window.rs

   1use crate::{
   2    px, size, Action, AnyBox, AnyDrag, AnyView, AppContext, AsyncWindowContext, AvailableSpace,
   3    Bounds, BoxShadow, Context, Corners, DevicePixels, DispatchContext, DisplayId, Edges, Effect,
   4    Entity, EntityId, EventEmitter, FileDropEvent, FocusEvent, FontId, GlobalElementId, GlyphId,
   5    Hsla, ImageData, InputEvent, IsZero, KeyListener, KeyMatch, KeyMatcher, Keystroke, LayoutId,
   6    Model, ModelContext, Modifiers, MonochromeSprite, MouseButton, MouseDownEvent, MouseMoveEvent,
   7    MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformWindow, Point, PolychromeSprite,
   8    PromptLevel, Quad, Render, RenderGlyphParams, RenderImageParams, RenderSvgParams, ScaledPixels,
   9    SceneBuilder, Shadow, SharedString, Size, Style, SubscriberSet, Subscription,
  10    TaffyLayoutEngine, Task, Underline, UnderlineStyle, View, VisualContext, WeakView,
  11    WindowBounds, WindowOptions, SUBPIXEL_VARIANTS,
  12};
  13use anyhow::{anyhow, Result};
  14use collections::HashMap;
  15use derive_more::{Deref, DerefMut};
  16use futures::channel::oneshot;
  17use parking_lot::RwLock;
  18use slotmap::SlotMap;
  19use smallvec::SmallVec;
  20use std::{
  21    any::{Any, TypeId},
  22    borrow::{Borrow, BorrowMut, Cow},
  23    fmt::Debug,
  24    future::Future,
  25    hash::{Hash, Hasher},
  26    marker::PhantomData,
  27    mem,
  28    sync::{
  29        atomic::{AtomicUsize, Ordering::SeqCst},
  30        Arc,
  31    },
  32};
  33use util::ResultExt;
  34
  35/// A global stacking order, which is created by stacking successive z-index values.
  36/// Each z-index will always be interpreted in the context of its parent z-index.
  37#[derive(Deref, DerefMut, Ord, PartialOrd, Eq, PartialEq, Clone, Default)]
  38pub(crate) struct StackingOrder(pub(crate) SmallVec<[u32; 16]>);
  39
  40/// Represents the two different phases when dispatching events.
  41#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
  42pub enum DispatchPhase {
  43    /// After the capture phase comes the bubble phase, in which mouse event listeners are
  44    /// invoked front to back and keyboard event listeners are invoked from the focused element
  45    /// to the root of the element tree. This is the phase you'll most commonly want to use when
  46    /// registering event listeners.
  47    #[default]
  48    Bubble,
  49    /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
  50    /// listeners are invoked from the root of the tree downward toward the focused element. This phase
  51    /// is used for special purposes such as clearing the "pressed" state for click events. If
  52    /// you stop event propagation during this phase, you need to know what you're doing. Handlers
  53    /// outside of the immediate region may rely on detecting non-local events during this phase.
  54    Capture,
  55}
  56
  57type AnyObserver = Box<dyn FnMut(&mut WindowContext) -> bool + 'static>;
  58type AnyListener = Box<dyn Fn(&dyn Any, DispatchPhase, &mut WindowContext) + 'static>;
  59type AnyKeyListener = Box<
  60    dyn Fn(
  61            &dyn Any,
  62            &[&DispatchContext],
  63            DispatchPhase,
  64            &mut WindowContext,
  65        ) -> Option<Box<dyn Action>>
  66        + 'static,
  67>;
  68type AnyFocusListener = Box<dyn Fn(&FocusEvent, &mut WindowContext) + 'static>;
  69
  70slotmap::new_key_type! { pub struct FocusId; }
  71
  72/// A handle which can be used to track and manipulate the focused element in a window.
  73pub struct FocusHandle {
  74    pub(crate) id: FocusId,
  75    handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
  76}
  77
  78impl FocusHandle {
  79    pub(crate) fn new(handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>) -> Self {
  80        let id = handles.write().insert(AtomicUsize::new(1));
  81        Self {
  82            id,
  83            handles: handles.clone(),
  84        }
  85    }
  86
  87    pub(crate) fn for_id(
  88        id: FocusId,
  89        handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
  90    ) -> Option<Self> {
  91        let lock = handles.read();
  92        let ref_count = lock.get(id)?;
  93        if ref_count.load(SeqCst) == 0 {
  94            None
  95        } else {
  96            ref_count.fetch_add(1, SeqCst);
  97            Some(Self {
  98                id,
  99                handles: handles.clone(),
 100            })
 101        }
 102    }
 103
 104    /// Obtains whether the element associated with this handle is currently focused.
 105    pub fn is_focused(&self, cx: &WindowContext) -> bool {
 106        cx.window.focus == Some(self.id)
 107    }
 108
 109    /// Obtains whether the element associated with this handle contains the focused
 110    /// element or is itself focused.
 111    pub fn contains_focused(&self, cx: &WindowContext) -> bool {
 112        cx.focused()
 113            .map_or(false, |focused| self.contains(&focused, cx))
 114    }
 115
 116    /// Obtains whether the element associated with this handle is contained within the
 117    /// focused element or is itself focused.
 118    pub fn within_focused(&self, cx: &WindowContext) -> bool {
 119        let focused = cx.focused();
 120        focused.map_or(false, |focused| focused.contains(self, cx))
 121    }
 122
 123    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 124    pub(crate) fn contains(&self, other: &Self, cx: &WindowContext) -> bool {
 125        let mut ancestor = Some(other.id);
 126        while let Some(ancestor_id) = ancestor {
 127            if self.id == ancestor_id {
 128                return true;
 129            } else {
 130                ancestor = cx.window.focus_parents_by_child.get(&ancestor_id).copied();
 131            }
 132        }
 133        false
 134    }
 135}
 136
 137impl Clone for FocusHandle {
 138    fn clone(&self) -> Self {
 139        Self::for_id(self.id, &self.handles).unwrap()
 140    }
 141}
 142
 143impl PartialEq for FocusHandle {
 144    fn eq(&self, other: &Self) -> bool {
 145        self.id == other.id
 146    }
 147}
 148
 149impl Eq for FocusHandle {}
 150
 151impl Drop for FocusHandle {
 152    fn drop(&mut self) {
 153        self.handles
 154            .read()
 155            .get(self.id)
 156            .unwrap()
 157            .fetch_sub(1, SeqCst);
 158    }
 159}
 160
 161// Holds the state for a specific window.
