geometry.rs

   1//! The GPUI geometry module is a collection of types and traits that
   2//! can be used to describe common units, concepts, and the relationships
   3//! between them.
   4
   5use core::fmt::Debug;
   6use derive_more::{Add, AddAssign, Div, DivAssign, Mul, Neg, Sub, SubAssign};
   7use refineable::Refineable;
   8use serde_derive::{Deserialize, Serialize};
   9use std::{
  10    cmp::{self, PartialOrd},
  11    fmt,
  12    hash::Hash,
  13    ops::{Add, Div, Mul, MulAssign, Sub},
  14};
  15
  16use crate::{AppContext, DisplayId};
  17
  18/// An axis along which a measurement can be made.
  19#[derive(Copy, Clone, PartialEq, Eq, Debug)]
  20pub enum Axis {
  21    /// The y axis, or up and down
  22    Vertical,
  23    /// The x axis, or left and right
  24    Horizontal,
  25}
  26
  27impl Axis {
  28    /// Swap this axis to the opposite axis.
  29    pub fn invert(self) -> Self {
  30        match self {
  31            Axis::Vertical => Axis::Horizontal,
  32            Axis::Horizontal => Axis::Vertical,
  33        }
  34    }
  35}
  36
  37/// A trait for accessing the given unit along a certain axis.
  38pub trait Along {
  39    /// The unit associated with this type
  40    type Unit;
  41
  42    /// Returns the unit along the given axis.
  43    fn along(&self, axis: Axis) -> Self::Unit;
  44
  45    /// Applies the given function to the unit along the given axis and returns a new value.
  46    fn apply_along(&self, axis: Axis, f: impl FnOnce(Self::Unit) -> Self::Unit) -> Self;
  47}
  48
  49/// Describes a location in a 2D cartesian coordinate space.
  50///
  51/// It holds two public fields, `x` and `y`, which represent the coordinates in the space.
  52/// The type `T` for the coordinates can be any type that implements `Default`, `Clone`, and `Debug`.
  53///
  54/// # Examples
  55///
  56/// ```
  57/// # use zed::Point;
  58/// let point = Point { x: 10, y: 20 };
  59/// println!("{:?}", point); // Outputs: Point { x: 10, y: 20 }
  60/// ```
  61#[derive(Refineable, Default, Add, AddAssign, Sub, SubAssign, Copy, Debug, PartialEq, Eq, Hash)]
  62#[refineable(Debug)]
  63#[repr(C)]
  64pub struct Point<T: Default + Clone + Debug> {
  65    /// The x coordinate of the point.
  66    pub x: T,
  67    /// The y coordinate of the point.
  68    pub y: T,
  69}
  70
  71/// Constructs a new `Point<T>` with the given x and y coordinates.
  72///
  73/// # Arguments
  74///
  75/// * `x` - The x coordinate of the point.
  76/// * `y` - The y coordinate of the point.
  77///
  78/// # Returns
  79///
  80/// Returns a `Point<T>` with the specified coordinates.
  81///
  82/// # Examples
  83///
  84/// ```
  85/// # use zed::Point;
  86/// let p = point(10, 20);
  87/// assert_eq!(p.x, 10);
  88/// assert_eq!(p.y, 20);
  89/// ```
  90pub const fn point<T: Clone + Debug + Default>(x: T, y: T) -> Point<T> {
  91    Point { x, y }
  92}
  93
  94impl<T: Clone + Debug + Default> Point<T> {
  95    /// Creates a new `Point` with the specified `x` and `y` coordinates.
  96    ///
  97    /// # Arguments
  98    ///
  99    /// * `x` - The horizontal coordinate of the point.
 100    /// * `y` - The vertical coordinate of the point.
 101    ///
 102    /// # Examples
 103    ///
 104    /// ```
 105    /// let p = Point::new(10, 20);
 106    /// assert_eq!(p.x, 10);
 107    /// assert_eq!(p.y, 20);
 108    /// ```
 109    pub const fn new(x: T, y: T) -> Self {
 110        Self { x, y }
 111    }
 112
 113    /// Transforms the point to a `Point<U>` by applying the given function to both coordinates.
 114    ///
 115    /// This method allows for converting a `Point<T>` to a `Point<U>` by specifying a closure
 116    /// that defines how to convert between the two types. The closure is applied to both the `x`
 117    /// and `y` coordinates, resulting in a new point of the desired type.
 118    ///
 119    /// # Arguments
 120    ///
 121    /// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
 122    ///
 123    /// # Examples
 124    ///
 125    /// ```
 126    /// # use zed::Point;
 127    /// let p = Point { x: 3, y: 4 };
 128    /// let p_float = p.map(|coord| coord as f32);
 129    /// assert_eq!(p_float, Point { x: 3.0, y: 4.0 });
 130    /// ```
 131    pub fn map<U: Clone + Default + Debug>(&self, f: impl Fn(T) -> U) -> Point<U> {
 132        Point {
 133            x: f(self.x.clone()),
 134            y: f(self.y.clone()),
 135        }
 136    }
 137}
 138
 139impl<T: Clone + Debug + Default> Along for Point<T> {
 140    type Unit = T;
 141
 142    fn along(&self, axis: Axis) -> T {
 143        match axis {
 144            Axis::Horizontal => self.x.clone(),
 145            Axis::Vertical => self.y.clone(),
 146        }
 147    }
 148
 149    fn apply_along(&self, axis: Axis, f: impl FnOnce(T) -> T) -> Point<T> {
 150        match axis {
 151            Axis::Horizontal => Point {
 152                x: f(self.x.clone()),
 153                y: self.y.clone(),
 154            },
 155            Axis::Vertical => Point {
 156                x: self.x.clone(),
 157                y: f(self.y.clone()),
 158            },
 159        }
 160    }
 161}
 162
 163impl<T: Clone + Debug + Default + Negate> Negate for Point<T> {
 164    fn negate(self) -> Self {
 165        self.map(Negate::negate)
 166    }
 167}
 168
 169impl Point<Pixels> {
 170    /// Scales the point by a given factor, which is typically derived from the resolution
 171    /// of a target display to ensure proper sizing of UI elements.
 172    ///
 173    /// # Arguments
 174    ///
 175    /// * `factor` - The scaling factor to apply to both the x and y coordinates.
 176    ///
 177    /// # Examples
 178    ///
 179    /// ```
 180    /// # use zed::{Point, Pixels, ScaledPixels};
 181    /// let p = Point { x: Pixels(10.0), y: Pixels(20.0) };
 182    /// let scaled_p = p.scale(1.5);
 183    /// assert_eq!(scaled_p, Point { x: ScaledPixels(15.0), y: ScaledPixels(30.0) });
 184    /// ```
 185    pub fn scale(&self, factor: f32) -> Point<ScaledPixels> {
 186        Point {
 187            x: self.x.scale(factor),
 188            y: self.y.scale(factor),
 189        }
 190    }
 191
 192    /// Calculates the Euclidean distance from the origin (0, 0) to this point.
 193    ///
 194    /// # Examples
 195    ///
 196    /// ```
 197    /// # use zed::Point;
 198    /// # use zed::Pixels;
 199    /// let p = Point { x: Pixels(3.0), y: Pixels(4.0) };
 200    /// assert_eq!(p.magnitude(), 5.0);
 201    /// ```
 202    pub fn magnitude(&self) -> f64 {
 203        ((self.x.0.powi(2) + self.y.0.powi(2)) as f64).sqrt()
 204    }
 205}
 206
 207impl<T, Rhs> Mul<Rhs> for Point<T>
 208where
 209    T: Mul<Rhs, Output = T> + Clone + Default + Debug,
 210    Rhs: Clone + Debug,
 211{
 212    type Output = Point<T>;
 213
 214    fn mul(self, rhs: Rhs) -> Self::Output {
 215        Point {
 216            x: self.x * rhs.clone(),
 217            y: self.y * rhs,
 218        }
 219    }
 220}
 221
 222impl<T, S> MulAssign<S> for Point<T>
 223where
 224    T: Clone + Mul<S, Output = T> + Default + Debug,
 225    S: Clone,
 226{
 227    fn mul_assign(&mut self, rhs: S) {
 228        self.x = self.x.clone() * rhs.clone();
 229        self.y = self.y.clone() * rhs;
 230    }
 231}
 232
 233impl<T, S> Div<S> for Point<T>
 234where
 235    T: Div<S, Output = T> + Clone + Default + Debug,
 236    S: Clone,
 237{
 238    type Output = Self;
 239
 240    fn div(self, rhs: S) -> Self::Output {
 241        Self {
 242            x: self.x / rhs.clone(),
 243            y: self.y / rhs,
 244        }
 245    }
 246}
 247
 248impl<T> Point<T>
 249where
 250    T: PartialOrd + Clone + Default + Debug,
 251{
 252    /// Returns a new point with the maximum values of each dimension from `self` and `other`.
 253    ///
 254    /// # Arguments
 255    ///
 256    /// * `other` - A reference to another `Point` to compare with `self`.
 257    ///
 258    /// # Examples
 259    ///
 260    /// ```
 261    /// # use zed::Point;
 262    /// let p1 = Point { x: 3, y: 7 };
 263    /// let p2 = Point { x: 5, y: 2 };
 264    /// let max_point = p1.max(&p2);
 265    /// assert_eq!(max_point, Point { x: 5, y: 7 });
 266    /// ```
 267    pub fn max(&self, other: &Self) -> Self {
 268        Point {
 269            x: if self.x > other.x {
 270                self.x.clone()
 271            } else {
 272                other.x.clone()
 273            },
 274            y: if self.y > other.y {
 275                self.y.clone()
 276            } else {
 277                other.y.clone()
 278            },
 279        }
 280    }
 281
 282    /// Returns a new point with the minimum values of each dimension from `self` and `other`.
 283    ///
 284    /// # Arguments
 285    ///
 286    /// * `other` - A reference to another `Point` to compare with `self`.
 287    ///
 288    /// # Examples
 289    ///
 290    /// ```
 291    /// # use zed::Point;
 292    /// let p1 = Point { x: 3, y: 7 };
 293    /// let p2 = Point { x: 5, y: 2 };
 294    /// let min_point = p1.min(&p2);
 295    /// assert_eq!(min_point, Point { x: 3, y: 2 });
 296    /// ```
 297    pub fn min(&self, other: &Self) -> Self {
 298        Point {
 299            x: if self.x <= other.x {
 300                self.x.clone()
 301            } else {
 302                other.x.clone()
 303            },
 304            y: if self.y <= other.y {
 305                self.y.clone()
 306            } else {
 307                other.y.clone()
 308            },
 309        }
 310    }
 311
 312    /// Clamps the point to a specified range.
 313    ///
 314    /// Given a minimum point and a maximum point, this method constrains the current point
 315    /// such that its coordinates do not exceed the range defined by the minimum and maximum points.
 316    /// If the current point's coordinates are less than the minimum, they are set to the minimum.
 317    /// If they are greater than the maximum, they are set to the maximum.
 318    ///
 319    /// # Arguments
 320    ///
 321    /// * `min` - A reference to a `Point` representing the minimum allowable coordinates.
 322    /// * `max` - A reference to a `Point` representing the maximum allowable coordinates.
 323    ///
 324    /// # Examples
 325    ///
 326    /// ```
 327    /// # use zed::Point;
 328    /// let p = Point { x: 10, y: 20 };
 329    /// let min = Point { x: 0, y: 5 };
 330    /// let max = Point { x: 15, y: 25 };
 331    /// let clamped_p = p.clamp(&min, &max);
 332    /// assert_eq!(clamped_p, Point { x: 10, y: 20 });
 333    ///
 334    /// let p_out_of_bounds = Point { x: -5, y: 30 };
 335    /// let clamped_p_out_of_bounds = p_out_of_bounds.clamp(&min, &max);
 336    /// assert_eq!(clamped_p_out_of_bounds, Point { x: 0, y: 25 });
 337    /// ```
 338    pub fn clamp(&self, min: &Self, max: &Self) -> Self {
 339        self.max(min).min(max)
 340    }
 341}
 342
 343impl<T: Clone + Default + Debug> Clone for Point<T> {
 344    fn clone(&self) -> Self {
 345        Self {
 346            x: self.x.clone(),
 347            y: self.y.clone(),
 348        }
 349    }
 350}
 351
 352/// A structure representing a two-dimensional size with width and height in a given unit.
 353///
 354/// This struct is generic over the type `T`, which can be any type that implements `Clone`, `Default`, and `Debug`.
 355/// It is commonly used to specify dimensions for elements in a UI, such as a window or element.
 356#[derive(Refineable, Default, Clone, Copy, PartialEq, Div, Hash, Serialize, Deserialize)]
 357#[refineable(Debug)]
 358#[repr(C)]
 359pub struct Size<T: Clone + Default + Debug> {
 360    /// The width component of the size.
 361    pub width: T,
 362    /// The height component of the size.
 363    pub height: T,
 364}
 365
 366impl From<Size<DevicePixels>> for Size<Pixels> {
 367    fn from(size: Size<DevicePixels>) -> Self {
 368        Size {
 369            width: Pixels(size.width.0 as f32),
 370            height: Pixels(size.height.0 as f32),
 371        }
 372    }
 373}
 374
 375/// Constructs a new `Size<T>` with the provided width and height.
 376///
 377/// # Arguments
 378///
 379/// * `width` - The width component of the `Size`.
 380/// * `height` - The height component of the `Size`.
 381///
 382/// # Examples
 383///
 384/// ```
 385/// # use zed::Size;
 386/// let my_size = size(10, 20);
 387/// assert_eq!(my_size.width, 10);
 388/// assert_eq!(my_size.height, 20);
 389/// ```
 390pub const fn size<T>(width: T, height: T) -> Size<T>
 391where
 392    T: Clone + Default + Debug,
 393{
 394    Size { width, height }
 395}
 396
 397impl<T> Size<T>
 398where
 399    T: Clone + Default + Debug,
 400{
 401    /// Applies a function to the width and height of the size, producing a new `Size<U>`.
