presentation for 1 second
1199 // to prevent display underclocking during active input.
1200 let needs_present = request_frame_options.require_presentation
1201 || needs_present.get()
1202 || (active.get() && input_rate_tracker.borrow_mut().is_high_rate());
1203
1204 if invalidator.is_dirty() || request_frame_options.force_render {
1205 measure("frame duration", || {
1206 handle
1207 .update(&mut cx, |_, window, cx| {
1208 let arena_clear_needed = window.draw(cx);
1209 window.present();
1210 arena_clear_needed.clear();
1211 })
1212 .log_err();
1213 })
1214 } else if needs_present {
1215 handle
1216 .update(&mut cx, |_, window, _| window.present())
1217 .log_err();
1218 }
1219
1220 handle
1221 .update(&mut cx, |_, window, _| {
1222 window.complete_frame();
1223 })
1224 .log_err();
1225 }
1226 }));
1227 platform_window.on_resize(Box::new({
1228 let mut cx = cx.to_async();
1229 move |_, _| {
1230 handle
1231 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1232 .log_err();
1233 }
1234 }));
1235 platform_window.on_moved(Box::new({
1236 let mut cx = cx.to_async();
1237 move || {
1238 handle
1239 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1240 .log_err();
1241 }
1242 }));
1243 platform_window.on_appearance_changed(Box::new({
1244 let mut cx = cx.to_async();
1245 move || {
1246 handle
1247 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1248 .log_err();
1249 }
1250 }));
1251 platform_window.on_active_status_change(Box::new({
1252 let mut cx = cx.to_async();
1253 move |active| {
1254 handle
1255 .update(&mut cx, |_, window, cx| {
1256 window.active.set(active);
1257 window.modifiers = window.platform_window.modifiers();
1258 window.capslock = window.platform_window.capslock();
1259 window
1260 .activation_observers
1261 .clone()
1262 .retain(&(), |callback| callback(window, cx));
1263
1264 window.bounds_changed(cx);
1265 window.refresh();
1266
1267 SystemWindowTabController::update_last_active(cx, window.handle.id);
1268 })
1269 .log_err();
1270 }
1271 }));
1272 platform_window.on_hover_status_change(Box::new({
1273 let mut cx = cx.to_async();
1274 move |active| {
1275 handle
1276 .update(&mut cx, |_, window, _| {
1277 window.hovered.set(active);
1278 window.refresh();
1279 })
1280 .log_err();
1281 }
1282 }));
1283 platform_window.on_input({
1284 let mut cx = cx.to_async();
1285 Box::new(move |event| {
1286 handle
1287 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1288 .log_err()
1289 .unwrap_or(DispatchEventResult::default())
1290 })
1291 });
1292 platform_window.on_hit_test_window_control({
1293 let mut cx = cx.to_async();
1294 Box::new(move || {
1295 handle
1296 .update(&mut cx, |_, window, _cx| {
1297 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1298 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1299 return Some(*area);
1300 }
1301 }
1302 None
1303 })
1304 .log_err()
1305 .unwrap_or(None)
1306 })
1307 });
1308 platform_window.on_move_tab_to_new_window({
1309 let mut cx = cx.to_async();
1310 Box::new(move || {
1311 handle
1312 .update(&mut cx, |_, _window, cx| {
1313 SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1314 })
1315 .log_err();
1316 })
1317 });
1318 platform_window.on_merge_all_windows({
1319 let mut cx = cx.to_async();
1320 Box::new(move || {
1321 handle
1322 .update(&mut cx, |_, _window, cx| {
1323 SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1324 })
1325 .log_err();
1326 })
1327 });
1328 platform_window.on_select_next_tab({
1329 let mut cx = cx.to_async();
1330 Box::new(move || {
1331 handle
1332 .update(&mut cx, |_, _window, cx| {
1333 SystemWindowTabController::select_next_tab(cx, handle.window_id());
1334 })
1335 .log_err();
1336 })
1337 });
1338 platform_window.on_select_previous_tab({
1339 let mut cx = cx.to_async();
1340 Box::new(move || {
1341 handle
1342 .update(&mut cx, |_, _window, cx| {
1343 SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1344 })
1345 .log_err();
1346 })
1347 });
1348 platform_window.on_toggle_tab_bar({
1349 let mut cx = cx.to_async();
1350 Box::new(move || {
1351 handle
1352 .update(&mut cx, |_, window, cx| {
1353 let tab_bar_visible = window.platform_window.tab_bar_visible();
1354 SystemWindowTabController::set_visible(cx, tab_bar_visible);
1355 })
1356 .log_err();
1357 })
1358 });
1359
1360 if let Some(app_id) = app_id {
1361 platform_window.set_app_id(&app_id);
1362 }
1363
1364 platform_window.map_window().unwrap();
1365
1366 Ok(Window {
1367 handle,
1368 invalidator,
1369 removed: false,
1370 platform_window,
1371 display_id,
1372 sprite_atlas,
1373 text_system,
1374 text_rendering_mode: cx.text_rendering_mode.clone(),
1375 rem_size: px(16.),
1376 rem_size_override_stack: SmallVec::new(),
1377 viewport_size: content_size,
1378 layout_engine: Some(TaffyLayoutEngine::new()),
1379 root: None,
1380 element_id_stack: SmallVec::default(),
1381 text_style_stack: Vec::new(),
1382 rendered_entity_stack: Vec::new(),
1383 element_offset_stack: Vec::new(),
1384 content_mask_stack: Vec::new(),
1385 element_opacity: 1.0,
1386 requested_autoscroll: None,
1387 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1388 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1389 next_frame_callbacks,
1390 next_hitbox_id: HitboxId(0),
1391 next_tooltip_id: TooltipId::default(),
1392 tooltip_bounds: None,
1393 dirty_views: FxHashSet::default(),
1394 focus_listeners: SubscriberSet::new(),
1395 focus_lost_listeners: SubscriberSet::new(),
1396 default_prevented: true,
1397 mouse_position,
1398 mouse_hit_test: HitTest::default(),
1399 modifiers,
1400 capslock,
1401 scale_factor,
1402 bounds_observers: SubscriberSet::new(),
1403 appearance,
1404 appearance_observers: SubscriberSet::new(),
1405 active,
1406 hovered,
1407 needs_present,
1408 input_rate_tracker,
1409 last_input_modality: InputModality::Mouse,
1410 refreshing: false,
1411 activation_observers: SubscriberSet::new(),
1412 focus: None,
1413 focus_enabled: true,
1414 pending_input: None,
1415 pending_modifier: ModifierState::default(),
1416 pending_input_observers: SubscriberSet::new(),
1417 prompt: None,
1418 client_inset: None,
1419 image_cache_stack: Vec::new(),
1420 #[cfg(any(feature = "inspector", debug_assertions))]
1421 inspector: None,
1422 })
1423 }
1424
1425 pub(crate) fn new_focus_listener(
1426 &self,
1427 value: AnyWindowFocusListener,
1428 ) -> (Subscription, impl FnOnce() + use<>) {
1429 self.focus_listeners.insert((), value)
1430 }
1431}
1432
1433#[derive(Clone, Debug, Default, PartialEq, Eq)]
1434pub(crate) struct DispatchEventResult {
1435 pub propagate: bool,
1436 pub default_prevented: bool,
1437}
1438
1439/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1440/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1441/// to leave room to support more complex shapes in the future.
1442#[derive(Clone, Debug, Default, PartialEq, Eq)]
1443#[repr(C)]
1444pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1445 /// The bounds
1446 pub bounds: Bounds<P>,
1447}
1448
1449impl ContentMask<Pixels> {
1450 /// Scale the content mask's pixel units by the given scaling factor.
1451 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1452 ContentMask {
1453 bounds: self.bounds.scale(factor),
1454 }
1455 }
1456
1457 /// Intersect the content mask with the given content mask.
1458 pub fn intersect(&self, other: &Self) -> Self {
1459 let bounds = self.bounds.intersect(&other.bounds);
1460 ContentMask { bounds }
1461 }
1462}
1463
1464impl Window {
1465 fn mark_view_dirty(&mut self, view_id: EntityId) {
1466 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1467 // should already be dirty.
1468 for view_id in self
1469 .rendered_frame
1470 .dispatch_tree
1471 .view_path_reversed(view_id)
1472 {
1473 if !self.dirty_views.insert(view_id) {
1474 break;
1475 }
1476 }
1477 }
1478
1479 /// Registers a callback to be invoked when the window appearance changes.
1480 pub fn observe_window_appearance(
1481 &self,
1482 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1483 ) -> Subscription {
1484 let (subscription, activate) = self.appearance_observers.insert(
1485 (),
1486 Box::new(move |window, cx| {
1487 callback(window, cx);
1488 true
1489 }),
1490 );
1491 activate();
1492 subscription
1493 }
1494
1495 /// Replaces the root entity of the window with a new one.
1496 pub fn replace_root<E>(
1497 &mut self,
1498 cx: &mut App,
1499 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1500 ) -> Entity<E>
1501 where
1502 E: 'static + Render,
1503 {
1504 let view = cx.new(|cx| build_view(self, cx));
1505 self.root = Some(view.clone().into());
1506 self.refresh();
1507 view
1508 }
1509
1510 /// Returns the root entity of the window, if it has one.
1511 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1512 where
1513 E: 'static + Render,
1514 {
1515 self.root
1516 .as_ref()
1517 .map(|view| view.clone().downcast::<E>().ok())
1518 }
1519
1520 /// Obtain a handle to the window that belongs to this context.
1521 pub fn window_handle(&self) -> AnyWindowHandle {
1522 self.handle
1523 }
1524
1525 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1526 pub fn refresh(&mut self) {
1527 if self.invalidator.not_drawing() {
1528 self.refreshing = true;
1529 self.invalidator.set_dirty(true);
1530 }
1531 }
1532
1533 /// Close this window.
1534 pub fn remove_window(&mut self) {
1535 self.removed = true;
1536 }
1537
1538 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1539 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1540 self.focus
1541 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1542 }
1543
1544 /// Move focus to the element associated with the given [`FocusHandle`].
1545 pub fn focus(&mut self, handle: &FocusHandle, cx: &mut App) {
1546 if !self.focus_enabled || self.focus == Some(handle.id) {
1547 return;
1548 }
1549
1550 self.focus = Some(handle.id);
1551 self.clear_pending_keystrokes();
1552
1553 // Avoid re-entrant entity updates by deferring observer notifications to the end of the
1554 // current effect cycle, and only for this window.
1555 let window_handle = self.handle;
1556 cx.defer(move |cx| {
1557 window_handle
1558 .update(cx, |_, window, cx| {
1559 window.pending_input_changed(cx);
1560 })
1561 .ok();
1562 });
1563
1564 self.refresh();
1565 }
1566
1567 /// Remove focus from all elements within this context's window.
1568 pub fn blur(&mut self) {
1569 if !self.focus_enabled {
1570 return;
1571 }
1572
1573 self.focus = None;
1574 self.refresh();
1575 }
1576
1577 /// Blur the window and don't allow anything in it to be focused again.
1578 pub fn disable_focus(&mut self) {
1579 self.blur();
1580 self.focus_enabled = false;
1581 }
1582
1583 /// Move focus to next tab stop.
1584 pub fn focus_next(&mut self, cx: &mut App) {
1585 if !self.focus_enabled {
1586 return;
1587 }
1588
1589 if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1590 self.focus(&handle, cx)
1591 }
1592 }
1593
1594 /// Move focus to previous tab stop.
1595 pub fn focus_prev(&mut self, cx: &mut App) {
1596 if !self.focus_enabled {
1597 return;
1598 }
1599
1600 if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1601 self.focus(&handle, cx)
1602 }
1603 }
1604
1605 /// Accessor for the text system.
1606 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1607 &self.text_system
1608 }
1609
1610 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1611 pub fn text_style(&self) -> TextStyle {
1612 let mut style = TextStyle::default();
1613 for refinement in &self.text_style_stack {
1614 style.refine(refinement);
1615 }
1616 style
1617 }
1618
1619 /// Check if the platform window is maximized.
1620 ///
1621 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1622 pub fn is_maximized(&self) -> bool {
1623 self.platform_window.is_maximized()
1624 }
1625
1626 /// request a certain window decoration (Wayland)
1627 pub fn request_decorations(&self, decorations: WindowDecorations) {
1628 self.platform_window.request_decorations(decorations);
1629 }
1630
1631 /// Start a window resize operation (Wayland)
1632 pub fn start_window_resize(&self, edge: ResizeEdge) {
1633 self.platform_window.start_window_resize(edge);
1634 }
1635
1636 /// Return the `WindowBounds` to indicate that how a window should be opened
1637 /// after it has been closed
1638 pub fn window_bounds(&self) -> WindowBounds {
1639 self.platform_window.window_bounds()
1640 }
1641
1642 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1643 pub fn inner_window_bounds(&self) -> WindowBounds {
1644 self.platform_window.inner_window_bounds()
1645 }
1646
1647 /// Dispatch the given action on the currently focused element.
1648 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1649 let focus_id = self.focused(cx).map(|handle| handle.id);
1650
1651 let window = self.handle;
1652 cx.defer(move |cx| {
1653 window
1654 .update(cx, |_, window, cx| {
1655 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1656 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1657 })
1658 .log_err();
1659 })
1660 }
1661
1662 pub(crate) fn dispatch_keystroke_observers(
1663 &mut self,
1664 event: &dyn Any,
1665 action: Option<Box<dyn Action>>,
1666 context_stack: Vec<KeyContext>,
1667 cx: &mut App,
1668 ) {
1669 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1670 return;
1671 };
1672
1673 cx.keystroke_observers.clone().retain(&(), move |callback| {
1674 (callback)(
1675 &KeystrokeEvent {
1676 keystroke: key_down_event.keystroke.clone(),
1677 action: action.as_ref().map(|action| action.boxed_clone()),
1678 context_stack: context_stack.clone(),
1679 },
1680 self,
1681 cx,
1682 )
1683 });
1684 }
1685
1686 pub(crate) fn dispatch_keystroke_interceptors(
1687 &mut self,
1688 event: &dyn Any,
1689 context_stack: Vec<KeyContext>,
1690 cx: &mut App,
1691 ) {
1692 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1693 return;
1694 };
1695
1696 cx.keystroke_interceptors
1697 .clone()
1698 .retain(&(), move |callback| {
1699 (callback)(
1700 &KeystrokeEvent {
1701 keystroke: key_down_event.keystroke.clone(),
1702 action: None,
1703 context_stack: context_stack.clone(),
1704 },
1705 self,
1706 cx,
1707 )
1708 });
1709 }
1710
1711 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1712 /// that are currently on the stack to be returned to the app.
1713 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1714 let handle = self.handle;
1715 cx.defer(move |cx| {
1716 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1717 });
1718 }
1719
1720 /// Subscribe to events emitted by a entity.
1721 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1722 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1723 pub fn observe<T: 'static>(
1724 &mut self,
1725 observed: &Entity<T>,
1726 cx: &mut App,
1727 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1728 ) -> Subscription {
1729 let entity_id = observed.entity_id();
1730 let observed = observed.downgrade();
1731 let window_handle = self.handle;
1732 cx.new_observer(
1733 entity_id,
1734 Box::new(move |cx| {
1735 window_handle
1736 .update(cx, |_, window, cx| {
1737 if let Some(handle) = observed.upgrade() {
1738 on_notify(handle, window, cx);
1739 true
1740 } else {
1741 false
1742 }
1743 })
1744 .unwrap_or(false)
1745 }),
1746 )
1747 }
1748
1749 /// Subscribe to events emitted by a entity.
1750 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1751 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1752 pub fn subscribe<Emitter, Evt>(
1753 &mut self,
1754 entity: &Entity<Emitter>,
1755 cx: &mut App,
1756 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1757 ) -> Subscription
1758 where
1759 Emitter: EventEmitter<Evt>,
1760 Evt: 'static,
1761 {
1762 let entity_id = entity.entity_id();
1763 let handle = entity.downgrade();
1764 let window_handle = self.handle;
1765 cx.new_subscription(
1766 entity_id,
1767 (
1768 TypeId::of::<Evt>(),
1769 Box::new(move |event, cx| {
1770 window_handle
1771 .update(cx, |_, window, cx| {
1772 if let Some(entity) = handle.upgrade() {
1773 let event = event.downcast_ref().expect("invalid event type");
1774 on_event(entity, event, window, cx);
1775 true
1776 } else {
1777 false
1778 }
1779 })
1780 .unwrap_or(false)
1781 }),
1782 ),
1783 )
1784 }
1785
1786 /// Register a callback to be invoked when the given `Entity` is released.