 162pub struct Window {
 163    pub(crate) handle: AnyWindowHandle,
 164    platform_window: Box<dyn PlatformWindow>,
 165    display_id: DisplayId,
 166    sprite_atlas: Arc<dyn PlatformAtlas>,
 167    rem_size: Pixels,
 168    content_size: Size<Pixels>,
 169    pub(crate) layout_engine: TaffyLayoutEngine,
 170    pub(crate) root_view: Option<AnyView>,
 171    pub(crate) element_id_stack: GlobalElementId,
 172    prev_frame_element_states: HashMap<GlobalElementId, AnyBox>,
 173    element_states: HashMap<GlobalElementId, AnyBox>,
 174    prev_frame_key_matchers: HashMap<GlobalElementId, KeyMatcher>,
 175    key_matchers: HashMap<GlobalElementId, KeyMatcher>,
 176    z_index_stack: StackingOrder,
 177    content_mask_stack: Vec<ContentMask<Pixels>>,
 178    element_offset_stack: Vec<Point<Pixels>>,
 179    mouse_listeners: HashMap<TypeId, Vec<(StackingOrder, AnyListener)>>,
 180    key_dispatch_stack: Vec<KeyDispatchStackFrame>,
 181    freeze_key_dispatch_stack: bool,
 182    focus_stack: Vec<FocusId>,
 183    focus_parents_by_child: HashMap<FocusId, FocusId>,
 184    pub(crate) focus_listeners: Vec<AnyFocusListener>,
 185    pub(crate) focus_handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
 186    default_prevented: bool,
 187    mouse_position: Point<Pixels>,
 188    scale_factor: f32,
 189    bounds: WindowBounds,
 190    bounds_observers: SubscriberSet<(), AnyObserver>,
 191    active: bool,
 192    activation_observers: SubscriberSet<(), AnyObserver>,
 193    pub(crate) scene_builder: SceneBuilder,
 194    pub(crate) dirty: bool,
 195    pub(crate) last_blur: Option<Option<FocusId>>,
 196    pub(crate) focus: Option<FocusId>,
 197}
 198
 199impl Window {
 200    pub(crate) fn new(
 201        handle: AnyWindowHandle,
 202        options: WindowOptions,
 203        cx: &mut AppContext,
 204    ) -> Self {
 205        let platform_window = cx.platform.open_window(handle, options);
 206        let display_id = platform_window.display().id();
 207        let sprite_atlas = platform_window.sprite_atlas();
 208        let mouse_position = platform_window.mouse_position();
 209        let content_size = platform_window.content_size();
 210        let scale_factor = platform_window.scale_factor();
 211        let bounds = platform_window.bounds();
 212
 213        platform_window.on_resize(Box::new({
 214            let mut cx = cx.to_async();
 215            move |_, _| {
 216                handle
 217                    .update(&mut cx, |_, cx| cx.window_bounds_changed())
 218                    .log_err();
 219            }
 220        }));
 221        platform_window.on_moved(Box::new({
 222            let mut cx = cx.to_async();
 223            move || {
 224                handle
 225                    .update(&mut cx, |_, cx| cx.window_bounds_changed())
 226                    .log_err();
 227            }
 228        }));
 229        platform_window.on_active_status_change(Box::new({
 230            let mut cx = cx.to_async();
 231            move |active| {
 232                handle
 233                    .update(&mut cx, |_, cx| {
 234                        cx.window.active = active;
 235                        cx.window
 236                            .activation_observers
 237                            .clone()
 238                            .retain(&(), |callback| callback(cx));
 239                    })
 240                    .log_err();
 241            }
 242        }));
 243
 244        platform_window.on_input({
 245            let mut cx = cx.to_async();
 246            Box::new(move |event| {
 247                handle
 248                    .update(&mut cx, |_, cx| cx.dispatch_event(event))
 249                    .log_err()
 250                    .unwrap_or(true)
 251            })
 252        });
 253
 254        Window {
 255            handle,
 256            platform_window,
 257            display_id,
 258            sprite_atlas,
 259            rem_size: px(16.),
 260            content_size,
 261            layout_engine: TaffyLayoutEngine::new(),
 262            root_view: None,
 263            element_id_stack: GlobalElementId::default(),
 264            prev_frame_element_states: HashMap::default(),
 265            element_states: HashMap::default(),
 266            prev_frame_key_matchers: HashMap::default(),
 267            key_matchers: HashMap::default(),
 268            z_index_stack: StackingOrder(SmallVec::new()),
 269            content_mask_stack: Vec::new(),
 270            element_offset_stack: Vec::new(),
 271            mouse_listeners: HashMap::default(),
 272            key_dispatch_stack: Vec::new(),
 273            freeze_key_dispatch_stack: false,
 274            focus_stack: Vec::new(),
 275            focus_parents_by_child: HashMap::default(),
 276            focus_listeners: Vec::new(),
 277            focus_handles: Arc::new(RwLock::new(SlotMap::with_key())),
 278            default_prevented: true,
 279            mouse_position,
 280            scale_factor,
 281            bounds,
 282            bounds_observers: SubscriberSet::new(),
 283            active: false,
 284            activation_observers: SubscriberSet::new(),
 285            scene_builder: SceneBuilder::new(),
 286            dirty: true,
 287            last_blur: None,
 288            focus: None,
 289        }
 290    }
 291}
 292
 293/// When constructing the element tree, we maintain a stack of key dispatch frames until we
 294/// find the focused element. We interleave key listeners with dispatch contexts so we can use the
 295/// contexts when matching key events against the keymap.
 296enum KeyDispatchStackFrame {
 297    Listener {
 298        event_type: TypeId,
 299        listener: AnyKeyListener,
 300    },
 301    Context(DispatchContext),
 302}
 303
 304/// Indicates which region of the window is visible. Content falling outside of this mask will not be
 305/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
 306/// to leave room to support more complex shapes in the future.
 307#[derive(Clone, Debug, Default, PartialEq, Eq)]
 308#[repr(C)]
 309pub struct ContentMask<P: Clone + Default + Debug> {
 310    pub bounds: Bounds<P>,
 311}
 312
 313impl ContentMask<Pixels> {
 314    /// Scale the content mask's pixel units by the given scaling factor.
 315    pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
 316        ContentMask {
 317            bounds: self.bounds.scale(factor),
 318        }
 319    }
 320
 321    /// Intersect the content mask with the given content mask.
 322    pub fn intersect(&self, other: &Self) -> Self {
 323        let bounds = self.bounds.intersect(&other.bounds);
 324        ContentMask { bounds }
 325    }
 326}
 327
 328/// Provides access to application state in the context of a single window. Derefs
 329/// to an `AppContext`, so you can also pass a `WindowContext` to any method that takes
 330/// an `AppContext` and call any `AppContext` methods.
 331pub struct WindowContext<'a> {
 332    pub(crate) app: &'a mut AppContext,
 333    pub(crate) window: &'a mut Window,
 334}
 335
 336impl<'a> WindowContext<'a> {
 337    pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self {
 338        Self { app, window }
 339    }
 340
 341    /// Obtain a handle to the window that belongs to this context.
 342    pub fn window_handle(&self) -> AnyWindowHandle {
 343        self.window.handle
 344    }
 345
 346    /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
 347    pub fn notify(&mut self) {
 348        self.window.dirty = true;
 349    }
 350
 351    /// Obtain a new `FocusHandle`, which allows you to track and manipulate the keyboard focus
 352    /// for elements rendered within this window.
 353    pub fn focus_handle(&mut self) -> FocusHandle {
 354        FocusHandle::new(&self.window.focus_handles)
 355    }
 356
 357    /// Obtain the currently focused `FocusHandle`. If no elements are focused, returns `None`.
 358    pub fn focused(&self) -> Option<FocusHandle> {
 359        self.window
 360            .focus
 361            .and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles))
 362    }
 363
 364    /// Move focus to the element associated with the given `FocusHandle`.
 365    pub fn focus(&mut self, handle: &FocusHandle) {
 366        if self.window.last_blur.is_none() {
 367            self.window.last_blur = Some(self.window.focus);
 368        }
 369
 370        self.window.focus = Some(handle.id);
 371        self.app.push_effect(Effect::FocusChanged {
 372            window_handle: self.window.handle,
 373            focused: Some(handle.id),
 374        });
 375        self.notify();
 376    }
 377
 378    /// Remove focus from all elements within this context's window.
 379    pub fn blur(&mut self) {
 380        if self.window.last_blur.is_none() {
 381            self.window.last_blur = Some(self.window.focus);
 382        }
 383
 384        self.window.focus = None;
 385        self.app.push_effect(Effect::FocusChanged {
 386            window_handle: self.window.handle,
 387            focused: None,
 388        });
 389        self.notify();
 390    }
 391
 392    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
 393    /// that are currently on the stack to be returned to the app.
 394    pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) {
 395        let handle = self.window.handle;
 396        self.app.defer(move |cx| {
 397            handle.update(cx, |_, cx| f(cx)).ok();
 398        });
 399    }
 400
 401    pub fn subscribe<Emitter, E>(
 402        &mut self,
 403        entity: &E,
 404        mut on_event: impl FnMut(E, &Emitter::Event, &mut WindowContext<'_>) + 'static,
 405    ) -> Subscription
 406    where
 407        Emitter: EventEmitter,
 408        E: Entity<Emitter>,
 409    {
 410        let entity_id = entity.entity_id();
 411        let entity = entity.downgrade();
 412        let window_handle = self.window.handle;
 413        self.app.event_listeners.insert(
 414            entity_id,
 415            Box::new(move |event, cx| {
 416                window_handle
 417                    .update(cx, |_, cx| {
 418                        if let Some(handle) = E::upgrade_from(&entity) {
 419                            let event = event.downcast_ref().expect("invalid event type");
 420                            on_event(handle, event, cx);
 421                            true
 422                        } else {
 423                            false
 424                        }
 425                    })
 426                    .unwrap_or(false)
 427            }),
 428        )
 429    }
 430
 431    /// Create an `AsyncWindowContext`, which has a static lifetime and can be held across
 432    /// await points in async code.
 433    pub fn to_async(&self) -> AsyncWindowContext {
 434        AsyncWindowContext::new(self.app.to_async(), self.window.handle)
 435    }
 436
 437    /// Schedule the given closure to be run directly after the current frame is rendered.
 438    pub fn on_next_frame(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) {
 439        let f = Box::new(f);
 440        let display_id = self.window.display_id;
 441
 442        if let Some(callbacks) = self.next_frame_callbacks.get_mut(&display_id) {
 443            callbacks.push(f);
 444            // If there was already a callback, it means that we already scheduled a frame.
 445            if callbacks.len() > 1 {
 446                return;
 447            }
 448        } else {
 449            let mut async_cx = self.to_async();
 450            self.next_frame_callbacks.insert(display_id, vec![f]);
 451            self.platform.set_display_link_output_callback(
 452                display_id,
 453                Box::new(move |_current_time, _output_time| {
 454                    let _ = async_cx.update(|_, cx| {
 455                        let callbacks = cx
 456                            .next_frame_callbacks
 457                            .get_mut(&display_id)
 458                            .unwrap()
 459                            .drain(..)
 460                            .collect::<Vec<_>>();
 461                        for callback in callbacks {
 462                            callback(cx);
 463                        }
 464
 465                        if cx.next_frame_callbacks.get(&display_id).unwrap().is_empty() {
 466                            cx.platform.stop_display_link(display_id);
 467                        }
 468                    });
 469                }),
 470            );
 471        }
 472
 473        self.platform.start_display_link(display_id);
 474    }
 475
 476    /// Spawn the future returned by the given closure on the application thread pool.