 402    ///
 403    /// This method allows for converting a `Size<T>` to a `Size<U>` by specifying a closure
 404    /// that defines how to convert between the two types. The closure is applied to both the `width`
 405    /// and `height`, resulting in a new size of the desired type.
 406    ///
 407    /// # Arguments
 408    ///
 409    /// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
 410    ///
 411    /// # Examples
 412    ///
 413    /// ```
 414    /// # use zed::Size;
 415    /// let my_size = Size { width: 10, height: 20 };
 416    /// let my_new_size = my_size.map(|dimension| dimension as f32 * 1.5);
 417    /// assert_eq!(my_new_size, Size { width: 15.0, height: 30.0 });
 418    /// ```
 419    pub fn map<U>(&self, f: impl Fn(T) -> U) -> Size<U>
 420    where
 421        U: Clone + Default + Debug,
 422    {
 423        Size {
 424            width: f(self.width.clone()),
 425            height: f(self.height.clone()),
 426        }
 427    }
 428}
 429
 430impl<T> Size<T>
 431where
 432    T: Clone + Default + Debug + Half,
 433{
 434    /// Compute the center point of the size.g
 435    pub fn center(&self) -> Point<T> {
 436        Point {
 437            x: self.width.half(),
 438            y: self.height.half(),
 439        }
 440    }
 441}
 442
 443impl Size<Pixels> {
 444    /// Scales the size by a given factor.
 445    ///
 446    /// This method multiplies both the width and height by the provided scaling factor,
 447    /// resulting in a new `Size<ScaledPixels>` that is proportionally larger or smaller
 448    /// depending on the factor.
 449    ///
 450    /// # Arguments
 451    ///
 452    /// * `factor` - The scaling factor to apply to the width and height.
 453    ///
 454    /// # Examples
 455    ///
 456    /// ```
 457    /// # use zed::{Size, Pixels, ScaledPixels};
 458    /// let size = Size { width: Pixels(100.0), height: Pixels(50.0) };
 459    /// let scaled_size = size.scale(2.0);
 460    /// assert_eq!(scaled_size, Size { width: ScaledPixels(200.0), height: ScaledPixels(100.0) });
 461    /// ```
 462    pub fn scale(&self, factor: f32) -> Size<ScaledPixels> {
 463        Size {
 464            width: self.width.scale(factor),
 465            height: self.height.scale(factor),
 466        }
 467    }
 468}
 469
 470impl<T> Along for Size<T>
 471where
 472    T: Clone + Default + Debug,
 473{
 474    type Unit = T;
 475
 476    fn along(&self, axis: Axis) -> T {
 477        match axis {
 478            Axis::Horizontal => self.width.clone(),
 479            Axis::Vertical => self.height.clone(),
 480        }
 481    }
 482
 483    /// Returns the value of this size along the given axis.
 484    fn apply_along(&self, axis: Axis, f: impl FnOnce(T) -> T) -> Self {
 485        match axis {
 486            Axis::Horizontal => Size {
 487                width: f(self.width.clone()),
 488                height: self.height.clone(),
 489            },
 490            Axis::Vertical => Size {
 491                width: self.width.clone(),
 492                height: f(self.height.clone()),
 493            },
 494        }
 495    }
 496}
 497
 498impl<T> Size<T>
 499where
 500    T: PartialOrd + Clone + Default + Debug,
 501{
 502    /// Returns a new `Size` with the maximum width and height from `self` and `other`.
 503    ///
 504    /// # Arguments
 505    ///
 506    /// * `other` - A reference to another `Size` to compare with `self`.
 507    ///
 508    /// # Examples
 509    ///
 510    /// ```
 511    /// # use zed::Size;
 512    /// let size1 = Size { width: 30, height: 40 };
 513    /// let size2 = Size { width: 50, height: 20 };
 514    /// let max_size = size1.max(&size2);
 515    /// assert_eq!(max_size, Size { width: 50, height: 40 });
 516    /// ```
 517    pub fn max(&self, other: &Self) -> Self {
 518        Size {
 519            width: if self.width >= other.width {
 520                self.width.clone()
 521            } else {
 522                other.width.clone()
 523            },
 524            height: if self.height >= other.height {
 525                self.height.clone()
 526            } else {
 527                other.height.clone()
 528            },
 529        }
 530    }
 531    /// Returns a new `Size` with the minimum width and height from `self` and `other`.
 532    ///
 533    /// # Arguments
 534    ///
 535    /// * `other` - A reference to another `Size` to compare with `self`.
 536    ///
 537    /// # Examples
 538    ///
 539    /// ```
 540    /// # use zed::Size;
 541    /// let size1 = Size { width: 30, height: 40 };
 542    /// let size2 = Size { width: 50, height: 20 };
 543    /// let min_size = size1.min(&size2);
 544    /// assert_eq!(min_size, Size { width: 30, height: 20 });
 545    /// ```
 546    pub fn min(&self, other: &Self) -> Self {
 547        Size {
 548            width: if self.width >= other.width {
 549                other.width.clone()
 550            } else {
 551                self.width.clone()
 552            },
 553            height: if self.height >= other.height {
 554                other.height.clone()
 555            } else {
 556                self.height.clone()
 557            },
 558        }
 559    }
 560}
 561
 562impl<T> Sub for Size<T>
 563where
 564    T: Sub<Output = T> + Clone + Default + Debug,
 565{
 566    type Output = Size<T>;
 567
 568    fn sub(self, rhs: Self) -> Self::Output {
 569        Size {
 570            width: self.width - rhs.width,
 571            height: self.height - rhs.height,
 572        }
 573    }
 574}
 575
 576impl<T> Add for Size<T>
 577where
 578    T: Add<Output = T> + Clone + Default + Debug,
 579{
 580    type Output = Size<T>;
 581
 582    fn add(self, rhs: Self) -> Self::Output {
 583        Size {
 584            width: self.width + rhs.width,
 585            height: self.height + rhs.height,
 586        }
 587    }
 588}
 589
 590impl<T, Rhs> Mul<Rhs> for Size<T>
 591where
 592    T: Mul<Rhs, Output = Rhs> + Clone + Default + Debug,
 593    Rhs: Clone + Default + Debug,
 594{
 595    type Output = Size<Rhs>;
 596
 597    fn mul(self, rhs: Rhs) -> Self::Output {
 598        Size {
 599            width: self.width * rhs.clone(),
 600            height: self.height * rhs,
 601        }
 602    }
 603}
 604
 605impl<T, S> MulAssign<S> for Size<T>
 606where
 607    T: Mul<S, Output = T> + Clone + Default + Debug,
 608    S: Clone,
 609{
 610    fn mul_assign(&mut self, rhs: S) {
 611        self.width = self.width.clone() * rhs.clone();
 612        self.height = self.height.clone() * rhs;
 613    }
 614}
 615
 616impl<T> Eq for Size<T> where T: Eq + Default + Debug + Clone {}
 617
 618impl<T> Debug for Size<T>
 619where
 620    T: Clone + Default + Debug,
 621{
 622    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 623        write!(f, "Size {{ {:?} × {:?} }}", self.width, self.height)
 624    }
 625}
 626
 627impl<T: Clone + Default + Debug> From<Point<T>> for Size<T> {
 628    fn from(point: Point<T>) -> Self {
 629        Self {
 630            width: point.x,
 631            height: point.y,
 632        }
 633    }
 634}
 635
 636impl From<Size<Pixels>> for Size<DevicePixels> {
 637    fn from(size: Size<Pixels>) -> Self {
 638        Size {
 639            width: DevicePixels(size.width.0 as i32),
 640            height: DevicePixels(size.height.0 as i32),
 641        }
 642    }
 643}
 644
 645impl From<Size<Pixels>> for Size<DefiniteLength> {
 646    fn from(size: Size<Pixels>) -> Self {
 647        Size {
 648            width: size.width.into(),
 649            height: size.height.into(),
 650        }
 651    }
 652}
 653
 654impl From<Size<Pixels>> for Size<AbsoluteLength> {
 655    fn from(size: Size<Pixels>) -> Self {
 656        Size {
 657            width: size.width.into(),
 658            height: size.height.into(),
 659        }
 660    }
 661}
 662
 663impl Size<Length> {
 664    /// Returns a `Size` with both width and height set to fill the available space.
 665    ///
 666    /// This function creates a `Size` instance where both the width and height are set to `Length::Definite(DefiniteLength::Fraction(1.0))`,
 667    /// which represents 100% of the available space in both dimensions.
 668    ///
 669    /// # Returns
 670    ///
 671    /// A `Size<Length>` that will fill the available space when used in a layout.
 672    pub fn full() -> Self {
 673        Self {
 674            width: relative(1.).into(),
 675            height: relative(1.).into(),
 676        }
 677    }
 678}
 679
 680impl Size<Length> {
 681    /// Returns a `Size` with both width and height set to `auto`, which allows the layout engine to determine the size.
 682    ///
 683    /// This function creates a `Size` instance where both the width and height are set to `Length::Auto`,
 684    /// indicating that their size should be computed based on the layout context, such as the content size or
 685    /// available space.
 686    ///
 687    /// # Returns
 688    ///
 689    /// A `Size<Length>` with width and height set to `Length::Auto`.
 690    pub fn auto() -> Self {
 691        Self {
 692            width: Length::Auto,
 693            height: Length::Auto,
 694        }
 695    }
 696}
 697
 698/// Represents a rectangular area in a 2D space with an origin point and a size.
 699///
 700/// The `Bounds` struct is generic over a type `T` which represents the type of the coordinate system.
 701/// The origin is represented as a `Point<T>` which defines the upper-left corner of the rectangle,
 702/// and the size is represented as a `Size<T>` which defines the width and height of the rectangle.
 703///
 704/// # Examples
 705///
 706/// ```
 707/// # use zed::{Bounds, Point, Size};
 708/// let origin = Point { x: 0, y: 0 };
 709/// let size = Size { width: 10, height: 20 };
 710/// let bounds = Bounds::new(origin, size);
 711///
 712/// assert_eq!(bounds.origin, origin);
 713/// assert_eq!(bounds.size, size);
 714/// ```
 715#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq)]
 716#[refineable(Debug)]
 717#[repr(C)]
 718pub struct Bounds<T: Clone + Default + Debug> {
 719    /// The origin point of this area.
 720    pub origin: Point<T>,
 721    /// The size of the rectangle.
 722    pub size: Size<T>,
 723}
 724
 725impl Bounds<DevicePixels> {
 726    /// Generate a centered bounds for the given display or primary display if none is provided
 727    pub fn centered(
 728        display_id: Option<DisplayId>,
 729        size: impl Into<Size<DevicePixels>>,
 730        cx: &mut AppContext,
 731    ) -> Self {
 732        let display = display_id
 733            .and_then(|id| cx.find_display(id))
 734            .or_else(|| cx.primary_display());
 735
 736        let size = size.into();
 737        display
 738            .map(|display| {
 739                let center = display.bounds().center();
 740                Bounds {
 741                    origin: point(center.x - size.width / 2, center.y - size.height / 2),
 742                    size,
 743                }
 744            })
 745            .unwrap_or_else(|| Bounds {
 746                origin: point(DevicePixels(0), DevicePixels(0)),
 747                size,
 748            })
 749    }
 750
 751    /// Generate maximized bounds for the given display or primary display if none is provided
 752    pub fn maximized(display_id: Option<DisplayId>, cx: &mut AppContext) -> Self {
 753        let display = display_id
 754            .and_then(|id| cx.find_display(id))
 755            .or_else(|| cx.primary_display());
 756
 757        display
 758            .map(|display| display.bounds())
 759            .unwrap_or_else(|| Bounds {
 760                origin: point(DevicePixels(0), DevicePixels(0)),
 761                size: size(DevicePixels(1024), DevicePixels(768)),
 762            })
 763    }
 764}
 765
 766impl<T> Bounds<T>
 767where
 768    T: Clone + Debug + Sub<Output = T> + Default,
 769{
 770    /// Constructs a `Bounds` from two corner points: the upper-left and lower-right corners.
 771    ///
 772    /// This function calculates the origin and size of the `Bounds` based on the provided corner points.
 773    /// The origin is set to the upper-left corner, and the size is determined by the difference between
 774    /// the x and y coordinates of the lower-right and upper-left points.
 775    ///
 776    /// # Arguments
 777    ///
 778    /// * `upper_left` - A `Point<T>` representing the upper-left corner of the rectangle.
 779    /// * `lower_right` - A `Point<T>` representing the lower-right corner of the rectangle.
 780    ///
 781    /// # Returns
 782    ///
 783    /// Returns a `Bounds<T>` that encompasses the area defined by the two corner points.
 784    ///
 785    /// # Examples
 786    ///
 787    /// ```
 788    /// # use zed::{Bounds, Point};
 789    /// let upper_left = Point { x: 0, y: 0 };
 790    /// let lower_right = Point { x: 10, y: 10 };
 791    /// let bounds = Bounds::from_corners(upper_left, lower_right);
 792    ///
 793    /// assert_eq!(bounds.origin, upper_left);
 794    /// assert_eq!(bounds.size.width, 10);
 795    /// assert_eq!(bounds.size.height, 10);
 796    /// ```
 797    pub fn from_corners(upper_left: Point<T>, lower_right: Point<T>) -> Self {
 798        let origin = Point {
 799            x: upper_left.x.clone(),
 800            y: upper_left.y.clone(),
 801        };
 802        let size = Size {
 803            width: lower_right.x - upper_left.x,
 804            height: lower_right.y - upper_left.y,
 805        };
 806        Bounds { origin, size }
 807    }
 808
 809    /// Creates a new `Bounds` with the specified origin and size.