1787 pub fn observe_release<T>(
1788 &self,
1789 entity: &Entity<T>,
1790 cx: &mut App,
1791 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1792 ) -> Subscription
1793 where
1794 T: 'static,
1795 {
1796 let entity_id = entity.entity_id();
1797 let window_handle = self.handle;
1798 let (subscription, activate) = cx.release_listeners.insert(
1799 entity_id,
1800 Box::new(move |entity, cx| {
1801 let entity = entity.downcast_mut().expect("invalid entity type");
1802 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1803 }),
1804 );
1805 activate();
1806 subscription
1807 }
1808
1809 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1810 /// await points in async code.
1811 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1812 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1813 }
1814
1815 /// Schedule the given closure to be run directly after the current frame is rendered.
1816 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1817 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1818 }
1819
1820 /// Schedule a frame to be drawn on the next animation frame.
1821 ///
1822 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1823 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1824 ///
1825 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1826 pub fn request_animation_frame(&self) {
1827 let entity = self.current_view();
1828 self.on_next_frame(move |_, cx| cx.notify(entity));
1829 }
1830
1831 /// Spawn the future returned by the given closure on the application thread pool.
1832 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1833 /// use within your future.
1834 #[track_caller]
1835 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1836 where
1837 R: 'static,
1838 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1839 {
1840 let handle = self.handle;
1841 cx.spawn(async move |app| {
1842 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1843 f(&mut async_window_cx).await
1844 })
1845 }
1846
1847 /// Spawn the future returned by the given closure on the application thread
1848 /// pool, with the given priority. The closure is provided a handle to the
1849 /// current window and an `AsyncWindowContext` for use within your future.
1850 #[track_caller]
1851 pub fn spawn_with_priority<AsyncFn, R>(
1852 &self,
1853 priority: Priority,
1854 cx: &App,
1855 f: AsyncFn,
1856 ) -> Task<R>
1857 where
1858 R: 'static,
1859 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1860 {
1861 let handle = self.handle;
1862 cx.spawn_with_priority(priority, async move |app| {
1863 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1864 f(&mut async_window_cx).await
1865 })
1866 }
1867
1868 fn bounds_changed(&mut self, cx: &mut App) {
1869 self.scale_factor = self.platform_window.scale_factor();
1870 self.viewport_size = self.platform_window.content_size();
1871 self.display_id = self.platform_window.display().map(|display| display.id());
1872
1873 self.refresh();
1874
1875 self.bounds_observers
1876 .clone()
1877 .retain(&(), |callback| callback(self, cx));
1878 }
1879
1880 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1881 pub fn bounds(&self) -> Bounds<Pixels> {
1882 self.platform_window.bounds()
1883 }
1884
1885 /// Renders the current frame's scene to a texture and returns the pixel data as an RGBA image.
1886 /// This does not present the frame to screen - useful for visual testing where we want
1887 /// to capture what would be rendered without displaying it or requiring the window to be visible.
1888 #[cfg(any(test, feature = "test-support"))]
1889 pub fn render_to_image(&self) -> anyhow::Result<image::RgbaImage> {
1890 self.platform_window
1891 .render_to_image(&self.rendered_frame.scene)
1892 }
1893
1894 /// Set the content size of the window.
1895 pub fn resize(&mut self, size: Size<Pixels>) {
1896 self.platform_window.resize(size);
1897 }
1898
1899 /// Returns whether or not the window is currently fullscreen
1900 pub fn is_fullscreen(&self) -> bool {
1901 self.platform_window.is_fullscreen()
1902 }
1903
1904 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1905 self.appearance = self.platform_window.appearance();
1906
1907 self.appearance_observers
1908 .clone()
1909 .retain(&(), |callback| callback(self, cx));
1910 }
1911
1912 /// Returns the appearance of the current window.
1913 pub fn appearance(&self) -> WindowAppearance {
1914 self.appearance
1915 }
1916
1917 /// Returns the size of the drawable area within the window.
1918 pub fn viewport_size(&self) -> Size<Pixels> {
1919 self.viewport_size
1920 }
1921
1922 /// Returns whether this window is focused by the operating system (receiving key events).
1923 pub fn is_window_active(&self) -> bool {
1924 self.active.get()
1925 }
1926
1927 /// Returns whether this window is considered to be the window
1928 /// that currently owns the mouse cursor.
1929 /// On mac, this is equivalent to `is_window_active`.
1930 pub fn is_window_hovered(&self) -> bool {
1931 if cfg!(any(
1932 target_os = "windows",
1933 target_os = "linux",
1934 target_os = "freebsd"
1935 )) {
1936 self.hovered.get()
1937 } else {
1938 self.is_window_active()
1939 }
1940 }
1941
1942 /// Toggle zoom on the window.
1943 pub fn zoom_window(&self) {
1944 self.platform_window.zoom();
1945 }
1946
1947 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1948 pub fn show_window_menu(&self, position: Point<Pixels>) {
1949 self.platform_window.show_window_menu(position)
1950 }
1951
1952 /// Handle window movement for Linux and macOS.
1953 /// Tells the compositor to take control of window movement (Wayland and X11)
1954 ///
1955 /// Events may not be received during a move operation.
1956 pub fn start_window_move(&self) {
1957 self.platform_window.start_window_move()
1958 }
1959
1960 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1961 pub fn set_client_inset(&mut self, inset: Pixels) {
1962 self.client_inset = Some(inset);
1963 self.platform_window.set_client_inset(inset);
1964 }
1965
1966 /// Returns the client_inset value by [`Self::set_client_inset`].
1967 pub fn client_inset(&self) -> Option<Pixels> {
1968 self.client_inset
1969 }
1970
1971 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1972 pub fn window_decorations(&self) -> Decorations {
1973 self.platform_window.window_decorations()
1974 }
1975
1976 /// Returns which window controls are currently visible (Wayland)
1977 pub fn window_controls(&self) -> WindowControls {
1978 self.platform_window.window_controls()
1979 }
1980
1981 /// Updates the window's title at the platform level.
1982 pub fn set_window_title(&mut self, title: &str) {
1983 self.platform_window.set_title(title);
1984 }
1985
1986 /// Sets the application identifier.
1987 pub fn set_app_id(&mut self, app_id: &str) {
1988 self.platform_window.set_app_id(app_id);
1989 }
1990
1991 /// Sets the window background appearance.
1992 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1993 self.platform_window
1994 .set_background_appearance(background_appearance);
1995 }
1996
1997 /// Mark the window as dirty at the platform level.
1998 pub fn set_window_edited(&mut self, edited: bool) {
1999 self.platform_window.set_edited(edited);
2000 }
2001
2002 /// Determine the display on which the window is visible.
2003 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
2004 cx.platform
2005 .displays()
2006 .into_iter()
2007 .find(|display| Some(display.id()) == self.display_id)
2008 }
2009
2010 /// Show the platform character palette.
2011 pub fn show_character_palette(&self) {
2012 self.platform_window.show_character_palette();
2013 }
2014
2015 /// The scale factor of the display associated with the window. For example, it could
2016 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
2017 /// be rendered as two pixels on screen.
2018 pub fn scale_factor(&self) -> f32 {
2019 self.scale_factor
2020 }
2021
2022 /// The size of an em for the base font of the application. Adjusting this value allows the
2023 /// UI to scale, just like zooming a web page.
2024 pub fn rem_size(&self) -> Pixels {
2025 self.rem_size_override_stack
2026 .last()
2027 .copied()
2028 .unwrap_or(self.rem_size)
2029 }
2030
2031 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
2032 /// UI to scale, just like zooming a web page.
2033 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
2034 self.rem_size = rem_size.into();
2035 }
2036
2037 /// Acquire a globally unique identifier for the given ElementId.
2038 /// Only valid for the duration of the provided closure.
2039 pub fn with_global_id<R>(
2040 &mut self,
2041 element_id: ElementId,
2042 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
2043 ) -> R {
2044 self.element_id_stack.push(element_id);
2045 let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
2046
2047 let result = f(&global_id, self);
2048 self.element_id_stack.pop();
2049 result
2050 }
2051
2052 /// Executes the provided function with the specified rem size.
2053 ///
2054 /// This method must only be called as part of element drawing.
2055 // This function is called in a highly recursive manner in editor
2056 // prepainting, make sure its inlined to reduce the stack burden
2057 #[inline]
2058 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
2059 where
2060 F: FnOnce(&mut Self) -> R,
2061 {
2062 self.invalidator.debug_assert_paint_or_prepaint();
2063
2064 if let Some(rem_size) = rem_size {
2065 self.rem_size_override_stack.push(rem_size.into());
2066 let result = f(self);
2067 self.rem_size_override_stack.pop();
2068 result
2069 } else {
2070 f(self)
2071 }
2072 }
2073
2074 /// The line height associated with the current text style.
2075 pub fn line_height(&self) -> Pixels {
2076 self.text_style().line_height_in_pixels(self.rem_size())
2077 }
2078
2079 /// Call to prevent the default action of an event. Currently only used to prevent
2080 /// parent elements from becoming focused on mouse down.
2081 pub fn prevent_default(&mut self) {
2082 self.default_prevented = true;
2083 }
2084
2085 /// Obtain whether default has been prevented for the event currently being dispatched.
2086 pub fn default_prevented(&self) -> bool {
2087 self.default_prevented
2088 }
2089
2090 /// Determine whether the given action is available along the dispatch path to the currently focused element.
2091 pub fn is_action_available(&self, action: &dyn Action, cx: &App) -> bool {
2092 let node_id =
2093 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
2094 self.rendered_frame
2095 .dispatch_tree
2096 .is_action_available(action, node_id)
2097 }
2098
2099 /// Determine whether the given action is available along the dispatch path to the given focus_handle.
2100 pub fn is_action_available_in(&self, action: &dyn Action, focus_handle: &FocusHandle) -> bool {
2101 let node_id = self.focus_node_id_in_rendered_frame(Some(focus_handle.id));
2102 self.rendered_frame
2103 .dispatch_tree
2104 .is_action_available(action, node_id)
2105 }
2106
2107 /// The position of the mouse relative to the window.
2108 pub fn mouse_position(&self) -> Point<Pixels> {
2109 self.mouse_position
2110 }
2111
2112 /// The current state of the keyboard's modifiers
2113 pub fn modifiers(&self) -> Modifiers {
2114 self.modifiers
2115 }
2116
2117 /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
2118 /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
2119 pub fn last_input_was_keyboard(&self) -> bool {
2120 self.last_input_modality == InputModality::Keyboard
2121 }
2122
2123 /// The current state of the keyboard's capslock
2124 pub fn capslock(&self) -> Capslock {
2125 self.capslock
2126 }
2127
2128 fn complete_frame(&self) {
2129 self.platform_window.completed_frame();
2130 }
2131
2132 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
2133 /// the contents of the new [`Scene`], use [`Self::present`].
2134 #[profiling::function]
2135 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
2136 // Set up the per-App arena for element allocation during this draw.
2137 // This ensures that multiple test Apps have isolated arenas.
2138 let _arena_scope = ElementArenaScope::enter(&cx.element_arena);
2139
2140 self.invalidate_entities();
2141 cx.entities.clear_accessed();
2142 debug_assert!(self.rendered_entity_stack.is_empty());
2143 self.invalidator.set_dirty(false);
2144 self.requested_autoscroll = None;
2145
2146 // Restore the previously-used input handler.
2147 if let Some(input_handler) = self.platform_window.take_input_handler() {
2148 self.rendered_frame.input_handlers.push(Some(input_handler));
2149 }
2150 if !cx.mode.skip_drawing() {
2151 self.draw_roots(cx);
2152 }
2153 self.dirty_views.clear();
2154 self.next_frame.window_active = self.active.get();
2155
2156 // Register requested input handler with the platform window.
2157 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
2158 self.platform_window
2159 .set_input_handler(input_handler.unwrap());
2160 }
2161
2162 self.layout_engine.as_mut().unwrap().clear();
2163 self.text_system().finish_frame();
2164 self.next_frame.finish(&mut self.rendered_frame);
2165
2166 self.invalidator.set_phase(DrawPhase::Focus);
2167 let previous_focus_path = self.rendered_frame.focus_path();
2168 let previous_window_active = self.rendered_frame.window_active;
2169 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
2170 self.next_frame.clear();
2171 let current_focus_path = self.rendered_frame.focus_path();
2172 let current_window_active = self.rendered_frame.window_active;
2173
2174 if previous_focus_path != current_focus_path
2175 || previous_window_active != current_window_active
2176 {
2177 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
2178 self.focus_lost_listeners
2179 .clone()
2180 .retain(&(), |listener| listener(self, cx));
2181 }
2182
2183 let event = WindowFocusEvent {
2184 previous_focus_path: if previous_window_active {
2185 previous_focus_path
2186 } else {
2187 Default::default()
2188 },
2189 current_focus_path: if current_window_active {
2190 current_focus_path
2191 } else {
2192 Default::default()
2193 },
2194 };
2195 self.focus_listeners
2196 .clone()
2197 .retain(&(), |listener| listener(&event, self, cx));
2198 }
2199
2200 debug_assert!(self.rendered_entity_stack.is_empty());
2201 self.record_entities_accessed(cx);
2202 self.reset_cursor_style(cx);
2203 self.refreshing = false;
2204 self.invalidator.set_phase(DrawPhase::None);
2205 self.needs_present.set(true);
2206
2207 ArenaClearNeeded::new(&cx.element_arena)
2208 }
2209
2210 fn record_entities_accessed(&mut self, cx: &mut App) {
2211 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2212 let mut entities = mem::take(entities_ref.deref_mut());
2213 drop(entities_ref);
2214 let handle = self.handle;
2215 cx.record_entities_accessed(
2216 handle,
2217 // Try moving window invalidator into the Window
2218 self.invalidator.clone(),
2219 &entities,
2220 );
2221 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2222 mem::swap(&mut entities, entities_ref.deref_mut());
2223 }
2224
2225 fn invalidate_entities(&mut self) {
2226 let mut views = self.invalidator.take_views();
2227 for entity in views.drain() {
2228 self.mark_view_dirty(entity);
2229 }
2230 self.invalidator.replace_views(views);
2231 }
2232
2233 #[profiling::function]
2234 fn present(&self) {
2235 self.platform_window.draw(&self.rendered_frame.scene);
2236 self.needs_present.set(false);
2237 profiling::finish_frame!();
2238 }
2239
2240 fn draw_roots(&mut self, cx: &mut App) {
2241 self.invalidator.set_phase(DrawPhase::Prepaint);
2242 self.tooltip_bounds.take();
2243
2244 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2245 let root_size = {
2246 #[cfg(any(feature = "inspector", debug_assertions))]
2247 {
2248 if self.inspector.is_some() {
2249 let mut size = self.viewport_size;
2250 size.width = (size.width - _inspector_width).max(px(0.0));
2251 size
2252 } else {
2253 self.viewport_size
2254 }
2255 }
2256 #[cfg(not(any(feature = "inspector", debug_assertions)))]
2257 {
2258 self.viewport_size
2259 }
2260 };
2261
2262 // Layout all root elements.
2263 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2264 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2265
2266 #[cfg(any(feature = "inspector", debug_assertions))]
2267 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2268
2269 let mut sorted_deferred_draws =
2270 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2271 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2272 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2273
2274 let mut prompt_element = None;
2275 let mut active_drag_element = None;
2276 let mut tooltip_element = None;
2277 if let Some(prompt) = self.prompt.take() {
2278 let mut element = prompt.view.any_view().into_any();
2279 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2280 prompt_element = Some(element);
2281 self.prompt = Some(prompt);
2282 } else if let Some(active_drag) = cx.active_drag.take() {
2283 let mut element = active_drag.view.clone().into_any();
2284 let offset = self.mouse_position() - active_drag.cursor_offset;
2285 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2286 active_drag_element = Some(element);
2287 cx.active_drag = Some(active_drag);
2288 } else {
2289 tooltip_element = self.prepaint_tooltip(cx);
2290 }
2291
2292 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2293
2294 // Now actually paint the elements.