 477    /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
 478    /// use within your future.
 479    pub fn spawn<Fut, R>(&mut self, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
 480    where
 481        R: 'static,
 482        Fut: Future<Output = R> + 'static,
 483    {
 484        self.app
 485            .spawn(|app| f(AsyncWindowContext::new(app, self.window.handle)))
 486    }
 487
 488    /// Update the global of the given type. The given closure is given simultaneous mutable
 489    /// access both to the global and the context.
 490    pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
 491    where
 492        G: 'static,
 493    {
 494        let mut global = self.app.lease_global::<G>();
 495        let result = f(&mut global, self);
 496        self.app.end_global_lease(global);
 497        result
 498    }
 499
 500    /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
 501    /// layout is being requested, along with the layout ids of any children. This method is called during
 502    /// calls to the `Element::layout` trait method and enables any element to participate in layout.
 503    pub fn request_layout(
 504        &mut self,
 505        style: &Style,
 506        children: impl IntoIterator<Item = LayoutId>,
 507    ) -> LayoutId {
 508        self.app.layout_id_buffer.clear();
 509        self.app.layout_id_buffer.extend(children.into_iter());
 510        let rem_size = self.rem_size();
 511
 512        self.window
 513            .layout_engine
 514            .request_layout(style, rem_size, &self.app.layout_id_buffer)
 515    }
 516
 517    /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
 518    /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
 519    /// determine the element's size. One place this is used internally is when measuring text.
 520    ///
 521    /// The given closure is invoked at layout time with the known dimensions and available space and
 522    /// returns a `Size`.
 523    pub fn request_measured_layout<
 524        F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>) -> Size<Pixels> + Send + Sync + 'static,
 525    >(
 526        &mut self,
 527        style: Style,
 528        rem_size: Pixels,
 529        measure: F,
 530    ) -> LayoutId {
 531        self.window
 532            .layout_engine
 533            .request_measured_layout(style, rem_size, measure)
 534    }
 535
 536    /// Obtain the bounds computed for the given LayoutId relative to the window. This method should not
 537    /// be invoked until the paint phase begins, and will usually be invoked by GPUI itself automatically
 538    /// in order to pass your element its `Bounds` automatically.
 539    pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
 540        let mut bounds = self
 541            .window
 542            .layout_engine
 543            .layout_bounds(layout_id)
 544            .map(Into::into);
 545        bounds.origin += self.element_offset();
 546        bounds
 547    }
 548
 549    fn window_bounds_changed(&mut self) {
 550        self.window.scale_factor = self.window.platform_window.scale_factor();
 551        self.window.content_size = self.window.platform_window.content_size();
 552        self.window.bounds = self.window.platform_window.bounds();
 553        self.window.display_id = self.window.platform_window.display().id();
 554        self.window.dirty = true;
 555
 556        self.window
 557            .bounds_observers
 558            .clone()
 559            .retain(&(), |callback| callback(self));
 560    }
 561
 562    pub fn window_bounds(&self) -> WindowBounds {
 563        self.window.bounds
 564    }
 565
 566    /// The scale factor of the display associated with the window. For example, it could
 567    /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
 568    /// be rendered as two pixels on screen.
 569    pub fn scale_factor(&self) -> f32 {
 570        self.window.scale_factor
 571    }
 572
 573    /// The size of an em for the base font of the application. Adjusting this value allows the
 574    /// UI to scale, just like zooming a web page.
 575    pub fn rem_size(&self) -> Pixels {
 576        self.window.rem_size
 577    }
 578
 579    /// Sets the size of an em for the base font of the application. Adjusting this value allows the
 580    /// UI to scale, just like zooming a web page.
 581    pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
 582        self.window.rem_size = rem_size.into();
 583    }
 584
 585    /// The line height associated with the current text style.
 586    pub fn line_height(&self) -> Pixels {
 587        let rem_size = self.rem_size();
 588        let text_style = self.text_style();
 589        text_style
 590            .line_height
 591            .to_pixels(text_style.font_size.into(), rem_size)
 592    }
 593
 594    /// Call to prevent the default action of an event. Currently only used to prevent
 595    /// parent elements from becoming focused on mouse down.
 596    pub fn prevent_default(&mut self) {
 597        self.window.default_prevented = true;
 598    }
 599
 600    /// Obtain whether default has been prevented for the event currently being dispatched.
 601    pub fn default_prevented(&self) -> bool {
 602        self.window.default_prevented
 603    }
 604
 605    /// Register a mouse event listener on the window for the current frame. The type of event
 606    /// is determined by the first parameter of the given listener. When the next frame is rendered
 607    /// the listener will be cleared.
 608    ///
 609    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
 610    /// a specific need to register a global listener.
 611    pub fn on_mouse_event<Event: 'static>(
 612        &mut self,
 613        handler: impl Fn(&Event, DispatchPhase, &mut WindowContext) + 'static,
 614    ) {
 615        let order = self.window.z_index_stack.clone();
 616        self.window
 617            .mouse_listeners
 618            .entry(TypeId::of::<Event>())
 619            .or_default()
 620            .push((
 621                order,
 622                Box::new(move |event: &dyn Any, phase, cx| {
 623                    handler(event.downcast_ref().unwrap(), phase, cx)
 624                }),
 625            ))
 626    }
 627
 628    /// The position of the mouse relative to the window.
 629    pub fn mouse_position(&self) -> Point<Pixels> {
 630        self.window.mouse_position
 631    }
 632
 633    /// Called during painting to invoke the given closure in a new stacking context. The given
 634    /// z-index is interpreted relative to the previous call to `stack`.
 635    pub fn stack<R>(&mut self, z_index: u32, f: impl FnOnce(&mut Self) -> R) -> R {
 636        self.window.z_index_stack.push(z_index);
 637        let result = f(self);
 638        self.window.z_index_stack.pop();
 639        result
 640    }
 641
 642    /// Paint one or more drop shadows into the scene for the current frame at the current z-index.
 643    pub fn paint_shadows(
 644        &mut self,
 645        bounds: Bounds<Pixels>,
 646        corner_radii: Corners<Pixels>,
 647        shadows: &[BoxShadow],
 648    ) {
 649        let scale_factor = self.scale_factor();
 650        let content_mask = self.content_mask();
 651        let window = &mut *self.window;
 652        for shadow in shadows {
 653            let mut shadow_bounds = bounds;
 654            shadow_bounds.origin += shadow.offset;
 655            shadow_bounds.dilate(shadow.spread_radius);
 656            window.scene_builder.insert(
 657                &window.z_index_stack,
 658                Shadow {
 659                    order: 0,
 660                    bounds: shadow_bounds.scale(scale_factor),
 661                    content_mask: content_mask.scale(scale_factor),
 662                    corner_radii: corner_radii.scale(scale_factor),
 663                    color: shadow.color,
 664                    blur_radius: shadow.blur_radius.scale(scale_factor),
 665                },
 666            );
 667        }
 668    }
 669
 670    /// Paint one or more quads into the scene for the current frame at the current stacking context.
 671    /// Quads are colored rectangular regions with an optional background, border, and corner radius.
 672    pub fn paint_quad(
 673        &mut self,
 674        bounds: Bounds<Pixels>,
 675        corner_radii: Corners<Pixels>,
 676        background: impl Into<Hsla>,
 677        border_widths: Edges<Pixels>,
 678        border_color: impl Into<Hsla>,
 679    ) {
 680        let scale_factor = self.scale_factor();
 681        let content_mask = self.content_mask();
 682
 683        let window = &mut *self.window;
 684        window.scene_builder.insert(
 685            &window.z_index_stack,
 686            Quad {
 687                order: 0,
 688                bounds: bounds.scale(scale_factor),
 689                content_mask: content_mask.scale(scale_factor),
 690                background: background.into(),
 691                border_color: border_color.into(),
 692                corner_radii: corner_radii.scale(scale_factor),
 693                border_widths: border_widths.scale(scale_factor),
 694            },
 695        );
 696    }
 697
 698    /// Paint the given `Path` into the scene for the current frame at the current z-index.
 699    pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Hsla>) {
 700        let scale_factor = self.scale_factor();
 701        let content_mask = self.content_mask();
 702        path.content_mask = content_mask;
 703        path.color = color.into();
 704        let window = &mut *self.window;
 705        window
 706            .scene_builder
 707            .insert(&window.z_index_stack, path.scale(scale_factor));
 708    }
 709
 710    /// Paint an underline into the scene for the current frame at the current z-index.
 711    pub fn paint_underline(
 712        &mut self,
 713        origin: Point<Pixels>,
 714        width: Pixels,
 715        style: &UnderlineStyle,
 716    ) -> Result<()> {
 717        let scale_factor = self.scale_factor();
 718        let height = if style.wavy {
 719            style.thickness * 3.