 810    ///
 811    /// # Arguments
 812    ///
 813    /// * `origin` - A `Point<T>` representing the origin of the bounds.
 814    /// * `size` - A `Size<T>` representing the size of the bounds.
 815    ///
 816    /// # Returns
 817    ///
 818    /// Returns a `Bounds<T>` that has the given origin and size.
 819    pub fn new(origin: Point<T>, size: Size<T>) -> Self {
 820        Bounds { origin, size }
 821    }
 822}
 823
 824impl<T> Bounds<T>
 825where
 826    T: Clone + Debug + PartialOrd + Add<T, Output = T> + Sub<Output = T> + Default + Half,
 827{
 828    /// Checks if this `Bounds` intersects with another `Bounds`.
 829    ///
 830    /// Two `Bounds` instances intersect if they overlap in the 2D space they occupy.
 831    /// This method checks if there is any overlapping area between the two bounds.
 832    ///
 833    /// # Arguments
 834    ///
 835    /// * `other` - A reference to another `Bounds` to check for intersection with.
 836    ///
 837    /// # Returns
 838    ///
 839    /// Returns `true` if there is any intersection between the two bounds, `false` otherwise.
 840    ///
 841    /// # Examples
 842    ///
 843    /// ```
 844    /// # use zed::{Bounds, Point, Size};
 845    /// let bounds1 = Bounds {
 846    ///     origin: Point { x: 0, y: 0 },
 847    ///     size: Size { width: 10, height: 10 },
 848    /// };
 849    /// let bounds2 = Bounds {
 850    ///     origin: Point { x: 5, y: 5 },
 851    ///     size: Size { width: 10, height: 10 },
 852    /// };
 853    /// let bounds3 = Bounds {
 854    ///     origin: Point { x: 20, y: 20 },
 855    ///     size: Size { width: 10, height: 10 },
 856    /// };
 857    ///
 858    /// assert_eq!(bounds1.intersects(&bounds2), true); // Overlapping bounds
 859    /// assert_eq!(bounds1.intersects(&bounds3), false); // Non-overlapping bounds
 860    /// ```
 861    pub fn intersects(&self, other: &Bounds<T>) -> bool {
 862        let my_lower_right = self.lower_right();
 863        let their_lower_right = other.lower_right();
 864
 865        self.origin.x < their_lower_right.x
 866            && my_lower_right.x > other.origin.x
 867            && self.origin.y < their_lower_right.y
 868            && my_lower_right.y > other.origin.y
 869    }
 870
 871    /// Dilates the bounds by a specified amount in all directions.
 872    ///
 873    /// This method expands the bounds by the given `amount`, increasing the size
 874    /// and adjusting the origin so that the bounds grow outwards equally in all directions.
 875    /// The resulting bounds will have its width and height increased by twice the `amount`
 876    /// (since it grows in both directions), and the origin will be moved by `-amount`
 877    /// in both the x and y directions.
 878    ///
 879    /// # Arguments
 880    ///
 881    /// * `amount` - The amount by which to dilate the bounds.
 882    ///
 883    /// # Examples
 884    ///
 885    /// ```
 886    /// # use zed::{Bounds, Point, Size};
 887    /// let mut bounds = Bounds {
 888    ///     origin: Point { x: 10, y: 10 },
 889    ///     size: Size { width: 10, height: 10 },
 890    /// };
 891    /// bounds.dilate(5);
 892    /// assert_eq!(bounds, Bounds {
 893    ///     origin: Point { x: 5, y: 5 },
 894    ///     size: Size { width: 20, height: 20 },
 895    /// });
 896    /// ```
 897    pub fn dilate(&mut self, amount: T) {
 898        self.origin.x = self.origin.x.clone() - amount.clone();
 899        self.origin.y = self.origin.y.clone() - amount.clone();
 900        let double_amount = amount.clone() + amount;
 901        self.size.width = self.size.width.clone() + double_amount.clone();
 902        self.size.height = self.size.height.clone() + double_amount;
 903    }
 904
 905    /// Returns the center point of the bounds.
 906    ///
 907    /// Calculates the center by taking the origin's x and y coordinates and adding half the width and height
 908    /// of the bounds, respectively. The center is represented as a `Point<T>` where `T` is the type of the
 909    /// coordinate system.
 910    ///
 911    /// # Returns
 912    ///
 913    /// A `Point<T>` representing the center of the bounds.
 914    ///
 915    /// # Examples
 916    ///
 917    /// ```
 918    /// # use zed::{Bounds, Point, Size};
 919    /// let bounds = Bounds {
 920    ///     origin: Point { x: 0, y: 0 },
 921    ///     size: Size { width: 10, height: 20 },
 922    /// };
 923    /// let center = bounds.center();
 924    /// assert_eq!(center, Point { x: 5, y: 10 });
 925    /// ```
 926    pub fn center(&self) -> Point<T> {
 927        Point {
 928            x: self.origin.x.clone() + self.size.width.clone().half(),
 929            y: self.origin.y.clone() + self.size.height.clone().half(),
 930        }
 931    }
 932
 933    /// Calculates the half perimeter of a rectangle defined by the bounds.
 934    ///
 935    /// The half perimeter is calculated as the sum of the width and the height of the rectangle.
 936    /// This method is generic over the type `T` which must implement the `Sub` trait to allow
 937    /// calculation of the width and height from the bounds' origin and size, as well as the `Add` trait
 938    /// to sum the width and height for the half perimeter.
 939    ///
 940    /// # Examples
 941    ///
 942    /// ```
 943    /// # use zed::{Bounds, Point, Size};
 944    /// let bounds = Bounds {
 945    ///     origin: Point { x: 0, y: 0 },
 946    ///     size: Size { width: 10, height: 20 },
 947    /// };
 948    /// let half_perimeter = bounds.half_perimeter();
 949    /// assert_eq!(half_perimeter, 30);
 950    /// ```
 951    pub fn half_perimeter(&self) -> T {
 952        self.size.width.clone() + self.size.height.clone()
 953    }
 954}
 955
 956impl<T: Clone + Default + Debug + PartialOrd + Add<T, Output = T> + Sub<Output = T>> Bounds<T> {
 957    /// Calculates the intersection of two `Bounds` objects.
 958    ///
 959    /// This method computes the overlapping region of two `Bounds`. If the bounds do not intersect,
 960    /// the resulting `Bounds` will have a size with width and height of zero.
 961    ///
 962    /// # Arguments
 963    ///
 964    /// * `other` - A reference to another `Bounds` to intersect with.
 965    ///
 966    /// # Returns
 967    ///
 968    /// Returns a `Bounds` representing the intersection area. If there is no intersection,
 969    /// the returned `Bounds` will have a size with width and height of zero.
 970    ///
 971    /// # Examples
 972    ///
 973    /// ```
 974    /// # use zed::{Bounds, Point, Size};
 975    /// let bounds1 = Bounds {
 976    ///     origin: Point { x: 0, y: 0 },
 977    ///     size: Size { width: 10, height: 10 },
 978    /// };
 979    /// let bounds2 = Bounds {
 980    ///     origin: Point { x: 5, y: 5 },
 981    ///     size: Size { width: 10, height: 10 },
 982    /// };
 983    /// let intersection = bounds1.intersect(&bounds2);
 984    ///
 985    /// assert_eq!(intersection, Bounds {
 986    ///     origin: Point { x: 5, y: 5 },
 987    ///     size: Size { width: 5, height: 5 },
 988    /// });
 989    /// ```
 990    pub fn intersect(&self, other: &Self) -> Self {
 991        let upper_left = self.origin.max(&other.origin);
 992        let lower_right = self.lower_right().min(&other.lower_right());
 993        Self::from_corners(upper_left, lower_right)
 994    }
 995
 996    /// Computes the union of two `Bounds`.
 997    ///
 998    /// This method calculates the smallest `Bounds` that contains both the current `Bounds` and the `other` `Bounds`.
 999    /// The resulting `Bounds` will have an origin that is the minimum of the origins of the two `Bounds`,
1000    /// and a size that encompasses the furthest extents of both `Bounds`.
1001    ///
1002    /// # Arguments
1003    ///
1004    /// * `other` - A reference to another `Bounds` to create a union with.
1005    ///
1006    /// # Returns
1007    ///
1008    /// Returns a `Bounds` representing the union of the two `Bounds`.
1009    ///
1010    /// # Examples
1011    ///
1012    /// ```
1013    /// # use zed::{Bounds, Point, Size};
1014    /// let bounds1 = Bounds {
1015    ///     origin: Point { x: 0, y: 0 },
1016    ///     size: Size { width: 10, height: 10 },
1017    /// };
1018    /// let bounds2 = Bounds {
1019    ///     origin: Point { x: 5, y: 5 },
1020    ///     size: Size { width: 15, height: 15 },
1021    /// };
1022    /// let union_bounds = bounds1.union(&bounds2);
1023    ///
1024    /// assert_eq!(union_bounds, Bounds {
1025    ///     origin: Point { x: 0, y: 0 },
1026    ///     size: Size { width: 20, height: 20 },
1027    /// });
1028    /// ```
1029    pub fn union(&self, other: &Self) -> Self {
1030        let top_left = self.origin.min(&other.origin);
1031        let bottom_right = self.lower_right().max(&other.lower_right());
1032        Bounds::from_corners(top_left, bottom_right)
1033    }
1034}
1035
1036impl<T, Rhs> Mul<Rhs> for Bounds<T>
1037where
1038    T: Mul<Rhs, Output = Rhs> + Clone + Default + Debug,
1039    Point<T>: Mul<Rhs, Output = Point<Rhs>>,
1040    Rhs: Clone + Default + Debug,
1041{
1042    type Output = Bounds<Rhs>;
1043
1044    fn mul(self, rhs: Rhs) -> Self::Output {
1045        Bounds {
1046            origin: self.origin * rhs.clone(),
1047            size: self.size * rhs,
1048        }
1049    }
1050}
1051
1052impl<T, S> MulAssign<S> for Bounds<T>
1053where
1054    T: Mul<S, Output = T> + Clone + Default + Debug,
1055    S: Clone,
1056{
1057    fn mul_assign(&mut self, rhs: S) {
1058        self.origin *= rhs.clone();
1059        self.size *= rhs;
1060    }
1061}
1062
1063impl<T, S> Div<S> for Bounds<T>
1064where
1065    Size<T>: Div<S, Output = Size<T>>,
1066    T: Div<S, Output = T> + Default + Clone + Debug,
1067    S: Clone,
1068{
1069    type Output = Self;
1070
1071    fn div(self, rhs: S) -> Self {
1072        Self {
1073            origin: self.origin / rhs.clone(),
1074            size: self.size / rhs,
1075        }
1076    }
1077}
1078
1079impl<T> Bounds<T>
1080where
1081    T: Add<T, Output = T> + Clone + Default + Debug,
1082{
1083    /// Returns the top edge of the bounds.
1084    ///
1085    /// # Returns
1086    ///
1087    /// A value of type `T` representing the y-coordinate of the top edge of the bounds.
1088    pub fn top(&self) -> T {
1089        self.origin.y.clone()
1090    }
1091
1092    /// Returns the bottom edge of the bounds.
1093    ///
1094    /// # Returns
1095    ///
1096    /// A value of type `T` representing the y-coordinate of the bottom edge of the bounds.
1097    pub fn bottom(&self) -> T {
1098        self.origin.y.clone() + self.size.height.clone()
1099    }
1100
1101    /// Returns the left edge of the bounds.
1102    ///
1103    /// # Returns
1104    ///
1105    /// A value of type `T` representing the x-coordinate of the left edge of the bounds.
1106    pub fn left(&self) -> T {
1107        self.origin.x.clone()
1108    }
1109
1110    /// Returns the right edge of the bounds.
1111    ///
1112    /// # Returns
1113    ///
1114    /// A value of type `T` representing the x-coordinate of the right edge of the bounds.
1115    pub fn right(&self) -> T {
1116        self.origin.x.clone() + self.size.width.clone()
1117    }
1118
1119    /// Returns the upper-right corner point of the bounds.
1120    ///
1121    /// # Returns
1122    ///
1123    /// A `Point<T>` representing the upper-right corner of the bounds.
1124    ///
1125    /// # Examples
1126    ///
1127    /// ```
1128    /// # use zed::{Bounds, Point, Size};
1129    /// let bounds = Bounds {
1130    ///     origin: Point { x: 0, y: 0 },
1131    ///     size: Size { width: 10, height: 20 },
1132    /// };
1133    /// let upper_right = bounds.upper_right();
1134    /// assert_eq!(upper_right, Point { x: 10, y: 0 });
1135    /// ```
1136    pub fn upper_right(&self) -> Point<T> {
1137        Point {
1138            x: self.origin.x.clone() + self.size.width.clone(),
1139            y: self.origin.y.clone(),
1140        }
1141    }
1142
1143    /// Returns the lower-right corner point of the bounds.
1144    ///
1145    /// # Returns
1146    ///
1147    /// A `Point<T>` representing the lower-right corner of the bounds.
1148    ///
1149    /// # Examples
1150    ///
1151    /// ```
1152    /// # use zed::{Bounds, Point, Size};
1153    /// let bounds = Bounds {
1154    ///     origin: Point { x: 0, y: 0 },
1155    ///     size: Size { width: 10, height: 20 },
1156    /// };
1157    /// let lower_right = bounds.lower_right();
1158    /// assert_eq!(lower_right, Point { x: 10, y: 20 });
1159    /// ```
1160    pub fn lower_right(&self) -> Point<T> {
1161        Point {
1162            x: self.origin.x.clone() + self.size.width.clone(),
1163            y: self.origin.y.clone() + self.size.height.clone(),
1164        }
1165    }
1166
1167    /// Returns the lower-left corner point of the bounds.
