1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size,
15 StrikethroughStyle, Style, SubscriberSet, Subscription, TaffyLayoutEngine, Task, TextStyle,
16 TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle, WindowAppearance,
17 WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations, WindowOptions,
18 WindowParams, WindowTextSystem, point, prelude::*, px, rems, size, transparent_black,
19};
20use anyhow::{Context as _, Result, anyhow};
21use collections::{FxHashMap, FxHashSet};
22#[cfg(target_os = "macos")]
23use core_video::pixel_buffer::CVPixelBuffer;
24use derive_more::{Deref, DerefMut};
25use futures::FutureExt;
26use futures::channel::oneshot;
27use itertools::FoldWhile::{Continue, Done};
28use itertools::Itertools;
29use parking_lot::RwLock;
30use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
31use refineable::Refineable;
32use slotmap::SlotMap;
33use smallvec::SmallVec;
34use std::{
35 any::{Any, TypeId},
36 borrow::Cow,
37 cell::{Cell, RefCell},
38 cmp,
39 fmt::{Debug, Display},
40 hash::{Hash, Hasher},
41 marker::PhantomData,
42 mem,
43 ops::{DerefMut, Range},
44 rc::Rc,
45 sync::{
46 Arc, Weak,
47 atomic::{AtomicUsize, Ordering::SeqCst},
48 },
49 time::{Duration, Instant},
50};
51use util::post_inc;
52use util::{ResultExt, measure};
53use uuid::Uuid;
54
55mod prompts;
56
57use crate::util::atomic_incr_if_not_zero;
58pub use prompts::*;
59
60pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
61
62/// Represents the two different phases when dispatching events.
63#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
64pub enum DispatchPhase {
65 /// After the capture phase comes the bubble phase, in which mouse event listeners are
66 /// invoked front to back and keyboard event listeners are invoked from the focused element
67 /// to the root of the element tree. This is the phase you'll most commonly want to use when
68 /// registering event listeners.
69 #[default]
70 Bubble,
71 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
72 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
73 /// is used for special purposes such as clearing the "pressed" state for click events. If
74 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
75 /// outside of the immediate region may rely on detecting non-local events during this phase.
76 Capture,
77}
78
79impl DispatchPhase {
80 /// Returns true if this represents the "bubble" phase.
81 pub fn bubble(self) -> bool {
82 self == DispatchPhase::Bubble
83 }
84
85 /// Returns true if this represents the "capture" phase.
86 pub fn capture(self) -> bool {
87 self == DispatchPhase::Capture
88 }
89}
90
91struct WindowInvalidatorInner {
92 pub dirty: bool,
93 pub draw_phase: DrawPhase,
94 pub dirty_views: FxHashSet<EntityId>,
95}
96
97#[derive(Clone)]
98pub(crate) struct WindowInvalidator {
99 inner: Rc<RefCell<WindowInvalidatorInner>>,
100}
101
102impl WindowInvalidator {
103 pub fn new() -> Self {
104 WindowInvalidator {
105 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
106 dirty: true,
107 draw_phase: DrawPhase::None,
108 dirty_views: FxHashSet::default(),
109 })),
110 }
111 }
112
113 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
114 let mut inner = self.inner.borrow_mut();
115 inner.dirty_views.insert(entity);
116 if inner.draw_phase == DrawPhase::None {
117 inner.dirty = true;
118 cx.push_effect(Effect::Notify { emitter: entity });
119 true
120 } else {
121 false
122 }
123 }
124
125 pub fn is_dirty(&self) -> bool {
126 self.inner.borrow().dirty
127 }
128
129 pub fn set_dirty(&self, dirty: bool) {
130 self.inner.borrow_mut().dirty = dirty
131 }
132
133 pub fn set_phase(&self, phase: DrawPhase) {
134 self.inner.borrow_mut().draw_phase = phase
135 }
136
137 pub fn take_views(&self) -> FxHashSet<EntityId> {
138 mem::take(&mut self.inner.borrow_mut().dirty_views)
139 }
140
141 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
142 self.inner.borrow_mut().dirty_views = views;
143 }
144
145 pub fn not_drawing(&self) -> bool {
146 self.inner.borrow().draw_phase == DrawPhase::None
147 }
148
149 #[track_caller]
150 pub fn debug_assert_paint(&self) {
151 debug_assert!(
152 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
153 "this method can only be called during paint"
154 );
155 }
156
157 #[track_caller]
158 pub fn debug_assert_prepaint(&self) {
159 debug_assert!(
160 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
161 "this method can only be called during request_layout, or prepaint"
162 );
163 }
164
165 #[track_caller]
166 pub fn debug_assert_paint_or_prepaint(&self) {
167 debug_assert!(
168 matches!(
169 self.inner.borrow().draw_phase,
170 DrawPhase::Paint | DrawPhase::Prepaint
171 ),
172 "this method can only be called during request_layout, prepaint, or paint"
173 );
174 }
175}
176
177type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
178
179pub(crate) type AnyWindowFocusListener =
180 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
181
182pub(crate) struct WindowFocusEvent {
183 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
184 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
185}
186
187impl WindowFocusEvent {
188 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
189 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
190 }
191
192 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
193 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
194 }
195}
196
197/// This is provided when subscribing for `Context::on_focus_out` events.
198pub struct FocusOutEvent {
199 /// A weak focus handle representing what was blurred.
200 pub blurred: WeakFocusHandle,
201}
202
203slotmap::new_key_type! {
204 /// A globally unique identifier for a focusable element.
205 pub struct FocusId;
206}
207
208thread_local! {
209 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
210}
211
212/// Returned when the element arena has been used and so must be cleared before the next draw.
213#[must_use]
214pub struct ArenaClearNeeded;
215
216impl ArenaClearNeeded {
217 /// Clear the element arena.
218 pub fn clear(self) {
219 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
220 element_arena.clear();
221 });
222 }
223}
224
225pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
226
227impl FocusId {
228 /// Obtains whether the element associated with this handle is currently focused.
229 pub fn is_focused(&self, window: &Window) -> bool {
230 window.focus == Some(*self)
231 }
232
233 /// Obtains whether the element associated with this handle contains the focused
234 /// element or is itself focused.
235 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
236 window
237 .focused(cx)
238 .map_or(false, |focused| self.contains(focused.id, window))
239 }
240
241 /// Obtains whether the element associated with this handle is contained within the
242 /// focused element or is itself focused.
243 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
244 let focused = window.focused(cx);
245 focused.map_or(false, |focused| focused.id.contains(*self, window))
246 }
247
248 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
249 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
250 window
251 .rendered_frame
252 .dispatch_tree
253 .focus_contains(*self, other)
254 }
255}
256
257/// A handle which can be used to track and manipulate the focused element in a window.
258pub struct FocusHandle {
259 pub(crate) id: FocusId,
260 handles: Arc<FocusMap>,
261}
262
263impl std::fmt::Debug for FocusHandle {
264 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
265 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
266 }
267}
268
269impl FocusHandle {
270 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
271 let id = handles.write().insert(AtomicUsize::new(1));
272 Self {
273 id,
274 handles: handles.clone(),
275 }
276 }
277
278 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
279 let lock = handles.read();
280 let ref_count = lock.get(id)?;
281 if atomic_incr_if_not_zero(ref_count) == 0 {
282 return None;
283 }
284 Some(Self {
285 id,
286 handles: handles.clone(),
287 })
288 }
289
290 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
291 pub fn downgrade(&self) -> WeakFocusHandle {
292 WeakFocusHandle {
293 id: self.id,
294 handles: Arc::downgrade(&self.handles),
295 }
296 }
297
298 /// Moves the focus to the element associated with this handle.
299 pub fn focus(&self, window: &mut Window) {
300 window.focus(self)
301 }
302
303 /// Obtains whether the element associated with this handle is currently focused.
304 pub fn is_focused(&self, window: &Window) -> bool {
305 self.id.is_focused(window)
306 }
307
308 /// Obtains whether the element associated with this handle contains the focused
309 /// element or is itself focused.
310 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
311 self.id.contains_focused(window, cx)
312 }
313
314 /// Obtains whether the element associated with this handle is contained within the
315 /// focused element or is itself focused.
316 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
317 self.id.within_focused(window, cx)
318 }
319
320 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
321 pub fn contains(&self, other: &Self, window: &Window) -> bool {
322 self.id.contains(other.id, window)
323 }
324
325 /// Dispatch an action on the element that rendered this focus handle
326 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
327 if let Some(node_id) = window
328 .rendered_frame
329 .dispatch_tree
330 .focusable_node_id(self.id)
331 {
332 window.dispatch_action_on_node(node_id, action, cx)
333 }
334 }
335}
336
337impl Clone for FocusHandle {
338 fn clone(&self) -> Self {
339 Self::for_id(self.id, &self.handles).unwrap()
340 }
341}
342
343impl PartialEq for FocusHandle {
344 fn eq(&self, other: &Self) -> bool {
345 self.id == other.id
346 }
347}
348
349impl Eq for FocusHandle {}
350
351impl Drop for FocusHandle {
352 fn drop(&mut self) {
353 self.handles
354 .read()
355 .get(self.id)
356 .unwrap()
357 .fetch_sub(1, SeqCst);
358 }
359}
360
361/// A weak reference to a focus handle.
362#[derive(Clone, Debug)]
363pub struct WeakFocusHandle {
364 pub(crate) id: FocusId,
365 pub(crate) handles: Weak<FocusMap>,
366}
367
368impl WeakFocusHandle {
369 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
370 pub fn upgrade(&self) -> Option<FocusHandle> {
371 let handles = self.handles.upgrade()?;
372 FocusHandle::for_id(self.id, &handles)
373 }
374}
375
376impl PartialEq for WeakFocusHandle {
377 fn eq(&self, other: &WeakFocusHandle) -> bool {
378 self.id == other.id
379 }
380}
381
382impl Eq for WeakFocusHandle {}
383
384impl PartialEq<FocusHandle> for WeakFocusHandle {
385 fn eq(&self, other: &FocusHandle) -> bool {
386 self.id == other.id
387 }
388}
389
390impl PartialEq<WeakFocusHandle> for FocusHandle {
391 fn eq(&self, other: &WeakFocusHandle) -> bool {
392 self.id == other.id
393 }
394}
395
396/// Focusable allows users of your view to easily
397/// focus it (using window.focus_view(cx, view))
398pub trait Focusable: 'static {
399 /// Returns the focus handle associated with this view.
400 fn focus_handle(&self, cx: &App) -> FocusHandle;
401}
402
403impl<V: Focusable> Focusable for Entity<V> {
404 fn focus_handle(&self, cx: &App) -> FocusHandle {
405 self.read(cx).focus_handle(cx)
406 }
407}
408
409/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
410/// where the lifecycle of the view is handled by another view.
411pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
412
413impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
414
415/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
416pub struct DismissEvent;
417
418type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
419
420pub(crate) type AnyMouseListener =
421 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
422
423#[derive(Clone)]
424pub(crate) struct CursorStyleRequest {
425 pub(crate) hitbox_id: Option<HitboxId>,
426 pub(crate) style: CursorStyle,
427}
428
429#[derive(Default, Eq, PartialEq)]
430pub(crate) struct HitTest {
431 pub(crate) ids: SmallVec<[HitboxId; 8]>,
432 pub(crate) hover_hitbox_count: usize,
433}
434
435/// A type of window control area that corresponds to the platform window.
436#[derive(Clone, Copy, Debug, Eq, PartialEq)]
437pub enum WindowControlArea {
438 /// An area that allows dragging of the platform window.
439 Drag,
440 /// An area that allows closing of the platform window.
441 Close,
442 /// An area that allows maximizing of the platform window.
443 Max,
444 /// An area that allows minimizing of the platform window.