 720        } else {
 721            style.thickness
 722        };
 723        let bounds = Bounds {
 724            origin,
 725            size: size(width, height),
 726        };
 727        let content_mask = self.content_mask();
 728        let window = &mut *self.window;
 729        window.scene_builder.insert(
 730            &window.z_index_stack,
 731            Underline {
 732                order: 0,
 733                bounds: bounds.scale(scale_factor),
 734                content_mask: content_mask.scale(scale_factor),
 735                thickness: style.thickness.scale(scale_factor),
 736                color: style.color.unwrap_or_default(),
 737                wavy: style.wavy,
 738            },
 739        );
 740        Ok(())
 741    }
 742
 743    /// Paint a monochrome (non-emoji) glyph into the scene for the current frame at the current z-index.
 744    pub fn paint_glyph(
 745        &mut self,
 746        origin: Point<Pixels>,
 747        font_id: FontId,
 748        glyph_id: GlyphId,
 749        font_size: Pixels,
 750        color: Hsla,
 751    ) -> Result<()> {
 752        let scale_factor = self.scale_factor();
 753        let glyph_origin = origin.scale(scale_factor);
 754        let subpixel_variant = Point {
 755            x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
 756            y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
 757        };
 758        let params = RenderGlyphParams {
 759            font_id,
 760            glyph_id,
 761            font_size,
 762            subpixel_variant,
 763            scale_factor,
 764            is_emoji: false,
 765        };
 766
 767        let raster_bounds = self.text_system().raster_bounds(&params)?;
 768        if !raster_bounds.is_zero() {
 769            let tile =
 770                self.window
 771                    .sprite_atlas
 772                    .get_or_insert_with(&params.clone().into(), &mut || {
 773                        let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
 774                        Ok((size, Cow::Owned(bytes)))
 775                    })?;
 776            let bounds = Bounds {
 777                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
 778                size: tile.bounds.size.map(Into::into),
 779            };
 780            let content_mask = self.content_mask().scale(scale_factor);
 781            let window = &mut *self.window;
 782            window.scene_builder.insert(
 783                &window.z_index_stack,
 784                MonochromeSprite {
 785                    order: 0,
 786                    bounds,
 787                    content_mask,
 788                    color,
 789                    tile,
 790                },
 791            );
 792        }
 793        Ok(())
 794    }
 795
 796    /// Paint an emoji glyph into the scene for the current frame at the current z-index.
 797    pub fn paint_emoji(
 798        &mut self,
 799        origin: Point<Pixels>,
 800        font_id: FontId,
 801        glyph_id: GlyphId,
 802        font_size: Pixels,
 803    ) -> Result<()> {
 804        let scale_factor = self.scale_factor();
 805        let glyph_origin = origin.scale(scale_factor);
 806        let params = RenderGlyphParams {
 807            font_id,
 808            glyph_id,
 809            font_size,
 810            // We don't render emojis with subpixel variants.
 811            subpixel_variant: Default::default(),
 812            scale_factor,
 813            is_emoji: true,
 814        };
 815
 816        let raster_bounds = self.text_system().raster_bounds(&params)?;
 817        if !raster_bounds.is_zero() {
 818            let tile =
 819                self.window
 820                    .sprite_atlas
 821                    .get_or_insert_with(&params.clone().into(), &mut || {
 822                        let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
 823                        Ok((size, Cow::Owned(bytes)))
 824                    })?;
 825            let bounds = Bounds {
 826                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
 827                size: tile.bounds.size.map(Into::into),
 828            };
 829            let content_mask = self.content_mask().scale(scale_factor);
 830            let window = &mut *self.window;
 831
 832            window.scene_builder.insert(
 833                &window.z_index_stack,
 834                PolychromeSprite {
 835                    order: 0,
 836                    bounds,
 837                    corner_radii: Default::default(),
 838                    content_mask,
 839                    tile,
 840                    grayscale: false,
 841                },
 842            );
 843        }
 844        Ok(())
 845    }
 846
 847    /// Paint a monochrome SVG into the scene for the current frame at the current stacking context.
 848    pub fn paint_svg(
 849        &mut self,
 850        bounds: Bounds<Pixels>,
 851        path: SharedString,
 852        color: Hsla,
 853    ) -> Result<()> {
 854        let scale_factor = self.scale_factor();
 855        let bounds = bounds.scale(scale_factor);
 856        // Render the SVG at twice the size to get a higher quality result.
 857        let params = RenderSvgParams {
 858            path,
 859            size: bounds
 860                .size
 861                .map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
 862        };
 863
 864        let tile =
 865            self.window
 866                .sprite_atlas
 867                .get_or_insert_with(&params.clone().into(), &mut || {
 868                    let bytes = self.svg_renderer.render(&params)?;
 869                    Ok((params.size, Cow::Owned(bytes)))
 870                })?;
 871        let content_mask = self.content_mask().scale(scale_factor);
 872
 873        let window = &mut *self.window;
 874        window.scene_builder.insert(
 875            &window.z_index_stack,
 876            MonochromeSprite {
 877                order: 0,
 878                bounds,
 879                content_mask,
 880                color,
 881                tile,
 882            },
 883        );
 884
 885        Ok(())
 886    }
 887
 888    /// Paint an image into the scene for the current frame at the current z-index.
 889    pub fn paint_image(
 890        &mut self,
 891        bounds: Bounds<Pixels>,
 892        corner_radii: Corners<Pixels>,
 893        data: Arc<ImageData>,
 894        grayscale: bool,
 895    ) -> Result<()> {
 896        let scale_factor = self.scale_factor();
 897        let bounds = bounds.scale(scale_factor);
 898        let params = RenderImageParams { image_id: data.id };
 899
 900        let tile = self
 901            .window
 902            .sprite_atlas
 903            .get_or_insert_with(&params.clone().into(), &mut || {
 904                Ok((data.size(), Cow::Borrowed(data.as_bytes())))
 905            })?;
 906        let content_mask = self.content_mask().scale(scale_factor);
 907        let corner_radii = corner_radii.scale(scale_factor);
 908
 909        let window = &mut *self.window;
 910        window.scene_builder.insert(
 911            &window.z_index_stack,
 912            PolychromeSprite {
 913                order: 0,
 914                bounds,
 915                content_mask,
 916                corner_radii,
 917                tile,
 918                grayscale,
 919            },
 920        );
 921        Ok(())
 922    }
 923
 924    /// Draw pixels to the display for this window based on the contents of its scene.
 925    pub(crate) fn draw(&mut self) {
 926        let root_view = self.window.root_view.take().unwrap();
 927
 928        self.start_frame();
 929
 930        self.stack(0, |cx| {
 931            let available_space = cx.window.content_size.map(Into::into);
 932            root_view.draw(available_space, cx);
 933        });
 934
 935        if let Some(active_drag) = self.app.active_drag.take() {
 936            self.stack(1, |cx| {
 937                let offset = cx.mouse_position() - active_drag.cursor_offset;
 938                cx.with_element_offset(Some(offset), |cx| {
 939                    let available_space =
 940                        size(AvailableSpace::MinContent, AvailableSpace::MinContent);
 941                    active_drag.view.draw(available_space, cx);
 942                    cx.active_drag = Some(active_drag);
 943                });
 944            });
 945        }
 946
 947        self.window.root_view = Some(root_view);
 948        let scene = self.window.scene_builder.build();
 949
 950        self.window.platform_window.draw(scene);
 951        self.window.dirty = false;
 952    }
 953
 954    fn start_frame(&mut self) {
 955        self.text_system().start_frame();
 956
 957        let window = &mut *self.window;
 958
 959        // Move the current frame element states to the previous frame.
 960        // The new empty element states map will be populated for any element states we
 961        // reference during the upcoming frame.
 962        mem::swap(
 963            &mut window.element_states,
 964            &mut window.prev_frame_element_states,
 965        );
 966        window.element_states.clear();
 967
 968        // Make the current key matchers the previous, and then clear the current.
 969        // An empty key matcher map will be created for every identified element in the
 970        // upcoming frame.
 971        mem::swap(
 972            &mut window.key_matchers,
 973            &mut window.prev_frame_key_matchers,
 974        );
 975        window.key_matchers.clear();
 976
 977        // Clear mouse event listeners, because elements add new element listeners
 978        // when the upcoming frame is painted.
 979        window.mouse_listeners.values_mut().for_each(Vec::clear);
 980
 981        // Clear focus state, because we determine what is focused when the new elements
 982        // in the upcoming frame are initialized.
 983        window.focus_listeners.clear();
 984        window.key_dispatch_stack.clear();
 985        window.focus_parents_by_child.clear();
 986        window.freeze_key_dispatch_stack = false;
 987    }
 988
 989    /// Dispatch a mouse or keyboard event on the window.
 990    fn dispatch_event(&mut self, event: InputEvent) -> bool {
 991        let event = match event {
 992            // Track the mouse position with our own state, since accessing the platform
 993            // API for the mouse position can only occur on the main thread.
 994            InputEvent::MouseMove(mouse_move) => {
 995                self.window.mouse_position = mouse_move.position;
 996                InputEvent::MouseMove(mouse_move)
 997            }
 998            // Translate dragging and dropping of external files from the operating system
 999            // to internal drag and drop events.