1168    ///
1169    /// # Returns
1170    ///
1171    /// A `Point<T>` representing the lower-left corner of the bounds.
1172    ///
1173    /// # Examples
1174    ///
1175    /// ```
1176    /// # use zed::{Bounds, Point, Size};
1177    /// let bounds = Bounds {
1178    ///     origin: Point { x: 0, y: 0 },
1179    ///     size: Size { width: 10, height: 20 },
1180    /// };
1181    /// let lower_left = bounds.lower_left();
1182    /// assert_eq!(lower_left, Point { x: 0, y: 20 });
1183    /// ```
1184    pub fn lower_left(&self) -> Point<T> {
1185        Point {
1186            x: self.origin.x.clone(),
1187            y: self.origin.y.clone() + self.size.height.clone(),
1188        }
1189    }
1190}
1191
1192impl<T> Bounds<T>
1193where
1194    T: Add<T, Output = T> + PartialOrd + Clone + Default + Debug,
1195{
1196    /// Checks if the given point is within the bounds.
1197    ///
1198    /// This method determines whether a point lies inside the rectangle defined by the bounds,
1199    /// including the edges. The point is considered inside if its x-coordinate is greater than
1200    /// or equal to the left edge and less than or equal to the right edge, and its y-coordinate
1201    /// is greater than or equal to the top edge and less than or equal to the bottom edge of the bounds.
1202    ///
1203    /// # Arguments
1204    ///
1205    /// * `point` - A reference to a `Point<T>` that represents the point to check.
1206    ///
1207    /// # Returns
1208    ///
1209    /// Returns `true` if the point is within the bounds, `false` otherwise.
1210    ///
1211    /// # Examples
1212    ///
1213    /// ```
1214    /// # use zed::{Point, Bounds};
1215    /// let bounds = Bounds {
1216    ///     origin: Point { x: 0, y: 0 },
1217    ///     size: Size { width: 10, height: 10 },
1218    /// };
1219    /// let inside_point = Point { x: 5, y: 5 };
1220    /// let outside_point = Point { x: 15, y: 15 };
1221    ///
1222    /// assert!(bounds.contains_point(&inside_point));
1223    /// assert!(!bounds.contains_point(&outside_point));
1224    /// ```
1225    pub fn contains(&self, point: &Point<T>) -> bool {
1226        point.x >= self.origin.x
1227            && point.x <= self.origin.x.clone() + self.size.width.clone()
1228            && point.y >= self.origin.y
1229            && point.y <= self.origin.y.clone() + self.size.height.clone()
1230    }
1231
1232    /// Applies a function to the origin and size of the bounds, producing a new `Bounds<U>`.
1233    ///
1234    /// This method allows for converting a `Bounds<T>` to a `Bounds<U>` by specifying a closure
1235    /// that defines how to convert between the two types. The closure is applied to the `origin` and
1236    /// `size` fields, resulting in new bounds of the desired type.
1237    ///
1238    /// # Arguments
1239    ///
1240    /// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
1241    ///
1242    /// # Returns
1243    ///
1244    /// Returns a new `Bounds<U>` with the origin and size mapped by the provided function.
1245    ///
1246    /// # Examples
1247    ///
1248    /// ```
1249    /// # use zed::{Bounds, Point, Size};
1250    /// let bounds = Bounds {
1251    ///     origin: Point { x: 10.0, y: 10.0 },
1252    ///     size: Size { width: 10.0, height: 20.0 },
1253    /// };
1254    /// let new_bounds = bounds.map(|value| value as f64 * 1.5);
1255    ///
1256    /// assert_eq!(new_bounds, Bounds {
1257    ///     origin: Point { x: 15.0, y: 15.0 },
1258    ///     size: Size { width: 15.0, height: 30.0 },
1259    /// });
1260    pub fn map<U>(&self, f: impl Fn(T) -> U) -> Bounds<U>
1261    where
1262        U: Clone + Default + Debug,
1263    {
1264        Bounds {
1265            origin: self.origin.map(&f),
1266            size: self.size.map(f),
1267        }
1268    }
1269
1270    /// Applies a function to the origin  of the bounds, producing a new `Bounds` with the new origin
1271    ///
1272    /// # Examples
1273    ///
1274    /// ```
1275    /// # use zed::{Bounds, Point, Size};
1276    /// let bounds = Bounds {
1277    ///     origin: Point { x: 10.0, y: 10.0 },
1278    ///     size: Size { width: 10.0, height: 20.0 },
1279    /// };
1280    /// let new_bounds = bounds.map_origin(|value| value * 1.5);
1281    ///
1282    /// assert_eq!(new_bounds, Bounds {
1283    ///     origin: Point { x: 15.0, y: 15.0 },
1284    ///     size: Size { width: 10.0, height: 20.0 },
1285    /// });
1286    pub fn map_origin(self, f: impl Fn(Point<T>) -> Point<T>) -> Bounds<T> {
1287        Bounds {
1288            origin: f(self.origin),
1289            size: self.size,
1290        }
1291    }
1292}
1293
1294/// Checks if the bounds represent an empty area.
1295///
1296/// # Returns
1297///
1298/// Returns `true` if either the width or the height of the bounds is less than or equal to zero, indicating an empty area.
1299impl<T: PartialOrd + Default + Debug + Clone> Bounds<T> {
1300    /// Checks if the bounds represent an empty area.
1301    ///
1302    /// # Returns
1303    ///
1304    /// Returns `true` if either the width or the height of the bounds is less than or equal to zero, indicating an empty area.
1305    pub fn is_empty(&self) -> bool {
1306        self.size.width <= T::default() || self.size.height <= T::default()
1307    }
1308}
1309
1310impl Bounds<Pixels> {
1311    /// Scales the bounds by a given factor, typically used to adjust for display scaling.
1312    ///
1313    /// This method multiplies the origin and size of the bounds by the provided scaling factor,
1314    /// resulting in a new `Bounds<ScaledPixels>` that is proportionally larger or smaller
1315    /// depending on the scaling factor. This can be used to ensure that the bounds are properly
1316    /// scaled for different display densities.
1317    ///
1318    /// # Arguments
1319    ///
1320    /// * `factor` - The scaling factor to apply to the origin and size, typically the display's scaling factor.
1321    ///
1322    /// # Returns
1323    ///
1324    /// Returns a new `Bounds<ScaledPixels>` that represents the scaled bounds.
1325    ///
1326    /// # Examples
1327    ///
1328    /// ```
1329    /// # use zed::{Bounds, Point, Size, Pixels};
1330    /// let bounds = Bounds {
1331    ///     origin: Point { x: Pixels(10.0), y: Pixels(20.0) },
1332    ///     size: Size { width: Pixels(30.0), height: Pixels(40.0) },
1333    /// };
1334    /// let display_scale_factor = 2.0;
1335    /// let scaled_bounds = bounds.scale(display_scale_factor);
1336    /// assert_eq!(scaled_bounds, Bounds {
1337    ///     origin: Point { x: ScaledPixels(20.0), y: ScaledPixels(40.0) },
1338    ///     size: Size { width: ScaledPixels(60.0), height: ScaledPixels(80.0) },
1339    /// });
1340    /// ```
1341    pub fn scale(&self, factor: f32) -> Bounds<ScaledPixels> {
1342        Bounds {
1343            origin: self.origin.scale(factor),
1344            size: self.size.scale(factor),
1345        }
1346    }
1347}
1348
1349impl<T: Clone + Debug + Copy + Default> Copy for Bounds<T> {}
1350
1351/// Represents the edges of a box in a 2D space, such as padding or margin.
1352///
1353/// Each field represents the size of the edge on one side of the box: `top`, `right`, `bottom`, and `left`.
1354///
1355/// # Examples
1356///
1357/// ```
1358/// # use zed::Edges;
1359/// let edges = Edges {
1360///     top: 10.0,
1361///     right: 20.0,
1362///     bottom: 30.0,
1363///     left: 40.0,
1364/// };
1365///
1366/// assert_eq!(edges.top, 10.0);
1367/// assert_eq!(edges.right, 20.0);
1368/// assert_eq!(edges.bottom, 30.0);
1369/// assert_eq!(edges.left, 40.0);
1370/// ```
1371#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq)]
1372#[refineable(Debug)]
1373#[repr(C)]
1374pub struct Edges<T: Clone + Default + Debug> {
1375    /// The size of the top edge.
1376    pub top: T,
1377    /// The size of the right edge.
1378    pub right: T,
1379    /// The size of the bottom edge.
1380    pub bottom: T,
1381    /// The size of the left edge.
1382    pub left: T,
1383}
1384
1385impl<T> Mul for Edges<T>
1386where
1387    T: Mul<Output = T> + Clone + Default + Debug,
1388{
1389    type Output = Self;
1390
1391    fn mul(self, rhs: Self) -> Self::Output {
1392        Self {
1393            top: self.top.clone() * rhs.top,
1394            right: self.right.clone() * rhs.right,
1395            bottom: self.bottom.clone() * rhs.bottom,
1396            left: self.left.clone() * rhs.left,
1397        }
1398    }
1399}
1400
1401impl<T, S> MulAssign<S> for Edges<T>
1402where
1403    T: Mul<S, Output = T> + Clone + Default + Debug,
1404    S: Clone,
1405{
1406    fn mul_assign(&mut self, rhs: S) {
1407        self.top = self.top.clone() * rhs.clone();
1408        self.right = self.right.clone() * rhs.clone();
1409        self.bottom = self.bottom.clone() * rhs.clone();
1410        self.left = self.left.clone() * rhs;
1411    }
1412}
1413
1414impl<T: Clone + Default + Debug + Copy> Copy for Edges<T> {}
1415
1416impl<T: Clone + Default + Debug> Edges<T> {
1417    /// Constructs `Edges` where all sides are set to the same specified value.
1418    ///
1419    /// This function creates an `Edges` instance with the `top`, `right`, `bottom`, and `left` fields all initialized
1420    /// to the same value provided as an argument. This is useful when you want to have uniform edges around a box,
1421    /// such as padding or margin with the same size on all sides.
1422    ///
1423    /// # Arguments
1424    ///
1425    /// * `value` - The value to set for all four sides of the edges.
1426    ///
1427    /// # Returns
1428    ///
1429    /// An `Edges` instance with all sides set to the given value.
1430    ///
1431    /// # Examples
1432    ///
1433    /// ```
1434    /// # use zed::Edges;
1435    /// let uniform_edges = Edges::all(10.0);
1436    /// assert_eq!(uniform_edges.top, 10.0);
1437    /// assert_eq!(uniform_edges.right, 10.0);
1438    /// assert_eq!(uniform_edges.bottom, 10.0);
1439    /// assert_eq!(uniform_edges.left, 10.0);
1440    /// ```
1441    pub fn all(value: T) -> Self {
1442        Self {
1443            top: value.clone(),
1444            right: value.clone(),
1445            bottom: value.clone(),
1446            left: value,
1447        }
1448    }
1449
1450    /// Applies a function to each field of the `Edges`, producing a new `Edges<U>`.
1451    ///
1452    /// This method allows for converting an `Edges<T>` to an `Edges<U>` by specifying a closure
1453    /// that defines how to convert between the two types. The closure is applied to each field
1454    /// (`top`, `right`, `bottom`, `left`), resulting in new edges of the desired type.
1455    ///
1456    /// # Arguments
1457    ///
1458    /// * `f` - A closure that takes a reference to a value of type `T` and returns a value of type `U`.
1459    ///
1460    /// # Returns
1461    ///
1462    /// Returns a new `Edges<U>` with each field mapped by the provided function.
1463    ///
1464    /// # Examples
1465    ///
1466    /// ```
1467    /// # use zed::Edges;
1468    /// let edges = Edges { top: 10, right: 20, bottom: 30, left: 40 };
1469    /// let edges_float = edges.map(|&value| value as f32 * 1.1);
1470    /// assert_eq!(edges_float, Edges { top: 11.0, right: 22.0, bottom: 33.0, left: 44.0 });
1471    /// ```
1472    pub fn map<U>(&self, f: impl Fn(&T) -> U) -> Edges<U>
1473    where
1474        U: Clone + Default + Debug,
1475    {
1476        Edges {
1477            top: f(&self.top),
1478            right: f(&self.right),
1479            bottom: f(&self.bottom),
1480            left: f(&self.left),
1481        }
1482    }
1483
1484    /// Checks if any of the edges satisfy a given predicate.
1485    ///
1486    /// This method applies a predicate function to each field of the `Edges` and returns `true` if any field satisfies the predicate.
1487    ///
1488    /// # Arguments
1489    ///
1490    /// * `predicate` - A closure that takes a reference to a value of type `T` and returns a `bool`.
1491    ///
1492    /// # Returns
1493    ///
1494    /// Returns `true` if the predicate returns `true` for any of the edge values, `false` otherwise.
1495    ///
1496    /// # Examples
1497    ///
1498    /// ```
1499    /// # use zed::Edges;
1500    /// let edges = Edges {
1501    ///     top: 10,
1502    ///     right: 0,
1503    ///     bottom: 5,
1504    ///     left: 0,
1505    /// };
1506    ///
1507    /// assert!(edges.any(|value| *value == 0));
1508    /// assert!(edges.any(|value| *value > 0));
1509    /// assert!(!edges.any(|value| *value > 10));
1510    /// ```
1511    pub fn any<F: Fn(&T) -> bool>(&self, predicate: F) -> bool {
1512        predicate(&self.top)
1513            || predicate(&self.right)
1514            || predicate(&self.bottom)
1515            || predicate(&self.left)
1516    }
1517}
1518
1519impl Edges<Length> {
1520    /// Sets the edges of the `Edges` struct to `auto`, which is a special value that allows the layout engine to automatically determine the size of the edges.