2295 self.invalidator.set_phase(DrawPhase::Paint);
2296 root_element.paint(self, cx);
2297
2298 #[cfg(any(feature = "inspector", debug_assertions))]
2299 self.paint_inspector(inspector_element, cx);
2300
2301 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2302
2303 if let Some(mut prompt_element) = prompt_element {
2304 prompt_element.paint(self, cx);
2305 } else if let Some(mut drag_element) = active_drag_element {
2306 drag_element.paint(self, cx);
2307 } else if let Some(mut tooltip_element) = tooltip_element {
2308 tooltip_element.paint(self, cx);
2309 }
2310
2311 #[cfg(any(feature = "inspector", debug_assertions))]
2312 self.paint_inspector_hitbox(cx);
2313 }
2314
2315 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2316 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2317 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2318 let Some(Some(tooltip_request)) = self
2319 .next_frame
2320 .tooltip_requests
2321 .get(tooltip_request_index)
2322 .cloned()
2323 else {
2324 log::error!("Unexpectedly absent TooltipRequest");
2325 continue;
2326 };
2327 let mut element = tooltip_request.tooltip.view.clone().into_any();
2328 let mouse_position = tooltip_request.tooltip.mouse_position;
2329 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2330
2331 let mut tooltip_bounds =
2332 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2333 let window_bounds = Bounds {
2334 origin: Point::default(),
2335 size: self.viewport_size(),
2336 };
2337
2338 if tooltip_bounds.right() > window_bounds.right() {
2339 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2340 if new_x >= Pixels::ZERO {
2341 tooltip_bounds.origin.x = new_x;
2342 } else {
2343 tooltip_bounds.origin.x = cmp::max(
2344 Pixels::ZERO,
2345 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2346 );
2347 }
2348 }
2349
2350 if tooltip_bounds.bottom() > window_bounds.bottom() {
2351 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2352 if new_y >= Pixels::ZERO {
2353 tooltip_bounds.origin.y = new_y;
2354 } else {
2355 tooltip_bounds.origin.y = cmp::max(
2356 Pixels::ZERO,
2357 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2358 );
2359 }
2360 }
2361
2362 // It's possible for an element to have an active tooltip while not being painted (e.g.
2363 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2364 // case, instead update the tooltip's visibility here.
2365 let is_visible =
2366 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2367 if !is_visible {
2368 continue;
2369 }
2370
2371 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2372 element.prepaint(window, cx)
2373 });
2374
2375 self.tooltip_bounds = Some(TooltipBounds {
2376 id: tooltip_request.id,
2377 bounds: tooltip_bounds,
2378 });
2379 return Some(element);
2380 }
2381 None
2382 }
2383
2384 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2385 assert_eq!(self.element_id_stack.len(), 0);
2386
2387 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2388 for deferred_draw_ix in deferred_draw_indices {
2389 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2390 self.element_id_stack
2391 .clone_from(&deferred_draw.element_id_stack);
2392 self.text_style_stack
2393 .clone_from(&deferred_draw.text_style_stack);
2394 self.next_frame
2395 .dispatch_tree
2396 .set_active_node(deferred_draw.parent_node);
2397
2398 let prepaint_start = self.prepaint_index();
2399 if let Some(element) = deferred_draw.element.as_mut() {
2400 self.with_rendered_view(deferred_draw.current_view, |window| {
2401 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2402 element.prepaint(window, cx)
2403 });
2404 })
2405 } else {
2406 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2407 }
2408 let prepaint_end = self.prepaint_index();
2409 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2410 }
2411 assert_eq!(
2412 self.next_frame.deferred_draws.len(),
2413 0,
2414 "cannot call defer_draw during deferred drawing"
2415 );
2416 self.next_frame.deferred_draws = deferred_draws;
2417 self.element_id_stack.clear();
2418 self.text_style_stack.clear();
2419 }
2420
2421 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2422 assert_eq!(self.element_id_stack.len(), 0);
2423
2424 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2425 for deferred_draw_ix in deferred_draw_indices {
2426 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2427 self.element_id_stack
2428 .clone_from(&deferred_draw.element_id_stack);
2429 self.next_frame
2430 .dispatch_tree
2431 .set_active_node(deferred_draw.parent_node);
2432
2433 let paint_start = self.paint_index();
2434 if let Some(element) = deferred_draw.element.as_mut() {
2435 self.with_rendered_view(deferred_draw.current_view, |window| {
2436 element.paint(window, cx);
2437 })
2438 } else {
2439 self.reuse_paint(deferred_draw.paint_range.clone());
2440 }
2441 let paint_end = self.paint_index();
2442 deferred_draw.paint_range = paint_start..paint_end;
2443 }
2444 self.next_frame.deferred_draws = deferred_draws;
2445 self.element_id_stack.clear();
2446 }
2447
2448 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2449 PrepaintStateIndex {
2450 hitboxes_index: self.next_frame.hitboxes.len(),
2451 tooltips_index: self.next_frame.tooltip_requests.len(),
2452 deferred_draws_index: self.next_frame.deferred_draws.len(),
2453 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2454 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2455 line_layout_index: self.text_system.layout_index(),
2456 }
2457 }
2458
2459 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2460 self.next_frame.hitboxes.extend(
2461 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2462 .iter()
2463 .cloned(),
2464 );
2465 self.next_frame.tooltip_requests.extend(
2466 self.rendered_frame.tooltip_requests
2467 [range.start.tooltips_index..range.end.tooltips_index]
2468 .iter_mut()
2469 .map(|request| request.take()),
2470 );
2471 self.next_frame.accessed_element_states.extend(
2472 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2473 ..range.end.accessed_element_states_index]
2474 .iter()
2475 .map(|(id, type_id)| (id.clone(), *type_id)),
2476 );
2477 self.text_system
2478 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2479
2480 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2481 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2482 &mut self.rendered_frame.dispatch_tree,
2483 self.focus,
2484 );
2485
2486 if reused_subtree.contains_focus() {
2487 self.next_frame.focus = self.focus;
2488 }
2489
2490 self.next_frame.deferred_draws.extend(
2491 self.rendered_frame.deferred_draws
2492 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2493 .iter()
2494 .map(|deferred_draw| DeferredDraw {
2495 current_view: deferred_draw.current_view,
2496 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2497 element_id_stack: deferred_draw.element_id_stack.clone(),
2498 text_style_stack: deferred_draw.text_style_stack.clone(),
2499 priority: deferred_draw.priority,
2500 element: None,
2501 absolute_offset: deferred_draw.absolute_offset,
2502 prepaint_range: deferred_draw.prepaint_range.clone(),
2503 paint_range: deferred_draw.paint_range.clone(),
2504 }),
2505 );
2506 }
2507
2508 pub(crate) fn paint_index(&self) -> PaintIndex {
2509 PaintIndex {
2510 scene_index: self.next_frame.scene.len(),
2511 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2512 input_handlers_index: self.next_frame.input_handlers.len(),
2513 cursor_styles_index: self.next_frame.cursor_styles.len(),
2514 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2515 tab_handle_index: self.next_frame.tab_stops.paint_index(),
2516 line_layout_index: self.text_system.layout_index(),
2517 }
2518 }
2519
2520 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2521 self.next_frame.cursor_styles.extend(
2522 self.rendered_frame.cursor_styles
2523 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2524 .iter()
2525 .cloned(),
2526 );
2527 self.next_frame.input_handlers.extend(
2528 self.rendered_frame.input_handlers
2529 [range.start.input_handlers_index..range.end.input_handlers_index]
2530 .iter_mut()
2531 .map(|handler| handler.take()),
2532 );
2533 self.next_frame.mouse_listeners.extend(
2534 self.rendered_frame.mouse_listeners
2535 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2536 .iter_mut()
2537 .map(|listener| listener.take()),
2538 );
2539 self.next_frame.accessed_element_states.extend(
2540 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2541 ..range.end.accessed_element_states_index]
2542 .iter()
2543 .map(|(id, type_id)| (id.clone(), *type_id)),
2544 );
2545 self.next_frame.tab_stops.replay(
2546 &self.rendered_frame.tab_stops.insertion_history
2547 [range.start.tab_handle_index..range.end.tab_handle_index],
2548 );
2549
2550 self.text_system
2551 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2552 self.next_frame.scene.replay(
2553 range.start.scene_index..range.end.scene_index,
2554 &self.rendered_frame.scene,
2555 );
2556 }
2557
2558 /// Push a text style onto the stack, and call a function with that style active.
2559 /// Use [`Window::text_style`] to get the current, combined text style. This method
2560 /// should only be called as part of element drawing.
2561 // This function is called in a highly recursive manner in editor
2562 // prepainting, make sure its inlined to reduce the stack burden
2563 #[inline]
2564 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2565 where
2566 F: FnOnce(&mut Self) -> R,
2567 {
2568 self.invalidator.debug_assert_paint_or_prepaint();
2569 if let Some(style) = style {
2570 self.text_style_stack.push(style);
2571 let result = f(self);
2572 self.text_style_stack.pop();
2573 result
2574 } else {
2575 f(self)
2576 }
2577 }
2578
2579 /// Updates the cursor style at the platform level. This method should only be called
2580 /// during the paint phase of element drawing.
2581 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2582 self.invalidator.debug_assert_paint();
2583 self.next_frame.cursor_styles.push(CursorStyleRequest {
2584 hitbox_id: Some(hitbox.id),
2585 style,
2586 });
2587 }
2588
2589 /// Updates the cursor style for the entire window at the platform level. A cursor
2590 /// style using this method will have precedence over any cursor style set using
2591 /// `set_cursor_style`. This method should only be called during the paint
2592 /// phase of element drawing.
2593 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2594 self.invalidator.debug_assert_paint();
2595 self.next_frame.cursor_styles.push(CursorStyleRequest {
2596 hitbox_id: None,
2597 style,
2598 })
2599 }
2600
2601 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2602 /// during the paint phase of element drawing.
2603 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2604 self.invalidator.debug_assert_prepaint();
2605 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2606 self.next_frame
2607 .tooltip_requests
2608 .push(Some(TooltipRequest { id, tooltip }));
2609 id
2610 }
2611
2612 /// Invoke the given function with the given content mask after intersecting it
2613 /// with the current mask. This method should only be called during element drawing.
2614 // This function is called in a highly recursive manner in editor
2615 // prepainting, make sure its inlined to reduce the stack burden
2616 #[inline]
2617 pub fn with_content_mask<R>(
2618 &mut self,
2619 mask: Option<ContentMask<Pixels>>,
2620 f: impl FnOnce(&mut Self) -> R,
2621 ) -> R {
2622 self.invalidator.debug_assert_paint_or_prepaint();
2623 if let Some(mask) = mask {
2624 let mask = mask.intersect(&self.content_mask());
2625 self.content_mask_stack.push(mask);
2626 let result = f(self);
2627 self.content_mask_stack.pop();
2628 result
2629 } else {
2630 f(self)
2631 }
2632 }
2633
2634 /// Updates the global element offset relative to the current offset. This is used to implement
2635 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2636 pub fn with_element_offset<R>(
2637 &mut self,
2638 offset: Point<Pixels>,
2639 f: impl FnOnce(&mut Self) -> R,
2640 ) -> R {
2641 self.invalidator.debug_assert_prepaint();
2642
2643 if offset.is_zero() {
2644 return f(self);
2645 };
2646
2647 let abs_offset = self.element_offset() + offset;
2648 self.with_absolute_element_offset(abs_offset, f)
2649 }
2650
2651 /// Updates the global element offset based on the given offset. This is used to implement
2652 /// drag handles and other manual painting of elements. This method should only be called during
2653 /// the prepaint phase of element drawing.
2654 pub fn with_absolute_element_offset<R>(
2655 &mut self,
2656 offset: Point<Pixels>,
2657 f: impl FnOnce(&mut Self) -> R,
2658 ) -> R {
2659 self.invalidator.debug_assert_prepaint();
2660 self.element_offset_stack.push(offset);
2661 let result = f(self);
2662 self.element_offset_stack.pop();
2663 result
2664 }
2665
2666 pub(crate) fn with_element_opacity<R>(
2667 &mut self,
2668 opacity: Option<f32>,
2669 f: impl FnOnce(&mut Self) -> R,
2670 ) -> R {
2671 self.invalidator.debug_assert_paint_or_prepaint();
2672
2673 let Some(opacity) = opacity else {
2674 return f(self);
2675 };
2676
2677 let previous_opacity = self.element_opacity;
2678 self.element_opacity = previous_opacity * opacity;
2679 let result = f(self);
2680 self.element_opacity = previous_opacity;
2681 result
2682 }
2683
2684 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2685 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2686 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2687 /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2688 /// called during the prepaint phase of element drawing.
2689 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2690 self.invalidator.debug_assert_prepaint();
2691 let index = self.prepaint_index();
2692 let result = f(self);
2693 if result.is_err() {
2694 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2695 self.next_frame
2696 .tooltip_requests
2697 .truncate(index.tooltips_index);
2698 self.next_frame
2699 .deferred_draws
2700 .truncate(index.deferred_draws_index);
2701 self.next_frame
2702 .dispatch_tree
2703 .truncate(index.dispatch_tree_index);
2704 self.next_frame
2705 .accessed_element_states
2706 .truncate(index.accessed_element_states_index);
2707 self.text_system.truncate_layouts(index.line_layout_index);
2708 }
2709 result
2710 }
2711
2712 /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2713 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2714 /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2715 /// that supports this method being called on the elements it contains. This method should only be
2716 /// called during the prepaint phase of element drawing.
2717 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2718 self.invalidator.debug_assert_prepaint();
2719 self.requested_autoscroll = Some(bounds);
2720 }
2721
2722 /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2723 /// described in [`Self::request_autoscroll`].
2724 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2725 self.invalidator.debug_assert_prepaint();
2726 self.requested_autoscroll.take()
2727 }
2728
2729 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2730 /// Your view will be re-drawn once the asset has finished loading.
2731 ///
2732 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2733 /// time.
2734 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2735 let (task, is_first) = cx.fetch_asset::<A>(source);
2736 task.clone().now_or_never().or_else(|| {
2737 if is_first {
2738 let entity_id = self.current_view();
2739 self.spawn(cx, {
2740 let task = task.clone();
2741 async move |cx| {
2742 task.await;
2743
2744 cx.on_next_frame(move |_, cx| {
2745 cx.notify(entity_id);
2746 });
2747 }
2748 })
2749 .detach();
2750 }
2751
2752 None
2753 })
2754 }
2755
2756 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2757 /// Your view will not be re-drawn once the asset has finished loading.
2758 ///
2759 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2760 /// time.
2761 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2762 let (task, _) = cx.fetch_asset::<A>(source);
2763 task.now_or_never()
2764 }
2765 /// Obtain the current element offset. This method should only be called during the
2766 /// prepaint phase of element drawing.
2767 pub fn element_offset(&self) -> Point<Pixels> {
2768 self.invalidator.debug_assert_prepaint();
2769 self.element_offset_stack
2770 .last()
2771 .copied()
2772 .unwrap_or_default()
2773 }
2774
2775 /// Obtain the current element opacity. This method should only be called during the
2776 /// prepaint phase of element drawing.
2777 #[inline]
2778 pub(crate) fn element_opacity(&self) -> f32 {
2779 self.invalidator.debug_assert_paint_or_prepaint();
2780 self.element_opacity
2781 }
2782
2783 /// Obtain the current content mask. This method should only be called during element drawing.
2784 pub fn content_mask(&self) -> ContentMask<Pixels> {
2785 self.invalidator.debug_assert_paint_or_prepaint();
2786 self.content_mask_stack
2787 .last()
2788 .cloned()
2789 .unwrap_or_else(|| ContentMask {
2790 bounds: Bounds {
2791 origin: Point::default(),
2792 size: self.viewport_size,
2793 },
2794 })
2795 }
2796
2797 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2798 /// This can be used within a custom element to distinguish multiple sets of child elements.