445 Min,
446}
447
448/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
449#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
450pub struct HitboxId(u64);
451
452impl HitboxId {
453 /// Checks if the hitbox with this ID is currently hovered. Except when handling
454 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
455 /// events or paint hover styles.
456 ///
457 /// See [`Hitbox::is_hovered`] for details.
458 pub fn is_hovered(self, window: &Window) -> bool {
459 let hit_test = &window.mouse_hit_test;
460 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
461 if self == *id {
462 return true;
463 }
464 }
465 return false;
466 }
467
468 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
469 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
470 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
471 /// this distinction.
472 pub fn should_handle_scroll(self, window: &Window) -> bool {
473 window.mouse_hit_test.ids.contains(&self)
474 }
475
476 fn next(mut self) -> HitboxId {
477 HitboxId(self.0.wrapping_add(1))
478 }
479}
480
481/// A rectangular region that potentially blocks hitboxes inserted prior.
482/// See [Window::insert_hitbox] for more details.
483#[derive(Clone, Debug, Deref)]
484pub struct Hitbox {
485 /// A unique identifier for the hitbox.
486 pub id: HitboxId,
487 /// The bounds of the hitbox.
488 #[deref]
489 pub bounds: Bounds<Pixels>,
490 /// The content mask when the hitbox was inserted.
491 pub content_mask: ContentMask<Pixels>,
492 /// Flags that specify hitbox behavior.
493 pub behavior: HitboxBehavior,
494}
495
496impl Hitbox {
497 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
498 /// typically what you want when determining whether to handle mouse events or paint hover
499 /// styles.
500 ///
501 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
502 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
503 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
504 ///
505 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
506 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
507 /// non-interactive while still allowing scrolling. More abstractly, this is because
508 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
509 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
510 /// container.
511 pub fn is_hovered(&self, window: &Window) -> bool {
512 self.id.is_hovered(window)
513 }
514
515 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
516 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
517 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
518 ///
519 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
520 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
521 pub fn should_handle_scroll(&self, window: &Window) -> bool {
522 self.id.should_handle_scroll(window)
523 }
524}
525
526/// How the hitbox affects mouse behavior.
527#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
528pub enum HitboxBehavior {
529 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
530 #[default]
531 Normal,
532
533 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
534 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
535 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
536 /// [`InteractiveElement::occlude`].
537 ///
538 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
539 /// bubble-phase handler for every mouse event type:
540 ///
541 /// ```
542 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
543 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
544 /// cx.stop_propagation();
545 /// }
546 /// }
547 /// ```
548 ///
549 /// This has effects beyond event handling - any use of hitbox checking, such as hover
550 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
551 /// alternative might be to not affect mouse event handling - but this would allow
552 /// inconsistent UI where clicks and moves interact with elements that are not considered to
553 /// be hovered.
554 BlockMouse,
555
556 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
557 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
558 /// interaction except scroll events to be ignored - see the documentation of
559 /// [`Hitbox::is_hovered`] for details. This flag is set by
560 /// [`InteractiveElement::block_mouse_except_scroll`].
561 ///
562 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
563 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
564 ///
565 /// ```
566 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, _cx| {
567 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
568 /// cx.stop_propagation();
569 /// }
570 /// }
571 /// ```
572 ///
573 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
574 /// handled differently than other mouse events. If also blocking these scroll events is
575 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
576 ///
577 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
578 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
579 /// An alternative might be to not affect mouse event handling - but this would allow
580 /// inconsistent UI where clicks and moves interact with elements that are not considered to
581 /// be hovered.
582 BlockMouseExceptScroll,
583}
584
585/// An identifier for a tooltip.
586#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
587pub struct TooltipId(usize);
588
589impl TooltipId {
590 /// Checks if the tooltip is currently hovered.
591 pub fn is_hovered(&self, window: &Window) -> bool {
592 window
593 .tooltip_bounds
594 .as_ref()
595 .map_or(false, |tooltip_bounds| {
596 tooltip_bounds.id == *self
597 && tooltip_bounds.bounds.contains(&window.mouse_position())
598 })
599 }
600}
601
602pub(crate) struct TooltipBounds {
603 id: TooltipId,
604 bounds: Bounds<Pixels>,
605}
606
607#[derive(Clone)]
608pub(crate) struct TooltipRequest {
609 id: TooltipId,
610 tooltip: AnyTooltip,
611}
612
613pub(crate) struct DeferredDraw {
614 current_view: EntityId,
615 priority: usize,
616 parent_node: DispatchNodeId,
617 element_id_stack: SmallVec<[ElementId; 32]>,
618 text_style_stack: Vec<TextStyleRefinement>,
619 element: Option<AnyElement>,
620 absolute_offset: Point<Pixels>,
621 prepaint_range: Range<PrepaintStateIndex>,
622 paint_range: Range<PaintIndex>,
623}
624
625pub(crate) struct Frame {
626 pub(crate) focus: Option<FocusId>,
627 pub(crate) window_active: bool,
628 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
629 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
630 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
631 pub(crate) dispatch_tree: DispatchTree,
632 pub(crate) scene: Scene,
633 pub(crate) hitboxes: Vec<Hitbox>,
634 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
635 pub(crate) deferred_draws: Vec<DeferredDraw>,
636 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
637 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
638 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
639 #[cfg(any(test, feature = "test-support"))]
640 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
641 #[cfg(any(feature = "inspector", debug_assertions))]
642 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
643 #[cfg(any(feature = "inspector", debug_assertions))]
644 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
645}
646
647#[derive(Clone, Default)]
648pub(crate) struct PrepaintStateIndex {
649 hitboxes_index: usize,
650 tooltips_index: usize,
651 deferred_draws_index: usize,
652 dispatch_tree_index: usize,
653 accessed_element_states_index: usize,
654 line_layout_index: LineLayoutIndex,
655}
656
657#[derive(Clone, Default)]
658pub(crate) struct PaintIndex {
659 scene_index: usize,
660 mouse_listeners_index: usize,
661 input_handlers_index: usize,
662 cursor_styles_index: usize,
663 accessed_element_states_index: usize,
664 line_layout_index: LineLayoutIndex,
665}
666
667impl Frame {
668 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
669 Frame {
670 focus: None,
671 window_active: false,
672 element_states: FxHashMap::default(),
673 accessed_element_states: Vec::new(),
674 mouse_listeners: Vec::new(),
675 dispatch_tree,
676 scene: Scene::default(),
677 hitboxes: Vec::new(),
678 window_control_hitboxes: Vec::new(),
679 deferred_draws: Vec::new(),
680 input_handlers: Vec::new(),
681 tooltip_requests: Vec::new(),
682 cursor_styles: Vec::new(),
683
684 #[cfg(any(test, feature = "test-support"))]
685 debug_bounds: FxHashMap::default(),
686
687 #[cfg(any(feature = "inspector", debug_assertions))]
688 next_inspector_instance_ids: FxHashMap::default(),
689
690 #[cfg(any(feature = "inspector", debug_assertions))]
691 inspector_hitboxes: FxHashMap::default(),
692 }
693 }
694
695 pub(crate) fn clear(&mut self) {
696 self.element_states.clear();
697 self.accessed_element_states.clear();
698 self.mouse_listeners.clear();
699 self.dispatch_tree.clear();
700 self.scene.clear();
701 self.input_handlers.clear();
702 self.tooltip_requests.clear();
703 self.cursor_styles.clear();
704 self.hitboxes.clear();
705 self.window_control_hitboxes.clear();
706 self.deferred_draws.clear();
707 self.focus = None;
708
709 #[cfg(any(feature = "inspector", debug_assertions))]
710 {
711 self.next_inspector_instance_ids.clear();
712 self.inspector_hitboxes.clear();
713 }
714 }
715
716 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
717 self.cursor_styles
718 .iter()
719 .rev()
720 .fold_while(None, |style, request| match request.hitbox_id {
721 None => Done(Some(request.style)),
722 Some(hitbox_id) => Continue(
723 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
724 ),
725 })
726 .into_inner()
727 }
728
729 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
730 let mut set_hover_hitbox_count = false;
731 let mut hit_test = HitTest::default();
732 for hitbox in self.hitboxes.iter().rev() {
733 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
734 if bounds.contains(&position) {
735 hit_test.ids.push(hitbox.id);
736 if !set_hover_hitbox_count
737 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
738 {
739 hit_test.hover_hitbox_count = hit_test.ids.len();
740 set_hover_hitbox_count = true;
741 }
742 if hitbox.behavior == HitboxBehavior::BlockMouse {
743 break;
744 }
745 }
746 }
747 if !set_hover_hitbox_count {
748 hit_test.hover_hitbox_count = hit_test.ids.len();
749 }
750 hit_test
751 }
752
753 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
754 self.focus
755 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
756 .unwrap_or_default()
757 }
758
759 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
760 for element_state_key in &self.accessed_element_states {
761 if let Some((element_state_key, element_state)) =
762 prev_frame.element_states.remove_entry(element_state_key)
763 {
764 self.element_states.insert(element_state_key, element_state);
765 }
766 }
767
768 self.scene.finish();
769 }
770}
771
772/// Holds the state for a specific window.
773pub struct Window {
774 pub(crate) handle: AnyWindowHandle,
775 pub(crate) invalidator: WindowInvalidator,
776 pub(crate) removed: bool,
777 pub(crate) platform_window: Box<dyn PlatformWindow>,
778 display_id: Option<DisplayId>,
779 sprite_atlas: Arc<dyn PlatformAtlas>,
780 text_system: Arc<WindowTextSystem>,
781 rem_size: Pixels,
782 /// The stack of override values for the window's rem size.
783 ///
784 /// This is used by `with_rem_size` to allow rendering an element tree with
785 /// a given rem size.