1521    ///
1522    /// This is typically used in layout contexts where the exact size of the edges is not important, or when the size should be calculated based on the content or container.
1523    ///
1524    /// # Returns
1525    ///
1526    /// Returns an `Edges<Length>` with all edges set to `Length::Auto`.
1527    ///
1528    /// # Examples
1529    ///
1530    /// ```
1531    /// # use zed::Edges;
1532    /// let auto_edges = Edges::auto();
1533    /// assert_eq!(auto_edges.top, Length::Auto);
1534    /// assert_eq!(auto_edges.right, Length::Auto);
1535    /// assert_eq!(auto_edges.bottom, Length::Auto);
1536    /// assert_eq!(auto_edges.left, Length::Auto);
1537    /// ```
1538    pub fn auto() -> Self {
1539        Self {
1540            top: Length::Auto,
1541            right: Length::Auto,
1542            bottom: Length::Auto,
1543            left: Length::Auto,
1544        }
1545    }
1546
1547    /// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
1548    ///
1549    /// This is typically used when you want to specify that a box (like a padding or margin area)
1550    /// should have no edges, effectively making it non-existent or invisible in layout calculations.
1551    ///
1552    /// # Returns
1553    ///
1554    /// Returns an `Edges<Length>` with all edges set to zero length.
1555    ///
1556    /// # Examples
1557    ///
1558    /// ```
1559    /// # use zed::Edges;
1560    /// let no_edges = Edges::zero();
1561    /// assert_eq!(no_edges.top, Length::Definite(DefiniteLength::from(Pixels(0.))));
1562    /// assert_eq!(no_edges.right, Length::Definite(DefiniteLength::from(Pixels(0.))));
1563    /// assert_eq!(no_edges.bottom, Length::Definite(DefiniteLength::from(Pixels(0.))));
1564    /// assert_eq!(no_edges.left, Length::Definite(DefiniteLength::from(Pixels(0.))));
1565    /// ```
1566    pub fn zero() -> Self {
1567        Self {
1568            top: px(0.).into(),
1569            right: px(0.).into(),
1570            bottom: px(0.).into(),
1571            left: px(0.).into(),
1572        }
1573    }
1574}
1575
1576impl Edges<DefiniteLength> {
1577    /// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
1578    ///
1579    /// This is typically used when you want to specify that a box (like a padding or margin area)
1580    /// should have no edges, effectively making it non-existent or invisible in layout calculations.
1581    ///
1582    /// # Returns
1583    ///
1584    /// Returns an `Edges<DefiniteLength>` with all edges set to zero length.
1585    ///
1586    /// # Examples
1587    ///
1588    /// ```
1589    /// # use zed::Edges;
1590    /// let no_edges = Edges::zero();
1591    /// assert_eq!(no_edges.top, DefiniteLength::from(zed::px(0.)));
1592    /// assert_eq!(no_edges.right, DefiniteLength::from(zed::px(0.)));
1593    /// assert_eq!(no_edges.bottom, DefiniteLength::from(zed::px(0.)));
1594    /// assert_eq!(no_edges.left, DefiniteLength::from(zed::px(0.)));
1595    /// ```
1596    pub fn zero() -> Self {
1597        Self {
1598            top: px(0.).into(),
1599            right: px(0.).into(),
1600            bottom: px(0.).into(),
1601            left: px(0.).into(),
1602        }
1603    }
1604
1605    /// Converts the `DefiniteLength` to `Pixels` based on the parent size and the REM size.
1606    ///
1607    /// This method allows for a `DefiniteLength` value to be converted into pixels, taking into account
1608    /// the size of the parent element (for percentage-based lengths) and the size of a rem unit (for rem-based lengths).
1609    ///
1610    /// # Arguments
1611    ///
1612    /// * `parent_size` - `Size<AbsoluteLength>` representing the size of the parent element.
1613    /// * `rem_size` - `Pixels` representing the size of one REM unit.
1614    ///
1615    /// # Returns
1616    ///
1617    /// Returns an `Edges<Pixels>` representing the edges with lengths converted to pixels.
1618    ///
1619    /// # Examples
1620    ///
1621    /// ```
1622    /// # use zed::{Edges, DefiniteLength, px, AbsoluteLength, Size};
1623    /// let edges = Edges {
1624    ///     top: DefiniteLength::Absolute(AbsoluteLength::Pixels(px(10.0))),
1625    ///     right: DefiniteLength::Fraction(0.5),
1626    ///     bottom: DefiniteLength::Absolute(AbsoluteLength::Rems(rems(2.0))),
1627    ///     left: DefiniteLength::Fraction(0.25),
1628    /// };
1629    /// let parent_size = Size {
1630    ///     width: AbsoluteLength::Pixels(px(200.0)),
1631    ///     height: AbsoluteLength::Pixels(px(100.0)),
1632    /// };
1633    /// let rem_size = px(16.0);
1634    /// let edges_in_pixels = edges.to_pixels(parent_size, rem_size);
1635    ///
1636    /// assert_eq!(edges_in_pixels.top, px(10.0)); // Absolute length in pixels
1637    /// assert_eq!(edges_in_pixels.right, px(100.0)); // 50% of parent width
1638    /// assert_eq!(edges_in_pixels.bottom, px(32.0)); // 2 rems
1639    /// assert_eq!(edges_in_pixels.left, px(50.0)); // 25% of parent width
1640    /// ```
1641    pub fn to_pixels(&self, parent_size: Size<AbsoluteLength>, rem_size: Pixels) -> Edges<Pixels> {
1642        Edges {
1643            top: self.top.to_pixels(parent_size.height, rem_size),
1644            right: self.right.to_pixels(parent_size.width, rem_size),
1645            bottom: self.bottom.to_pixels(parent_size.height, rem_size),
1646            left: self.left.to_pixels(parent_size.width, rem_size),
1647        }
1648    }
1649}
1650
1651impl Edges<AbsoluteLength> {
1652    /// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
1653    ///
1654    /// This is typically used when you want to specify that a box (like a padding or margin area)
1655    /// should have no edges, effectively making it non-existent or invisible in layout calculations.
1656    ///
1657    /// # Returns
1658    ///
1659    /// Returns an `Edges<AbsoluteLength>` with all edges set to zero length.
1660    ///
1661    /// # Examples
1662    ///
1663    /// ```
1664    /// # use zed::Edges;
1665    /// let no_edges = Edges::zero();
1666    /// assert_eq!(no_edges.top, AbsoluteLength::Pixels(Pixels(0.0)));
1667    /// assert_eq!(no_edges.right, AbsoluteLength::Pixels(Pixels(0.0)));
1668    /// assert_eq!(no_edges.bottom, AbsoluteLength::Pixels(Pixels(0.0)));
1669    /// assert_eq!(no_edges.left, AbsoluteLength::Pixels(Pixels(0.0)));
1670    /// ```
1671    pub fn zero() -> Self {
1672        Self {
1673            top: px(0.).into(),
1674            right: px(0.).into(),
1675            bottom: px(0.).into(),
1676            left: px(0.).into(),
1677        }
1678    }
1679
1680    /// Converts the `AbsoluteLength` to `Pixels` based on the `rem_size`.
1681    ///
1682    /// If the `AbsoluteLength` is already in pixels, it simply returns the corresponding `Pixels` value.
1683    /// If the `AbsoluteLength` is in rems, it multiplies the number of rems by the `rem_size` to convert it to pixels.
1684    ///
1685    /// # Arguments
1686    ///
1687    /// * `rem_size` - The size of one rem unit in pixels.
1688    ///
1689    /// # Returns
1690    ///
1691    /// Returns an `Edges<Pixels>` representing the edges with lengths converted to pixels.
1692    ///
1693    /// # Examples
1694    ///
1695    /// ```
1696    /// # use zed::{Edges, AbsoluteLength, Pixels, px};
1697    /// let edges = Edges {
1698    ///     top: AbsoluteLength::Pixels(px(10.0)),
1699    ///     right: AbsoluteLength::Rems(rems(1.0)),
1700    ///     bottom: AbsoluteLength::Pixels(px(20.0)),
1701    ///     left: AbsoluteLength::Rems(rems(2.0)),
1702    /// };
1703    /// let rem_size = px(16.0);
1704    /// let edges_in_pixels = edges.to_pixels(rem_size);
1705    ///
1706    /// assert_eq!(edges_in_pixels.top, px(10.0)); // Already in pixels
1707    /// assert_eq!(edges_in_pixels.right, px(16.0)); // 1 rem converted to pixels
1708    /// assert_eq!(edges_in_pixels.bottom, px(20.0)); // Already in pixels
1709    /// assert_eq!(edges_in_pixels.left, px(32.0)); // 2 rems converted to pixels
1710    /// ```
1711    pub fn to_pixels(&self, rem_size: Pixels) -> Edges<Pixels> {
1712        Edges {
1713            top: self.top.to_pixels(rem_size),
1714            right: self.right.to_pixels(rem_size),
1715            bottom: self.bottom.to_pixels(rem_size),
1716            left: self.left.to_pixels(rem_size),
1717        }
1718    }
1719}
1720
1721impl Edges<Pixels> {
1722    /// Scales the `Edges<Pixels>` by a given factor, returning `Edges<ScaledPixels>`.
1723    ///
1724    /// This method is typically used for adjusting the edge sizes for different display densities or scaling factors.
1725    ///
1726    /// # Arguments
1727    ///
1728    /// * `factor` - The scaling factor to apply to each edge.
1729    ///
1730    /// # Returns
1731    ///
1732    /// Returns a new `Edges<ScaledPixels>` where each edge is the result of scaling the original edge by the given factor.
1733    ///
1734    /// # Examples
1735    ///
1736    /// ```
1737    /// # use zed::{Edges, Pixels};
1738    /// let edges = Edges {
1739    ///     top: Pixels(10.0),
1740    ///     right: Pixels(20.0),
1741    ///     bottom: Pixels(30.0),
1742    ///     left: Pixels(40.0),
1743    /// };
1744    /// let scaled_edges = edges.scale(2.0);
1745    /// assert_eq!(scaled_edges.top, ScaledPixels(20.0));
1746    /// assert_eq!(scaled_edges.right, ScaledPixels(40.0));
1747    /// assert_eq!(scaled_edges.bottom, ScaledPixels(60.0));
1748    /// assert_eq!(scaled_edges.left, ScaledPixels(80.0));
1749    /// ```
1750    pub fn scale(&self, factor: f32) -> Edges<ScaledPixels> {
1751        Edges {
1752            top: self.top.scale(factor),
1753            right: self.right.scale(factor),
1754            bottom: self.bottom.scale(factor),
1755            left: self.left.scale(factor),
1756        }
1757    }
1758
1759    /// Returns the maximum value of any edge.
1760    ///
1761    /// # Returns
1762    ///
1763    /// The maximum `Pixels` value among all four edges.
1764    pub fn max(&self) -> Pixels {
1765        self.top.max(self.right).max(self.bottom).max(self.left)
1766    }
1767}
1768
1769impl From<f32> for Edges<Pixels> {
1770    fn from(val: f32) -> Self {
1771        Edges {
1772            top: val.into(),
1773            right: val.into(),
1774            bottom: val.into(),
1775            left: val.into(),
1776        }
1777    }
1778}
1779
1780/// Represents the corners of a box in a 2D space, such as border radius.
1781///
1782/// Each field represents the size of the corner on one side of the box: `top_left`, `top_right`, `bottom_right`, and `bottom_left`.
1783#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq)]
1784#[refineable(Debug)]
1785#[repr(C)]
1786pub struct Corners<T: Clone + Default + Debug> {
1787    /// The value associated with the top left corner.
1788    pub top_left: T,
1789    /// The value associated with the top right corner.
1790    pub top_right: T,
1791    /// The value associated with the bottom right corner.
1792    pub bottom_right: T,
1793    /// The value associated with the bottom left corner.
1794    pub bottom_left: T,
1795}
1796
1797impl<T> Corners<T>
1798where
1799    T: Clone + Default + Debug,
1800{
1801    /// Constructs `Corners` where all sides are set to the same specified value.
1802    ///
1803    /// This function creates a `Corners` instance with the `top_left`, `top_right`, `bottom_right`, and `bottom_left` fields all initialized
1804    /// to the same value provided as an argument. This is useful when you want to have uniform corners around a box,
1805    /// such as a uniform border radius on a rectangle.
1806    ///
1807    /// # Arguments
1808    ///
1809    /// * `value` - The value to set for all four corners.
1810    ///
1811    /// # Returns
1812    ///
1813    /// An `Corners` instance with all corners set to the given value.
1814    ///
1815    /// # Examples
1816    ///
1817    /// ```
1818    /// # use zed::Corners;
1819    /// let uniform_corners = Corners::all(5.0);
1820    /// assert_eq!(uniform_corners.top_left, 5.0);
1821    /// assert_eq!(uniform_corners.top_right, 5.0);
1822    /// assert_eq!(uniform_corners.bottom_right, 5.0);
1823    /// assert_eq!(uniform_corners.bottom_left, 5.0);
1824    /// ```
1825    pub fn all(value: T) -> Self {
1826        Self {
1827            top_left: value.clone(),
1828            top_right: value.clone(),
1829            bottom_right: value.clone(),
1830            bottom_left: value,
1831        }
1832    }
1833}
1834
1835impl Corners<AbsoluteLength> {
1836    /// Converts the `AbsoluteLength` to `Pixels` based on the provided size and rem size, ensuring the resulting
1837    /// `Pixels` do not exceed half of the maximum of the provided size's width and height.