2799 pub fn with_element_namespace<R>(
2800 &mut self,
2801 element_id: impl Into<ElementId>,
2802 f: impl FnOnce(&mut Self) -> R,
2803 ) -> R {
2804 self.element_id_stack.push(element_id.into());
2805 let result = f(self);
2806 self.element_id_stack.pop();
2807 result
2808 }
2809
2810 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2811 pub fn use_keyed_state<S: 'static>(
2812 &mut self,
2813 key: impl Into<ElementId>,
2814 cx: &mut App,
2815 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2816 ) -> Entity<S> {
2817 let current_view = self.current_view();
2818 self.with_global_id(key.into(), |global_id, window| {
2819 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2820 if let Some(state) = state {
2821 (state.clone(), state)
2822 } else {
2823 let new_state = cx.new(|cx| init(window, cx));
2824 cx.observe(&new_state, move |_, cx| {
2825 cx.notify(current_view);
2826 })
2827 .detach();
2828 (new_state.clone(), new_state)
2829 }
2830 })
2831 })
2832 }
2833
2834 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2835 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2836 self.with_global_id(id.into(), |_, window| f(window))
2837 }
2838
2839 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2840 ///
2841 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2842 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2843 /// you can provide a custom ElementID using the `use_keyed_state` method.
2844 #[track_caller]
2845 pub fn use_state<S: 'static>(
2846 &mut self,
2847 cx: &mut App,
2848 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2849 ) -> Entity<S> {
2850 self.use_keyed_state(
2851 ElementId::CodeLocation(*core::panic::Location::caller()),
2852 cx,
2853 init,
2854 )
2855 }
2856
2857 /// Updates or initializes state for an element with the given id that lives across multiple
2858 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2859 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2860 /// when drawing the next frame. This method should only be called as part of element drawing.
2861 pub fn with_element_state<S, R>(
2862 &mut self,
2863 global_id: &GlobalElementId,
2864 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2865 ) -> R
2866 where
2867 S: 'static,
2868 {
2869 self.invalidator.debug_assert_paint_or_prepaint();
2870
2871 let key = (global_id.clone(), TypeId::of::<S>());
2872 self.next_frame.accessed_element_states.push(key.clone());
2873
2874 if let Some(any) = self
2875 .next_frame
2876 .element_states
2877 .remove(&key)
2878 .or_else(|| self.rendered_frame.element_states.remove(&key))
2879 {
2880 let ElementStateBox {
2881 inner,
2882 #[cfg(debug_assertions)]
2883 type_name,
2884 } = any;
2885 // Using the extra inner option to avoid needing to reallocate a new box.
2886 let mut state_box = inner
2887 .downcast::<Option<S>>()
2888 .map_err(|_| {
2889 #[cfg(debug_assertions)]
2890 {
2891 anyhow::anyhow!(
2892 "invalid element state type for id, requested {:?}, actual: {:?}",
2893 std::any::type_name::<S>(),
2894 type_name
2895 )
2896 }
2897
2898 #[cfg(not(debug_assertions))]
2899 {
2900 anyhow::anyhow!(
2901 "invalid element state type for id, requested {:?}",
2902 std::any::type_name::<S>(),
2903 )
2904 }
2905 })
2906 .unwrap();
2907
2908 let state = state_box.take().expect(
2909 "reentrant call to with_element_state for the same state type and element id",
2910 );
2911 let (result, state) = f(Some(state), self);
2912 state_box.replace(state);
2913 self.next_frame.element_states.insert(
2914 key,
2915 ElementStateBox {
2916 inner: state_box,
2917 #[cfg(debug_assertions)]
2918 type_name,
2919 },
2920 );
2921 result
2922 } else {
2923 let (result, state) = f(None, self);
2924 self.next_frame.element_states.insert(
2925 key,
2926 ElementStateBox {
2927 inner: Box::new(Some(state)),
2928 #[cfg(debug_assertions)]
2929 type_name: std::any::type_name::<S>(),
2930 },
2931 );
2932 result
2933 }
2934 }
2935
2936 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2937 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2938 /// when the element is guaranteed to have an id.
2939 ///
2940 /// The first option means 'no ID provided'
2941 /// The second option means 'not yet initialized'
2942 pub fn with_optional_element_state<S, R>(
2943 &mut self,
2944 global_id: Option<&GlobalElementId>,
2945 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2946 ) -> R
2947 where
2948 S: 'static,
2949 {
2950 self.invalidator.debug_assert_paint_or_prepaint();
2951
2952 if let Some(global_id) = global_id {
2953 self.with_element_state(global_id, |state, cx| {
2954 let (result, state) = f(Some(state), cx);
2955 let state =
2956 state.expect("you must return some state when you pass some element id");
2957 (result, state)
2958 })
2959 } else {
2960 let (result, state) = f(None, self);
2961 debug_assert!(
2962 state.is_none(),
2963 "you must not return an element state when passing None for the global id"
2964 );
2965 result
2966 }
2967 }
2968
2969 /// Executes the given closure within the context of a tab group.
2970 #[inline]
2971 pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2972 if let Some(index) = index {
2973 self.next_frame.tab_stops.begin_group(index);
2974 let result = f(self);
2975 self.next_frame.tab_stops.end_group();
2976 result
2977 } else {
2978 f(self)
2979 }
2980 }
2981
2982 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2983 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2984 /// with higher values being drawn on top.
2985 ///
2986 /// This method should only be called as part of the prepaint phase of element drawing.
2987 pub fn defer_draw(
2988 &mut self,
2989 element: AnyElement,
2990 absolute_offset: Point<Pixels>,
2991 priority: usize,
2992 ) {
2993 self.invalidator.debug_assert_prepaint();
2994 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2995 self.next_frame.deferred_draws.push(DeferredDraw {
2996 current_view: self.current_view(),
2997 parent_node,
2998 element_id_stack: self.element_id_stack.clone(),
2999 text_style_stack: self.text_style_stack.clone(),
3000 priority,
3001 element: Some(element),
3002 absolute_offset,
3003 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
3004 paint_range: PaintIndex::default()..PaintIndex::default(),
3005 });
3006 }
3007
3008 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
3009 /// of geometry that are non-overlapping and have the same draw order. This is typically used
3010 /// for performance reasons.
3011 ///
3012 /// This method should only be called as part of the paint phase of element drawing.
3013 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
3014 self.invalidator.debug_assert_paint();
3015
3016 let scale_factor = self.scale_factor();
3017 let content_mask = self.content_mask();
3018 let clipped_bounds = bounds.intersect(&content_mask.bounds);
3019 if !clipped_bounds.is_empty() {
3020 self.next_frame
3021 .scene
3022 .push_layer(clipped_bounds.scale(scale_factor));
3023 }
3024
3025 let result = f(self);
3026
3027 if !clipped_bounds.is_empty() {
3028 self.next_frame.scene.pop_layer();
3029 }
3030
3031 result
3032 }
3033
3034 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
3035 ///
3036 /// This method should only be called as part of the paint phase of element drawing.
3037 pub fn paint_shadows(
3038 &mut self,
3039 bounds: Bounds<Pixels>,
3040 corner_radii: Corners<Pixels>,
3041 shadows: &[BoxShadow],
3042 ) {
3043 self.invalidator.debug_assert_paint();
3044
3045 let scale_factor = self.scale_factor();
3046 let content_mask = self.content_mask();
3047 let opacity = self.element_opacity();
3048 for shadow in shadows {
3049 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
3050 self.next_frame.scene.insert_primitive(Shadow {
3051 order: 0,
3052 blur_radius: shadow.blur_radius.scale(scale_factor),
3053 bounds: shadow_bounds.scale(scale_factor),
3054 content_mask: content_mask.scale(scale_factor),
3055 corner_radii: corner_radii.scale(scale_factor),
3056 color: shadow.color.opacity(opacity),
3057 });
3058 }
3059 }
3060
3061 /// Paint one or more quads into the scene for the next frame at the current stacking context.
3062 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
3063 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
3064 ///
3065 /// This method should only be called as part of the paint phase of element drawing.
3066 ///
3067 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
3068 /// where the circular arcs meet. This will not display well when combined with dashed borders.
3069 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
3070 pub fn paint_quad(&mut self, quad: PaintQuad) {
3071 self.invalidator.debug_assert_paint();
3072
3073 let scale_factor = self.scale_factor();
3074 let content_mask = self.content_mask();
3075 let opacity = self.element_opacity();
3076 self.next_frame.scene.insert_primitive(Quad {
3077 order: 0,
3078 bounds: quad.bounds.scale(scale_factor),
3079 content_mask: content_mask.scale(scale_factor),
3080 background: quad.background.opacity(opacity),
3081 border_color: quad.border_color.opacity(opacity),
3082 corner_radii: quad.corner_radii.scale(scale_factor),
3083 border_widths: quad.border_widths.scale(scale_factor),
3084 border_style: quad.border_style,
3085 });
3086 }
3087
3088 /// Paint the given `Path` into the scene for the next frame at the current z-index.
3089 ///
3090 /// This method should only be called as part of the paint phase of element drawing.
3091 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
3092 self.invalidator.debug_assert_paint();
3093
3094 let scale_factor = self.scale_factor();
3095 let content_mask = self.content_mask();
3096 let opacity = self.element_opacity();
3097 path.content_mask = content_mask;
3098 let color: Background = color.into();
3099 path.color = color.opacity(opacity);
3100 self.next_frame
3101 .scene
3102 .insert_primitive(path.scale(scale_factor));
3103 }
3104
3105 /// Paint an underline into the scene for the next frame at the current z-index.
3106 ///
3107 /// This method should only be called as part of the paint phase of element drawing.
3108 pub fn paint_underline(
3109 &mut self,
3110 origin: Point<Pixels>,
3111 width: Pixels,
3112 style: &UnderlineStyle,
3113 ) {
3114 self.invalidator.debug_assert_paint();
3115
3116 let scale_factor = self.scale_factor();
3117 let height = if style.wavy {
3118 style.thickness * 3.
3119 } else {
3120 style.thickness
3121 };
3122 let bounds = Bounds {
3123 origin,
3124 size: size(width, height),
3125 };
3126 let content_mask = self.content_mask();
3127 let element_opacity = self.element_opacity();
3128
3129 self.next_frame.scene.insert_primitive(Underline {
3130 order: 0,
3131 pad: 0,
3132 bounds: bounds.scale(scale_factor),
3133 content_mask: content_mask.scale(scale_factor),
3134 color: style.color.unwrap_or_default().opacity(element_opacity),
3135 thickness: style.thickness.scale(scale_factor),
3136 wavy: if style.wavy { 1 } else { 0 },
3137 });
3138 }
3139
3140 /// Paint a strikethrough into the scene for the next frame at the current z-index.
3141 ///
3142 /// This method should only be called as part of the paint phase of element drawing.
3143 pub fn paint_strikethrough(
3144 &mut self,
3145 origin: Point<Pixels>,
3146 width: Pixels,
3147 style: &StrikethroughStyle,
3148 ) {
3149 self.invalidator.debug_assert_paint();
3150
3151 let scale_factor = self.scale_factor();
3152 let height = style.thickness;
3153 let bounds = Bounds {
3154 origin,
3155 size: size(width, height),
3156 };
3157 let content_mask = self.content_mask();
3158 let opacity = self.element_opacity();
3159
3160 self.next_frame.scene.insert_primitive(Underline {
3161 order: 0,
3162 pad: 0,
3163 bounds: bounds.scale(scale_factor),
3164 content_mask: content_mask.scale(scale_factor),
3165 thickness: style.thickness.scale(scale_factor),
3166 color: style.color.unwrap_or_default().opacity(opacity),
3167 wavy: 0,
3168 });
3169 }
3170
3171 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
3172 ///
3173 /// The y component of the origin is the baseline of the glyph.
3174 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3175 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3176 /// This method is only useful if you need to paint a single glyph that has already been shaped.
3177 ///
3178 /// This method should only be called as part of the paint phase of element drawing.
3179 pub fn paint_glyph(
3180 &mut self,
3181 origin: Point<Pixels>,
3182 font_id: FontId,
3183 glyph_id: GlyphId,
3184 font_size: Pixels,
3185 color: Hsla,
3186 ) -> Result<()> {
3187 self.invalidator.debug_assert_paint();
3188
3189 let element_opacity = self.element_opacity();
3190 let scale_factor = self.scale_factor();
3191 let glyph_origin = origin.scale(scale_factor);
3192
3193 let subpixel_variant = Point {
3194 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
3195 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
3196 };
3197 let subpixel_rendering = self.should_use_subpixel_rendering(font_id, font_size);
3198 let params = RenderGlyphParams {
3199 font_id,
3200 glyph_id,
3201 font_size,
3202 subpixel_variant,
3203 scale_factor,
3204 is_emoji: false,
3205 subpixel_rendering,
3206 };
3207
3208 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3209 if !raster_bounds.is_zero() {
3210 let tile = self
3211 .sprite_atlas
3212 .get_or_insert_with(¶ms.clone().into(), &mut || {
3213 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3214 Ok(Some((size, Cow::Owned(bytes))))
3215 })?
3216 .expect("Callback above only errors or returns Some");
3217 let bounds = Bounds {
3218 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3219 size: tile.bounds.size.map(Into::into),
3220 };
3221 let content_mask = self.content_mask().scale(scale_factor);
3222
3223 if subpixel_rendering {
3224 self.next_frame.scene.insert_primitive(SubpixelSprite {
3225 order: 0,
3226 pad: 0,
3227 bounds,
3228 content_mask,
3229 color: color.opacity(element_opacity),
3230 tile,
3231 transformation: TransformationMatrix::unit(),
3232 });
3233 } else {
3234 self.next_frame.scene.insert_primitive(MonochromeSprite {
3235 order: 0,
3236 pad: 0,
3237 bounds,
3238 content_mask,
3239 color: color.opacity(element_opacity),
3240 tile,
3241 transformation: TransformationMatrix::unit(),
3242 });
3243 }
3244 }
3245 Ok(())
3246 }
3247
3248 fn should_use_subpixel_rendering(&self, font_id: FontId, font_size: Pixels) -> bool {
3249 if self.platform_window.background_appearance() != WindowBackgroundAppearance::Opaque {
3250 return false;
3251 }
3252
3253 if !self.platform_window.is_subpixel_rendering_supported() {
3254 return false;
3255 }
3256
3257 let mode = match self.text_rendering_mode.get() {
3258 TextRenderingMode::PlatformDefault => self
3259 .text_system()
3260 .recommended_rendering_mode(font_id, font_size),
3261 mode => mode,
3262 };
3263
3264 mode == TextRenderingMode::Subpixel
3265 }
3266
3267 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3268 ///
3269 /// The y component of the origin is the baseline of the glyph.
3270 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3271 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3272 /// This method is only useful if you need to paint a single emoji that has already been shaped.
3273 ///
3274 /// This method should only be called as part of the paint phase of element drawing.
3275 pub fn paint_emoji(
3276 &mut self,
3277 origin: Point<Pixels>,
3278 font_id: FontId,
3279 glyph_id: GlyphId,
3280 font_size: Pixels,
3281 ) -> Result<()> {
3282 self.invalidator.debug_assert_paint();
3283
3284 let scale_factor = self.scale_factor();
3285 let glyph_origin = origin.scale(scale_factor);
3286 let params = RenderGlyphParams {
3287 font_id,
3288 glyph_id,
3289 font_size,
3290 // We don't render emojis with subpixel variants.
3291 subpixel_variant: Default::default(),
3292 scale_factor,
3293 is_emoji: true,
3294 subpixel_rendering: false,
3295 };
3296
3297 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3298 if !raster_bounds.is_zero() {
3299 let tile = self
3300 .sprite_atlas
3301 .get_or_insert_with(¶ms.clone().into(), &mut || {
3302 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3303 Ok(Some((size, Cow::Owned(bytes))))
3304 })?
3305 .expect("Callback above only errors or returns Some");
3306
3307 let bounds = Bounds {
3308 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3309 size: tile.bounds.size.map(Into::into),
3310 };
3311 let content_mask = self.content_mask().scale(scale_factor);
3312 let opacity = self.element_opacity();
3313
3314 self.next_frame.scene.insert_primitive(PolychromeSprite {
3315 order: 0,
3316 pad: 0,
3317 grayscale: false,
3318 bounds,
3319 corner_radii: Default::default(),
3320 content_mask,
3321 tile,
3322 opacity,
3323 });
3324 }
3325 Ok(())
3326 }
3327
3328 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3329 ///
3330 /// This method should only be called as part of the paint phase of element drawing.