786 rem_size_override_stack: SmallVec<[Pixels; 8]>,
787 pub(crate) viewport_size: Size<Pixels>,
788 layout_engine: Option<TaffyLayoutEngine>,
789 pub(crate) root: Option<AnyView>,
790 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
791 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
792 pub(crate) rendered_entity_stack: Vec<EntityId>,
793 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
794 pub(crate) element_opacity: Option<f32>,
795 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
796 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
797 pub(crate) image_cache_stack: Vec<AnyImageCache>,
798 pub(crate) rendered_frame: Frame,
799 pub(crate) next_frame: Frame,
800 next_hitbox_id: HitboxId,
801 pub(crate) next_tooltip_id: TooltipId,
802 pub(crate) tooltip_bounds: Option<TooltipBounds>,
803 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
804 pub(crate) dirty_views: FxHashSet<EntityId>,
805 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
806 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
807 default_prevented: bool,
808 mouse_position: Point<Pixels>,
809 mouse_hit_test: HitTest,
810 modifiers: Modifiers,
811 capslock: Capslock,
812 scale_factor: f32,
813 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
814 appearance: WindowAppearance,
815 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
816 active: Rc<Cell<bool>>,
817 hovered: Rc<Cell<bool>>,
818 pub(crate) needs_present: Rc<Cell<bool>>,
819 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
820 pub(crate) refreshing: bool,
821 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
822 pub(crate) focus: Option<FocusId>,
823 focus_enabled: bool,
824 pending_input: Option<PendingInput>,
825 pending_modifier: ModifierState,
826 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
827 prompt: Option<RenderablePromptHandle>,
828 pub(crate) client_inset: Option<Pixels>,
829 #[cfg(any(feature = "inspector", debug_assertions))]
830 inspector: Option<Entity<Inspector>>,
831}
832
833#[derive(Clone, Debug, Default)]
834struct ModifierState {
835 modifiers: Modifiers,
836 saw_keystroke: bool,
837}
838
839#[derive(Clone, Copy, Debug, Eq, PartialEq)]
840pub(crate) enum DrawPhase {
841 None,
842 Prepaint,
843 Paint,
844 Focus,
845}
846
847#[derive(Default, Debug)]
848struct PendingInput {
849 keystrokes: SmallVec<[Keystroke; 1]>,
850 focus: Option<FocusId>,
851 timer: Option<Task<()>>,
852}
853
854pub(crate) struct ElementStateBox {
855 pub(crate) inner: Box<dyn Any>,
856 #[cfg(debug_assertions)]
857 pub(crate) type_name: &'static str,
858}
859
860fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
861 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
862
863 // TODO, BUG: if you open a window with the currently active window
864 // on the stack, this will erroneously select the 'unwrap_or_else'
865 // code path
866 cx.active_window()
867 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
868 .map(|mut bounds| {
869 bounds.origin += DEFAULT_WINDOW_OFFSET;
870 bounds
871 })
872 .unwrap_or_else(|| {
873 let display = display_id
874 .map(|id| cx.find_display(id))
875 .unwrap_or_else(|| cx.primary_display());
876
877 display
878 .map(|display| display.default_bounds())
879 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
880 })
881}
882
883impl Window {
884 pub(crate) fn new(
885 handle: AnyWindowHandle,
886 options: WindowOptions,
887 cx: &mut App,
888 ) -> Result<Self> {
889 let WindowOptions {
890 window_bounds,
891 titlebar,
892 focus,
893 show,
894 kind,
895 is_movable,
896 display_id,
897 window_background,
898 app_id,
899 window_min_size,
900 window_decorations,
901 } = options;
902
903 let bounds = window_bounds
904 .map(|bounds| bounds.get_bounds())
905 .unwrap_or_else(|| default_bounds(display_id, cx));
906 let mut platform_window = cx.platform.open_window(
907 handle,
908 WindowParams {
909 bounds,
910 titlebar,
911 kind,
912 is_movable,
913 focus,
914 show,
915 display_id,
916 window_min_size,
917 },
918 )?;
919 let display_id = platform_window.display().map(|display| display.id());
920 let sprite_atlas = platform_window.sprite_atlas();
921 let mouse_position = platform_window.mouse_position();
922 let modifiers = platform_window.modifiers();
923 let capslock = platform_window.capslock();
924 let content_size = platform_window.content_size();
925 let scale_factor = platform_window.scale_factor();
926 let appearance = platform_window.appearance();
927 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
928 let invalidator = WindowInvalidator::new();
929 let active = Rc::new(Cell::new(platform_window.is_active()));
930 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
931 let needs_present = Rc::new(Cell::new(false));
932 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
933 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
934
935 platform_window
936 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
937 platform_window.set_background_appearance(window_background);
938
939 if let Some(ref window_open_state) = window_bounds {
940 match window_open_state {
941 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
942 WindowBounds::Maximized(_) => platform_window.zoom(),
943 WindowBounds::Windowed(_) => {}
944 }
945 }
946
947 platform_window.on_close(Box::new({
948 let mut cx = cx.to_async();
949 move || {
950 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
951 }
952 }));
953 platform_window.on_request_frame(Box::new({
954 let mut cx = cx.to_async();
955 let invalidator = invalidator.clone();
956 let active = active.clone();
957 let needs_present = needs_present.clone();
958 let next_frame_callbacks = next_frame_callbacks.clone();
959 let last_input_timestamp = last_input_timestamp.clone();
960 move |request_frame_options| {
961 let next_frame_callbacks = next_frame_callbacks.take();
962 if !next_frame_callbacks.is_empty() {
963 handle
964 .update(&mut cx, |_, window, cx| {
965 for callback in next_frame_callbacks {
966 callback(window, cx);
967 }
968 })
969 .log_err();
970 }
971
972 // Keep presenting the current scene for 1 extra second since the
973 // last input to prevent the display from underclocking the refresh rate.
974 let needs_present = request_frame_options.require_presentation
975 || needs_present.get()
976 || (active.get()
977 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
978
979 if invalidator.is_dirty() {
980 measure("frame duration", || {
981 handle
982 .update(&mut cx, |_, window, cx| {
983 let arena_clear_needed = window.draw(cx);
984 window.present();
985 // drop the arena elements after present to reduce latency
986 arena_clear_needed.clear();
987 })
988 .log_err();
989 })
990 } else if needs_present {
991 handle
992 .update(&mut cx, |_, window, _| window.present())
993 .log_err();
994 }
995
996 handle
997 .update(&mut cx, |_, window, _| {
998 window.complete_frame();
999 })
1000 .log_err();
1001 }
1002 }));
1003 platform_window.on_resize(Box::new({
1004 let mut cx = cx.to_async();
1005 move |_, _| {
1006 handle
1007 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1008 .log_err();
1009 }
1010 }));
1011 platform_window.on_moved(Box::new({
1012 let mut cx = cx.to_async();
1013 move || {
1014 handle
1015 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1016 .log_err();
1017 }
1018 }));
1019 platform_window.on_appearance_changed(Box::new({
1020 let mut cx = cx.to_async();
1021 move || {
1022 handle
1023 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1024 .log_err();
1025 }
1026 }));
1027 platform_window.on_active_status_change(Box::new({
1028 let mut cx = cx.to_async();
1029 move |active| {
1030 handle
1031 .update(&mut cx, |_, window, cx| {
1032 window.active.set(active);
1033 window.modifiers = window.platform_window.modifiers();
1034 window.capslock = window.platform_window.capslock();
1035 window
1036 .activation_observers
1037 .clone()
1038 .retain(&(), |callback| callback(window, cx));
1039 window.refresh();
1040 })
1041 .log_err();
1042 }
1043 }));
1044 platform_window.on_hover_status_change(Box::new({
1045 let mut cx = cx.to_async();
1046 move |active| {
1047 handle
1048 .update(&mut cx, |_, window, _| {
1049 window.hovered.set(active);
1050 window.refresh();
1051 })
1052 .log_err();
1053 }
1054 }));
1055 platform_window.on_input({
1056 let mut cx = cx.to_async();
1057 Box::new(move |event| {
1058 handle
1059 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1060 .log_err()
1061 .unwrap_or(DispatchEventResult::default())
1062 })
1063 });
1064 platform_window.on_hit_test_window_control({
1065 let mut cx = cx.to_async();
1066 Box::new(move || {
1067 handle
1068 .update(&mut cx, |_, window, _cx| {
1069 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1070 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1071 return Some(*area);
1072 }
1073 }
1074 None
1075 })
1076 .log_err()
1077 .unwrap_or(None)
1078 })
1079 });
1080
1081 if let Some(app_id) = app_id {
1082 platform_window.set_app_id(&app_id);
1083 }
1084
1085 platform_window.map_window().unwrap();
1086
1087 Ok(Window {
1088 handle,
1089 invalidator,
1090 removed: false,
1091 platform_window,
1092 display_id,
1093 sprite_atlas,
1094 text_system,
1095 rem_size: px(16.),
1096 rem_size_override_stack: SmallVec::new(),
1097 viewport_size: content_size,
1098 layout_engine: Some(TaffyLayoutEngine::new()),
1099 root: None,
1100 element_id_stack: SmallVec::default(),
1101 text_style_stack: Vec::new(),
1102 rendered_entity_stack: Vec::new(),
1103 element_offset_stack: Vec::new(),
1104 content_mask_stack: Vec::new(),
1105 element_opacity: None,
1106 requested_autoscroll: None,
1107 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1108 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1109 next_frame_callbacks,
1110 next_hitbox_id: HitboxId(0),
1111 next_tooltip_id: TooltipId::default(),
1112 tooltip_bounds: None,
1113 dirty_views: FxHashSet::default(),
1114 focus_listeners: SubscriberSet::new(),
1115 focus_lost_listeners: SubscriberSet::new(),
1116 default_prevented: true,
1117 mouse_position,
1118 mouse_hit_test: HitTest::default(),
1119 modifiers,
1120 capslock,
1121 scale_factor,
1122 bounds_observers: SubscriberSet::new(),
1123 appearance,
1124 appearance_observers: SubscriberSet::new(),
1125 active,
1126 hovered,
1127 needs_present,
1128 last_input_timestamp,
1129 refreshing: false,
1130 activation_observers: SubscriberSet::new(),
1131 focus: None,
1132 focus_enabled: true,
1133 pending_input: None,
1134 pending_modifier: ModifierState::default(),
1135 pending_input_observers: SubscriberSet::new(),
1136 prompt: None,
1137 client_inset: None,
1138 image_cache_stack: Vec::new(),
1139 #[cfg(any(feature = "inspector", debug_assertions))]
1140 inspector: None,
1141 })
1142 }
1143
1144 pub(crate) fn new_focus_listener(
1145 &self,
1146 value: AnyWindowFocusListener,
1147 ) -> (Subscription, impl FnOnce() + use<>) {
1148 self.focus_listeners.insert((), value)
1149 }
1150}
1151
1152#[derive(Clone, Debug, Default, PartialEq, Eq)]
1153pub(crate) struct DispatchEventResult {
1154 pub propagate: bool,
1155 pub default_prevented: bool,
1156}
1157
1158/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1159/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1160/// to leave room to support more complex shapes in the future.
1161#[derive(Clone, Debug, Default, PartialEq, Eq)]
1162#[repr(C)]
1163pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1164 /// The bounds
1165 pub bounds: Bounds<P>,
1166}
1167
1168impl ContentMask<Pixels> {
1169 /// Scale the content mask's pixel units by the given scaling factor.
1170 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1171 ContentMask {
1172 bounds: self.bounds.scale(factor),
1173 }
1174 }
1175
1176 /// Intersect the content mask with the given content mask.
1177 pub fn intersect(&self, other: &Self) -> Self {
1178 let bounds = self.bounds.intersect(&other.bounds);
1179 ContentMask { bounds }
1180 }
1181}
1182
1183impl Window {
1184 fn mark_view_dirty(&mut self, view_id: EntityId) {
1185 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1186 // should already be dirty.
1187 for view_id in self
1188 .rendered_frame
1189 .dispatch_tree
1190 .view_path(view_id)
1191 .into_iter()
1192 .rev()
1193 {
1194 if !self.dirty_views.insert(view_id) {
1195 break;
1196 }
1197 }
1198 }
1199
1200 /// Registers a callback to be invoked when the window appearance changes.
1201 pub fn observe_window_appearance(
1202 &self,
1203 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1204 ) -> Subscription {
1205 let (subscription, activate) = self.appearance_observers.insert(
1206 (),
1207 Box::new(move |window, cx| {
1208 callback(window, cx);
1209 true
1210 }),
1211 );
1212 activate();
1213 subscription
1214 }
1215
1216 /// Replaces the root entity of the window with a new one.
1217 pub fn replace_root<E>(
1218 &mut self,
1219 cx: &mut App,
1220 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1221 ) -> Entity<E>
1222 where
1223 E: 'static + Render,
1224 {
1225 let view = cx.new(|cx| build_view(self, cx));
1226 self.root = Some(view.clone().into());
1227 self.refresh();
1228 view
1229 }
1230
1231 /// Returns the root entity of the window, if it has one.
1232 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1233 where
1234 E: 'static + Render,
1235 {
1236 self.root
1237 .as_ref()
1238 .map(|view| view.clone().downcast::<E>().ok())
1239 }
1240
1241 /// Obtain a handle to the window that belongs to this context.
1242 pub fn window_handle(&self) -> AnyWindowHandle {
1243 self.handle
1244 }
1245
1246 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1247 pub fn refresh(&mut self) {
1248 if self.invalidator.not_drawing() {
1249 self.refreshing = true;
1250 self.invalidator.set_dirty(true);
1251 }
1252 }
1253
1254 /// Close this window.