1838    ///
1839    /// This method is particularly useful when dealing with corner radii, where the radius in pixels should not
1840    /// exceed half the size of the box it applies to, to avoid the corners overlapping.
1841    ///
1842    /// # Arguments
1843    ///
1844    /// * `size` - The `Size<Pixels>` against which the maximum allowable radius is determined.
1845    /// * `rem_size` - The size of one REM unit in pixels, used for conversion if the `AbsoluteLength` is in REMs.
1846    ///
1847    /// # Returns
1848    ///
1849    /// Returns a `Corners<Pixels>` instance with each corner's length converted to pixels and clamped to the
1850    /// maximum allowable radius based on the provided size.
1851    ///
1852    /// # Examples
1853    ///
1854    /// ```
1855    /// # use zed::{Corners, AbsoluteLength, Pixels, Size};
1856    /// let corners = Corners {
1857    ///     top_left: AbsoluteLength::Pixels(Pixels(15.0)),
1858    ///     top_right: AbsoluteLength::Rems(Rems(1.0)),
1859    ///     bottom_right: AbsoluteLength::Pixels(Pixels(20.0)),
1860    ///     bottom_left: AbsoluteLength::Rems(Rems(2.0)),
1861    /// };
1862    /// let size = Size { width: Pixels(100.0), height: Pixels(50.0) };
1863    /// let rem_size = Pixels(16.0);
1864    /// let corners_in_pixels = corners.to_pixels(size, rem_size);
1865    ///
1866    /// // The resulting corners should not exceed half the size of the smallest dimension (50.0 / 2.0 = 25.0).
1867    /// assert_eq!(corners_in_pixels.top_left, Pixels(15.0));
1868    /// assert_eq!(corners_in_pixels.top_right, Pixels(16.0)); // 1 rem converted to pixels
1869    /// assert_eq!(corners_in_pixels.bottom_right, Pixels(20.0).min(Pixels(25.0))); // Clamped to 25.0
1870    /// assert_eq!(corners_in_pixels.bottom_left, Pixels(32.0).min(Pixels(25.0))); // 2 rems converted to pixels and clamped
1871    /// ```
1872    pub fn to_pixels(&self, size: Size<Pixels>, rem_size: Pixels) -> Corners<Pixels> {
1873        let max = size.width.max(size.height) / 2.;
1874        Corners {
1875            top_left: self.top_left.to_pixels(rem_size).min(max),
1876            top_right: self.top_right.to_pixels(rem_size).min(max),
1877            bottom_right: self.bottom_right.to_pixels(rem_size).min(max),
1878            bottom_left: self.bottom_left.to_pixels(rem_size).min(max),
1879        }
1880    }
1881}
1882
1883impl Corners<Pixels> {
1884    /// Scales the `Corners<Pixels>` by a given factor, returning `Corners<ScaledPixels>`.
1885    ///
1886    /// This method is typically used for adjusting the corner sizes for different display densities or scaling factors.
1887    ///
1888    /// # Arguments
1889    ///
1890    /// * `factor` - The scaling factor to apply to each corner.
1891    ///
1892    /// # Returns
1893    ///
1894    /// Returns a new `Corners<ScaledPixels>` where each corner is the result of scaling the original corner by the given factor.
1895    ///
1896    /// # Examples
1897    ///
1898    /// ```
1899    /// # use zed::{Corners, Pixels};
1900    /// let corners = Corners {
1901    ///     top_left: Pixels(10.0),
1902    ///     top_right: Pixels(20.0),
1903    ///     bottom_right: Pixels(30.0),
1904    ///     bottom_left: Pixels(40.0),
1905    /// };
1906    /// let scaled_corners = corners.scale(2.0);
1907    /// assert_eq!(scaled_corners.top_left, ScaledPixels(20.0));
1908    /// assert_eq!(scaled_corners.top_right, ScaledPixels(40.0));
1909    /// assert_eq!(scaled_corners.bottom_right, ScaledPixels(60.0));
1910    /// assert_eq!(scaled_corners.bottom_left, ScaledPixels(80.0));
1911    /// ```
1912    pub fn scale(&self, factor: f32) -> Corners<ScaledPixels> {
1913        Corners {
1914            top_left: self.top_left.scale(factor),
1915            top_right: self.top_right.scale(factor),
1916            bottom_right: self.bottom_right.scale(factor),
1917            bottom_left: self.bottom_left.scale(factor),
1918        }
1919    }
1920
1921    /// Returns the maximum value of any corner.
1922    ///
1923    /// # Returns
1924    ///
1925    /// The maximum `Pixels` value among all four corners.
1926    pub fn max(&self) -> Pixels {
1927        self.top_left
1928            .max(self.top_right)
1929            .max(self.bottom_right)
1930            .max(self.bottom_left)
1931    }
1932}
1933
1934impl<T: Clone + Default + Debug> Corners<T> {
1935    /// Applies a function to each field of the `Corners`, producing a new `Corners<U>`.
1936    ///
1937    /// This method allows for converting a `Corners<T>` to a `Corners<U>` by specifying a closure
1938    /// that defines how to convert between the two types. The closure is applied to each field
1939    /// (`top_left`, `top_right`, `bottom_right`, `bottom_left`), resulting in new corners of the desired type.
1940    ///
1941    /// # Arguments
1942    ///
1943    /// * `f` - A closure that takes a reference to a value of type `T` and returns a value of type `U`.
1944    ///
1945    /// # Returns
1946    ///
1947    /// Returns a new `Corners<U>` with each field mapped by the provided function.
1948    ///
1949    /// # Examples
1950    ///
1951    /// ```
1952    /// # use zed::{Corners, Pixels};
1953    /// let corners = Corners {
1954    ///     top_left: Pixels(10.0),
1955    ///     top_right: Pixels(20.0),
1956    ///     bottom_right: Pixels(30.0),
1957    ///     bottom_left: Pixels(40.0),
1958    /// };
1959    /// let corners_in_rems = corners.map(|&px| Rems(px.0 / 16.0));
1960    /// assert_eq!(corners_in_rems, Corners {
1961    ///     top_left: Rems(0.625),
1962    ///     top_right: Rems(1.25),
1963    ///     bottom_right: Rems(1.875),
1964    ///     bottom_left: Rems(2.5),
1965    /// });
1966    /// ```
1967    pub fn map<U>(&self, f: impl Fn(&T) -> U) -> Corners<U>
1968    where
1969        U: Clone + Default + Debug,
1970    {
1971        Corners {
1972            top_left: f(&self.top_left),
1973            top_right: f(&self.top_right),
1974            bottom_right: f(&self.bottom_right),
1975            bottom_left: f(&self.bottom_left),
1976        }
1977    }
1978}
1979
1980impl<T> Mul for Corners<T>
1981where
1982    T: Mul<Output = T> + Clone + Default + Debug,
1983{
1984    type Output = Self;
1985
1986    fn mul(self, rhs: Self) -> Self::Output {
1987        Self {
1988            top_left: self.top_left.clone() * rhs.top_left,
1989            top_right: self.top_right.clone() * rhs.top_right,
1990            bottom_right: self.bottom_right.clone() * rhs.bottom_right,
1991            bottom_left: self.bottom_left.clone() * rhs.bottom_left,
1992        }
1993    }
1994}
1995
1996impl<T, S> MulAssign<S> for Corners<T>
1997where
1998    T: Mul<S, Output = T> + Clone + Default + Debug,
1999    S: Clone,
2000{
2001    fn mul_assign(&mut self, rhs: S) {
2002        self.top_left = self.top_left.clone() * rhs.clone();
2003        self.top_right = self.top_right.clone() * rhs.clone();
2004        self.bottom_right = self.bottom_right.clone() * rhs.clone();
2005        self.bottom_left = self.bottom_left.clone() * rhs;
2006    }
2007}
2008
2009impl<T> Copy for Corners<T> where T: Copy + Clone + Default + Debug {}
2010
2011impl From<f32> for Corners<Pixels> {
2012    fn from(val: f32) -> Self {
2013        Corners {
2014            top_left: val.into(),
2015            top_right: val.into(),
2016            bottom_right: val.into(),
2017            bottom_left: val.into(),
2018        }
2019    }
2020}
2021
2022impl From<Pixels> for Corners<Pixels> {
2023    fn from(val: Pixels) -> Self {
2024        Corners {
2025            top_left: val,
2026            top_right: val,
2027            bottom_right: val,
2028            bottom_left: val,
2029        }
2030    }
2031}
2032
2033/// Represents an angle in Radians
2034#[derive(
2035    Clone,
2036    Copy,
2037    Default,
2038    Add,
2039    AddAssign,
2040    Sub,
2041    SubAssign,
2042    Neg,
2043    Div,
2044    DivAssign,
2045    PartialEq,
2046    Serialize,
2047    Deserialize,
2048    Debug,
2049)]
2050#[repr(transparent)]
2051pub struct Radians(pub f32);
2052
2053/// Create a `Radian` from a raw value
2054pub fn radians(value: f32) -> Radians {
2055    Radians(value)
2056}
2057
2058/// A type representing a percentage value.
2059#[derive(
2060    Clone,
2061    Copy,
2062    Default,
2063    Add,
2064    AddAssign,
2065    Sub,
2066    SubAssign,
2067    Neg,
2068    Div,
2069    DivAssign,
2070    PartialEq,
2071    Serialize,
2072    Deserialize,
2073    Debug,
2074)]
2075#[repr(transparent)]
2076pub struct Percentage(pub f32);
2077
2078/// Generate a `Radian` from a percentage of a full circle.
2079pub fn percentage(value: f32) -> Percentage {
2080    debug_assert!(
2081        value >= 0.0 && value <= 1.0,
2082        "Percentage must be between 0 and 1"
2083    );
2084    Percentage(value)
2085}
2086
2087impl From<Percentage> for Radians {
2088    fn from(value: Percentage) -> Self {
2089        radians(value.0 * std::f32::consts::PI * 2.0)
2090    }
2091}
2092
2093/// Represents a length in pixels, the base unit of measurement in the UI framework.
2094///
2095/// `Pixels` is a value type that represents an absolute length in pixels, which is used
2096/// for specifying sizes, positions, and distances in the UI. It is the fundamental unit
2097/// of measurement for all visual elements and layout calculations.
2098///
2099/// The inner value is an `f32`, allowing for sub-pixel precision which can be useful for
2100/// anti-aliasing and animations. However, when applied to actual pixel grids, the value
2101/// is typically rounded to the nearest integer.
2102///
2103/// # Examples
2104///
2105/// ```
2106/// use zed::Pixels;
2107///
2108/// // Define a length of 10 pixels
2109/// let length = Pixels(10.0);
2110///
2111/// // Define a length and scale it by a factor of 2
2112/// let scaled_length = length.scale(2.0);
2113/// assert_eq!(scaled_length, Pixels(20.0));
2114/// ```
2115#[derive(
2116    Clone,
2117    Copy,
2118    Default,
2119    Add,
2120    AddAssign,
2121    Sub,
2122    SubAssign,
2123    Neg,
2124    Div,
2125    DivAssign,
2126    PartialEq,
2127    Serialize,
2128    Deserialize,
2129)]
2130#[repr(transparent)]
2131pub struct Pixels(pub f32);
2132
2133impl std::ops::Div for Pixels {
2134    type Output = f32;
2135
2136    fn div(self, rhs: Self) -> Self::Output {
2137        self.0 / rhs.0
2138    }
2139}
2140
2141impl std::ops::DivAssign for Pixels {
2142    fn div_assign(&mut self, rhs: Self) {
2143        *self = Self(self.0 / rhs.0);
2144    }
2145}
2146
2147impl std::ops::RemAssign for Pixels {
2148    fn rem_assign(&mut self, rhs: Self) {
2149        self.0 %= rhs.0;
2150    }
2151}
2152
2153impl std::ops::Rem for Pixels {
2154    type Output = Self;
2155
2156    fn rem(self, rhs: Self) -> Self {
2157        Self(self.0 % rhs.0)
2158    }
2159}
2160
2161impl Mul<f32> for Pixels {
2162    type Output = Pixels;
2163
2164    fn mul(self, other: f32) -> Pixels {
2165        Pixels(self.0 * other)
2166    }
2167}
2168
2169impl Mul<usize> for Pixels {
2170    type Output = Pixels;
2171
2172    fn mul(self, other: usize) -> Pixels {
2173        Pixels(self.0 * other as f32)
2174    }
2175}
2176
2177impl Mul<Pixels> for f32 {
2178    type Output = Pixels;
2179
2180    fn mul(self, rhs: Pixels) -> Self::Output {
2181        Pixels(self * rhs.0)
2182    }
2183}
2184
2185impl MulAssign<f32> for Pixels {
2186    fn mul_assign(&mut self, other: f32) {
2187        self.0 *= other;
2188    }
2189}
2190
2191impl Pixels {
2192    /// Represents zero pixels.
2193    pub const ZERO: Pixels = Pixels(0.0);
2194    /// The maximum value that can be represented by `Pixels`.
2195    pub const MAX: Pixels = Pixels(f32::MAX);
2196
2197    /// Floors the `Pixels` value to the nearest whole number.
2198    ///
2199    /// # Returns
2200    ///
2201    /// Returns a new `Pixels` instance with the floored value.
2202    pub fn floor(&self) -> Self {
2203        Self(self.0.floor())
2204    }
2205
2206    /// Rounds the `Pixels` value to the nearest whole number.
2207    ///
2208    /// # Returns
2209    ///
2210    /// Returns a new `Pixels` instance with the rounded value.
2211    pub fn round(&self) -> Self {
2212        Self(self.0.round())
2213    }
2214
2215    /// Returns the ceiling of the `Pixels` value to the nearest whole number.