3331 pub fn paint_svg(
3332 &mut self,
3333 bounds: Bounds<Pixels>,
3334 path: SharedString,
3335 mut data: Option<&[u8]>,
3336 transformation: TransformationMatrix,
3337 color: Hsla,
3338 cx: &App,
3339 ) -> Result<()> {
3340 self.invalidator.debug_assert_paint();
3341
3342 let element_opacity = self.element_opacity();
3343 let scale_factor = self.scale_factor();
3344
3345 let bounds = bounds.scale(scale_factor);
3346 let params = RenderSvgParams {
3347 path,
3348 size: bounds.size.map(|pixels| {
3349 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3350 }),
3351 };
3352
3353 let Some(tile) =
3354 self.sprite_atlas
3355 .get_or_insert_with(¶ms.clone().into(), &mut || {
3356 let Some((size, bytes)) = cx.svg_renderer.render_alpha_mask(¶ms, data)?
3357 else {
3358 return Ok(None);
3359 };
3360 Ok(Some((size, Cow::Owned(bytes))))
3361 })?
3362 else {
3363 return Ok(());
3364 };
3365 let content_mask = self.content_mask().scale(scale_factor);
3366 let svg_bounds = Bounds {
3367 origin: bounds.center()
3368 - Point::new(
3369 ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3370 ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3371 ),
3372 size: tile
3373 .bounds
3374 .size
3375 .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3376 };
3377
3378 self.next_frame.scene.insert_primitive(MonochromeSprite {
3379 order: 0,
3380 pad: 0,
3381 bounds: svg_bounds
3382 .map_origin(|origin| origin.round())
3383 .map_size(|size| size.ceil()),
3384 content_mask,
3385 color: color.opacity(element_opacity),
3386 tile,
3387 transformation,
3388 });
3389
3390 Ok(())
3391 }
3392
3393 /// Paint an image into the scene for the next frame at the current z-index.
3394 /// This method will panic if the frame_index is not valid
3395 ///
3396 /// This method should only be called as part of the paint phase of element drawing.
3397 pub fn paint_image(
3398 &mut self,
3399 bounds: Bounds<Pixels>,
3400 corner_radii: Corners<Pixels>,
3401 data: Arc<RenderImage>,
3402 frame_index: usize,
3403 grayscale: bool,
3404 ) -> Result<()> {
3405 self.invalidator.debug_assert_paint();
3406
3407 let scale_factor = self.scale_factor();
3408 let bounds = bounds.scale(scale_factor);
3409 let params = RenderImageParams {
3410 image_id: data.id,
3411 frame_index,
3412 };
3413
3414 let tile = self
3415 .sprite_atlas
3416 .get_or_insert_with(¶ms.into(), &mut || {
3417 Ok(Some((
3418 data.size(frame_index),
3419 Cow::Borrowed(
3420 data.as_bytes(frame_index)
3421 .expect("It's the caller's job to pass a valid frame index"),
3422 ),
3423 )))
3424 })?
3425 .expect("Callback above only returns Some");
3426 let content_mask = self.content_mask().scale(scale_factor);
3427 let corner_radii = corner_radii.scale(scale_factor);
3428 let opacity = self.element_opacity();
3429
3430 self.next_frame.scene.insert_primitive(PolychromeSprite {
3431 order: 0,
3432 pad: 0,
3433 grayscale,
3434 bounds: bounds
3435 .map_origin(|origin| origin.floor())
3436 .map_size(|size| size.ceil()),
3437 content_mask,
3438 corner_radii,
3439 tile,
3440 opacity,
3441 });
3442 Ok(())
3443 }
3444
3445 /// Paint a surface into the scene for the next frame at the current z-index.
3446 ///
3447 /// This method should only be called as part of the paint phase of element drawing.
3448 #[cfg(target_os = "macos")]
3449 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3450 use crate::PaintSurface;
3451
3452 self.invalidator.debug_assert_paint();
3453
3454 let scale_factor = self.scale_factor();
3455 let bounds = bounds.scale(scale_factor);
3456 let content_mask = self.content_mask().scale(scale_factor);
3457 self.next_frame.scene.insert_primitive(PaintSurface {
3458 order: 0,
3459 bounds,
3460 content_mask,
3461 image_buffer,
3462 });
3463 }
3464
3465 /// Removes an image from the sprite atlas.
3466 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3467 for frame_index in 0..data.frame_count() {
3468 let params = RenderImageParams {
3469 image_id: data.id,
3470 frame_index,
3471 };
3472
3473 self.sprite_atlas.remove(¶ms.clone().into());
3474 }
3475
3476 Ok(())
3477 }
3478
3479 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3480 /// layout is being requested, along with the layout ids of any children. This method is called during
3481 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3482 ///
3483 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3484 #[must_use]
3485 pub fn request_layout(
3486 &mut self,
3487 style: Style,
3488 children: impl IntoIterator<Item = LayoutId>,
3489 cx: &mut App,
3490 ) -> LayoutId {
3491 self.invalidator.debug_assert_prepaint();
3492
3493 cx.layout_id_buffer.clear();
3494 cx.layout_id_buffer.extend(children);
3495 let rem_size = self.rem_size();
3496 let scale_factor = self.scale_factor();
3497
3498 self.layout_engine.as_mut().unwrap().request_layout(
3499 style,
3500 rem_size,
3501 scale_factor,
3502 &cx.layout_id_buffer,
3503 )
3504 }
3505
3506 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3507 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3508 /// determine the element's size. One place this is used internally is when measuring text.
3509 ///
3510 /// The given closure is invoked at layout time with the known dimensions and available space and
3511 /// returns a `Size`.
3512 ///
3513 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3514 pub fn request_measured_layout<F>(&mut self, style: Style, measure: F) -> LayoutId
3515 where
3516 F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3517 + 'static,
3518 {
3519 self.invalidator.debug_assert_prepaint();
3520
3521 let rem_size = self.rem_size();
3522 let scale_factor = self.scale_factor();
3523 self.layout_engine
3524 .as_mut()
3525 .unwrap()
3526 .request_measured_layout(style, rem_size, scale_factor, measure)
3527 }
3528
3529 /// Compute the layout for the given id within the given available space.
3530 /// This method is called for its side effect, typically by the framework prior to painting.
3531 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3532 ///
3533 /// This method should only be called as part of the prepaint phase of element drawing.
3534 pub fn compute_layout(
3535 &mut self,
3536 layout_id: LayoutId,
3537 available_space: Size<AvailableSpace>,
3538 cx: &mut App,
3539 ) {
3540 self.invalidator.debug_assert_prepaint();
3541
3542 let mut layout_engine = self.layout_engine.take().unwrap();
3543 layout_engine.compute_layout(layout_id, available_space, self, cx);
3544 self.layout_engine = Some(layout_engine);
3545 }
3546
3547 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3548 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3549 ///
3550 /// This method should only be called as part of element drawing.
3551 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3552 self.invalidator.debug_assert_prepaint();
3553
3554 let scale_factor = self.scale_factor();
3555 let mut bounds = self
3556 .layout_engine
3557 .as_mut()
3558 .unwrap()
3559 .layout_bounds(layout_id, scale_factor)
3560 .map(Into::into);
3561 bounds.origin += self.element_offset();
3562 bounds
3563 }
3564
3565 /// This method should be called during `prepaint`. You can use
3566 /// the returned [Hitbox] during `paint` or in an event handler
3567 /// to determine whether the inserted hitbox was the topmost.
3568 ///
3569 /// This method should only be called as part of the prepaint phase of element drawing.
3570 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3571 self.invalidator.debug_assert_prepaint();
3572
3573 let content_mask = self.content_mask();
3574 let mut id = self.next_hitbox_id;
3575 self.next_hitbox_id = self.next_hitbox_id.next();
3576 let hitbox = Hitbox {
3577 id,
3578 bounds,
3579 content_mask,
3580 behavior,
3581 };
3582 self.next_frame.hitboxes.push(hitbox.clone());
3583 hitbox
3584 }
3585
3586 /// Set a hitbox which will act as a control area of the platform window.
3587 ///
3588 /// This method should only be called as part of the paint phase of element drawing.
3589 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3590 self.invalidator.debug_assert_paint();
3591 self.next_frame.window_control_hitboxes.push((area, hitbox));
3592 }
3593
3594 /// Sets the key context for the current element. This context will be used to translate
3595 /// keybindings into actions.
3596 ///
3597 /// This method should only be called as part of the paint phase of element drawing.
3598 pub fn set_key_context(&mut self, context: KeyContext) {
3599 self.invalidator.debug_assert_paint();
3600 self.next_frame.dispatch_tree.set_key_context(context);
3601 }
3602
3603 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3604 /// and keyboard event dispatch for the element.
3605 ///
3606 /// This method should only be called as part of the prepaint phase of element drawing.
3607 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3608 self.invalidator.debug_assert_prepaint();
3609 if focus_handle.is_focused(self) {
3610 self.next_frame.focus = Some(focus_handle.id);
3611 }
3612 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3613 }
3614
3615 /// Sets the view id for the current element, which will be used to manage view caching.
3616 ///
3617 /// This method should only be called as part of element prepaint. We plan on removing this
3618 /// method eventually when we solve some issues that require us to construct editor elements
3619 /// directly instead of always using editors via views.
3620 pub fn set_view_id(&mut self, view_id: EntityId) {
3621 self.invalidator.debug_assert_prepaint();
3622 self.next_frame.dispatch_tree.set_view_id(view_id);
3623 }
3624
3625 /// Get the entity ID for the currently rendering view
3626 pub fn current_view(&self) -> EntityId {
3627 self.invalidator.debug_assert_paint_or_prepaint();
3628 self.rendered_entity_stack.last().copied().unwrap()
3629 }
3630
3631 pub(crate) fn with_rendered_view<R>(
3632 &mut self,
3633 id: EntityId,
3634 f: impl FnOnce(&mut Self) -> R,
3635 ) -> R {
3636 self.rendered_entity_stack.push(id);
3637 let result = f(self);
3638 self.rendered_entity_stack.pop();
3639 result
3640 }
3641
3642 /// Executes the provided function with the specified image cache.
3643 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3644 where
3645 F: FnOnce(&mut Self) -> R,
3646 {
3647 if let Some(image_cache) = image_cache {
3648 self.image_cache_stack.push(image_cache);
3649 let result = f(self);
3650 self.image_cache_stack.pop();
3651 result
3652 } else {
3653 f(self)
3654 }
3655 }
3656
3657 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3658 /// platform to receive textual input with proper integration with concerns such
3659 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3660 /// rendered.
3661 ///
3662 /// This method should only be called as part of the paint phase of element drawing.
3663 ///
3664 /// [element_input_handler]: crate::ElementInputHandler
3665 pub fn handle_input(
3666 &mut self,
3667 focus_handle: &FocusHandle,
3668 input_handler: impl InputHandler,
3669 cx: &App,
3670 ) {
3671 self.invalidator.debug_assert_paint();
3672
3673 if focus_handle.is_focused(self) {
3674 let cx = self.to_async(cx);
3675 self.next_frame
3676 .input_handlers
3677 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3678 }
3679 }
3680
3681 /// Register a mouse event listener on the window for the next frame. The type of event
3682 /// is determined by the first parameter of the given listener. When the next frame is rendered
3683 /// the listener will be cleared.
3684 ///
3685 /// This method should only be called as part of the paint phase of element drawing.
3686 pub fn on_mouse_event<Event: MouseEvent>(
3687 &mut self,
3688 mut listener: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3689 ) {
3690 self.invalidator.debug_assert_paint();
3691
3692 self.next_frame.mouse_listeners.push(Some(Box::new(
3693 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3694 if let Some(event) = event.downcast_ref() {
3695 listener(event, phase, window, cx)
3696 }
3697 },
3698 )));
3699 }
3700
3701 /// Register a key event listener on this node for the next frame. The type of event
3702 /// is determined by the first parameter of the given listener. When the next frame is rendered
3703 /// the listener will be cleared.
3704 ///
3705 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3706 /// a specific need to register a listener yourself.
3707 ///
3708 /// This method should only be called as part of the paint phase of element drawing.
3709 pub fn on_key_event<Event: KeyEvent>(
3710 &mut self,
3711 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3712 ) {
3713 self.invalidator.debug_assert_paint();
3714
3715 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3716 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3717 if let Some(event) = event.downcast_ref::<Event>() {
3718 listener(event, phase, window, cx)
3719 }
3720 },
3721 ));
3722 }
3723
3724 /// Register a modifiers changed event listener on the window for the next frame.
3725 ///
3726 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3727 /// a specific need to register a global listener.
3728 ///
3729 /// This method should only be called as part of the paint phase of element drawing.
3730 pub fn on_modifiers_changed(
3731 &mut self,
3732 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3733 ) {
3734 self.invalidator.debug_assert_paint();
3735
3736 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3737 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3738 listener(event, window, cx)
3739 },
3740 ));
3741 }
3742
3743 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3744 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3745 /// Returns a subscription and persists until the subscription is dropped.
3746 pub fn on_focus_in(
3747 &mut self,
3748 handle: &FocusHandle,
3749 cx: &mut App,
3750 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3751 ) -> Subscription {
3752 let focus_id = handle.id;
3753 let (subscription, activate) =
3754 self.new_focus_listener(Box::new(move |event, window, cx| {
3755 if event.is_focus_in(focus_id) {
3756 listener(window, cx);
3757 }
3758 true
3759 }));
3760 cx.defer(move |_| activate());
3761 subscription
3762 }
3763
3764 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3765 /// Returns a subscription and persists until the subscription is dropped.
3766 pub fn on_focus_out(
3767 &mut self,
3768 handle: &FocusHandle,
3769 cx: &mut App,
3770 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3771 ) -> Subscription {
3772 let focus_id = handle.id;
3773 let (subscription, activate) =
3774 self.new_focus_listener(Box::new(move |event, window, cx| {
3775 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3776 && event.is_focus_out(focus_id)
3777 {
3778 let event = FocusOutEvent {
3779 blurred: WeakFocusHandle {
3780 id: blurred_id,
3781 handles: Arc::downgrade(&cx.focus_handles),
3782 },
3783 };
3784 listener(event, window, cx)
3785 }
3786 true
3787 }));
3788 cx.defer(move |_| activate());
3789 subscription
3790 }
3791
3792 fn reset_cursor_style(&self, cx: &mut App) {
3793 // Set the cursor only if we're the active window.
3794 if self.is_window_hovered() {
3795 let style = self
3796 .rendered_frame
3797 .cursor_style(self)
3798 .unwrap_or(CursorStyle::Arrow);
3799 cx.platform.set_cursor_style(style);
3800 }
3801 }
3802
3803 /// Dispatch a given keystroke as though the user had typed it.
3804 /// You can create a keystroke with Keystroke::parse("").
3805 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3806 let keystroke = keystroke.with_simulated_ime();
3807 let result = self.dispatch_event(
3808 PlatformInput::KeyDown(KeyDownEvent {
3809 keystroke: keystroke.clone(),
3810 is_held: false,
3811 prefer_character_input: false,
3812 }),
3813 cx,
3814 );
3815 if !result.propagate {
3816 return true;
3817 }
3818
3819 if let Some(input) = keystroke.key_char
3820 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3821 {
3822 input_handler.dispatch_input(&input, self, cx);
3823 self.platform_window.set_input_handler(input_handler);
3824 return true;
3825 }
3826
3827 false
3828 }
3829
3830 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3831 /// binding for the action (last binding added to the keymap).
3832 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3833 self.highest_precedence_binding_for_action(action)
3834 .map(|binding| {
3835 binding
3836 .keystrokes()
3837 .iter()
3838 .map(ToString::to_string)
3839 .collect::<Vec<_>>()
3840 .join(" ")
3841 })
3842 .unwrap_or_else(|| action.name().to_string())
3843 }
3844
3845 /// Dispatch a mouse or keyboard event on the window.