1255 pub fn remove_window(&mut self) {
1256 self.removed = true;
1257 }
1258
1259 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1260 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1261 self.focus
1262 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1263 }
1264
1265 /// Move focus to the element associated with the given [`FocusHandle`].
1266 pub fn focus(&mut self, handle: &FocusHandle) {
1267 if !self.focus_enabled || self.focus == Some(handle.id) {
1268 return;
1269 }
1270
1271 self.focus = Some(handle.id);
1272 self.clear_pending_keystrokes();
1273 self.refresh();
1274 }
1275
1276 /// Remove focus from all elements within this context's window.
1277 pub fn blur(&mut self) {
1278 if !self.focus_enabled {
1279 return;
1280 }
1281
1282 self.focus = None;
1283 self.refresh();
1284 }
1285
1286 /// Blur the window and don't allow anything in it to be focused again.
1287 pub fn disable_focus(&mut self) {
1288 self.blur();
1289 self.focus_enabled = false;
1290 }
1291
1292 /// Accessor for the text system.
1293 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1294 &self.text_system
1295 }
1296
1297 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1298 pub fn text_style(&self) -> TextStyle {
1299 let mut style = TextStyle::default();
1300 for refinement in &self.text_style_stack {
1301 style.refine(refinement);
1302 }
1303 style
1304 }
1305
1306 /// Check if the platform window is maximized
1307 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1308 pub fn is_maximized(&self) -> bool {
1309 self.platform_window.is_maximized()
1310 }
1311
1312 /// request a certain window decoration (Wayland)
1313 pub fn request_decorations(&self, decorations: WindowDecorations) {
1314 self.platform_window.request_decorations(decorations);
1315 }
1316
1317 /// Start a window resize operation (Wayland)
1318 pub fn start_window_resize(&self, edge: ResizeEdge) {
1319 self.platform_window.start_window_resize(edge);
1320 }
1321
1322 /// Return the `WindowBounds` to indicate that how a window should be opened
1323 /// after it has been closed
1324 pub fn window_bounds(&self) -> WindowBounds {
1325 self.platform_window.window_bounds()
1326 }
1327
1328 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1329 pub fn inner_window_bounds(&self) -> WindowBounds {
1330 self.platform_window.inner_window_bounds()
1331 }
1332
1333 /// Dispatch the given action on the currently focused element.
1334 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1335 let focus_id = self.focused(cx).map(|handle| handle.id);
1336
1337 let window = self.handle;
1338 cx.defer(move |cx| {
1339 window
1340 .update(cx, |_, window, cx| {
1341 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1342 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1343 })
1344 .log_err();
1345 })
1346 }
1347
1348 pub(crate) fn dispatch_keystroke_observers(
1349 &mut self,
1350 event: &dyn Any,
1351 action: Option<Box<dyn Action>>,
1352 context_stack: Vec<KeyContext>,
1353 cx: &mut App,
1354 ) {
1355 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1356 return;
1357 };
1358
1359 cx.keystroke_observers.clone().retain(&(), move |callback| {
1360 (callback)(
1361 &KeystrokeEvent {
1362 keystroke: key_down_event.keystroke.clone(),
1363 action: action.as_ref().map(|action| action.boxed_clone()),
1364 context_stack: context_stack.clone(),
1365 },
1366 self,
1367 cx,
1368 )
1369 });
1370 }
1371
1372 pub(crate) fn dispatch_keystroke_interceptors(
1373 &mut self,
1374 event: &dyn Any,
1375 context_stack: Vec<KeyContext>,
1376 cx: &mut App,
1377 ) {
1378 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1379 return;
1380 };
1381
1382 cx.keystroke_interceptors
1383 .clone()
1384 .retain(&(), move |callback| {
1385 (callback)(
1386 &KeystrokeEvent {
1387 keystroke: key_down_event.keystroke.clone(),
1388 action: None,
1389 context_stack: context_stack.clone(),
1390 },
1391 self,
1392 cx,
1393 )
1394 });
1395 }
1396
1397 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1398 /// that are currently on the stack to be returned to the app.
1399 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1400 let handle = self.handle;
1401 cx.defer(move |cx| {
1402 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1403 });
1404 }
1405
1406 /// Subscribe to events emitted by a entity.
1407 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1408 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1409 pub fn observe<T: 'static>(
1410 &mut self,
1411 observed: &Entity<T>,
1412 cx: &mut App,
1413 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1414 ) -> Subscription {
1415 let entity_id = observed.entity_id();
1416 let observed = observed.downgrade();
1417 let window_handle = self.handle;
1418 cx.new_observer(
1419 entity_id,
1420 Box::new(move |cx| {
1421 window_handle
1422 .update(cx, |_, window, cx| {
1423 if let Some(handle) = observed.upgrade() {
1424 on_notify(handle, window, cx);
1425 true
1426 } else {
1427 false
1428 }
1429 })
1430 .unwrap_or(false)
1431 }),
1432 )
1433 }
1434
1435 /// Subscribe to events emitted by a entity.
1436 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1437 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1438 pub fn subscribe<Emitter, Evt>(
1439 &mut self,
1440 entity: &Entity<Emitter>,
1441 cx: &mut App,
1442 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1443 ) -> Subscription
1444 where
1445 Emitter: EventEmitter<Evt>,
1446 Evt: 'static,
1447 {
1448 let entity_id = entity.entity_id();
1449 let handle = entity.downgrade();
1450 let window_handle = self.handle;
1451 cx.new_subscription(
1452 entity_id,
1453 (
1454 TypeId::of::<Evt>(),
1455 Box::new(move |event, cx| {
1456 window_handle
1457 .update(cx, |_, window, cx| {
1458 if let Some(entity) = handle.upgrade() {
1459 let event = event.downcast_ref().expect("invalid event type");
1460 on_event(entity, event, window, cx);
1461 true
1462 } else {
1463 false
1464 }
1465 })
1466 .unwrap_or(false)
1467 }),
1468 ),
1469 )
1470 }
1471
1472 /// Register a callback to be invoked when the given `Entity` is released.
1473 pub fn observe_release<T>(
1474 &self,
1475 entity: &Entity<T>,
1476 cx: &mut App,
1477 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1478 ) -> Subscription
1479 where
1480 T: 'static,
1481 {
1482 let entity_id = entity.entity_id();
1483 let window_handle = self.handle;
1484 let (subscription, activate) = cx.release_listeners.insert(
1485 entity_id,
1486 Box::new(move |entity, cx| {
1487 let entity = entity.downcast_mut().expect("invalid entity type");
1488 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1489 }),
1490 );
1491 activate();
1492 subscription
1493 }
1494
1495 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1496 /// await points in async code.
1497 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1498 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1499 }
1500
1501 /// Schedule the given closure to be run directly after the current frame is rendered.
1502 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1503 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1504 }
1505
1506 /// Schedule a frame to be drawn on the next animation frame.
1507 ///
1508 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1509 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1510 ///
1511 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1512 pub fn request_animation_frame(&self) {
1513 let entity = self.current_view();
1514 self.on_next_frame(move |_, cx| cx.notify(entity));
1515 }
1516
1517 /// Spawn the future returned by the given closure on the application thread pool.
1518 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1519 /// use within your future.
1520 #[track_caller]
1521 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1522 where
1523 R: 'static,
1524 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1525 {
1526 let handle = self.handle;
1527 cx.spawn(async move |app| {
1528 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1529 f(&mut async_window_cx).await
1530 })
1531 }
1532
1533 fn bounds_changed(&mut self, cx: &mut App) {
1534 self.scale_factor = self.platform_window.scale_factor();
1535 self.viewport_size = self.platform_window.content_size();
1536 self.display_id = self.platform_window.display().map(|display| display.id());
1537
1538 self.refresh();
1539
1540 self.bounds_observers
1541 .clone()
1542 .retain(&(), |callback| callback(self, cx));
1543 }
1544
1545 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1546 pub fn bounds(&self) -> Bounds<Pixels> {
1547 self.platform_window.bounds()
1548 }
1549
1550 /// Set the content size of the window.
1551 pub fn resize(&mut self, size: Size<Pixels>) {
1552 self.platform_window.resize(size);
1553 }
1554
1555 /// Returns whether or not the window is currently fullscreen
1556 pub fn is_fullscreen(&self) -> bool {
1557 self.platform_window.is_fullscreen()
1558 }
1559
1560 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1561 self.appearance = self.platform_window.appearance();
1562
1563 self.appearance_observers
1564 .clone()
1565 .retain(&(), |callback| callback(self, cx));
1566 }
1567
1568 /// Returns the appearance of the current window.
1569 pub fn appearance(&self) -> WindowAppearance {
1570 self.appearance
1571 }
1572
1573 /// Returns the size of the drawable area within the window.
1574 pub fn viewport_size(&self) -> Size<Pixels> {
1575 self.viewport_size
1576 }
1577
1578 /// Returns whether this window is focused by the operating system (receiving key events).
1579 pub fn is_window_active(&self) -> bool {
1580 self.active.get()
1581 }
1582
1583 /// Returns whether this window is considered to be the window
1584 /// that currently owns the mouse cursor.
1585 /// On mac, this is equivalent to `is_window_active`.
1586 pub fn is_window_hovered(&self) -> bool {
1587 if cfg!(any(
1588 target_os = "windows",
1589 target_os = "linux",
1590 target_os = "freebsd"
1591 )) {
1592 self.hovered.get()
1593 } else {
1594 self.is_window_active()
1595 }
1596 }
1597
1598 /// Toggle zoom on the window.
1599 pub fn zoom_window(&self) {
1600 self.platform_window.zoom();
1601 }
1602
1603 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1604 pub fn show_window_menu(&self, position: Point<Pixels>) {
1605 self.platform_window.show_window_menu(position)
1606 }
1607
1608 /// Tells the compositor to take control of window movement (Wayland and X11)
1609 ///
1610 /// Events may not be received during a move operation.
1611 pub fn start_window_move(&self) {
1612 self.platform_window.start_window_move()
1613 }
1614
1615 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1616 pub fn set_client_inset(&mut self, inset: Pixels) {
1617 self.client_inset = Some(inset);
1618 self.platform_window.set_client_inset(inset);
1619 }
1620
1621 /// Returns the client_inset value by [`Self::set_client_inset`].
1622 pub fn client_inset(&self) -> Option<Pixels> {
1623 self.client_inset
1624 }
1625
1626 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1627 pub fn window_decorations(&self) -> Decorations {
1628 self.platform_window.window_decorations()
1629 }
1630
1631 /// Returns which window controls are currently visible (Wayland)
1632 pub fn window_controls(&self) -> WindowControls {
1633 self.platform_window.window_controls()
1634 }
1635
1636 /// Updates the window's title at the platform level.
1637 pub fn set_window_title(&mut self, title: &str) {
1638 self.platform_window.set_title(title);
1639 }
1640
1641 /// Sets the application identifier.
1642 pub fn set_app_id(&mut self, app_id: &str) {
1643 self.platform_window.set_app_id(app_id);
1644 }
1645
1646 /// Sets the window background appearance.
1647 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1648 self.platform_window
1649 .set_background_appearance(background_appearance);
1650 }
1651
1652 /// Mark the window as dirty at the platform level.
1653 pub fn set_window_edited(&mut self, edited: bool) {
1654 self.platform_window.set_edited(edited);
1655 }
1656
1657 /// Determine the display on which the window is visible.
1658 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1659 cx.platform
1660 .displays()
1661 .into_iter()
1662 .find(|display| Some(display.id()) == self.display_id)
1663 }
1664
1665 /// Show the platform character palette.
1666 pub fn show_character_palette(&self) {
1667 self.platform_window.show_character_palette();
1668 }
1669
1670 /// The scale factor of the display associated with the window. For example, it could
1671 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1672 /// be rendered as two pixels on screen.