2216    ///
2217    /// # Returns
2218    ///
2219    /// Returns a new `Pixels` instance with the ceiling value.
2220    pub fn ceil(&self) -> Self {
2221        Self(self.0.ceil())
2222    }
2223
2224    /// Scales the `Pixels` value by a given factor, producing `ScaledPixels`.
2225    ///
2226    /// This method is used when adjusting pixel values for display scaling factors,
2227    /// such as high DPI (dots per inch) or Retina displays, where the pixel density is higher and
2228    /// thus requires scaling to maintain visual consistency and readability.
2229    ///
2230    /// The resulting `ScaledPixels` represent the scaled value which can be used for rendering
2231    /// calculations where display scaling is considered.
2232    pub fn scale(&self, factor: f32) -> ScaledPixels {
2233        ScaledPixels(self.0 * factor)
2234    }
2235
2236    /// Raises the `Pixels` value to a given power.
2237    ///
2238    /// # Arguments
2239    ///
2240    /// * `exponent` - The exponent to raise the `Pixels` value by.
2241    ///
2242    /// # Returns
2243    ///
2244    /// Returns a new `Pixels` instance with the value raised to the given exponent.
2245    pub fn pow(&self, exponent: f32) -> Self {
2246        Self(self.0.powf(exponent))
2247    }
2248
2249    /// Returns the absolute value of the `Pixels`.
2250    ///
2251    /// # Returns
2252    ///
2253    /// A new `Pixels` instance with the absolute value of the original `Pixels`.
2254    pub fn abs(&self) -> Self {
2255        Self(self.0.abs())
2256    }
2257}
2258
2259impl Mul<Pixels> for Pixels {
2260    type Output = Pixels;
2261
2262    fn mul(self, rhs: Pixels) -> Self::Output {
2263        Pixels(self.0 * rhs.0)
2264    }
2265}
2266
2267impl Eq for Pixels {}
2268
2269impl PartialOrd for Pixels {
2270    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2271        Some(self.cmp(other))
2272    }
2273}
2274
2275impl Ord for Pixels {
2276    fn cmp(&self, other: &Self) -> cmp::Ordering {
2277        self.0.total_cmp(&other.0)
2278    }
2279}
2280
2281impl std::hash::Hash for Pixels {
2282    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
2283        self.0.to_bits().hash(state);
2284    }
2285}
2286
2287impl From<f64> for Pixels {
2288    fn from(pixels: f64) -> Self {
2289        Pixels(pixels as f32)
2290    }
2291}
2292
2293impl From<f32> for Pixels {
2294    fn from(pixels: f32) -> Self {
2295        Pixels(pixels)
2296    }
2297}
2298
2299impl Debug for Pixels {
2300    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2301        write!(f, "{} px", self.0)
2302    }
2303}
2304
2305impl From<Pixels> for f32 {
2306    fn from(pixels: Pixels) -> Self {
2307        pixels.0
2308    }
2309}
2310
2311impl From<&Pixels> for f32 {
2312    fn from(pixels: &Pixels) -> Self {
2313        pixels.0
2314    }
2315}
2316
2317impl From<Pixels> for f64 {
2318    fn from(pixels: Pixels) -> Self {
2319        pixels.0 as f64
2320    }
2321}
2322
2323impl From<Pixels> for u32 {
2324    fn from(pixels: Pixels) -> Self {
2325        pixels.0 as u32
2326    }
2327}
2328
2329impl From<u32> for Pixels {
2330    fn from(pixels: u32) -> Self {
2331        Pixels(pixels as f32)
2332    }
2333}
2334
2335impl From<Pixels> for usize {
2336    fn from(pixels: Pixels) -> Self {
2337        pixels.0 as usize
2338    }
2339}
2340
2341impl From<usize> for Pixels {
2342    fn from(pixels: usize) -> Self {
2343        Pixels(pixels as f32)
2344    }
2345}
2346
2347/// Represents physical pixels on the display.
2348///
2349/// `DevicePixels` is a unit of measurement that refers to the actual pixels on a device's screen.
2350/// This type is used when precise pixel manipulation is required, such as rendering graphics or
2351/// interfacing with hardware that operates on the pixel level. Unlike logical pixels that may be
2352/// affected by the device's scale factor, `DevicePixels` always correspond to real pixels on the
2353/// display.
2354#[derive(
2355    Add, AddAssign, Clone, Copy, Default, Div, Eq, Hash, Ord, PartialEq, PartialOrd, Sub, SubAssign,
2356)]
2357#[repr(transparent)]
2358pub struct DevicePixels(pub(crate) i32);
2359
2360impl DevicePixels {
2361    /// Converts the `DevicePixels` value to the number of bytes needed to represent it in memory.
2362    ///
2363    /// This function is useful when working with graphical data that needs to be stored in a buffer,
2364    /// such as images or framebuffers, where each pixel may be represented by a specific number of bytes.
2365    ///
2366    /// # Arguments
2367    ///
2368    /// * `bytes_per_pixel` - The number of bytes used to represent a single pixel.
2369    ///
2370    /// # Returns
2371    ///
2372    /// The number of bytes required to represent the `DevicePixels` value in memory.
2373    ///
2374    /// # Examples
2375    ///
2376    /// ```
2377    /// # use zed::DevicePixels;
2378    /// let pixels = DevicePixels(10); // 10 device pixels
2379    /// let bytes_per_pixel = 4; // Assume each pixel is represented by 4 bytes (e.g., RGBA)
2380    /// let total_bytes = pixels.to_bytes(bytes_per_pixel);
2381    /// assert_eq!(total_bytes, 40); // 10 pixels * 4 bytes/pixel = 40 bytes
2382    /// ```
2383    pub fn to_bytes(&self, bytes_per_pixel: u8) -> u32 {
2384        self.0 as u32 * bytes_per_pixel as u32
2385    }
2386}
2387
2388impl fmt::Debug for DevicePixels {
2389    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2390        write!(f, "{} px (device)", self.0)
2391    }
2392}
2393
2394impl From<DevicePixels> for i32 {
2395    fn from(device_pixels: DevicePixels) -> Self {
2396        device_pixels.0
2397    }
2398}
2399
2400impl From<i32> for DevicePixels {
2401    fn from(device_pixels: i32) -> Self {
2402        DevicePixels(device_pixels)
2403    }
2404}
2405
2406impl From<u32> for DevicePixels {
2407    fn from(device_pixels: u32) -> Self {
2408        DevicePixels(device_pixels as i32)
2409    }
2410}
2411
2412impl From<DevicePixels> for u32 {
2413    fn from(device_pixels: DevicePixels) -> Self {
2414        device_pixels.0 as u32
2415    }
2416}
2417
2418impl From<DevicePixels> for u64 {
2419    fn from(device_pixels: DevicePixels) -> Self {
2420        device_pixels.0 as u64
2421    }
2422}
2423
2424impl From<u64> for DevicePixels {
2425    fn from(device_pixels: u64) -> Self {
2426        DevicePixels(device_pixels as i32)
2427    }
2428}
2429
2430impl From<DevicePixels> for usize {
2431    fn from(device_pixels: DevicePixels) -> Self {
2432        device_pixels.0 as usize
2433    }
2434}
2435
2436impl From<usize> for DevicePixels {
2437    fn from(device_pixels: usize) -> Self {
2438        DevicePixels(device_pixels as i32)
2439    }
2440}
2441
2442/// Represents scaled pixels that take into account the device's scale factor.
2443///
2444/// `ScaledPixels` are used to ensure that UI elements appear at the correct size on devices
2445/// with different pixel densities. When a device has a higher scale factor (such as Retina displays),
2446/// a single logical pixel may correspond to multiple physical pixels. By using `ScaledPixels`,
2447/// dimensions and positions can be specified in a way that scales appropriately across different
2448/// display resolutions.
2449#[derive(Clone, Copy, Default, Add, AddAssign, Sub, SubAssign, Div, PartialEq, PartialOrd)]
2450#[repr(transparent)]
2451pub struct ScaledPixels(pub(crate) f32);
2452
2453impl ScaledPixels {
2454    /// Floors the `ScaledPixels` value to the nearest whole number.
2455    ///
2456    /// # Returns
2457    ///
2458    /// Returns a new `ScaledPixels` instance with the floored value.
2459    pub fn floor(&self) -> Self {
2460        Self(self.0.floor())
2461    }
2462
2463    /// Rounds the `ScaledPixels` value to the nearest whole number.
2464    ///
2465    /// # Returns
2466    ///
2467    /// Returns a new `ScaledPixels` instance with the rounded value.
2468    pub fn ceil(&self) -> Self {
2469        Self(self.0.ceil())
2470    }
2471}
2472
2473impl Eq for ScaledPixels {}
2474
2475impl Debug for ScaledPixels {
2476    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2477        write!(f, "{} px (scaled)", self.0)
2478    }
2479}
2480
2481impl From<ScaledPixels> for DevicePixels {
2482    fn from(scaled: ScaledPixels) -> Self {
2483        DevicePixels(scaled.0.ceil() as i32)
2484    }
2485}
2486
2487impl From<DevicePixels> for ScaledPixels {
2488    fn from(device: DevicePixels) -> Self {
2489        ScaledPixels(device.0 as f32)
2490    }
2491}
2492
2493impl From<ScaledPixels> for f64 {
2494    fn from(scaled_pixels: ScaledPixels) -> Self {
2495        scaled_pixels.0 as f64
2496    }
2497}
2498
2499/// Represents a length in rems, a unit based on the font-size of the window, which can be assigned with [`WindowContext::set_rem_size`][set_rem_size].
2500///
2501/// Rems are used for defining lengths that are scalable and consistent across different UI elements.
2502/// The value of `1rem` is typically equal to the font-size of the root element (often the `<html>` element in browsers),
2503/// making it a flexible unit that adapts to the user's text size preferences. In this framework, `rems` serve a similar
2504/// purpose, allowing for scalable and accessible design that can adjust to different display settings or user preferences.
2505///
2506/// For example, if the root element's font-size is `16px`, then `1rem` equals `16px`. A length of `2rems` would then be `32px`.
2507///
2508/// [set_rem_size]: crate::WindowContext::set_rem_size
2509#[derive(Clone, Copy, Default, Add, Sub, Mul, Div, Neg, PartialEq)]
2510pub struct Rems(pub f32);
2511
2512impl Rems {
2513    /// Convert this Rem value to pixels.
2514    pub fn to_pixels(&self, rem_size: Pixels) -> Pixels {
2515        *self * rem_size
2516    }
2517}
2518
2519impl Mul<Pixels> for Rems {
2520    type Output = Pixels;
2521
2522    fn mul(self, other: Pixels) -> Pixels {
2523        Pixels(self.0 * other.0)
2524    }
2525}
2526
2527impl Debug for Rems {
2528    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2529        write!(f, "{} rem", self.0)
2530    }
2531}
2532
2533/// Represents an absolute length in pixels or rems.
2534///
2535/// `AbsoluteLength` can be either a fixed number of pixels, which is an absolute measurement not
2536/// affected by the current font size, or a number of rems, which is relative to the font size of
2537/// the root element. It is used for specifying dimensions that are either independent of or
2538/// related to the typographic scale.
2539#[derive(Clone, Copy, Debug, Neg, PartialEq)]
2540pub enum AbsoluteLength {
2541    /// A length in pixels.
2542    Pixels(Pixels),
2543    /// A length in rems.
2544    Rems(Rems),
2545}
2546
2547impl AbsoluteLength {
2548    /// Checks if the absolute length is zero.
2549    pub fn is_zero(&self) -> bool {
2550        match self {
2551            AbsoluteLength::Pixels(px) => px.0 == 0.0,
2552            AbsoluteLength::Rems(rems) => rems.0 == 0.0,
2553        }
2554    }
2555}
2556
2557impl From<Pixels> for AbsoluteLength {
2558    fn from(pixels: Pixels) -> Self {
2559        AbsoluteLength::Pixels(pixels)
2560    }
2561}
2562
2563impl From<Rems> for AbsoluteLength {
2564    fn from(rems: Rems) -> Self {
2565        AbsoluteLength::Rems(rems)
2566    }
2567}
2568
2569impl AbsoluteLength {
2570    /// Converts an `AbsoluteLength` to `Pixels` based on a given `rem_size`.
2571    ///
2572    /// # Arguments
2573    ///
2574    /// * `rem_size` - The size of one rem in pixels.
2575    ///
2576    /// # Returns
2577    ///
2578    /// Returns the `AbsoluteLength` as `Pixels`.
2579    ///
2580    /// # Examples
2581    ///
2582    /// ```
2583    /// # use zed::{AbsoluteLength, Pixels};
2584    /// let length_in_pixels = AbsoluteLength::Pixels(Pixels(42.0));
2585    /// let length_in_rems = AbsoluteLength::Rems(Rems(2.0));
2586    /// let rem_size = Pixels(16.0);
2587    ///
2588    /// assert_eq!(length_in_pixels.to_pixels(rem_size), Pixels(42.0));
2589    /// assert_eq!(length_in_rems.to_pixels(rem_size), Pixels(32.0));
2590    /// ```
2591    pub fn to_pixels(&self, rem_size: Pixels) -> Pixels {
2592        match self {
2593            AbsoluteLength::Pixels(pixels) => *pixels,
2594            AbsoluteLength::Rems(rems) => rems.to_pixels(rem_size),
2595        }
2596    }
2597}
2598
2599impl Default for AbsoluteLength {
2600    fn default() -> Self {
2601        px(0.).into()
2602    }
2603}
2604
2605/// A non-auto length that can be defined in pixels, rems, or percent of parent.
2606///
2607/// This enum represents lengths that have a specific value, as opposed to lengths that are automatically
2608/// determined by the context. It includes absolute lengths in pixels or rems, and relative lengths as a
2609/// fraction of the parent's size.