1000            InputEvent::FileDrop(file_drop) => match file_drop {
1001                FileDropEvent::Entered { position, files } => {
1002                    self.window.mouse_position = position;
1003                    if self.active_drag.is_none() {
1004                        self.active_drag = Some(AnyDrag {
1005                            view: self.build_view(|_| files).into(),
1006                            cursor_offset: position,
1007                        });
1008                    }
1009                    InputEvent::MouseDown(MouseDownEvent {
1010                        position,
1011                        button: MouseButton::Left,
1012                        click_count: 1,
1013                        modifiers: Modifiers::default(),
1014                    })
1015                }
1016                FileDropEvent::Pending { position } => {
1017                    self.window.mouse_position = position;
1018                    InputEvent::MouseMove(MouseMoveEvent {
1019                        position,
1020                        pressed_button: Some(MouseButton::Left),
1021                        modifiers: Modifiers::default(),
1022                    })
1023                }
1024                FileDropEvent::Submit { position } => {
1025                    self.window.mouse_position = position;
1026                    InputEvent::MouseUp(MouseUpEvent {
1027                        button: MouseButton::Left,
1028                        position,
1029                        modifiers: Modifiers::default(),
1030                        click_count: 1,
1031                    })
1032                }
1033                FileDropEvent::Exited => InputEvent::MouseUp(MouseUpEvent {
1034                    button: MouseButton::Left,
1035                    position: Point::default(),
1036                    modifiers: Modifiers::default(),
1037                    click_count: 1,
1038                }),
1039            },
1040            _ => event,
1041        };
1042
1043        if let Some(any_mouse_event) = event.mouse_event() {
1044            // Handlers may set this to false by calling `stop_propagation`
1045            self.app.propagate_event = true;
1046            self.window.default_prevented = false;
1047
1048            if let Some(mut handlers) = self
1049                .window
1050                .mouse_listeners
1051                .remove(&any_mouse_event.type_id())
1052            {
1053                // Because handlers may add other handlers, we sort every time.
1054                handlers.sort_by(|(a, _), (b, _)| a.cmp(b));
1055
1056                // Capture phase, events bubble from back to front. Handlers for this phase are used for
1057                // special purposes, such as detecting events outside of a given Bounds.
1058                for (_, handler) in &handlers {
1059                    handler(any_mouse_event, DispatchPhase::Capture, self);
1060                    if !self.app.propagate_event {
1061                        break;
1062                    }
1063                }
1064
1065                // Bubble phase, where most normal handlers do their work.
1066                if self.app.propagate_event {
1067                    for (_, handler) in handlers.iter().rev() {
1068                        handler(any_mouse_event, DispatchPhase::Bubble, self);
1069                        if !self.app.propagate_event {
1070                            break;
1071                        }
1072                    }
1073                }
1074
1075                if self.app.propagate_event
1076                    && any_mouse_event.downcast_ref::<MouseUpEvent>().is_some()
1077                {
1078                    self.active_drag = None;
1079                }
1080
1081                // Just in case any handlers added new handlers, which is weird, but possible.
1082                handlers.extend(
1083                    self.window
1084                        .mouse_listeners
1085                        .get_mut(&any_mouse_event.type_id())
1086                        .into_iter()
1087                        .flat_map(|handlers| handlers.drain(..)),
1088                );
1089                self.window
1090                    .mouse_listeners
1091                    .insert(any_mouse_event.type_id(), handlers);
1092            }
1093        } else if let Some(any_key_event) = event.keyboard_event() {
1094            let key_dispatch_stack = mem::take(&mut self.window.key_dispatch_stack);
1095            let key_event_type = any_key_event.type_id();
1096            let mut context_stack = SmallVec::<[&DispatchContext; 16]>::new();
1097
1098            for (ix, frame) in key_dispatch_stack.iter().enumerate() {
1099                match frame {
1100                    KeyDispatchStackFrame::Listener {
1101                        event_type,
1102                        listener,
1103                    } => {
1104                        if key_event_type == *event_type {
1105                            if let Some(action) = listener(
1106                                any_key_event,
1107                                &context_stack,
1108                                DispatchPhase::Capture,
1109                                self,
1110                            ) {
1111                                self.dispatch_action(action, &key_dispatch_stack[..ix]);
1112                            }
1113                            if !self.app.propagate_event {
1114                                break;
1115                            }
1116                        }
1117                    }
1118                    KeyDispatchStackFrame::Context(context) => {
1119                        context_stack.push(&context);
1120                    }
1121                }
1122            }
1123
1124            if self.app.propagate_event {
1125                for (ix, frame) in key_dispatch_stack.iter().enumerate().rev() {
1126                    match frame {
1127                        KeyDispatchStackFrame::Listener {
1128                            event_type,
1129                            listener,
1130                        } => {
1131                            if key_event_type == *event_type {
1132                                if let Some(action) = listener(
1133                                    any_key_event,
1134                                    &context_stack,
1135                                    DispatchPhase::Bubble,
1136                                    self,
1137                                ) {
1138                                    self.dispatch_action(action, &key_dispatch_stack[..ix]);
1139                                }
1140
1141                                if !self.app.propagate_event {
1142                                    break;
1143                                }
1144                            }
1145                        }
1146                        KeyDispatchStackFrame::Context(_) => {
1147                            context_stack.pop();
1148                        }
1149                    }
1150                }
1151            }
1152
1153            drop(context_stack);
1154            self.window.key_dispatch_stack = key_dispatch_stack;
1155        }
1156
1157        true
1158    }
1159
1160    /// Attempt to map a keystroke to an action based on the keymap.
1161    pub fn match_keystroke(
1162        &mut self,
1163        element_id: &GlobalElementId,
1164        keystroke: &Keystroke,
1165        context_stack: &[&DispatchContext],
1166    ) -> KeyMatch {
1167        let key_match = self
1168            .window
1169            .key_matchers
1170            .get_mut(element_id)
1171            .unwrap()
1172            .match_keystroke(keystroke, context_stack);
1173
1174        if key_match.is_some() {
1175            for matcher in self.window.key_matchers.values_mut() {
1176                matcher.clear_pending();
1177            }
1178        }
1179
1180        key_match
1181    }
1182
1183    /// Register the given handler to be invoked whenever the global of the given type
1184    /// is updated.
1185    pub fn observe_global<G: 'static>(
1186        &mut self,
1187        f: impl Fn(&mut WindowContext<'_>) + 'static,
1188    ) -> Subscription {
1189        let window_handle = self.window.handle;
1190        self.global_observers.insert(
1191            TypeId::of::<G>(),
1192            Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()),
1193        )
1194    }
1195
1196    pub fn activate_window(&self) {
1197        self.window.platform_window.activate();
1198    }
1199
1200    pub fn prompt(
1201        &self,
1202        level: PromptLevel,
1203        msg: &str,
1204        answers: &[&str],
1205    ) -> oneshot::Receiver<usize> {
1206        self.window.platform_window.prompt(level, msg, answers)
1207    }
1208
1209    fn dispatch_action(
1210        &mut self,
1211        action: Box<dyn Action>,
1212        dispatch_stack: &[KeyDispatchStackFrame],
1213    ) {
1214        let action_type = action.as_any().type_id();
1215
1216        if let Some(mut global_listeners) = self.app.global_action_listeners.remove(&action_type) {
1217            for listener in &global_listeners {
1218                listener(action.as_ref(), DispatchPhase::Capture, self);
1219                if !self.app.propagate_event {
1220                    break;
1221                }
1222            }
1223            global_listeners.extend(
1224                self.global_action_listeners
1225                    .remove(&action_type)
1226                    .unwrap_or_default(),
1227            );
1228            self.global_action_listeners
1229                .insert(action_type, global_listeners);
1230        }
1231
1232        if self.app.propagate_event {
1233            for stack_frame in dispatch_stack {
1234                if let KeyDispatchStackFrame::Listener {
1235                    event_type,
1236                    listener,
1237                } = stack_frame
1238                {
1239                    if action_type == *event_type {
1240                        listener(action.as_any(), &[], DispatchPhase::Capture, self);
1241                        if !self.app.propagate_event {
1242                            break;
1243                        }
1244                    }
1245                }
1246            }
1247        }
1248
1249        if self.app.propagate_event {
1250            for stack_frame in dispatch_stack.iter().rev() {
1251                if let KeyDispatchStackFrame::Listener {
1252                    event_type,
1253                    listener,
1254                } = stack_frame
1255                {
1256                    if action_type == *event_type {
1257                        listener(action.as_any(), &[], DispatchPhase::Bubble, self);
1258                        if !self.app.propagate_event {
1259                            break;
1260                        }
1261                    }
1262                }
1263            }
1264        }
1265
1266        if self.app.propagate_event {
1267            if let Some(mut global_listeners) =
1268                self.app.global_action_listeners.remove(&action_type)
1269            {
1270                for listener in global_listeners.iter().rev() {
1271                    listener(action.as_ref(), DispatchPhase::Bubble, self);
1272                    if !self.app.propagate_event {
1273                        break;
1274                    }
1275                }
1276                global_listeners.extend(
1277                    self.global_action_listeners
1278                        .remove(&action_type)
1279                        .unwrap_or_default(),
1280                );
1281                self.global_action_listeners
1282                    .insert(action_type, global_listeners);
1283            }
1284        }
1285    }
1286}
1287
1288impl Context for WindowContext<'_> {
1289    type Result<T> = T;
1290
1291    fn build_model<T>(
1292        &mut self,
1293        build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
1294    ) -> Model<T>
1295    where
1296        T: 'static,
1297    {
1298        let slot = self.app.entities.reserve();
1299        let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade()));
1300        self.entities.insert(slot, model)
1301    }
1302
1303    fn update_model<T: 'static, R>(
1304        &mut self,
1305        model: &Model<T>,
1306        update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
1307    ) -> R {
1308        let mut entity = self.entities.lease(model);
1309        let result = update(
1310            &mut *entity,
1311            &mut ModelContext::new(&mut *self.app, model.downgrade()),
1312        );
1313        self.entities.end_lease(entity);
1314        result
1315    }
1316
1317    fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
1318    where
1319        F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
1320    {
1321        if window == self.window.handle {
1322            let root_view = self.window.root_view.clone().unwrap();
1323            Ok(update(root_view, self))
1324        } else {
1325            window.update(self.app, update)
1326        }
1327    }
1328}
1329
1330impl VisualContext for WindowContext<'_> {
1331    fn build_view<V>(
1332        &mut self,
1333        build_view_state: impl FnOnce(&mut ViewContext<'_, V>) -> V,
1334    ) -> Self::Result<View<V>>
1335    where
1336        V: 'static,
1337    {
1338        let slot = self.app.entities.reserve();
1339        let view = View {
1340            model: slot.clone(),
1341        };
1342        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1343        let entity = build_view_state(&mut cx);
1344        self.entities.insert(slot, entity);
1345        view
1346    }
1347
1348    /// Update the given view. Prefer calling `View::update` instead, which calls this method.