1673 pub fn scale_factor(&self) -> f32 {
1674 self.scale_factor
1675 }
1676
1677 /// The size of an em for the base font of the application. Adjusting this value allows the
1678 /// UI to scale, just like zooming a web page.
1679 pub fn rem_size(&self) -> Pixels {
1680 self.rem_size_override_stack
1681 .last()
1682 .copied()
1683 .unwrap_or(self.rem_size)
1684 }
1685
1686 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1687 /// UI to scale, just like zooming a web page.
1688 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1689 self.rem_size = rem_size.into();
1690 }
1691
1692 /// Acquire a globally unique identifier for the given ElementId.
1693 /// Only valid for the duration of the provided closure.
1694 pub fn with_global_id<R>(
1695 &mut self,
1696 element_id: ElementId,
1697 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1698 ) -> R {
1699 self.element_id_stack.push(element_id);
1700 let global_id = GlobalElementId(self.element_id_stack.clone());
1701 let result = f(&global_id, self);
1702 self.element_id_stack.pop();
1703 result
1704 }
1705
1706 /// Executes the provided function with the specified rem size.
1707 ///
1708 /// This method must only be called as part of element drawing.
1709 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1710 where
1711 F: FnOnce(&mut Self) -> R,
1712 {
1713 self.invalidator.debug_assert_paint_or_prepaint();
1714
1715 if let Some(rem_size) = rem_size {
1716 self.rem_size_override_stack.push(rem_size.into());
1717 let result = f(self);
1718 self.rem_size_override_stack.pop();
1719 result
1720 } else {
1721 f(self)
1722 }
1723 }
1724
1725 /// The line height associated with the current text style.
1726 pub fn line_height(&self) -> Pixels {
1727 self.text_style().line_height_in_pixels(self.rem_size())
1728 }
1729
1730 /// Call to prevent the default action of an event. Currently only used to prevent
1731 /// parent elements from becoming focused on mouse down.
1732 pub fn prevent_default(&mut self) {
1733 self.default_prevented = true;
1734 }
1735
1736 /// Obtain whether default has been prevented for the event currently being dispatched.
1737 pub fn default_prevented(&self) -> bool {
1738 self.default_prevented
1739 }
1740
1741 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1742 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1743 let node_id =
1744 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1745 self.rendered_frame
1746 .dispatch_tree
1747 .is_action_available(action, node_id)
1748 }
1749
1750 /// The position of the mouse relative to the window.
1751 pub fn mouse_position(&self) -> Point<Pixels> {
1752 self.mouse_position
1753 }
1754
1755 /// The current state of the keyboard's modifiers
1756 pub fn modifiers(&self) -> Modifiers {
1757 self.modifiers
1758 }
1759
1760 /// The current state of the keyboard's capslock
1761 pub fn capslock(&self) -> Capslock {
1762 self.capslock
1763 }
1764
1765 fn complete_frame(&self) {
1766 self.platform_window.completed_frame();
1767 }
1768
1769 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1770 /// the contents of the new [Scene], use [present].
1771 #[profiling::function]
1772 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1773 self.invalidate_entities();
1774 cx.entities.clear_accessed();
1775 debug_assert!(self.rendered_entity_stack.is_empty());
1776 self.invalidator.set_dirty(false);
1777 self.requested_autoscroll = None;
1778
1779 // Restore the previously-used input handler.
1780 if let Some(input_handler) = self.platform_window.take_input_handler() {
1781 self.rendered_frame.input_handlers.push(Some(input_handler));
1782 }
1783 self.draw_roots(cx);
1784 self.dirty_views.clear();
1785 self.next_frame.window_active = self.active.get();
1786
1787 // Register requested input handler with the platform window.
1788 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1789 self.platform_window
1790 .set_input_handler(input_handler.unwrap());
1791 }
1792
1793 self.layout_engine.as_mut().unwrap().clear();
1794 self.text_system().finish_frame();
1795 self.next_frame.finish(&mut self.rendered_frame);
1796
1797 self.invalidator.set_phase(DrawPhase::Focus);
1798 let previous_focus_path = self.rendered_frame.focus_path();
1799 let previous_window_active = self.rendered_frame.window_active;
1800 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1801 self.next_frame.clear();
1802 let current_focus_path = self.rendered_frame.focus_path();
1803 let current_window_active = self.rendered_frame.window_active;
1804
1805 if previous_focus_path != current_focus_path
1806 || previous_window_active != current_window_active
1807 {
1808 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1809 self.focus_lost_listeners
1810 .clone()
1811 .retain(&(), |listener| listener(self, cx));
1812 }
1813
1814 let event = WindowFocusEvent {
1815 previous_focus_path: if previous_window_active {
1816 previous_focus_path
1817 } else {
1818 Default::default()
1819 },
1820 current_focus_path: if current_window_active {
1821 current_focus_path
1822 } else {
1823 Default::default()
1824 },
1825 };
1826 self.focus_listeners
1827 .clone()
1828 .retain(&(), |listener| listener(&event, self, cx));
1829 }
1830
1831 debug_assert!(self.rendered_entity_stack.is_empty());
1832 self.record_entities_accessed(cx);
1833 self.reset_cursor_style(cx);
1834 self.refreshing = false;
1835 self.invalidator.set_phase(DrawPhase::None);
1836 self.needs_present.set(true);
1837
1838 ArenaClearNeeded
1839 }
1840
1841 fn record_entities_accessed(&mut self, cx: &mut App) {
1842 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1843 let mut entities = mem::take(entities_ref.deref_mut());
1844 drop(entities_ref);
1845 let handle = self.handle;
1846 cx.record_entities_accessed(
1847 handle,
1848 // Try moving window invalidator into the Window
1849 self.invalidator.clone(),
1850 &entities,
1851 );
1852 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1853 mem::swap(&mut entities, entities_ref.deref_mut());
1854 }
1855
1856 fn invalidate_entities(&mut self) {
1857 let mut views = self.invalidator.take_views();
1858 for entity in views.drain() {
1859 self.mark_view_dirty(entity);
1860 }
1861 self.invalidator.replace_views(views);
1862 }
1863
1864 #[profiling::function]
1865 fn present(&self) {
1866 self.platform_window.draw(&self.rendered_frame.scene);
1867 self.needs_present.set(false);
1868 profiling::finish_frame!();
1869 }
1870
1871 fn draw_roots(&mut self, cx: &mut App) {
1872 self.invalidator.set_phase(DrawPhase::Prepaint);
1873 self.tooltip_bounds.take();
1874
1875 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
1876 let root_size = {
1877 #[cfg(any(feature = "inspector", debug_assertions))]
1878 {
1879 if self.inspector.is_some() {
1880 let mut size = self.viewport_size;
1881 size.width = (size.width - _inspector_width).max(px(0.0));
1882 size
1883 } else {
1884 self.viewport_size
1885 }
1886 }
1887 #[cfg(not(any(feature = "inspector", debug_assertions)))]
1888 {
1889 self.viewport_size
1890 }
1891 };
1892
1893 // Layout all root elements.
1894 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1895 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1896
1897 #[cfg(any(feature = "inspector", debug_assertions))]
1898 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
1899
1900 let mut sorted_deferred_draws =
1901 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1902 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1903 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1904
1905 let mut prompt_element = None;
1906 let mut active_drag_element = None;
1907 let mut tooltip_element = None;
1908 if let Some(prompt) = self.prompt.take() {
1909 let mut element = prompt.view.any_view().into_any();
1910 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1911 prompt_element = Some(element);
1912 self.prompt = Some(prompt);
1913 } else if let Some(active_drag) = cx.active_drag.take() {
1914 let mut element = active_drag.view.clone().into_any();
1915 let offset = self.mouse_position() - active_drag.cursor_offset;
1916 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1917 active_drag_element = Some(element);
1918 cx.active_drag = Some(active_drag);
1919 } else {
1920 tooltip_element = self.prepaint_tooltip(cx);
1921 }
1922
1923 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1924
1925 // Now actually paint the elements.
1926 self.invalidator.set_phase(DrawPhase::Paint);
1927 root_element.paint(self, cx);
1928
1929 #[cfg(any(feature = "inspector", debug_assertions))]
1930 self.paint_inspector(inspector_element, cx);
1931
1932 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1933
1934 if let Some(mut prompt_element) = prompt_element {
1935 prompt_element.paint(self, cx);
1936 } else if let Some(mut drag_element) = active_drag_element {
1937 drag_element.paint(self, cx);
1938 } else if let Some(mut tooltip_element) = tooltip_element {
1939 tooltip_element.paint(self, cx);
1940 }
1941
1942 #[cfg(any(feature = "inspector", debug_assertions))]
1943 self.paint_inspector_hitbox(cx);
1944 }
1945
1946 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1947 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1948 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1949 let Some(Some(tooltip_request)) = self
1950 .next_frame
1951 .tooltip_requests
1952 .get(tooltip_request_index)
1953 .cloned()
1954 else {
1955 log::error!("Unexpectedly absent TooltipRequest");
1956 continue;
1957 };
1958 let mut element = tooltip_request.tooltip.view.clone().into_any();
1959 let mouse_position = tooltip_request.tooltip.mouse_position;
1960 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1961
1962 let mut tooltip_bounds =
1963 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1964 let window_bounds = Bounds {
1965 origin: Point::default(),
1966 size: self.viewport_size(),
1967 };
1968
1969 if tooltip_bounds.right() > window_bounds.right() {
1970 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1971 if new_x >= Pixels::ZERO {
1972 tooltip_bounds.origin.x = new_x;
1973 } else {
1974 tooltip_bounds.origin.x = cmp::max(
1975 Pixels::ZERO,
1976 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1977 );
1978 }
1979 }
1980
1981 if tooltip_bounds.bottom() > window_bounds.bottom() {
1982 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1983 if new_y >= Pixels::ZERO {
1984 tooltip_bounds.origin.y = new_y;
1985 } else {
1986 tooltip_bounds.origin.y = cmp::max(
1987 Pixels::ZERO,
1988 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
1989 );
1990 }
1991 }
1992
1993 // It's possible for an element to have an active tooltip while not being painted (e.g.
1994 // via the `visible_on_hover` method). Since mouse listeners are not active in this
1995 // case, instead update the tooltip's visibility here.