2610#[derive(Clone, Copy, Neg, PartialEq)]
2611pub enum DefiniteLength {
2612    /// An absolute length specified in pixels or rems.
2613    Absolute(AbsoluteLength),
2614    /// A relative length specified as a fraction of the parent's size, between 0 and 1.
2615    Fraction(f32),
2616}
2617
2618impl DefiniteLength {
2619    /// Converts the `DefiniteLength` to `Pixels` based on a given `base_size` and `rem_size`.
2620    ///
2621    /// If the `DefiniteLength` is an absolute length, it will be directly converted to `Pixels`.
2622    /// If it is a fraction, the fraction will be multiplied by the `base_size` to get the length in pixels.
2623    ///
2624    /// # Arguments
2625    ///
2626    /// * `base_size` - The base size in `AbsoluteLength` to which the fraction will be applied.
2627    /// * `rem_size` - The size of one rem in pixels, used to convert rems to pixels.
2628    ///
2629    /// # Returns
2630    ///
2631    /// Returns the `DefiniteLength` as `Pixels`.
2632    ///
2633    /// # Examples
2634    ///
2635    /// ```
2636    /// # use zed::{DefiniteLength, AbsoluteLength, Pixels, px, rems};
2637    /// let length_in_pixels = DefiniteLength::Absolute(AbsoluteLength::Pixels(px(42.0)));
2638    /// let length_in_rems = DefiniteLength::Absolute(AbsoluteLength::Rems(rems(2.0)));
2639    /// let length_as_fraction = DefiniteLength::Fraction(0.5);
2640    /// let base_size = AbsoluteLength::Pixels(px(100.0));
2641    /// let rem_size = px(16.0);
2642    ///
2643    /// assert_eq!(length_in_pixels.to_pixels(base_size, rem_size), Pixels(42.0));
2644    /// assert_eq!(length_in_rems.to_pixels(base_size, rem_size), Pixels(32.0));
2645    /// assert_eq!(length_as_fraction.to_pixels(base_size, rem_size), Pixels(50.0));
2646    /// ```
2647    pub fn to_pixels(&self, base_size: AbsoluteLength, rem_size: Pixels) -> Pixels {
2648        match self {
2649            DefiniteLength::Absolute(size) => size.to_pixels(rem_size),
2650            DefiniteLength::Fraction(fraction) => match base_size {
2651                AbsoluteLength::Pixels(px) => px * *fraction,
2652                AbsoluteLength::Rems(rems) => rems * rem_size * *fraction,
2653            },
2654        }
2655    }
2656}
2657
2658impl Debug for DefiniteLength {
2659    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2660        match self {
2661            DefiniteLength::Absolute(length) => Debug::fmt(length, f),
2662            DefiniteLength::Fraction(fract) => write!(f, "{}%", (fract * 100.0) as i32),
2663        }
2664    }
2665}
2666
2667impl From<Pixels> for DefiniteLength {
2668    fn from(pixels: Pixels) -> Self {
2669        Self::Absolute(pixels.into())
2670    }
2671}
2672
2673impl From<Rems> for DefiniteLength {
2674    fn from(rems: Rems) -> Self {
2675        Self::Absolute(rems.into())
2676    }
2677}
2678
2679impl From<AbsoluteLength> for DefiniteLength {
2680    fn from(length: AbsoluteLength) -> Self {
2681        Self::Absolute(length)
2682    }
2683}
2684
2685impl Default for DefiniteLength {
2686    fn default() -> Self {
2687        Self::Absolute(AbsoluteLength::default())
2688    }
2689}
2690
2691/// A length that can be defined in pixels, rems, percent of parent, or auto.
2692#[derive(Clone, Copy)]
2693pub enum Length {
2694    /// A definite length specified either in pixels, rems, or as a fraction of the parent's size.
2695    Definite(DefiniteLength),
2696    /// An automatic length that is determined by the context in which it is used.
2697    Auto,
2698}
2699
2700impl Debug for Length {
2701    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2702        match self {
2703            Length::Definite(definite_length) => write!(f, "{:?}", definite_length),
2704            Length::Auto => write!(f, "auto"),
2705        }
2706    }
2707}
2708
2709/// Constructs a `DefiniteLength` representing a relative fraction of a parent size.
2710///
2711/// This function creates a `DefiniteLength` that is a specified fraction of a parent's dimension.
2712/// The fraction should be a floating-point number between 0.0 and 1.0, where 1.0 represents 100% of the parent's size.
2713///
2714/// # Arguments
2715///
2716/// * `fraction` - The fraction of the parent's size, between 0.0 and 1.0.
2717///
2718/// # Returns
2719///
2720/// A `DefiniteLength` representing the relative length as a fraction of the parent's size.
2721pub fn relative(fraction: f32) -> DefiniteLength {
2722    DefiniteLength::Fraction(fraction)
2723}
2724
2725/// Returns the Golden Ratio, i.e. `~(1.0 + sqrt(5.0)) / 2.0`.
2726pub fn phi() -> DefiniteLength {
2727    relative(1.618_034)
2728}
2729
2730/// Constructs a `Rems` value representing a length in rems.
2731///
2732/// # Arguments
2733///
2734/// * `rems` - The number of rems for the length.
2735///
2736/// # Returns
2737///
2738/// A `Rems` representing the specified number of rems.
2739pub fn rems(rems: f32) -> Rems {
2740    Rems(rems)
2741}
2742
2743/// Constructs a `Pixels` value representing a length in pixels.
2744///
2745/// # Arguments
2746///
2747/// * `pixels` - The number of pixels for the length.
2748///
2749/// # Returns
2750///
2751/// A `Pixels` representing the specified number of pixels.
2752pub const fn px(pixels: f32) -> Pixels {
2753    Pixels(pixels)
2754}
2755
2756/// Returns a `Length` representing an automatic length.
2757///
2758/// The `auto` length is often used in layout calculations where the length should be determined
2759/// by the layout context itself rather than being explicitly set. This is commonly used in CSS
2760/// for properties like `width`, `height`, `margin`, `padding`, etc., where `auto` can be used
2761/// to instruct the layout engine to calculate the size based on other factors like the size of the
2762/// container or the intrinsic size of the content.
2763///
2764/// # Returns
2765///
2766/// A `Length` variant set to `Auto`.
2767pub fn auto() -> Length {
2768    Length::Auto
2769}
2770
2771impl From<Pixels> for Length {
2772    fn from(pixels: Pixels) -> Self {
2773        Self::Definite(pixels.into())
2774    }
2775}
2776
2777impl From<Rems> for Length {
2778    fn from(rems: Rems) -> Self {
2779        Self::Definite(rems.into())
2780    }
2781}
2782
2783impl From<DefiniteLength> for Length {
2784    fn from(length: DefiniteLength) -> Self {
2785        Self::Definite(length)
2786    }
2787}
2788
2789impl From<AbsoluteLength> for Length {
2790    fn from(length: AbsoluteLength) -> Self {
2791        Self::Definite(length.into())
2792    }
2793}
2794
2795impl Default for Length {
2796    fn default() -> Self {
2797        Self::Definite(DefiniteLength::default())
2798    }
2799}
2800
2801impl From<()> for Length {
2802    fn from(_: ()) -> Self {
2803        Self::Definite(DefiniteLength::default())
2804    }
2805}
2806
2807/// Provides a trait for types that can calculate half of their value.
2808///
2809/// The `Half` trait is used for types that can be evenly divided, returning a new instance of the same type
2810/// representing half of the original value. This is commonly used for types that represent measurements or sizes,
2811/// such as lengths or pixels, where halving is a frequent operation during layout calculations or animations.
2812pub trait Half {
2813    /// Returns half of the current value.
2814    ///
2815    /// # Returns
2816    ///
2817    /// A new instance of the implementing type, representing half of the original value.
2818    fn half(&self) -> Self;
2819}
2820
2821impl Half for i32 {
2822    fn half(&self) -> Self {
2823        self / 2
2824    }
2825}
2826
2827impl Half for f32 {
2828    fn half(&self) -> Self {
2829        self / 2.
2830    }
2831}
2832
2833impl Half for DevicePixels {
2834    fn half(&self) -> Self {
2835        Self(self.0 / 2)
2836    }
2837}
2838
2839impl Half for ScaledPixels {
2840    fn half(&self) -> Self {
2841        Self(self.0 / 2.)
2842    }
2843}
2844
2845impl Half for Pixels {
2846    fn half(&self) -> Self {
2847        Self(self.0 / 2.)
2848    }
2849}
2850
2851impl Half for Rems {
2852    fn half(&self) -> Self {
2853        Self(self.0 / 2.)
2854    }
2855}
2856
2857/// Provides a trait for types that can negate their values.
2858pub trait Negate {
2859    /// Returns the negation of the given value
2860    fn negate(self) -> Self;
2861}
2862
2863impl Negate for i32 {
2864    fn negate(self) -> Self {
2865        -self
2866    }
2867}
2868
2869impl Negate for f32 {
2870    fn negate(self) -> Self {
2871        -self
2872    }
2873}
2874
2875impl Negate for DevicePixels {
2876    fn negate(self) -> Self {
2877        Self(-self.0)
2878    }
2879}
2880
2881impl Negate for ScaledPixels {
2882    fn negate(self) -> Self {
2883        Self(-self.0)
2884    }
2885}
2886
2887impl Negate for Pixels {
2888    fn negate(self) -> Self {
2889        Self(-self.0)
2890    }
2891}
2892
2893impl Negate for Rems {
2894    fn negate(self) -> Self {
2895        Self(-self.0)
2896    }
2897}
2898
2899/// A trait for checking if a value is zero.
2900///
2901/// This trait provides a method to determine if a value is considered to be zero.
2902/// It is implemented for various numeric and length-related types where the concept
2903/// of zero is applicable. This can be useful for comparisons, optimizations, or
2904/// determining if an operation has a neutral effect.
2905pub trait IsZero {
2906    /// Determines if the value is zero.
2907    ///
2908    /// # Returns
2909    ///
2910    /// Returns `true` if the value is zero, `false` otherwise.
2911    fn is_zero(&self) -> bool;
2912}
2913
2914impl IsZero for DevicePixels {
2915    fn is_zero(&self) -> bool {
2916        self.0 == 0
2917    }
2918}
2919
2920impl IsZero for ScaledPixels {
2921    fn is_zero(&self) -> bool {
2922        self.0 == 0.
2923    }
2924}
2925
2926impl IsZero for Pixels {
2927    fn is_zero(&self) -> bool {
2928        self.0 == 0.
2929    }
2930}
2931
2932impl IsZero for Rems {
2933    fn is_zero(&self) -> bool {
2934        self.0 == 0.
2935    }
2936}
2937
2938impl IsZero for AbsoluteLength {
2939    fn is_zero(&self) -> bool {
2940        match self {
2941            AbsoluteLength::Pixels(pixels) => pixels.is_zero(),
2942            AbsoluteLength::Rems(rems) => rems.is_zero(),
2943        }
2944    }
2945}
2946
2947impl IsZero for DefiniteLength {
2948    fn is_zero(&self) -> bool {
2949        match self {
2950            DefiniteLength::Absolute(length) => length.is_zero(),
2951            DefiniteLength::Fraction(fraction) => *fraction == 0.,
2952        }
2953    }
2954}
2955
2956impl IsZero for Length {
2957    fn is_zero(&self) -> bool {
2958        match self {
2959            Length::Definite(length) => length.is_zero(),
2960            Length::Auto => false,
2961        }
2962    }
2963}
2964
2965impl<T: IsZero + Debug + Clone + Default> IsZero for Point<T> {
2966    fn is_zero(&self) -> bool {
2967        self.x.is_zero() && self.y.is_zero()
2968    }
2969}
2970
2971impl<T> IsZero for Size<T>
2972where
2973    T: IsZero + Default + Debug + Clone,
2974{
2975    fn is_zero(&self) -> bool {
2976        self.width.is_zero() || self.height.is_zero()
2977    }
2978}
2979
2980impl<T: IsZero + Debug + Clone + Default> IsZero for Bounds<T> {
2981    fn is_zero(&self) -> bool {
2982        self.size.is_zero()
2983    }
2984}
2985
2986impl<T> IsZero for Corners<T>
2987where
2988    T: IsZero + Clone + Default + Debug,
2989{
2990    fn is_zero(&self) -> bool {
2991        self.top_left.is_zero()
2992            && self.top_right.is_zero()
2993            && self.bottom_right.is_zero()
2994            && self.bottom_left.is_zero()
2995    }
2996}
2997
2998#[cfg(test)]
2999mod tests {
3000    use super::*;
3001
3002    #[test]
3003    fn test_bounds_intersects() {
3004        let bounds1 = Bounds {
3005            origin: Point { x: 0.0, y: 0.0 },
3006            size: Size {
3007                width: 5.0,
3008                height: 5.0,
3009            },
3010        };
3011        let bounds2 = Bounds {
3012            origin: Point { x: 4.0, y: 4.0 },
3013            size: Size {
3014                width: 5.0,
3015                height: 5.0,
3016            },
3017        };
3018        let bounds3 = Bounds {
3019            origin: Point { x: 10.0, y: 10.0 },
3020            size: Size {
3021                width: 5.0,
3022                height: 5.0,
3023            },
3024        };
3025
3026        // Test Case 1: Intersecting bounds
3027        assert_eq!(bounds1.intersects(&bounds2), true);
3028
3029        // Test Case 2: Non-Intersecting bounds
3030        assert_eq!(bounds1.intersects(&bounds3), false);
3031
3032        // Test Case 3: Bounds intersecting with themselves
3033        assert_eq!(bounds1.intersects(&bounds1), true);
3034    }
3035}