3846 #[profiling::function]
3847 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3848 // Track whether this input was keyboard-based for focus-visible styling
3849 self.last_input_modality = match &event {
3850 PlatformInput::KeyDown(_) | PlatformInput::ModifiersChanged(_) => {
3851 InputModality::Keyboard
3852 }
3853 PlatformInput::MouseDown(e) if e.is_focusing() => InputModality::Mouse,
3854 _ => self.last_input_modality,
3855 };
3856
3857 // Handlers may set this to false by calling `stop_propagation`.
3858 cx.propagate_event = true;
3859 // Handlers may set this to true by calling `prevent_default`.
3860 self.default_prevented = false;
3861
3862 let event = match event {
3863 // Track the mouse position with our own state, since accessing the platform
3864 // API for the mouse position can only occur on the main thread.
3865 PlatformInput::MouseMove(mouse_move) => {
3866 self.mouse_position = mouse_move.position;
3867 self.modifiers = mouse_move.modifiers;
3868 PlatformInput::MouseMove(mouse_move)
3869 }
3870 PlatformInput::MouseDown(mouse_down) => {
3871 self.mouse_position = mouse_down.position;
3872 self.modifiers = mouse_down.modifiers;
3873 PlatformInput::MouseDown(mouse_down)
3874 }
3875 PlatformInput::MouseUp(mouse_up) => {
3876 self.mouse_position = mouse_up.position;
3877 self.modifiers = mouse_up.modifiers;
3878 PlatformInput::MouseUp(mouse_up)
3879 }
3880 PlatformInput::MousePressure(mouse_pressure) => {
3881 PlatformInput::MousePressure(mouse_pressure)
3882 }
3883 PlatformInput::MouseExited(mouse_exited) => {
3884 self.modifiers = mouse_exited.modifiers;
3885 PlatformInput::MouseExited(mouse_exited)
3886 }
3887 PlatformInput::ModifiersChanged(modifiers_changed) => {
3888 self.modifiers = modifiers_changed.modifiers;
3889 self.capslock = modifiers_changed.capslock;
3890 PlatformInput::ModifiersChanged(modifiers_changed)
3891 }
3892 PlatformInput::ScrollWheel(scroll_wheel) => {
3893 self.mouse_position = scroll_wheel.position;
3894 self.modifiers = scroll_wheel.modifiers;
3895 PlatformInput::ScrollWheel(scroll_wheel)
3896 }
3897 // Translate dragging and dropping of external files from the operating system
3898 // to internal drag and drop events.
3899 PlatformInput::FileDrop(file_drop) => match file_drop {
3900 FileDropEvent::Entered { position, paths } => {
3901 self.mouse_position = position;
3902 if cx.active_drag.is_none() {
3903 cx.active_drag = Some(AnyDrag {
3904 value: Arc::new(paths.clone()),
3905 view: cx.new(|_| paths).into(),
3906 cursor_offset: position,
3907 cursor_style: None,
3908 });
3909 }
3910 PlatformInput::MouseMove(MouseMoveEvent {
3911 position,
3912 pressed_button: Some(MouseButton::Left),
3913 modifiers: Modifiers::default(),
3914 })
3915 }
3916 FileDropEvent::Pending { position } => {
3917 self.mouse_position = position;
3918 PlatformInput::MouseMove(MouseMoveEvent {
3919 position,
3920 pressed_button: Some(MouseButton::Left),
3921 modifiers: Modifiers::default(),
3922 })
3923 }
3924 FileDropEvent::Submit { position } => {
3925 cx.activate(true);
3926 self.mouse_position = position;
3927 PlatformInput::MouseUp(MouseUpEvent {
3928 button: MouseButton::Left,
3929 position,
3930 modifiers: Modifiers::default(),
3931 click_count: 1,
3932 })
3933 }
3934 FileDropEvent::Exited => {
3935 cx.active_drag.take();
3936 PlatformInput::FileDrop(FileDropEvent::Exited)
3937 }
3938 },
3939 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3940 };
3941
3942 if let Some(any_mouse_event) = event.mouse_event() {
3943 self.dispatch_mouse_event(any_mouse_event, cx);
3944 } else if let Some(any_key_event) = event.keyboard_event() {
3945 self.dispatch_key_event(any_key_event, cx);
3946 }
3947
3948 if self.invalidator.is_dirty() {
3949 self.input_rate_tracker.borrow_mut().record_input();
3950 }
3951
3952 DispatchEventResult {
3953 propagate: cx.propagate_event,
3954 default_prevented: self.default_prevented,
3955 }
3956 }
3957
3958 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3959 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3960 if hit_test != self.mouse_hit_test {
3961 self.mouse_hit_test = hit_test;
3962 self.reset_cursor_style(cx);
3963 }
3964
3965 #[cfg(any(feature = "inspector", debug_assertions))]
3966 if self.is_inspector_picking(cx) {
3967 self.handle_inspector_mouse_event(event, cx);
3968 // When inspector is picking, all other mouse handling is skipped.
3969 return;
3970 }
3971
3972 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3973
3974 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3975 // special purposes, such as detecting events outside of a given Bounds.
3976 for listener in &mut mouse_listeners {
3977 let listener = listener.as_mut().unwrap();
3978 listener(event, DispatchPhase::Capture, self, cx);
3979 if !cx.propagate_event {
3980 break;
3981 }
3982 }
3983
3984 // Bubble phase, where most normal handlers do their work.
3985 if cx.propagate_event {
3986 for listener in mouse_listeners.iter_mut().rev() {
3987 let listener = listener.as_mut().unwrap();
3988 listener(event, DispatchPhase::Bubble, self, cx);
3989 if !cx.propagate_event {
3990 break;
3991 }
3992 }
3993 }
3994
3995 self.rendered_frame.mouse_listeners = mouse_listeners;
3996
3997 if cx.has_active_drag() {
3998 if event.is::<MouseMoveEvent>() {
3999 // If this was a mouse move event, redraw the window so that the
4000 // active drag can follow the mouse cursor.
4001 self.refresh();
4002 } else if event.is::<MouseUpEvent>() {
4003 // If this was a mouse up event, cancel the active drag and redraw
4004 // the window.
4005 cx.active_drag = None;
4006 self.refresh();
4007 }
4008 }
4009 }
4010
4011 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
4012 if self.invalidator.is_dirty() {
4013 self.draw(cx).clear();
4014 }
4015
4016 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4017 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4018
4019 let mut keystroke: Option<Keystroke> = None;
4020
4021 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
4022 if event.modifiers.number_of_modifiers() == 0
4023 && self.pending_modifier.modifiers.number_of_modifiers() == 1
4024 && !self.pending_modifier.saw_keystroke
4025 {
4026 let key = match self.pending_modifier.modifiers {
4027 modifiers if modifiers.shift => Some("shift"),
4028 modifiers if modifiers.control => Some("control"),
4029 modifiers if modifiers.alt => Some("alt"),
4030 modifiers if modifiers.platform => Some("platform"),
4031 modifiers if modifiers.function => Some("function"),
4032 _ => None,
4033 };
4034 if let Some(key) = key {
4035 keystroke = Some(Keystroke {
4036 key: key.to_string(),
4037 key_char: None,
4038 modifiers: Modifiers::default(),
4039 });
4040 }
4041 }
4042
4043 if self.pending_modifier.modifiers.number_of_modifiers() == 0
4044 && event.modifiers.number_of_modifiers() == 1
4045 {
4046 self.pending_modifier.saw_keystroke = false
4047 }
4048 self.pending_modifier.modifiers = event.modifiers
4049 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
4050 self.pending_modifier.saw_keystroke = true;
4051 keystroke = Some(key_down_event.keystroke.clone());
4052 }
4053
4054 let Some(keystroke) = keystroke else {
4055 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
4056 return;
4057 };
4058
4059 cx.propagate_event = true;
4060 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
4061 if !cx.propagate_event {
4062 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
4063 return;
4064 }
4065
4066 let mut currently_pending = self.pending_input.take().unwrap_or_default();
4067 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
4068 currently_pending = PendingInput::default();
4069 }
4070
4071 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
4072 currently_pending.keystrokes,
4073 keystroke,
4074 &dispatch_path,
4075 );
4076
4077 if !match_result.to_replay.is_empty() {
4078 self.replay_pending_input(match_result.to_replay, cx);
4079 cx.propagate_event = true;
4080 }
4081
4082 if !match_result.pending.is_empty() {
4083 currently_pending.timer.take();
4084 currently_pending.keystrokes = match_result.pending;
4085 currently_pending.focus = self.focus;
4086
4087 let text_input_requires_timeout = event
4088 .downcast_ref::<KeyDownEvent>()
4089 .filter(|key_down| key_down.keystroke.key_char.is_some())
4090 .and_then(|_| self.platform_window.take_input_handler())
4091 .map_or(false, |mut input_handler| {
4092 let accepts = input_handler.accepts_text_input(self, cx);
4093 self.platform_window.set_input_handler(input_handler);
4094 accepts
4095 });
4096
4097 currently_pending.needs_timeout |=
4098 match_result.pending_has_binding || text_input_requires_timeout;
4099
4100 if currently_pending.needs_timeout {
4101 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
4102 cx.background_executor.timer(Duration::from_secs(1)).await;
4103 cx.update(move |window, cx| {
4104 let Some(currently_pending) = window
4105 .pending_input
4106 .take()
4107 .filter(|pending| pending.focus == window.focus)
4108 else {
4109 return;
4110 };
4111
4112 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
4113 let dispatch_path =
4114 window.rendered_frame.dispatch_tree.dispatch_path(node_id);
4115
4116 let to_replay = window
4117 .rendered_frame
4118 .dispatch_tree
4119 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
4120
4121 window.pending_input_changed(cx);
4122 window.replay_pending_input(to_replay, cx)
4123 })
4124 .log_err();
4125 }));
4126 } else {
4127 currently_pending.timer = None;
4128 }
4129 self.pending_input = Some(currently_pending);
4130 self.pending_input_changed(cx);
4131 cx.propagate_event = false;
4132 return;
4133 }
4134
4135 let skip_bindings = event
4136 .downcast_ref::<KeyDownEvent>()
4137 .filter(|key_down_event| key_down_event.prefer_character_input)
4138 .map(|_| {
4139 self.platform_window
4140 .take_input_handler()
4141 .map_or(false, |mut input_handler| {
4142 let accepts = input_handler.accepts_text_input(self, cx);
4143 self.platform_window.set_input_handler(input_handler);
4144 // If modifiers are not excessive (e.g. AltGr), and the input handler is accepting text input,
4145 // we prefer the text input over bindings.
4146 accepts
4147 })
4148 })
4149 .unwrap_or(false);
4150
4151 if !skip_bindings {
4152 for binding in match_result.bindings {
4153 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4154 if !cx.propagate_event {
4155 self.dispatch_keystroke_observers(
4156 event,
4157 Some(binding.action),
4158 match_result.context_stack,
4159 cx,
4160 );
4161 self.pending_input_changed(cx);
4162 return;
4163 }
4164 }
4165 }
4166
4167 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
4168 self.pending_input_changed(cx);
4169 }
4170
4171 fn finish_dispatch_key_event(
4172 &mut self,
4173 event: &dyn Any,
4174 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
4175 context_stack: Vec<KeyContext>,
4176 cx: &mut App,
4177 ) {
4178 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
4179 if !cx.propagate_event {
4180 return;
4181 }
4182
4183 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
4184 if !cx.propagate_event {
4185 return;
4186 }
4187
4188 self.dispatch_keystroke_observers(event, None, context_stack, cx);
4189 }
4190
4191 pub(crate) fn pending_input_changed(&mut self, cx: &mut App) {
4192 self.pending_input_observers
4193 .clone()
4194 .retain(&(), |callback| callback(self, cx));
4195 }
4196
4197 fn dispatch_key_down_up_event(
4198 &mut self,
4199 event: &dyn Any,
4200 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4201 cx: &mut App,
4202 ) {
4203 // Capture phase
4204 for node_id in dispatch_path {
4205 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4206
4207 for key_listener in node.key_listeners.clone() {
4208 key_listener(event, DispatchPhase::Capture, self, cx);
4209 if !cx.propagate_event {
4210 return;
4211 }
4212 }
4213 }
4214
4215 // Bubble phase
4216 for node_id in dispatch_path.iter().rev() {
4217 // Handle low level key events
4218 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4219 for key_listener in node.key_listeners.clone() {
4220 key_listener(event, DispatchPhase::Bubble, self, cx);
4221 if !cx.propagate_event {
4222 return;
4223 }
4224 }
4225 }
4226 }
4227
4228 fn dispatch_modifiers_changed_event(
4229 &mut self,
4230 event: &dyn Any,
4231 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4232 cx: &mut App,
4233 ) {
4234 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
4235 return;
4236 };
4237 for node_id in dispatch_path.iter().rev() {
4238 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4239 for listener in node.modifiers_changed_listeners.clone() {
4240 listener(event, self, cx);
4241 if !cx.propagate_event {
4242 return;
4243 }
4244 }
4245 }
4246 }
4247
4248 /// Determine whether a potential multi-stroke key binding is in progress on this window.
4249 pub fn has_pending_keystrokes(&self) -> bool {
4250 self.pending_input.is_some()
4251 }
4252
4253 pub(crate) fn clear_pending_keystrokes(&mut self) {
4254 self.pending_input.take();
4255 }
4256
4257 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
4258 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
4259 self.pending_input
4260 .as_ref()
4261 .map(|pending_input| pending_input.keystrokes.as_slice())
4262 }
4263
4264 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
4265 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4266 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4267
4268 'replay: for replay in replays {
4269 let event = KeyDownEvent {
4270 keystroke: replay.keystroke.clone(),
4271 is_held: false,
4272 prefer_character_input: true,
4273 };
4274
4275 cx.propagate_event = true;
4276 for binding in replay.bindings {
4277 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4278 if !cx.propagate_event {
4279 self.dispatch_keystroke_observers(
4280 &event,
4281 Some(binding.action),
4282 Vec::default(),
4283 cx,
4284 );
4285 continue 'replay;
4286 }
4287 }
4288
4289 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
4290 if !cx.propagate_event {
4291 continue 'replay;
4292 }
4293 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
4294 && let Some(mut input_handler) = self.platform_window.take_input_handler()
4295 {
4296 input_handler.dispatch_input(&input, self, cx);
4297 self.platform_window.set_input_handler(input_handler)
4298 }
4299 }
4300 }
4301
4302 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4303 focus_id
4304 .and_then(|focus_id| {
4305 self.rendered_frame
4306 .dispatch_tree
4307 .focusable_node_id(focus_id)
4308 })
4309 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4310 }
4311
4312 fn dispatch_action_on_node(
4313 &mut self,
4314 node_id: DispatchNodeId,
4315 action: &dyn Action,
4316 cx: &mut App,
4317 ) {
4318 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4319
4320 // Capture phase for global actions.
4321 cx.propagate_event = true;
4322 if let Some(mut global_listeners) = cx
4323 .global_action_listeners
4324 .remove(&action.as_any().type_id())
4325 {
4326 for listener in &global_listeners {
4327 listener(action.as_any(), DispatchPhase::Capture, cx);
4328 if !cx.propagate_event {
4329 break;
4330 }
4331 }
4332
4333 global_listeners.extend(
4334 cx.global_action_listeners
4335 .remove(&action.as_any().type_id())
4336 .unwrap_or_default(),
4337 );
4338
4339 cx.global_action_listeners
4340 .insert(action.as_any().type_id(), global_listeners);
4341 }
4342
4343 if !cx.propagate_event {
4344 return;
4345 }
4346
4347 // Capture phase for window actions.
4348 for node_id in &dispatch_path {
4349 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4350 for DispatchActionListener {
4351 action_type,
4352 listener,
4353 } in node.action_listeners.clone()
4354 {
4355 let any_action = action.as_any();
4356 if action_type == any_action.type_id() {
4357 listener(any_action, DispatchPhase::Capture, self, cx);
4358
4359 if !cx.propagate_event {
4360 return;
4361 }
4362 }
4363 }
4364 }
4365
4366 // Bubble phase for window actions.