1996 let is_visible =
1997 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
1998 if !is_visible {
1999 continue;
2000 }
2001
2002 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2003 element.prepaint(window, cx)
2004 });
2005
2006 self.tooltip_bounds = Some(TooltipBounds {
2007 id: tooltip_request.id,
2008 bounds: tooltip_bounds,
2009 });
2010 return Some(element);
2011 }
2012 None
2013 }
2014
2015 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2016 assert_eq!(self.element_id_stack.len(), 0);
2017
2018 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2019 for deferred_draw_ix in deferred_draw_indices {
2020 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2021 self.element_id_stack
2022 .clone_from(&deferred_draw.element_id_stack);
2023 self.text_style_stack
2024 .clone_from(&deferred_draw.text_style_stack);
2025 self.next_frame
2026 .dispatch_tree
2027 .set_active_node(deferred_draw.parent_node);
2028
2029 let prepaint_start = self.prepaint_index();
2030 if let Some(element) = deferred_draw.element.as_mut() {
2031 self.with_rendered_view(deferred_draw.current_view, |window| {
2032 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2033 element.prepaint(window, cx)
2034 });
2035 })
2036 } else {
2037 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2038 }
2039 let prepaint_end = self.prepaint_index();
2040 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2041 }
2042 assert_eq!(
2043 self.next_frame.deferred_draws.len(),
2044 0,
2045 "cannot call defer_draw during deferred drawing"
2046 );
2047 self.next_frame.deferred_draws = deferred_draws;
2048 self.element_id_stack.clear();
2049 self.text_style_stack.clear();
2050 }
2051
2052 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2053 assert_eq!(self.element_id_stack.len(), 0);
2054
2055 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2056 for deferred_draw_ix in deferred_draw_indices {
2057 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2058 self.element_id_stack
2059 .clone_from(&deferred_draw.element_id_stack);
2060 self.next_frame
2061 .dispatch_tree
2062 .set_active_node(deferred_draw.parent_node);
2063
2064 let paint_start = self.paint_index();
2065 if let Some(element) = deferred_draw.element.as_mut() {
2066 self.with_rendered_view(deferred_draw.current_view, |window| {
2067 element.paint(window, cx);
2068 })
2069 } else {
2070 self.reuse_paint(deferred_draw.paint_range.clone());
2071 }
2072 let paint_end = self.paint_index();
2073 deferred_draw.paint_range = paint_start..paint_end;
2074 }
2075 self.next_frame.deferred_draws = deferred_draws;
2076 self.element_id_stack.clear();
2077 }
2078
2079 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2080 PrepaintStateIndex {
2081 hitboxes_index: self.next_frame.hitboxes.len(),
2082 tooltips_index: self.next_frame.tooltip_requests.len(),
2083 deferred_draws_index: self.next_frame.deferred_draws.len(),
2084 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2085 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2086 line_layout_index: self.text_system.layout_index(),
2087 }
2088 }
2089
2090 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2091 self.next_frame.hitboxes.extend(
2092 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2093 .iter()
2094 .cloned(),
2095 );
2096 self.next_frame.tooltip_requests.extend(
2097 self.rendered_frame.tooltip_requests
2098 [range.start.tooltips_index..range.end.tooltips_index]
2099 .iter_mut()
2100 .map(|request| request.take()),
2101 );
2102 self.next_frame.accessed_element_states.extend(
2103 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2104 ..range.end.accessed_element_states_index]
2105 .iter()
2106 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2107 );
2108 self.text_system
2109 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2110
2111 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2112 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2113 &mut self.rendered_frame.dispatch_tree,
2114 self.focus,
2115 );
2116
2117 if reused_subtree.contains_focus() {
2118 self.next_frame.focus = self.focus;
2119 }
2120
2121 self.next_frame.deferred_draws.extend(
2122 self.rendered_frame.deferred_draws
2123 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2124 .iter()
2125 .map(|deferred_draw| DeferredDraw {
2126 current_view: deferred_draw.current_view,
2127 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2128 element_id_stack: deferred_draw.element_id_stack.clone(),
2129 text_style_stack: deferred_draw.text_style_stack.clone(),
2130 priority: deferred_draw.priority,
2131 element: None,
2132 absolute_offset: deferred_draw.absolute_offset,
2133 prepaint_range: deferred_draw.prepaint_range.clone(),
2134 paint_range: deferred_draw.paint_range.clone(),
2135 }),
2136 );
2137 }
2138
2139 pub(crate) fn paint_index(&self) -> PaintIndex {
2140 PaintIndex {
2141 scene_index: self.next_frame.scene.len(),
2142 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2143 input_handlers_index: self.next_frame.input_handlers.len(),
2144 cursor_styles_index: self.next_frame.cursor_styles.len(),
2145 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2146 line_layout_index: self.text_system.layout_index(),
2147 }
2148 }
2149
2150 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2151 self.next_frame.cursor_styles.extend(
2152 self.rendered_frame.cursor_styles
2153 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2154 .iter()
2155 .cloned(),
2156 );
2157 self.next_frame.input_handlers.extend(
2158 self.rendered_frame.input_handlers
2159 [range.start.input_handlers_index..range.end.input_handlers_index]
2160 .iter_mut()
2161 .map(|handler| handler.take()),
2162 );
2163 self.next_frame.mouse_listeners.extend(
2164 self.rendered_frame.mouse_listeners
2165 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2166 .iter_mut()
2167 .map(|listener| listener.take()),
2168 );
2169 self.next_frame.accessed_element_states.extend(
2170 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2171 ..range.end.accessed_element_states_index]
2172 .iter()
2173 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2174 );
2175
2176 self.text_system
2177 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2178 self.next_frame.scene.replay(
2179 range.start.scene_index..range.end.scene_index,
2180 &self.rendered_frame.scene,
2181 );
2182 }
2183
2184 /// Push a text style onto the stack, and call a function with that style active.
2185 /// Use [`Window::text_style`] to get the current, combined text style. This method
2186 /// should only be called as part of element drawing.
2187 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2188 where
2189 F: FnOnce(&mut Self) -> R,
2190 {
2191 self.invalidator.debug_assert_paint_or_prepaint();
2192 if let Some(style) = style {
2193 self.text_style_stack.push(style);
2194 let result = f(self);
2195 self.text_style_stack.pop();
2196 result
2197 } else {
2198 f(self)
2199 }
2200 }
2201
2202 /// Updates the cursor style at the platform level. This method should only be called
2203 /// during the prepaint phase of element drawing.
2204 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2205 self.invalidator.debug_assert_paint();
2206 self.next_frame.cursor_styles.push(CursorStyleRequest {
2207 hitbox_id: Some(hitbox.id),
2208 style,
2209 });
2210 }
2211
2212 /// Updates the cursor style for the entire window at the platform level. A cursor
2213 /// style using this method will have precedence over any cursor style set using
2214 /// `set_cursor_style`. This method should only be called during the prepaint
2215 /// phase of element drawing.
2216 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2217 self.invalidator.debug_assert_paint();
2218 self.next_frame.cursor_styles.push(CursorStyleRequest {
2219 hitbox_id: None,
2220 style,
2221 })
2222 }
2223
2224 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2225 /// during the paint phase of element drawing.
2226 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2227 self.invalidator.debug_assert_prepaint();
2228 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2229 self.next_frame
2230 .tooltip_requests
2231 .push(Some(TooltipRequest { id, tooltip }));
2232 id
2233 }
2234
2235 /// Invoke the given function with the given content mask after intersecting it
2236 /// with the current mask. This method should only be called during element drawing.
2237 pub fn with_content_mask<R>(
2238 &mut self,
2239 mask: Option<ContentMask<Pixels>>,
2240 f: impl FnOnce(&mut Self) -> R,
2241 ) -> R {
2242 self.invalidator.debug_assert_paint_or_prepaint();
2243 if let Some(mask) = mask {
2244 let mask = mask.intersect(&self.content_mask());
2245 self.content_mask_stack.push(mask);
2246 let result = f(self);
2247 self.content_mask_stack.pop();
2248 result
2249 } else {
2250 f(self)
2251 }
2252 }
2253
2254 /// Updates the global element offset relative to the current offset. This is used to implement
2255 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2256 pub fn with_element_offset<R>(
2257 &mut self,
2258 offset: Point<Pixels>,
2259 f: impl FnOnce(&mut Self) -> R,
2260 ) -> R {
2261 self.invalidator.debug_assert_prepaint();
2262
2263 if offset.is_zero() {
2264 return f(self);
2265 };
2266
2267 let abs_offset = self.element_offset() + offset;
2268 self.with_absolute_element_offset(abs_offset, f)
2269 }
2270
2271 /// Updates the global element offset based on the given offset. This is used to implement
2272 /// drag handles and other manual painting of elements. This method should only be called during
2273 /// the prepaint phase of element drawing.
2274 pub fn with_absolute_element_offset<R>(
2275 &mut self,
2276 offset: Point<Pixels>,
2277 f: impl FnOnce(&mut Self) -> R,
2278 ) -> R {
2279 self.invalidator.debug_assert_prepaint();
2280 self.element_offset_stack.push(offset);
2281 let result = f(self);
2282 self.element_offset_stack.pop();
2283 result
2284 }
2285
2286 pub(crate) fn with_element_opacity<R>(
2287 &mut self,
2288 opacity: Option<f32>,
2289 f: impl FnOnce(&mut Self) -> R,
2290 ) -> R {
2291 if opacity.is_none() {
2292 return f(self);
2293 }
2294
2295 self.invalidator.debug_assert_paint_or_prepaint();
2296 self.element_opacity = opacity;
2297 let result = f(self);
2298 self.element_opacity = None;
2299 result
2300 }
2301
2302 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2303 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2304 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2305 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2306 /// called during the prepaint phase of element drawing.
2307 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2308 self.invalidator.debug_assert_prepaint();
2309 let index = self.prepaint_index();
2310 let result = f(self);
2311 if result.is_err() {
2312 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2313 self.next_frame
2314 .tooltip_requests
2315 .truncate(index.tooltips_index);
2316 self.next_frame
2317 .deferred_draws
2318 .truncate(index.deferred_draws_index);
2319 self.next_frame
2320 .dispatch_tree
2321 .truncate(index.dispatch_tree_index);
2322 self.next_frame
2323 .accessed_element_states
2324 .truncate(index.accessed_element_states_index);
2325 self.text_system.truncate_layouts(index.line_layout_index);
2326 }
2327 result
2328 }
2329
2330 /// When you call this method during [`prepaint`], containing elements will attempt to
2331 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2332 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2333 /// that supports this method being called on the elements it contains. This method should only be
2334 /// called during the prepaint phase of element drawing.
2335 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2336 self.invalidator.debug_assert_prepaint();
2337 self.requested_autoscroll = Some(bounds);
2338 }
2339
2340 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2341 /// described in [`request_autoscroll`].
2342 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2343 self.invalidator.debug_assert_prepaint();
2344 self.requested_autoscroll.take()
2345 }
2346
2347 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2348 /// Your view will be re-drawn once the asset has finished loading.
2349 ///
2350 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2351 /// time.
2352 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2353 let (task, is_first) = cx.fetch_asset::<A>(source);
2354 task.clone().now_or_never().or_else(|| {
2355 if is_first {
2356 let entity_id = self.current_view();
2357 self.spawn(cx, {
2358 let task = task.clone();
2359 async move |cx| {
2360 task.await;
2361
2362 cx.on_next_frame(move |_, cx| {
2363 cx.notify(entity_id);
2364 });
2365 }
2366 })
2367 .detach();
2368 }
2369
2370 None
2371 })
2372 }
2373
2374 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2375 /// Your view will not be re-drawn once the asset has finished loading.
2376 ///
2377 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2378 /// time.
2379 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2380 let (task, _) = cx.fetch_asset::<A>(source);
2381 task.clone().now_or_never()
2382 }
2383 /// Obtain the current element offset. This method should only be called during the
2384 /// prepaint phase of element drawing.
2385 pub fn element_offset(&self) -> Point<Pixels> {
2386 self.invalidator.debug_assert_prepaint();
2387 self.element_offset_stack
2388 .last()
2389 .copied()
2390 .unwrap_or_default()
2391 }
2392
2393 /// Obtain the current element opacity. This method should only be called during the
2394 /// prepaint phase of element drawing.
2395 pub(crate) fn element_opacity(&self) -> f32 {
2396 self.invalidator.debug_assert_paint_or_prepaint();
2397 self.element_opacity.unwrap_or(1.0)
2398 }
2399
2400 /// Obtain the current content mask. This method should only be called during element drawing.
2401 pub fn content_mask(&self) -> ContentMask<Pixels> {
2402 self.invalidator.debug_assert_paint_or_prepaint();
2403 self.content_mask_stack
2404 .last()
2405 .cloned()
2406 .unwrap_or_else(|| ContentMask {
2407 bounds: Bounds {
2408 origin: Point::default(),
2409 size: self.viewport_size,
2410 },
2411 })
2412 }
2413
2414 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2415 /// This can be used within a custom element to distinguish multiple sets of child elements.