1349    fn update_view<T: 'static, R>(
1350        &mut self,
1351        view: &View<T>,
1352        update: impl FnOnce(&mut T, &mut ViewContext<'_, T>) -> R,
1353    ) -> Self::Result<R> {
1354        let mut lease = self.app.entities.lease(&view.model);
1355        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1356        let result = update(&mut *lease, &mut cx);
1357        cx.app.entities.end_lease(lease);
1358        result
1359    }
1360
1361    fn replace_root_view<V>(
1362        &mut self,
1363        build_view: impl FnOnce(&mut ViewContext<'_, V>) -> V,
1364    ) -> Self::Result<View<V>>
1365    where
1366        V: Render,
1367    {
1368        let slot = self.app.entities.reserve();
1369        let view = View {
1370            model: slot.clone(),
1371        };
1372        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1373        let entity = build_view(&mut cx);
1374        self.entities.insert(slot, entity);
1375        self.window.root_view = Some(view.clone().into());
1376        view
1377    }
1378}
1379
1380impl<'a> std::ops::Deref for WindowContext<'a> {
1381    type Target = AppContext;
1382
1383    fn deref(&self) -> &Self::Target {
1384        &self.app
1385    }
1386}
1387
1388impl<'a> std::ops::DerefMut for WindowContext<'a> {
1389    fn deref_mut(&mut self) -> &mut Self::Target {
1390        &mut self.app
1391    }
1392}
1393
1394impl<'a> Borrow<AppContext> for WindowContext<'a> {
1395    fn borrow(&self) -> &AppContext {
1396        &self.app
1397    }
1398}
1399
1400impl<'a> BorrowMut<AppContext> for WindowContext<'a> {
1401    fn borrow_mut(&mut self) -> &mut AppContext {
1402        &mut self.app
1403    }
1404}
1405
1406pub trait BorrowWindow: BorrowMut<Window> + BorrowMut<AppContext> {
1407    fn app_mut(&mut self) -> &mut AppContext {
1408        self.borrow_mut()
1409    }
1410
1411    fn window(&self) -> &Window {
1412        self.borrow()
1413    }
1414
1415    fn window_mut(&mut self) -> &mut Window {
1416        self.borrow_mut()
1417    }
1418
1419    /// Pushes the given element id onto the global stack and invokes the given closure
1420    /// with a `GlobalElementId`, which disambiguates the given id in the context of its ancestor
1421    /// ids. Because elements are discarded and recreated on each frame, the `GlobalElementId` is
1422    /// used to associate state with identified elements across separate frames.
1423    fn with_element_id<R>(
1424        &mut self,
1425        id: impl Into<ElementId>,
1426        f: impl FnOnce(GlobalElementId, &mut Self) -> R,
1427    ) -> R {
1428        let keymap = self.app_mut().keymap.clone();
1429        let window = self.window_mut();
1430        window.element_id_stack.push(id.into());
1431        let global_id = window.element_id_stack.clone();
1432
1433        if window.key_matchers.get(&global_id).is_none() {
1434            window.key_matchers.insert(
1435                global_id.clone(),
1436                window
1437                    .prev_frame_key_matchers
1438                    .remove(&global_id)
1439                    .unwrap_or_else(|| KeyMatcher::new(keymap)),
1440            );
1441        }
1442
1443        let result = f(global_id, self);
1444        let window: &mut Window = self.borrow_mut();
1445        window.element_id_stack.pop();
1446        result
1447    }
1448
1449    /// Invoke the given function with the given content mask after intersecting it
1450    /// with the current mask.
1451    fn with_content_mask<R>(
1452        &mut self,
1453        mask: ContentMask<Pixels>,
1454        f: impl FnOnce(&mut Self) -> R,
1455    ) -> R {
1456        let mask = mask.intersect(&self.content_mask());
1457        self.window_mut().content_mask_stack.push(mask);
1458        let result = f(self);
1459        self.window_mut().content_mask_stack.pop();
1460        result
1461    }
1462
1463    /// Update the global element offset based on the given offset. This is used to implement
1464    /// scrolling and position drag handles.
1465    fn with_element_offset<R>(
1466        &mut self,
1467        offset: Option<Point<Pixels>>,
1468        f: impl FnOnce(&mut Self) -> R,
1469    ) -> R {
1470        let Some(offset) = offset else {
1471            return f(self);
1472        };
1473
1474        let offset = self.element_offset() + offset;
1475        self.window_mut().element_offset_stack.push(offset);
1476        let result = f(self);
1477        self.window_mut().element_offset_stack.pop();
1478        result
1479    }
1480
1481    /// Obtain the current element offset.
1482    fn element_offset(&self) -> Point<Pixels> {
1483        self.window()
1484            .element_offset_stack
1485            .last()
1486            .copied()
1487            .unwrap_or_default()
1488    }
1489
1490    /// Update or intialize state for an element with the given id that lives across multiple
1491    /// frames. If an element with this id existed in the previous frame, its state will be passed
1492    /// to the given closure. The state returned by the closure will be stored so it can be referenced
1493    /// when drawing the next frame.
1494    fn with_element_state<S, R>(
1495        &mut self,
1496        id: ElementId,
1497        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
1498    ) -> R
1499    where
1500        S: 'static,
1501    {
1502        self.with_element_id(id, |global_id, cx| {
1503            if let Some(any) = cx
1504                .window_mut()
1505                .element_states
1506                .remove(&global_id)
1507                .or_else(|| cx.window_mut().prev_frame_element_states.remove(&global_id))
1508            {
1509                // Using the extra inner option to avoid needing to reallocate a new box.
1510                let mut state_box = any
1511                    .downcast::<Option<S>>()
1512                    .expect("invalid element state type for id");
1513                let state = state_box
1514                    .take()
1515                    .expect("element state is already on the stack");
1516                let (result, state) = f(Some(state), cx);
1517                state_box.replace(state);
1518                cx.window_mut().element_states.insert(global_id, state_box);
1519                result
1520            } else {
1521                let (result, state) = f(None, cx);
1522                cx.window_mut()
1523                    .element_states
1524                    .insert(global_id, Box::new(Some(state)));
1525                result
1526            }
1527        })
1528    }
1529
1530    /// Like `with_element_state`, but for situations where the element_id is optional. If the
1531    /// id is `None`, no state will be retrieved or stored.
1532    fn with_optional_element_state<S, R>(
1533        &mut self,
1534        element_id: Option<ElementId>,
1535        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
1536    ) -> R
1537    where
1538        S: 'static,
1539    {
1540        if let Some(element_id) = element_id {
1541            self.with_element_state(element_id, f)
1542        } else {
1543            f(None, self).0
1544        }
1545    }
1546
1547    /// Obtain the current content mask.
1548    fn content_mask(&self) -> ContentMask<Pixels> {
1549        self.window()
1550            .content_mask_stack
1551            .last()
1552            .cloned()
1553            .unwrap_or_else(|| ContentMask {
1554                bounds: Bounds {
1555                    origin: Point::default(),
1556                    size: self.window().content_size,
1557                },
1558            })
1559    }
1560
1561    /// The size of an em for the base font of the application. Adjusting this value allows the
1562    /// UI to scale, just like zooming a web page.