4367 for node_id in dispatch_path.iter().rev() {
4368 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4369 for DispatchActionListener {
4370 action_type,
4371 listener,
4372 } in node.action_listeners.clone()
4373 {
4374 let any_action = action.as_any();
4375 if action_type == any_action.type_id() {
4376 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4377 listener(any_action, DispatchPhase::Bubble, self, cx);
4378
4379 if !cx.propagate_event {
4380 return;
4381 }
4382 }
4383 }
4384 }
4385
4386 // Bubble phase for global actions.
4387 if let Some(mut global_listeners) = cx
4388 .global_action_listeners
4389 .remove(&action.as_any().type_id())
4390 {
4391 for listener in global_listeners.iter().rev() {
4392 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4393
4394 listener(action.as_any(), DispatchPhase::Bubble, cx);
4395 if !cx.propagate_event {
4396 break;
4397 }
4398 }
4399
4400 global_listeners.extend(
4401 cx.global_action_listeners
4402 .remove(&action.as_any().type_id())
4403 .unwrap_or_default(),
4404 );
4405
4406 cx.global_action_listeners
4407 .insert(action.as_any().type_id(), global_listeners);
4408 }
4409 }
4410
4411 /// Register the given handler to be invoked whenever the global of the given type
4412 /// is updated.
4413 pub fn observe_global<G: Global>(
4414 &mut self,
4415 cx: &mut App,
4416 f: impl Fn(&mut Window, &mut App) + 'static,
4417 ) -> Subscription {
4418 let window_handle = self.handle;
4419 let (subscription, activate) = cx.global_observers.insert(
4420 TypeId::of::<G>(),
4421 Box::new(move |cx| {
4422 window_handle
4423 .update(cx, |_, window, cx| f(window, cx))
4424 .is_ok()
4425 }),
4426 );
4427 cx.defer(move |_| activate());
4428 subscription
4429 }
4430
4431 /// Focus the current window and bring it to the foreground at the platform level.
4432 pub fn activate_window(&self) {
4433 self.platform_window.activate();
4434 }
4435
4436 /// Minimize the current window at the platform level.
4437 pub fn minimize_window(&self) {
4438 self.platform_window.minimize();
4439 }
4440
4441 /// Toggle full screen status on the current window at the platform level.
4442 pub fn toggle_fullscreen(&self) {
4443 self.platform_window.toggle_fullscreen();
4444 }
4445
4446 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4447 pub fn invalidate_character_coordinates(&self) {
4448 self.on_next_frame(|window, cx| {
4449 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4450 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4451 window.platform_window.update_ime_position(bounds);
4452 }
4453 window.platform_window.set_input_handler(input_handler);
4454 }
4455 });
4456 }
4457
4458 /// Present a platform dialog.
4459 /// The provided message will be presented, along with buttons for each answer.
4460 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4461 pub fn prompt<T>(
4462 &mut self,
4463 level: PromptLevel,
4464 message: &str,
4465 detail: Option<&str>,
4466 answers: &[T],
4467 cx: &mut App,
4468 ) -> oneshot::Receiver<usize>
4469 where
4470 T: Clone + Into<PromptButton>,
4471 {
4472 let prompt_builder = cx.prompt_builder.take();
4473 let Some(prompt_builder) = prompt_builder else {
4474 unreachable!("Re-entrant window prompting is not supported by GPUI");
4475 };
4476
4477 let answers = answers
4478 .iter()
4479 .map(|answer| answer.clone().into())
4480 .collect::<Vec<_>>();
4481
4482 let receiver = match &prompt_builder {
4483 PromptBuilder::Default => self
4484 .platform_window
4485 .prompt(level, message, detail, &answers)
4486 .unwrap_or_else(|| {
4487 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4488 }),
4489 PromptBuilder::Custom(_) => {
4490 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4491 }
4492 };
4493
4494 cx.prompt_builder = Some(prompt_builder);
4495
4496 receiver
4497 }
4498
4499 fn build_custom_prompt(
4500 &mut self,
4501 prompt_builder: &PromptBuilder,
4502 level: PromptLevel,
4503 message: &str,
4504 detail: Option<&str>,
4505 answers: &[PromptButton],
4506 cx: &mut App,
4507 ) -> oneshot::Receiver<usize> {
4508 let (sender, receiver) = oneshot::channel();
4509 let handle = PromptHandle::new(sender);
4510 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4511 self.prompt = Some(handle);
4512 receiver
4513 }
4514
4515 /// Returns the current context stack.
4516 pub fn context_stack(&self) -> Vec<KeyContext> {
4517 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4518 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4519 dispatch_tree
4520 .dispatch_path(node_id)
4521 .iter()
4522 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4523 .collect()
4524 }
4525
4526 /// Returns all available actions for the focused element.
4527 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4528 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4529 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4530 for action_type in cx.global_action_listeners.keys() {
4531 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4532 let action = cx.actions.build_action_type(action_type).ok();
4533 if let Some(action) = action {
4534 actions.insert(ix, action);
4535 }
4536 }
4537 }
4538 actions
4539 }
4540
4541 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4542 /// returned in the order they were added. For display, the last binding should take precedence.
4543 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4544 self.rendered_frame
4545 .dispatch_tree
4546 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4547 }
4548
4549 /// Returns the highest precedence key binding that invokes an action on the currently focused
4550 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4551 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4552 self.rendered_frame
4553 .dispatch_tree
4554 .highest_precedence_binding_for_action(
4555 action,
4556 &self.rendered_frame.dispatch_tree.context_stack,
4557 )
4558 }
4559
4560 /// Returns the key bindings for an action in a context.
4561 pub fn bindings_for_action_in_context(
4562 &self,
4563 action: &dyn Action,
4564 context: KeyContext,
4565 ) -> Vec<KeyBinding> {
4566 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4567 dispatch_tree.bindings_for_action(action, &[context])
4568 }
4569
4570 /// Returns the highest precedence key binding for an action in a context. This is more
4571 /// efficient than getting the last result of `bindings_for_action_in_context`.
4572 pub fn highest_precedence_binding_for_action_in_context(
4573 &self,
4574 action: &dyn Action,
4575 context: KeyContext,
4576 ) -> Option<KeyBinding> {
4577 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4578 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4579 }
4580
4581 /// Returns any bindings that would invoke an action on the given focus handle if it were
4582 /// focused. Bindings are returned in the order they were added. For display, the last binding
4583 /// should take precedence.
4584 pub fn bindings_for_action_in(
4585 &self,
4586 action: &dyn Action,
4587 focus_handle: &FocusHandle,
4588 ) -> Vec<KeyBinding> {
4589 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4590 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4591 return vec![];
4592 };
4593 dispatch_tree.bindings_for_action(action, &context_stack)
4594 }
4595
4596 /// Returns the highest precedence key binding that would invoke an action on the given focus
4597 /// handle if it were focused. This is more efficient than getting the last result of
4598 /// `bindings_for_action_in`.
4599 pub fn highest_precedence_binding_for_action_in(
4600 &self,
4601 action: &dyn Action,
4602 focus_handle: &FocusHandle,
4603 ) -> Option<KeyBinding> {
4604 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4605 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4606 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4607 }
4608
4609 /// Find the bindings that can follow the current input sequence for the current context stack.
4610 pub fn possible_bindings_for_input(&self, input: &[Keystroke]) -> Vec<KeyBinding> {
4611 self.rendered_frame
4612 .dispatch_tree
4613 .possible_next_bindings_for_input(input, &self.context_stack())
4614 }
4615
4616 fn context_stack_for_focus_handle(
4617 &self,
4618 focus_handle: &FocusHandle,
4619 ) -> Option<Vec<KeyContext>> {
4620 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4621 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4622 let context_stack: Vec<_> = dispatch_tree
4623 .dispatch_path(node_id)
4624 .into_iter()
4625 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4626 .collect();
4627 Some(context_stack)
4628 }
4629
4630 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4631 pub fn listener_for<T: 'static, E>(
4632 &self,
4633 view: &Entity<T>,
4634 f: impl Fn(&mut T, &E, &mut Window, &mut Context<T>) + 'static,
4635 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4636 let view = view.downgrade();
4637 move |e: &E, window: &mut Window, cx: &mut App| {
4638 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4639 }
4640 }
4641
4642 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4643 pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4644 &self,
4645 entity: &Entity<E>,
4646 f: Callback,
4647 ) -> impl Fn(&mut Window, &mut App) + 'static {
4648 let entity = entity.downgrade();
4649 move |window: &mut Window, cx: &mut App| {
4650 entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4651 }
4652 }
4653
4654 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4655 /// If the callback returns false, the window won't be closed.
4656 pub fn on_window_should_close(
4657 &self,
4658 cx: &App,
4659 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4660 ) {
4661 let mut cx = self.to_async(cx);
4662 self.platform_window.on_should_close(Box::new(move || {
4663 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4664 }))
4665 }
4666
4667 /// Register an action listener on this node for the next frame. The type of action
4668 /// is determined by the first parameter of the given listener. When the next frame is rendered
4669 /// the listener will be cleared.
4670 ///
4671 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4672 /// a specific need to register a listener yourself.
4673 ///
4674 /// This method should only be called as part of the paint phase of element drawing.
4675 pub fn on_action(
4676 &mut self,
4677 action_type: TypeId,
4678 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4679 ) {
4680 self.invalidator.debug_assert_paint();
4681
4682 self.next_frame
4683 .dispatch_tree
4684 .on_action(action_type, Rc::new(listener));
4685 }
4686
4687 /// Register a capturing action listener on this node for the next frame if the condition is true.
4688 /// The type of action is determined by the first parameter of the given listener. When the next
4689 /// frame is rendered the listener will be cleared.
4690 ///
4691 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4692 /// a specific need to register a listener yourself.
4693 ///
4694 /// This method should only be called as part of the paint phase of element drawing.
4695 pub fn on_action_when(
4696 &mut self,
4697 condition: bool,
4698 action_type: TypeId,
4699 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4700 ) {
4701 self.invalidator.debug_assert_paint();
4702
4703 if condition {
4704 self.next_frame
4705 .dispatch_tree
4706 .on_action(action_type, Rc::new(listener));
4707 }
4708 }
4709
4710 /// Read information about the GPU backing this window.
4711 /// Currently returns None on Mac and Windows.
4712 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4713 self.platform_window.gpu_specs()
4714 }
4715
4716 /// Perform titlebar double-click action.
4717 /// This is macOS specific.
4718 pub fn titlebar_double_click(&self) {
4719 self.platform_window.titlebar_double_click();
4720 }
4721
4722 /// Gets the window's title at the platform level.
4723 /// This is macOS specific.
4724 pub fn window_title(&self) -> String {
4725 self.platform_window.get_title()
4726 }
4727
4728 /// Returns a list of all tabbed windows and their titles.
4729 /// This is macOS specific.
4730 pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4731 self.platform_window.tabbed_windows()
4732 }
4733
4734 /// Returns the tab bar visibility.
4735 /// This is macOS specific.
4736 pub fn tab_bar_visible(&self) -> bool {
4737 self.platform_window.tab_bar_visible()
4738 }
4739
4740 /// Merges all open windows into a single tabbed window.
4741 /// This is macOS specific.
4742 pub fn merge_all_windows(&self) {
4743 self.platform_window.merge_all_windows()
4744 }
4745
4746 /// Moves the tab to a new containing window.
4747 /// This is macOS specific.
4748 pub fn move_tab_to_new_window(&self) {
4749 self.platform_window.move_tab_to_new_window()
4750 }
4751
4752 /// Shows or hides the window tab overview.
4753 /// This is macOS specific.
4754 pub fn toggle_window_tab_overview(&self) {
4755 self.platform_window.toggle_window_tab_overview()
4756 }
4757
4758 /// Sets the tabbing identifier for the window.
4759 /// This is macOS specific.
4760 pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4761 self.platform_window
4762 .set_tabbing_identifier(tabbing_identifier)
4763 }
4764
4765 /// Toggles the inspector mode on this window.
4766 #[cfg(any(feature = "inspector", debug_assertions))]
4767 pub fn toggle_inspector(&mut self, cx: &mut App) {
4768 self.inspector = match self.inspector {
4769 None => Some(cx.new(|_| Inspector::new())),
4770 Some(_) => None,
4771 };
4772 self.refresh();
4773 }
4774
4775 /// Returns true if the window is in inspector mode.
4776 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4777 #[cfg(any(feature = "inspector", debug_assertions))]
4778 {
4779 if let Some(inspector) = &self.inspector {
4780 return inspector.read(_cx).is_picking();
4781 }
4782 }
4783 false
4784 }
4785
4786 /// Executes the provided function with mutable access to an inspector state.
4787 #[cfg(any(feature = "inspector", debug_assertions))]
4788 pub fn with_inspector_state<T: 'static, R>(
4789 &mut self,
4790 _inspector_id: Option<&crate::InspectorElementId>,
4791 cx: &mut App,
4792 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4793 ) -> R {
4794 if let Some(inspector_id) = _inspector_id
4795 && let Some(inspector) = &self.inspector
4796 {
4797 let inspector = inspector.clone();
4798 let active_element_id = inspector.read(cx).active_element_id();
4799 if Some(inspector_id) == active_element_id {
4800 return inspector.update(cx, |inspector, _cx| {
4801 inspector.with_active_element_state(self, f)
4802 });
4803 }
4804 }
4805 f(&mut None, self)
4806 }
4807
4808 #[cfg(any(feature = "inspector", debug_assertions))]
4809 pub(crate) fn build_inspector_element_id(
4810 &mut self,
4811 path: crate::InspectorElementPath,
4812 ) -> crate::InspectorElementId {
4813 self.invalidator.debug_assert_paint_or_prepaint();
4814 let path = Rc::new(path);
4815 let next_instance_id = self
4816 .next_frame
4817 .next_inspector_instance_ids
4818 .entry(path.clone())
4819 .or_insert(0);
4820 let instance_id = *next_instance_id;
4821 *next_instance_id += 1;
4822 crate::InspectorElementId { path, instance_id }
4823 }
4824
4825 #[cfg(any(feature = "inspector", debug_assertions))]
4826 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4827 if let Some(inspector) = self.inspector.take() {
4828 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4829 inspector_element.prepaint_as_root(
4830 point(self.viewport_size.width - inspector_width, px(0.0)),
4831 size(inspector_width, self.viewport_size.height).into(),
4832 self,
4833 cx,
4834 );
4835 self.inspector = Some(inspector);
4836 Some(inspector_element)
4837 } else {
4838 None
4839 }
4840 }
4841
4842 #[cfg(any(feature = "inspector", debug_assertions))]
4843 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4844 if let Some(mut inspector_element) = inspector_element {
4845 inspector_element.paint(self, cx);
4846 };
4847 }
4848
4849 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4850 /// inspect UI elements by clicking on them.
4851 #[cfg(any(feature = "inspector", debug_assertions))]
4852 pub fn insert_inspector_hitbox(
4853 &mut self,
4854 hitbox_id: HitboxId,
4855 inspector_id: Option<&crate::InspectorElementId>,
4856 cx: &App,
4857 ) {
4858 self.invalidator.debug_assert_paint_or_prepaint();
4859 if !self.is_inspector_picking(cx) {
4860 return;
4861 }
4862 if let Some(inspector_id) = inspector_id {
4863 self.next_frame
4864 .inspector_hitboxes
4865 .insert(hitbox_id, inspector_id.clone());
4866 }
4867 }
4868
4869 #[cfg(any(feature = "inspector", debug_assertions))]
4870 fn paint_inspector_hitbox(&mut self, cx: &App) {
4871 if let Some(inspector) = self.inspector.as_ref() {
4872 let inspector = inspector.read(cx);
4873 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4874 && let Some(hitbox) = self
4875 .next_frame
4876 .hitboxes
4877 .iter()
4878 .find(|hitbox| hitbox.id == hitbox_id)
4879 {
4880 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4881 }
4882 }
4883 }
4884
4885 #[cfg(any(feature = "inspector", debug_assertions))]
4886 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4887 let Some(inspector) = self.inspector.clone() else {
4888 return;
4889 };
4890 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4891 inspector.update(cx, |inspector, _cx| {
4892 if let Some((_, inspector_id)) =
4893 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4894 {
4895 inspector.hover(inspector_id, self);
4896 }
4897 });
4898 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4899 inspector.update(cx, |inspector, _cx| {
4900 if let Some((_, inspector_id)) =
4901 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4902 {
4903 inspector.select(inspector_id, self);
4904 }
4905 });
4906 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4907 // This should be kept in sync with SCROLL_LINES in x11 platform.