2416 pub fn with_element_namespace<R>(
2417 &mut self,
2418 element_id: impl Into<ElementId>,
2419 f: impl FnOnce(&mut Self) -> R,
2420 ) -> R {
2421 self.element_id_stack.push(element_id.into());
2422 let result = f(self);
2423 self.element_id_stack.pop();
2424 result
2425 }
2426
2427 /// Updates or initializes state for an element with the given id that lives across multiple
2428 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2429 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2430 /// when drawing the next frame. This method should only be called as part of element drawing.
2431 pub fn with_element_state<S, R>(
2432 &mut self,
2433 global_id: &GlobalElementId,
2434 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2435 ) -> R
2436 where
2437 S: 'static,
2438 {
2439 self.invalidator.debug_assert_paint_or_prepaint();
2440
2441 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2442 self.next_frame
2443 .accessed_element_states
2444 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2445
2446 if let Some(any) = self
2447 .next_frame
2448 .element_states
2449 .remove(&key)
2450 .or_else(|| self.rendered_frame.element_states.remove(&key))
2451 {
2452 let ElementStateBox {
2453 inner,
2454 #[cfg(debug_assertions)]
2455 type_name,
2456 } = any;
2457 // Using the extra inner option to avoid needing to reallocate a new box.
2458 let mut state_box = inner
2459 .downcast::<Option<S>>()
2460 .map_err(|_| {
2461 #[cfg(debug_assertions)]
2462 {
2463 anyhow::anyhow!(
2464 "invalid element state type for id, requested {:?}, actual: {:?}",
2465 std::any::type_name::<S>(),
2466 type_name
2467 )
2468 }
2469
2470 #[cfg(not(debug_assertions))]
2471 {
2472 anyhow::anyhow!(
2473 "invalid element state type for id, requested {:?}",
2474 std::any::type_name::<S>(),
2475 )
2476 }
2477 })
2478 .unwrap();
2479
2480 let state = state_box.take().expect(
2481 "reentrant call to with_element_state for the same state type and element id",
2482 );
2483 let (result, state) = f(Some(state), self);
2484 state_box.replace(state);
2485 self.next_frame.element_states.insert(
2486 key,
2487 ElementStateBox {
2488 inner: state_box,
2489 #[cfg(debug_assertions)]
2490 type_name,
2491 },
2492 );
2493 result
2494 } else {
2495 let (result, state) = f(None, self);
2496 self.next_frame.element_states.insert(
2497 key,
2498 ElementStateBox {
2499 inner: Box::new(Some(state)),
2500 #[cfg(debug_assertions)]
2501 type_name: std::any::type_name::<S>(),
2502 },
2503 );
2504 result
2505 }
2506 }
2507
2508 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2509 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2510 /// when the element is guaranteed to have an id.
2511 ///
2512 /// The first option means 'no ID provided'
2513 /// The second option means 'not yet initialized'
2514 pub fn with_optional_element_state<S, R>(
2515 &mut self,
2516 global_id: Option<&GlobalElementId>,
2517 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2518 ) -> R
2519 where
2520 S: 'static,
2521 {
2522 self.invalidator.debug_assert_paint_or_prepaint();
2523
2524 if let Some(global_id) = global_id {
2525 self.with_element_state(global_id, |state, cx| {
2526 let (result, state) = f(Some(state), cx);
2527 let state =
2528 state.expect("you must return some state when you pass some element id");
2529 (result, state)
2530 })
2531 } else {
2532 let (result, state) = f(None, self);
2533 debug_assert!(
2534 state.is_none(),
2535 "you must not return an element state when passing None for the global id"
2536 );
2537 result
2538 }
2539 }
2540
2541 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2542 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2543 /// with higher values being drawn on top.
2544 ///
2545 /// This method should only be called as part of the prepaint phase of element drawing.
2546 pub fn defer_draw(
2547 &mut self,
2548 element: AnyElement,
2549 absolute_offset: Point<Pixels>,
2550 priority: usize,
2551 ) {
2552 self.invalidator.debug_assert_prepaint();
2553 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2554 self.next_frame.deferred_draws.push(DeferredDraw {
2555 current_view: self.current_view(),
2556 parent_node,
2557 element_id_stack: self.element_id_stack.clone(),
2558 text_style_stack: self.text_style_stack.clone(),
2559 priority,
2560 element: Some(element),
2561 absolute_offset,
2562 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2563 paint_range: PaintIndex::default()..PaintIndex::default(),
2564 });
2565 }
2566
2567 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2568 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2569 /// for performance reasons.
2570 ///
2571 /// This method should only be called as part of the paint phase of element drawing.
2572 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2573 self.invalidator.debug_assert_paint();
2574
2575 let scale_factor = self.scale_factor();
2576 let content_mask = self.content_mask();
2577 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2578 if !clipped_bounds.is_empty() {
2579 self.next_frame
2580 .scene
2581 .push_layer(clipped_bounds.scale(scale_factor));
2582 }
2583
2584 let result = f(self);
2585
2586 if !clipped_bounds.is_empty() {
2587 self.next_frame.scene.pop_layer();
2588 }
2589
2590 result
2591 }
2592
2593 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2594 ///
2595 /// This method should only be called as part of the paint phase of element drawing.
2596 pub fn paint_shadows(
2597 &mut self,
2598 bounds: Bounds<Pixels>,
2599 corner_radii: Corners<Pixels>,
2600 shadows: &[BoxShadow],
2601 ) {
2602 self.invalidator.debug_assert_paint();
2603
2604 let scale_factor = self.scale_factor();
2605 let content_mask = self.content_mask();
2606 let opacity = self.element_opacity();
2607 for shadow in shadows {
2608 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2609 self.next_frame.scene.insert_primitive(Shadow {
2610 order: 0,
2611 blur_radius: shadow.blur_radius.scale(scale_factor),
2612 bounds: shadow_bounds.scale(scale_factor),
2613 content_mask: content_mask.scale(scale_factor),
2614 corner_radii: corner_radii.scale(scale_factor),
2615 color: shadow.color.opacity(opacity),
2616 });
2617 }
2618 }
2619
2620 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2621 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2622 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2623 ///
2624 /// This method should only be called as part of the paint phase of element drawing.
2625 ///
2626 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2627 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2628 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2629 pub fn paint_quad(&mut self, quad: PaintQuad) {
2630 self.invalidator.debug_assert_paint();
2631
2632 let scale_factor = self.scale_factor();
2633 let content_mask = self.content_mask();
2634 let opacity = self.element_opacity();
2635 self.next_frame.scene.insert_primitive(Quad {
2636 order: 0,
2637 bounds: quad.bounds.scale(scale_factor),
2638 content_mask: content_mask.scale(scale_factor),
2639 background: quad.background.opacity(opacity),
2640 border_color: quad.border_color.opacity(opacity),
2641 corner_radii: quad.corner_radii.scale(scale_factor),
2642 border_widths: quad.border_widths.scale(scale_factor),
2643 border_style: quad.border_style,
2644 });
2645 }
2646
2647 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2648 ///
2649 /// This method should only be called as part of the paint phase of element drawing.
2650 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2651 self.invalidator.debug_assert_paint();
2652
2653 let scale_factor = self.scale_factor();
2654 let content_mask = self.content_mask();
2655 let opacity = self.element_opacity();
2656 path.content_mask = content_mask;
2657 let color: Background = color.into();
2658 path.color = color.opacity(opacity);
2659 self.next_frame
2660 .scene
2661 .insert_primitive(path.apply_scale(scale_factor));
2662 }
2663
2664 /// Paint an underline into the scene for the next frame at the current z-index.
2665 ///
2666 /// This method should only be called as part of the paint phase of element drawing.
2667 pub fn paint_underline(
2668 &mut self,
2669 origin: Point<Pixels>,
2670 width: Pixels,
2671 style: &UnderlineStyle,
2672 ) {
2673 self.invalidator.debug_assert_paint();
2674
2675 let scale_factor = self.scale_factor();
2676 let height = if style.wavy {
2677 style.thickness * 3.
2678 } else {
2679 style.thickness
2680 };
2681 let bounds = Bounds {
2682 origin,
2683 size: size(width, height),
2684 };
2685 let content_mask = self.content_mask();
2686 let element_opacity = self.element_opacity();
2687
2688 self.next_frame.scene.insert_primitive(Underline {
2689 order: 0,
2690 pad: 0,
2691 bounds: bounds.scale(scale_factor),
2692 content_mask: content_mask.scale(scale_factor),
2693 color: style.color.unwrap_or_default().opacity(element_opacity),
2694 thickness: style.thickness.scale(scale_factor),
2695 wavy: style.wavy,
2696 });
2697 }
2698
2699 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2700 ///
2701 /// This method should only be called as part of the paint phase of element drawing.
2702 pub fn paint_strikethrough(
2703 &mut self,
2704 origin: Point<Pixels>,
2705 width: Pixels,
2706 style: &StrikethroughStyle,
2707 ) {
2708 self.invalidator.debug_assert_paint();
2709
2710 let scale_factor = self.scale_factor();
2711 let height = style.thickness;
2712 let bounds = Bounds {
2713 origin,
2714 size: size(width, height),
2715 };
2716 let content_mask = self.content_mask();
2717 let opacity = self.element_opacity();
2718
2719 self.next_frame.scene.insert_primitive(Underline {
2720 order: 0,
2721 pad: 0,
2722 bounds: bounds.scale(scale_factor),
2723 content_mask: content_mask.scale(scale_factor),
2724 thickness: style.thickness.scale(scale_factor),
2725 color: style.color.unwrap_or_default().opacity(opacity),
2726 wavy: false,
2727 });
2728 }
2729
2730 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2731 ///
2732 /// The y component of the origin is the baseline of the glyph.
2733 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2734 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2735 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2736 ///
2737 /// This method should only be called as part of the paint phase of element drawing.
2738 pub fn paint_glyph(
2739 &mut self,
2740 origin: Point<Pixels>,
2741 font_id: FontId,
2742 glyph_id: GlyphId,
2743 font_size: Pixels,
2744 color: Hsla,
2745 ) -> Result<()> {
2746 self.invalidator.debug_assert_paint();
2747
2748 let element_opacity = self.element_opacity();
2749 let scale_factor = self.scale_factor();
2750 let glyph_origin = origin.scale(scale_factor);
2751 let subpixel_variant = Point {
2752 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2753 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2754 };
2755 let params = RenderGlyphParams {
2756 font_id,
2757 glyph_id,
2758 font_size,
2759 subpixel_variant,
2760 scale_factor,
2761 is_emoji: false,
2762 };
2763
2764 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2765 if !raster_bounds.is_zero() {
2766 let tile = self
2767 .sprite_atlas
2768 .get_or_insert_with(¶ms.clone().into(), &mut || {
2769 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2770 Ok(Some((size, Cow::Owned(bytes))))
2771 })?
2772 .expect("Callback above only errors or returns Some");
2773 let bounds = Bounds {
2774 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2775 size: tile.bounds.size.map(Into::into),
2776 };
2777 let content_mask = self.content_mask().scale(scale_factor);
2778 self.next_frame.scene.insert_primitive(MonochromeSprite {
2779 order: 0,
2780 pad: 0,
2781 bounds,
2782 content_mask,
2783 color: color.opacity(element_opacity),
2784 tile,
2785 transformation: TransformationMatrix::unit(),
2786 });
2787 }
2788 Ok(())
2789 }
2790
2791 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2792 ///
2793 /// The y component of the origin is the baseline of the glyph.
2794 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2795 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2796 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2797 ///
2798 /// This method should only be called as part of the paint phase of element drawing.
2799 pub fn paint_emoji(
2800 &mut self,
2801 origin: Point<Pixels>,
2802 font_id: FontId,
2803 glyph_id: GlyphId,
2804 font_size: Pixels,
2805 ) -> Result<()> {
2806 self.invalidator.debug_assert_paint();
2807
2808 let scale_factor = self.scale_factor();
2809 let glyph_origin = origin.scale(scale_factor);
2810 let params = RenderGlyphParams {
2811 font_id,
2812 glyph_id,
2813 font_size,
2814 // We don't render emojis with subpixel variants.