1563    fn rem_size(&self) -> Pixels {
1564        self.window().rem_size
1565    }
1566}
1567
1568impl Borrow<Window> for WindowContext<'_> {
1569    fn borrow(&self) -> &Window {
1570        &self.window
1571    }
1572}
1573
1574impl BorrowMut<Window> for WindowContext<'_> {
1575    fn borrow_mut(&mut self) -> &mut Window {
1576        &mut self.window
1577    }
1578}
1579
1580impl<T> BorrowWindow for T where T: BorrowMut<AppContext> + BorrowMut<Window> {}
1581
1582pub struct ViewContext<'a, V> {
1583    window_cx: WindowContext<'a>,
1584    view: &'a View<V>,
1585}
1586
1587impl<V> Borrow<AppContext> for ViewContext<'_, V> {
1588    fn borrow(&self) -> &AppContext {
1589        &*self.window_cx.app
1590    }
1591}
1592
1593impl<V> BorrowMut<AppContext> for ViewContext<'_, V> {
1594    fn borrow_mut(&mut self) -> &mut AppContext {
1595        &mut *self.window_cx.app
1596    }
1597}
1598
1599impl<V> Borrow<Window> for ViewContext<'_, V> {
1600    fn borrow(&self) -> &Window {
1601        &*self.window_cx.window
1602    }
1603}
1604
1605impl<V> BorrowMut<Window> for ViewContext<'_, V> {
1606    fn borrow_mut(&mut self) -> &mut Window {
1607        &mut *self.window_cx.window
1608    }
1609}
1610
1611impl<'a, V: 'static> ViewContext<'a, V> {
1612    pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View<V>) -> Self {
1613        Self {
1614            window_cx: WindowContext::new(app, window),
1615            view,
1616        }
1617    }
1618
1619    pub fn view(&self) -> View<V> {
1620        self.view.clone()
1621    }
1622
1623    pub fn model(&self) -> Model<V> {
1624        self.view.model.clone()
1625    }
1626
1627    pub fn stack<R>(&mut self, order: u32, f: impl FnOnce(&mut Self) -> R) -> R {
1628        self.window.z_index_stack.push(order);
1629        let result = f(self);
1630        self.window.z_index_stack.pop();
1631        result
1632    }
1633
1634    pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static)
1635    where
1636        V: 'static,
1637    {
1638        let view = self.view();
1639        self.window_cx.on_next_frame(move |cx| view.update(cx, f));
1640    }
1641
1642    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1643    /// that are currently on the stack to be returned to the app.
1644    pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static) {
1645        let view = self.view().downgrade();
1646        self.window_cx.defer(move |cx| {
1647            view.update(cx, f).ok();
1648        });
1649    }
1650
1651    pub fn observe<V2, E>(
1652        &mut self,
1653        entity: &E,
1654        mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + 'static,
1655    ) -> Subscription
1656    where
1657        V2: 'static,
1658        V: 'static,
1659        E: Entity<V2>,
1660    {
1661        let view = self.view().downgrade();
1662        let entity_id = entity.entity_id();
1663        let entity = entity.downgrade();
1664        let window_handle = self.window.handle;
1665        self.app.observers.insert(
1666            entity_id,
1667            Box::new(move |cx| {
1668                window_handle
1669                    .update(cx, |_, cx| {
1670                        if let Some(handle) = E::upgrade_from(&entity) {
1671                            view.update(cx, |this, cx| on_notify(this, handle, cx))
1672                                .is_ok()
1673                        } else {
1674                            false
1675                        }
1676                    })
1677                    .unwrap_or(false)
1678            }),
1679        )
1680    }
1681
1682    pub fn subscribe<V2, E>(
1683        &mut self,
1684        entity: &E,
1685        mut on_event: impl FnMut(&mut V, E, &V2::Event, &mut ViewContext<'_, V>) + 'static,
1686    ) -> Subscription
1687    where
1688        V2: EventEmitter,
1689        E: Entity<V2>,
1690    {
1691        let view = self.view().downgrade();
1692        let entity_id = entity.entity_id();
1693        let handle = entity.downgrade();
1694        let window_handle = self.window.handle;
1695        self.app.event_listeners.insert(
1696            entity_id,
1697            Box::new(move |event, cx| {
1698                window_handle
1699                    .update(cx, |_, cx| {
1700                        if let Some(handle) = E::upgrade_from(&handle) {
1701                            let event = event.downcast_ref().expect("invalid event type");
1702                            view.update(cx, |this, cx| on_event(this, handle, event, cx))
1703                                .is_ok()
1704                        } else {
1705                            false
1706                        }
1707                    })
1708                    .unwrap_or(false)
1709            }),
1710        )
1711    }
1712
1713    pub fn on_release(
1714        &mut self,
1715        on_release: impl FnOnce(&mut V, &mut WindowContext) + 'static,
1716    ) -> Subscription {
1717        let window_handle = self.window.handle;
1718        self.app.release_listeners.insert(
1719            self.view.model.entity_id,
1720            Box::new(move |this, cx| {
1721                let this = this.downcast_mut().expect("invalid entity type");
1722                let _ = window_handle.update(cx, |_, cx| on_release(this, cx));
1723            }),
1724        )
1725    }
1726
1727    pub fn observe_release<V2, E>(
1728        &mut self,
1729        entity: &E,
1730        mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + 'static,
1731    ) -> Subscription
1732    where
1733        V: 'static,
1734        V2: 'static,
1735        E: Entity<V2>,
1736    {
1737        let view = self.view().downgrade();
1738        let entity_id = entity.entity_id();
1739        let window_handle = self.window.handle;
1740        self.app.release_listeners.insert(
1741            entity_id,
1742            Box::new(move |entity, cx| {
1743                let entity = entity.downcast_mut().expect("invalid entity type");
1744                let _ = window_handle.update(cx, |_, cx| {
1745                    view.update(cx, |this, cx| on_release(this, entity, cx))
1746                });
1747            }),
1748        )
1749    }
1750
1751    pub fn notify(&mut self) {
1752        self.window_cx.notify();
1753        self.window_cx.app.push_effect(Effect::Notify {
1754            emitter: self.view.model.entity_id,
1755        });
1756    }
1757
1758    pub fn observe_window_bounds(
1759        &mut self,
1760        mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
1761    ) -> Subscription {
1762        let view = self.view.downgrade();
1763        self.window.bounds_observers.insert(
1764            (),
1765            Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
1766        )
1767    }
1768
1769    pub fn observe_window_activation(
1770        &mut self,
1771        mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
1772    ) -> Subscription {
1773        let view = self.view.downgrade();
1774        self.window.activation_observers.insert(
1775            (),
1776            Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
1777        )
1778    }
1779
1780    pub fn on_focus_changed(
1781        &mut self,
1782        listener: impl Fn(&mut V, &FocusEvent, &mut ViewContext<V>) + 'static,
1783    ) {
1784        let handle = self.view().downgrade();
1785        self.window.focus_listeners.push(Box::new(move |event, cx| {
1786            handle
1787                .update(cx, |view, cx| listener(view, event, cx))
1788                .log_err();
1789        }));
1790    }
1791
1792    pub fn with_key_listeners<R>(
1793        &mut self,
1794        key_listeners: impl IntoIterator<Item = (TypeId, KeyListener<V>)>,
1795        f: impl FnOnce(&mut Self) -> R,
1796    ) -> R {
1797        let old_stack_len = self.window.key_dispatch_stack.len();
1798        if !self.window.freeze_key_dispatch_stack {
1799            for (event_type, listener) in key_listeners {
1800                let handle = self.view().downgrade();
1801                let listener = Box::new(
1802                    move |event: &dyn Any,
1803                          context_stack: &[&DispatchContext],
1804                          phase: DispatchPhase,
1805                          cx: &mut WindowContext<'_>| {
1806                        handle
1807                            .update(cx, |view, cx| {
1808                                listener(view, event, context_stack, phase, cx)
1809                            })
1810                            .log_err()
1811                            .flatten()
1812                    },
1813                );
1814                self.window
1815                    .key_dispatch_stack
1816                    .push(KeyDispatchStackFrame::Listener {
1817                        event_type,
1818                        listener,
1819                    });
1820            }
1821        }
1822
1823        let result = f(self);
1824
1825        if !self.window.freeze_key_dispatch_stack {
1826            self.window.key_dispatch_stack.truncate(old_stack_len);
1827        }
1828
1829        result
1830    }
1831
1832    pub fn with_key_dispatch_context<R>(
1833        &mut self,
1834        context: DispatchContext,
1835        f: impl FnOnce(&mut Self) -> R,
1836    ) -> R {