4908 const SCROLL_LINES: f32 = 3.0;
4909 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4910 let delta_y = event
4911 .delta
4912 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4913 .y;
4914 if let Some(inspector) = self.inspector.clone() {
4915 inspector.update(cx, |inspector, _cx| {
4916 if let Some(depth) = inspector.pick_depth.as_mut() {
4917 *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4918 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4919 if *depth < 0.0 {
4920 *depth = 0.0;
4921 } else if *depth > max_depth {
4922 *depth = max_depth;
4923 }
4924 if let Some((_, inspector_id)) =
4925 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4926 {
4927 inspector.set_active_element_id(inspector_id, self);
4928 }
4929 }
4930 });
4931 }
4932 }
4933 }
4934
4935 #[cfg(any(feature = "inspector", debug_assertions))]
4936 fn hovered_inspector_hitbox(
4937 &self,
4938 inspector: &Inspector,
4939 frame: &Frame,
4940 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4941 if let Some(pick_depth) = inspector.pick_depth {
4942 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4943 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4944 let skip_count = (depth as usize).min(max_skipped);
4945 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4946 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4947 return Some((*hitbox_id, inspector_id.clone()));
4948 }
4949 }
4950 }
4951 None
4952 }
4953
4954 /// For testing: set the current modifier keys state.
4955 /// This does not generate any events.
4956 #[cfg(any(test, feature = "test-support"))]
4957 pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4958 self.modifiers = modifiers;
4959 }
4960
4961 /// For testing: simulate a mouse move event to the given position.
4962 /// This dispatches the event through the normal event handling path,
4963 /// which will trigger hover states and tooltips.
4964 #[cfg(any(test, feature = "test-support"))]
4965 pub fn simulate_mouse_move(&mut self, position: Point<Pixels>, cx: &mut App) {
4966 let event = PlatformInput::MouseMove(MouseMoveEvent {
4967 position,
4968 modifiers: self.modifiers,
4969 pressed_button: None,
4970 });
4971 let _ = self.dispatch_event(event, cx);
4972 }
4973}
4974
4975// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4976slotmap::new_key_type! {
4977 /// A unique identifier for a window.
4978 pub struct WindowId;
4979}
4980
4981impl WindowId {
4982 /// Converts this window ID to a `u64`.
4983 pub fn as_u64(&self) -> u64 {
4984 self.0.as_ffi()
4985 }
4986}
4987
4988impl From<u64> for WindowId {
4989 fn from(value: u64) -> Self {
4990 WindowId(slotmap::KeyData::from_ffi(value))
4991 }
4992}
4993
4994/// A handle to a window with a specific root view type.
4995/// Note that this does not keep the window alive on its own.
4996#[derive(Deref, DerefMut)]
4997pub struct WindowHandle<V> {
4998 #[deref]
4999 #[deref_mut]
5000 pub(crate) any_handle: AnyWindowHandle,
5001 state_type: PhantomData<fn(V) -> V>,
5002}
5003
5004impl<V> Debug for WindowHandle<V> {
5005 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
5006 f.debug_struct("WindowHandle")
5007 .field("any_handle", &self.any_handle.id.as_u64())
5008 .finish()
5009 }
5010}
5011
5012impl<V: 'static + Render> WindowHandle<V> {
5013 /// Creates a new handle from a window ID.
5014 /// This does not check if the root type of the window is `V`.
5015 pub fn new(id: WindowId) -> Self {
5016 WindowHandle {
5017 any_handle: AnyWindowHandle {
5018 id,
5019 state_type: TypeId::of::<V>(),
5020 },
5021 state_type: PhantomData,
5022 }
5023 }
5024
5025 /// Get the root view out of this window.
5026 ///
5027 /// This will fail if the window is closed or if the root view's type does not match `V`.
5028 #[cfg(any(test, feature = "test-support"))]
5029 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
5030 where
5031 C: AppContext,
5032 {
5033 cx.update_window(self.any_handle, |root_view, _, _| {
5034 root_view
5035 .downcast::<V>()
5036 .map_err(|_| anyhow!("the type of the window's root view has changed"))
5037 })?
5038 }
5039
5040 /// Updates the root view of this window.
5041 ///
5042 /// This will fail if the window has been closed or if the root view's type does not match
5043 pub fn update<C, R>(
5044 &self,
5045 cx: &mut C,
5046 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
5047 ) -> Result<R>
5048 where
5049 C: AppContext,
5050 {
5051 cx.update_window(self.any_handle, |root_view, window, cx| {
5052 let view = root_view
5053 .downcast::<V>()
5054 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
5055
5056 Ok(view.update(cx, |view, cx| update(view, window, cx)))
5057 })?
5058 }
5059
5060 /// Read the root view out of this window.
5061 ///
5062 /// This will fail if the window is closed or if the root view's type does not match `V`.
5063 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
5064 let x = cx
5065 .windows
5066 .get(self.id)
5067 .and_then(|window| {
5068 window
5069 .as_deref()
5070 .and_then(|window| window.root.clone())
5071 .map(|root_view| root_view.downcast::<V>())
5072 })
5073 .context("window not found")?
5074 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
5075
5076 Ok(x.read(cx))
5077 }
5078
5079 /// Read the root view out of this window, with a callback
5080 ///
5081 /// This will fail if the window is closed or if the root view's type does not match `V`.
5082 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
5083 where
5084 C: AppContext,
5085 {
5086 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
5087 }
5088
5089 /// Read the root view pointer off of this window.
5090 ///
5091 /// This will fail if the window is closed or if the root view's type does not match `V`.
5092 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
5093 where
5094 C: AppContext,
5095 {
5096 cx.read_window(self, |root_view, _cx| root_view)
5097 }
5098
5099 /// Check if this window is 'active'.
5100 ///
5101 /// Will return `None` if the window is closed or currently
5102 /// borrowed.
5103 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
5104 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
5105 .ok()
5106 }
5107}
5108
5109impl<V> Copy for WindowHandle<V> {}
5110
5111impl<V> Clone for WindowHandle<V> {
5112 fn clone(&self) -> Self {
5113 *self
5114 }
5115}
5116
5117impl<V> PartialEq for WindowHandle<V> {
5118 fn eq(&self, other: &Self) -> bool {
5119 self.any_handle == other.any_handle
5120 }
5121}
5122
5123impl<V> Eq for WindowHandle<V> {}
5124
5125impl<V> Hash for WindowHandle<V> {
5126 fn hash<H: Hasher>(&self, state: &mut H) {
5127 self.any_handle.hash(state);
5128 }
5129}
5130
5131impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
5132 fn from(val: WindowHandle<V>) -> Self {
5133 val.any_handle
5134 }
5135}
5136
5137/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
5138#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
5139pub struct AnyWindowHandle {
5140 pub(crate) id: WindowId,
5141 state_type: TypeId,
5142}
5143
5144impl AnyWindowHandle {
5145 /// Get the ID of this window.
5146 pub fn window_id(&self) -> WindowId {
5147 self.id
5148 }
5149
5150 /// Attempt to convert this handle to a window handle with a specific root view type.
5151 /// If the types do not match, this will return `None`.
5152 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
5153 if TypeId::of::<T>() == self.state_type {
5154 Some(WindowHandle {
5155 any_handle: *self,
5156 state_type: PhantomData,
5157 })
5158 } else {
5159 None
5160 }
5161 }
5162
5163 /// Updates the state of the root view of this window.
5164 ///
5165 /// This will fail if the window has been closed.
5166 pub fn update<C, R>(
5167 self,
5168 cx: &mut C,
5169 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
5170 ) -> Result<R>
5171 where
5172 C: AppContext,
5173 {
5174 cx.update_window(self, update)
5175 }
5176
5177 /// Read the state of the root view of this window.
5178 ///
5179 /// This will fail if the window has been closed.
5180 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
5181 where
5182 C: AppContext,
5183 T: 'static,
5184 {
5185 let view = self
5186 .downcast::<T>()
5187 .context("the type of the window's root view has changed")?;
5188
5189 cx.read_window(&view, read)
5190 }
5191}
5192
5193impl HasWindowHandle for Window {
5194 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
5195 self.platform_window.window_handle()
5196 }
5197}
5198
5199impl HasDisplayHandle for Window {
5200 fn display_handle(
5201 &self,
5202 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
5203 self.platform_window.display_handle()
5204 }
5205}
5206
5207/// An identifier for an [`Element`].
5208///
5209/// Can be constructed with a string, a number, or both, as well
5210/// as other internal representations.
5211#[derive(Clone, Debug, Eq, PartialEq, Hash)]
5212pub enum ElementId {
5213 /// The ID of a View element
5214 View(EntityId),
5215 /// An integer ID.
5216 Integer(u64),
5217 /// A string based ID.
5218 Name(SharedString),
5219 /// A UUID.
5220 Uuid(Uuid),
5221 /// An ID that's equated with a focus handle.
5222 FocusHandle(FocusId),
5223 /// A combination of a name and an integer.
5224 NamedInteger(SharedString, u64),
5225 /// A path.
5226 Path(Arc<std::path::Path>),
5227 /// A code location.
5228 CodeLocation(core::panic::Location<'static>),
5229 /// A labeled child of an element.
5230 NamedChild(Arc<ElementId>, SharedString),
5231}
5232
5233impl ElementId {
5234 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
5235 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
5236 Self::NamedInteger(name.into(), integer as u64)
5237 }
5238}
5239
5240impl Display for ElementId {
5241 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
5242 match self {
5243 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
5244 ElementId::Integer(ix) => write!(f, "{}", ix)?,
5245 ElementId::Name(name) => write!(f, "{}", name)?,
5246 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
5247 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
5248 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
5249 ElementId::Path(path) => write!(f, "{}", path.display())?,
5250 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
5251 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
5252 }
5253
5254 Ok(())
5255 }
5256}
5257
5258impl TryInto<SharedString> for ElementId {
5259 type Error = anyhow::Error;
5260
5261 fn try_into(self) -> anyhow::Result<SharedString> {
5262 if let ElementId::Name(name) = self {
5263 Ok(name)
5264 } else {
5265 anyhow::bail!("element id is not string")
5266 }
5267 }
5268}
5269
5270impl From<usize> for ElementId {
5271 fn from(id: usize) -> Self {
5272 ElementId::Integer(id as u64)
5273 }
5274}
5275
5276impl From<i32> for ElementId {
5277 fn from(id: i32) -> Self {
5278 Self::Integer(id as u64)
5279 }
5280}
5281
5282impl From<SharedString> for ElementId {
5283 fn from(name: SharedString) -> Self {
5284 ElementId::Name(name)
5285 }
5286}
5287
5288impl From<String> for ElementId {
5289 fn from(name: String) -> Self {
5290 ElementId::Name(name.into())
5291 }
5292}
5293
5294impl From<Arc<str>> for ElementId {
5295 fn from(name: Arc<str>) -> Self {
5296 ElementId::Name(name.into())
5297 }
5298}
5299
5300impl From<Arc<std::path::Path>> for ElementId {
5301 fn from(path: Arc<std::path::Path>) -> Self {
5302 ElementId::Path(path)
5303 }
5304}
5305
5306impl From<&'static str> for ElementId {
5307 fn from(name: &'static str) -> Self {
5308 ElementId::Name(name.into())
5309 }
5310}
5311
5312impl<'a> From<&'a FocusHandle> for ElementId {
5313 fn from(handle: &'a FocusHandle) -> Self {
5314 ElementId::FocusHandle(handle.id)
5315 }
5316}
5317
5318impl From<(&'static str, EntityId)> for ElementId {
5319 fn from((name, id): (&'static str, EntityId)) -> Self {
5320 ElementId::NamedInteger(name.into(), id.as_u64())
5321 }
5322}
5323
5324impl From<(&'static str, usize)> for ElementId {
5325 fn from((name, id): (&'static str, usize)) -> Self {
5326 ElementId::NamedInteger(name.into(), id as u64)
5327 }
5328}
5329
5330impl From<(SharedString, usize)> for ElementId {
5331 fn from((name, id): (SharedString, usize)) -> Self {
5332 ElementId::NamedInteger(name, id as u64)
5333 }
5334}
5335
5336impl From<(&'static str, u64)> for ElementId {
5337 fn from((name, id): (&'static str, u64)) -> Self {
5338 ElementId::NamedInteger(name.into(), id)
5339 }
5340}
5341
5342impl From<Uuid> for ElementId {
5343 fn from(value: Uuid) -> Self {
5344 Self::Uuid(value)
5345 }
5346}
5347
5348impl From<(&'static str, u32)> for ElementId {
5349 fn from((name, id): (&'static str, u32)) -> Self {
5350 ElementId::NamedInteger(name.into(), id.into())
5351 }
5352}
5353
5354impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5355 fn from((id, name): (ElementId, T)) -> Self {
5356 ElementId::NamedChild(Arc::new(id), name.into())
5357 }
5358}
5359
5360impl From<&'static core::panic::Location<'static>> for ElementId {
5361 fn from(location: &'static core::panic::Location<'static>) -> Self {
5362 ElementId::CodeLocation(*location)
5363 }
5364}
5365
5366/// A rectangle to be rendered in the window at the given position and size.
5367/// Passed as an argument [`Window::paint_quad`].
5368#[derive(Clone)]
5369pub struct PaintQuad {
5370 /// The bounds of the quad within the window.
5371 pub bounds: Bounds<Pixels>,
5372 /// The radii of the quad's corners.
5373 pub corner_radii: Corners<Pixels>,
5374 /// The background color of the quad.
5375 pub background: Background,
5376 /// The widths of the quad's borders.
5377 pub border_widths: Edges<Pixels>,
5378 /// The color of the quad's borders.
5379 pub border_color: Hsla,
5380 /// The style of the quad's borders.
5381 pub border_style: BorderStyle,
5382}
5383
5384impl PaintQuad {
5385 /// Sets the corner radii of the quad.
5386 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5387 PaintQuad {
5388 corner_radii: corner_radii.into(),
5389 ..self
5390 }
5391 }
5392
5393 /// Sets the border widths of the quad.
5394 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5395 PaintQuad {
5396 border_widths: border_widths.into(),
5397 ..self
5398 }
5399 }
5400
5401 /// Sets the border color of the quad.
5402 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5403 PaintQuad {
5404 border_color: border_color.into(),
5405 ..self
5406 }
5407 }
5408
5409 /// Sets the background color of the quad.
5410 pub fn background(self, background: impl Into<Background>) -> Self {
5411 PaintQuad {
5412 background: background.into(),
5413 ..self
5414 }
5415 }
5416}
5417
5418/// Creates a quad with the given parameters.
5419pub fn quad(
5420 bounds: Bounds<Pixels>,
5421 corner_radii: impl Into<Corners<Pixels>>,
5422 background: impl Into<Background>,
5423 border_widths: impl Into<Edges<Pixels>>,
5424 border_color: impl Into<Hsla>,
5425 border_style: BorderStyle,
5426) -> PaintQuad {
5427 PaintQuad {
5428 bounds,
5429 corner_radii: corner_radii.into(),
5430 background: background.into(),
5431 border_widths: border_widths.into(),
5432 border_color: border_color.into(),
5433 border_style,
5434 }
5435}
5436
5437/// Creates a filled quad with the given bounds and background color.
5438pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5439 PaintQuad {
5440 bounds: bounds.into(),
5441 corner_radii: (0.).into(),
5442 background: background.into(),
5443 border_widths: (0.).into(),
5444 border_color: transparent_black(),
5445 border_style: BorderStyle::default(),
5446 }
5447}
5448
5449/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5450pub fn outline(
5451 bounds: impl Into<Bounds<Pixels>>,
5452 border_color: impl Into<Hsla>,
5453 border_style: BorderStyle,
5454) -> PaintQuad {
5455 PaintQuad {
5456 bounds: bounds.into(),
5457 corner_radii: (0.).into(),
5458 background: transparent_black().into(),
5459 border_widths: (1.).into(),
5460 border_color: border_color.into(),
5461 border_style,
5462 }
5463}