1837        if context.is_empty() {
1838            return f(self);
1839        }
1840
1841        if !self.window.freeze_key_dispatch_stack {
1842            self.window
1843                .key_dispatch_stack
1844                .push(KeyDispatchStackFrame::Context(context));
1845        }
1846
1847        let result = f(self);
1848
1849        if !self.window.freeze_key_dispatch_stack {
1850            self.window.key_dispatch_stack.pop();
1851        }
1852
1853        result
1854    }
1855
1856    pub fn with_focus<R>(
1857        &mut self,
1858        focus_handle: FocusHandle,
1859        f: impl FnOnce(&mut Self) -> R,
1860    ) -> R {
1861        if let Some(parent_focus_id) = self.window.focus_stack.last().copied() {
1862            self.window
1863                .focus_parents_by_child
1864                .insert(focus_handle.id, parent_focus_id);
1865        }
1866        self.window.focus_stack.push(focus_handle.id);
1867
1868        if Some(focus_handle.id) == self.window.focus {
1869            self.window.freeze_key_dispatch_stack = true;
1870        }
1871
1872        let result = f(self);
1873
1874        self.window.focus_stack.pop();
1875        result
1876    }
1877
1878    pub fn spawn<Fut, R>(
1879        &mut self,
1880        f: impl FnOnce(WeakView<V>, AsyncWindowContext) -> Fut,
1881    ) -> Task<R>
1882    where
1883        R: 'static,
1884        Fut: Future<Output = R> + 'static,
1885    {
1886        let view = self.view().downgrade();
1887        self.window_cx.spawn(|cx| f(view, cx))
1888    }
1889
1890    pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
1891    where
1892        G: 'static,
1893    {
1894        let mut global = self.app.lease_global::<G>();
1895        let result = f(&mut global, self);
1896        self.app.end_global_lease(global);
1897        result
1898    }
1899
1900    pub fn observe_global<G: 'static>(
1901        &mut self,
1902        f: impl Fn(&mut V, &mut ViewContext<'_, V>) + 'static,
1903    ) -> Subscription {
1904        let window_handle = self.window.handle;
1905        let view = self.view().downgrade();
1906        self.global_observers.insert(
1907            TypeId::of::<G>(),
1908            Box::new(move |cx| {
1909                window_handle
1910                    .update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok())
1911                    .unwrap_or(false)
1912            }),
1913        )
1914    }
1915
1916    pub fn on_mouse_event<Event: 'static>(
1917        &mut self,
1918        handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
1919    ) {
1920        let handle = self.view();
1921        self.window_cx.on_mouse_event(move |event, phase, cx| {
1922            handle.update(cx, |view, cx| {
1923                handler(view, event, phase, cx);
1924            })
1925        });
1926    }
1927}
1928
1929impl<V> ViewContext<'_, V>
1930where
1931    V: EventEmitter,
1932    V::Event: 'static,
1933{
1934    pub fn emit(&mut self, event: V::Event) {
1935        let emitter = self.view.model.entity_id;
1936        self.app.push_effect(Effect::Emit {
1937            emitter,
1938            event: Box::new(event),
1939        });
1940    }
1941}
1942
1943impl<V> Context for ViewContext<'_, V> {
1944    type Result<U> = U;
1945
1946    fn build_model<T: 'static>(
1947        &mut self,
1948        build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
1949    ) -> Model<T> {
1950        self.window_cx.build_model(build_model)
1951    }
1952
1953    fn update_model<T: 'static, R>(
1954        &mut self,
1955        model: &Model<T>,
1956        update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
1957    ) -> R {
1958        self.window_cx.update_model(model, update)
1959    }
1960
1961    fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
1962    where
1963        F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
1964    {
1965        self.window_cx.update_window(window, update)
1966    }
1967}
1968
1969impl<V: 'static> VisualContext for ViewContext<'_, V> {
1970    fn build_view<W: 'static>(
1971        &mut self,
1972        build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
1973    ) -> Self::Result<View<W>> {
1974        self.window_cx.build_view(build_view)
1975    }
1976
1977    fn update_view<V2: 'static, R>(
1978        &mut self,
1979        view: &View<V2>,
1980        update: impl FnOnce(&mut V2, &mut ViewContext<'_, V2>) -> R,
1981    ) -> Self::Result<R> {
1982        self.window_cx.update_view(view, update)
1983    }
1984
1985    fn replace_root_view<W>(
1986        &mut self,
1987        build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
1988    ) -> Self::Result<View<W>>
1989    where
1990        W: Render,
1991    {
1992        self.window_cx.replace_root_view(build_view)
1993    }
1994}
1995
1996impl<'a, V> std::ops::Deref for ViewContext<'a, V> {
1997    type Target = WindowContext<'a>;
1998
1999    fn deref(&self) -> &Self::Target {
2000        &self.window_cx
2001    }
2002}
2003
2004impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> {
2005    fn deref_mut(&mut self) -> &mut Self::Target {
2006        &mut self.window_cx
2007    }
2008}
2009
2010// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
2011slotmap::new_key_type! { pub struct WindowId; }
2012
2013impl WindowId {
2014    pub fn as_u64(&self) -> u64 {
2015        self.0.as_ffi()
2016    }
2017}
2018
2019#[derive(Deref, DerefMut)]
2020pub struct WindowHandle<V> {
2021    #[deref]
2022    #[deref_mut]
2023    pub(crate) any_handle: AnyWindowHandle,
2024    state_type: PhantomData<V>,
2025}
2026
2027impl<V: 'static + Render> WindowHandle<V> {
2028    pub fn new(id: WindowId) -> Self {
2029        WindowHandle {
2030            any_handle: AnyWindowHandle {
2031                id,
2032                state_type: TypeId::of::<V>(),
2033            },
2034            state_type: PhantomData,
2035        }
2036    }
2037
2038    pub fn update<C, R>(
2039        self,
2040        cx: &mut C,
2041        update: impl FnOnce(&mut V, &mut ViewContext<'_, V>) -> R,
2042    ) -> Result<R>
2043    where
2044        C: Context,
2045    {
2046        cx.update_window(self.any_handle, |root_view, cx| {
2047            let view = root_view
2048                .downcast::<V>()
2049                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
2050            Ok(cx.update_view(&view, update))
2051        })?
2052    }
2053}
2054
2055impl<V> Copy for WindowHandle<V> {}
2056
2057impl<V> Clone for WindowHandle<V> {
2058    fn clone(&self) -> Self {
2059        WindowHandle {
2060            any_handle: self.any_handle,
2061            state_type: PhantomData,
2062        }
2063    }
2064}
2065
2066impl<V> PartialEq for WindowHandle<V> {
2067    fn eq(&self, other: &Self) -> bool {
2068        self.any_handle == other.any_handle
2069    }
2070}
2071
2072impl<V> Eq for WindowHandle<V> {}
2073
2074impl<V> Hash for WindowHandle<V> {
2075    fn hash<H: Hasher>(&self, state: &mut H) {
2076        self.any_handle.hash(state);
2077    }
2078}
2079
2080impl<V: 'static> Into<AnyWindowHandle> for WindowHandle<V> {
2081    fn into(self) -> AnyWindowHandle {
2082        self.any_handle
2083    }
2084}
2085
2086#[derive(Copy, Clone, PartialEq, Eq, Hash)]
2087pub struct AnyWindowHandle {
2088    pub(crate) id: WindowId,
2089    state_type: TypeId,
2090}
2091
2092impl AnyWindowHandle {
2093    pub fn window_id(&self) -> WindowId {
2094        self.id
2095    }
2096
2097    pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
2098        if TypeId::of::<T>() == self.state_type {
2099            Some(WindowHandle {
2100                any_handle: *self,
2101                state_type: PhantomData,
2102            })
2103        } else {
2104            None
2105        }
2106    }
2107
2108    pub fn update<C, R>(
2109        self,
2110        cx: &mut C,
2111        update: impl FnOnce(AnyView, &mut WindowContext<'_>) -> R,
2112    ) -> Result<R>
2113    where
2114        C: Context,
2115    {
2116        cx.update_window(self, update)
2117    }
2118}
2119
2120#[cfg(any(test, feature = "test-support"))]
2121impl From<SmallVec<[u32; 16]>> for StackingOrder {
2122    fn from(small_vec: SmallVec<[u32; 16]>) -> Self {
2123        StackingOrder(small_vec)
2124    }
2125}
2126
2127#[derive(Clone, Debug, Eq, PartialEq, Hash)]
2128pub enum ElementId {
2129    View(EntityId),
2130    Number(usize),
2131    Name(SharedString),
2132    FocusHandle(FocusId),
2133}
2134
2135impl From<EntityId> for ElementId {
2136    fn from(id: EntityId) -> Self {
2137        ElementId::View(id)
2138    }
2139}
2140
2141impl From<usize> for ElementId {
2142    fn from(id: usize) -> Self {
2143        ElementId::Number(id)
2144    }
2145}
2146
2147impl From<i32> for ElementId {
2148    fn from(id: i32) -> Self {
2149        Self::Number(id as usize)
2150    }
2151}
2152
2153impl From<SharedString> for ElementId {
2154    fn from(name: SharedString) -> Self {
2155        ElementId::Name(name)
2156    }
2157}
2158
2159impl From<&'static str> for ElementId {
2160    fn from(name: &'static str) -> Self {
2161        ElementId::Name(name.into())
2162    }
2163}
2164
2165impl<'a> From<&'a FocusHandle> for ElementId {
2166    fn from(handle: &'a FocusHandle) -> Self {
2167        ElementId::FocusHandle(handle.id)
2168    }
2169}