2815 subpixel_variant: Default::default(),
2816 scale_factor,
2817 is_emoji: true,
2818 };
2819
2820 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2821 if !raster_bounds.is_zero() {
2822 let tile = self
2823 .sprite_atlas
2824 .get_or_insert_with(¶ms.clone().into(), &mut || {
2825 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2826 Ok(Some((size, Cow::Owned(bytes))))
2827 })?
2828 .expect("Callback above only errors or returns Some");
2829
2830 let bounds = Bounds {
2831 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2832 size: tile.bounds.size.map(Into::into),
2833 };
2834 let content_mask = self.content_mask().scale(scale_factor);
2835 let opacity = self.element_opacity();
2836
2837 self.next_frame.scene.insert_primitive(PolychromeSprite {
2838 order: 0,
2839 pad: 0,
2840 grayscale: false,
2841 bounds,
2842 corner_radii: Default::default(),
2843 content_mask,
2844 tile,
2845 opacity,
2846 });
2847 }
2848 Ok(())
2849 }
2850
2851 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2852 ///
2853 /// This method should only be called as part of the paint phase of element drawing.
2854 pub fn paint_svg(
2855 &mut self,
2856 bounds: Bounds<Pixels>,
2857 path: SharedString,
2858 transformation: TransformationMatrix,
2859 color: Hsla,
2860 cx: &App,
2861 ) -> Result<()> {
2862 self.invalidator.debug_assert_paint();
2863
2864 let element_opacity = self.element_opacity();
2865 let scale_factor = self.scale_factor();
2866 let bounds = bounds.scale(scale_factor);
2867 let params = RenderSvgParams {
2868 path,
2869 size: bounds.size.map(|pixels| {
2870 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2871 }),
2872 };
2873
2874 let Some(tile) =
2875 self.sprite_atlas
2876 .get_or_insert_with(¶ms.clone().into(), &mut || {
2877 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2878 return Ok(None);
2879 };
2880 Ok(Some((params.size, Cow::Owned(bytes))))
2881 })?
2882 else {
2883 return Ok(());
2884 };
2885 let content_mask = self.content_mask().scale(scale_factor);
2886
2887 self.next_frame.scene.insert_primitive(MonochromeSprite {
2888 order: 0,
2889 pad: 0,
2890 bounds: bounds
2891 .map_origin(|origin| origin.floor())
2892 .map_size(|size| size.ceil()),
2893 content_mask,
2894 color: color.opacity(element_opacity),
2895 tile,
2896 transformation,
2897 });
2898
2899 Ok(())
2900 }
2901
2902 /// Paint an image into the scene for the next frame at the current z-index.
2903 /// This method will panic if the frame_index is not valid
2904 ///
2905 /// This method should only be called as part of the paint phase of element drawing.
2906 pub fn paint_image(
2907 &mut self,
2908 bounds: Bounds<Pixels>,
2909 corner_radii: Corners<Pixels>,
2910 data: Arc<RenderImage>,
2911 frame_index: usize,
2912 grayscale: bool,
2913 ) -> Result<()> {
2914 self.invalidator.debug_assert_paint();
2915
2916 let scale_factor = self.scale_factor();
2917 let bounds = bounds.scale(scale_factor);
2918 let params = RenderImageParams {
2919 image_id: data.id,
2920 frame_index,
2921 };
2922
2923 let tile = self
2924 .sprite_atlas
2925 .get_or_insert_with(¶ms.clone().into(), &mut || {
2926 Ok(Some((
2927 data.size(frame_index),
2928 Cow::Borrowed(
2929 data.as_bytes(frame_index)
2930 .expect("It's the caller's job to pass a valid frame index"),
2931 ),
2932 )))
2933 })?
2934 .expect("Callback above only returns Some");
2935 let content_mask = self.content_mask().scale(scale_factor);
2936 let corner_radii = corner_radii.scale(scale_factor);
2937 let opacity = self.element_opacity();
2938
2939 self.next_frame.scene.insert_primitive(PolychromeSprite {
2940 order: 0,
2941 pad: 0,
2942 grayscale,
2943 bounds: bounds
2944 .map_origin(|origin| origin.floor())
2945 .map_size(|size| size.ceil()),
2946 content_mask,
2947 corner_radii,
2948 tile,
2949 opacity,
2950 });
2951 Ok(())
2952 }
2953
2954 /// Paint a surface into the scene for the next frame at the current z-index.
2955 ///
2956 /// This method should only be called as part of the paint phase of element drawing.
2957 #[cfg(target_os = "macos")]
2958 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
2959 use crate::PaintSurface;
2960
2961 self.invalidator.debug_assert_paint();
2962
2963 let scale_factor = self.scale_factor();
2964 let bounds = bounds.scale(scale_factor);
2965 let content_mask = self.content_mask().scale(scale_factor);
2966 self.next_frame.scene.insert_primitive(PaintSurface {
2967 order: 0,
2968 bounds,
2969 content_mask,
2970 image_buffer,
2971 });
2972 }
2973
2974 /// Removes an image from the sprite atlas.
2975 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2976 for frame_index in 0..data.frame_count() {
2977 let params = RenderImageParams {
2978 image_id: data.id,
2979 frame_index,
2980 };
2981
2982 self.sprite_atlas.remove(¶ms.clone().into());
2983 }
2984
2985 Ok(())
2986 }
2987
2988 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
2989 /// layout is being requested, along with the layout ids of any children. This method is called during
2990 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
2991 ///
2992 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2993 #[must_use]
2994 pub fn request_layout(
2995 &mut self,
2996 style: Style,
2997 children: impl IntoIterator<Item = LayoutId>,
2998 cx: &mut App,
2999 ) -> LayoutId {
3000 self.invalidator.debug_assert_prepaint();
3001
3002 cx.layout_id_buffer.clear();
3003 cx.layout_id_buffer.extend(children);
3004 let rem_size = self.rem_size();
3005
3006 self.layout_engine
3007 .as_mut()
3008 .unwrap()
3009 .request_layout(style, rem_size, &cx.layout_id_buffer)
3010 }
3011
3012 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3013 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3014 /// determine the element's size. One place this is used internally is when measuring text.
3015 ///
3016 /// The given closure is invoked at layout time with the known dimensions and available space and
3017 /// returns a `Size`.
3018 ///
3019 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3020 pub fn request_measured_layout<
3021 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3022 + 'static,
3023 >(
3024 &mut self,
3025 style: Style,
3026 measure: F,
3027 ) -> LayoutId {
3028 self.invalidator.debug_assert_prepaint();
3029
3030 let rem_size = self.rem_size();
3031 self.layout_engine
3032 .as_mut()
3033 .unwrap()
3034 .request_measured_layout(style, rem_size, measure)
3035 }
3036
3037 /// Compute the layout for the given id within the given available space.
3038 /// This method is called for its side effect, typically by the framework prior to painting.
3039 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3040 ///
3041 /// This method should only be called as part of the prepaint phase of element drawing.
3042 pub fn compute_layout(
3043 &mut self,
3044 layout_id: LayoutId,
3045 available_space: Size<AvailableSpace>,
3046 cx: &mut App,
3047 ) {
3048 self.invalidator.debug_assert_prepaint();
3049
3050 let mut layout_engine = self.layout_engine.take().unwrap();
3051 layout_engine.compute_layout(layout_id, available_space, self, cx);
3052 self.layout_engine = Some(layout_engine);
3053 }
3054
3055 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3056 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3057 ///
3058 /// This method should only be called as part of element drawing.
3059 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3060 self.invalidator.debug_assert_prepaint();
3061
3062 let mut bounds = self
3063 .layout_engine
3064 .as_mut()
3065 .unwrap()
3066 .layout_bounds(layout_id)
3067 .map(Into::into);
3068 bounds.origin += self.element_offset();
3069 bounds
3070 }
3071
3072 /// This method should be called during `prepaint`. You can use
3073 /// the returned [Hitbox] during `paint` or in an event handler
3074 /// to determine whether the inserted hitbox was the topmost.
3075 ///
3076 /// This method should only be called as part of the prepaint phase of element drawing.
3077 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3078 self.invalidator.debug_assert_prepaint();
3079
3080 let content_mask = self.content_mask();
3081 let mut id = self.next_hitbox_id;
3082 self.next_hitbox_id = self.next_hitbox_id.next();
3083 let hitbox = Hitbox {
3084 id,
3085 bounds,
3086 content_mask,
3087 behavior,
3088 };
3089 self.next_frame.hitboxes.push(hitbox.clone());
3090 hitbox
3091 }
3092
3093 /// Set a hitbox which will act as a control area of the platform window.
3094 ///
3095 /// This method should only be called as part of the paint phase of element drawing.
3096 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3097 self.invalidator.debug_assert_paint();
3098 self.next_frame.window_control_hitboxes.push((area, hitbox));
3099 }
3100
3101 /// Sets the key context for the current element. This context will be used to translate
3102 /// keybindings into actions.
3103 ///
3104 /// This method should only be called as part of the paint phase of element drawing.
3105 pub fn set_key_context(&mut self, context: KeyContext) {
3106 self.invalidator.debug_assert_paint();
3107 self.next_frame.dispatch_tree.set_key_context(context);
3108 }
3109
3110 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3111 /// and keyboard event dispatch for the element.
3112 ///
3113 /// This method should only be called as part of the prepaint phase of element drawing.
3114 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3115 self.invalidator.debug_assert_prepaint();
3116 if focus_handle.is_focused(self) {
3117 self.next_frame.focus = Some(focus_handle.id);
3118 }
3119 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3120 }
3121
3122 /// Sets the view id for the current element, which will be used to manage view caching.
3123 ///
3124 /// This method should only be called as part of element prepaint. We plan on removing this
3125 /// method eventually when we solve some issues that require us to construct editor elements
3126 /// directly instead of always using editors via views.
3127 pub fn set_view_id(&mut self, view_id: EntityId) {
3128 self.invalidator.debug_assert_prepaint();
3129 self.next_frame.dispatch_tree.set_view_id(view_id);
3130 }
3131
3132 /// Get the entity ID for the currently rendering view
3133 pub fn current_view(&self) -> EntityId {
3134 self.invalidator.debug_assert_paint_or_prepaint();
3135 self.rendered_entity_stack.last().copied().unwrap()
3136 }
3137
3138 pub(crate) fn with_rendered_view<R>(
3139 &mut self,
3140 id: EntityId,
3141 f: impl FnOnce(&mut Self) -> R,
3142 ) -> R {
3143 self.rendered_entity_stack.push(id);
3144 let result = f(self);
3145 self.rendered_entity_stack.pop();
3146 result
3147 }
3148
3149 /// Executes the provided function with the specified image cache.
3150 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3151 where
3152 F: FnOnce(&mut Self) -> R,
3153 {
3154 if let Some(image_cache) = image_cache {
3155 self.image_cache_stack.push(image_cache);
3156 let result = f(self);
3157 self.image_cache_stack.pop();
3158 result
3159 } else {
3160 f(self)
3161 }
3162 }
3163
3164 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3165 /// platform to receive textual input with proper integration with concerns such
3166 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3167 /// rendered.
3168 ///
3169 /// This method should only be called as part of the paint phase of element drawing.
3170 ///
3171 /// [element_input_handler]: crate::ElementInputHandler
3172 pub fn handle_input(
3173 &mut self,
3174 focus_handle: &FocusHandle,
3175 input_handler: impl InputHandler,
3176 cx: &App,
3177 ) {
3178 self.invalidator.debug_assert_paint();
3179
3180 if focus_handle.is_focused(self) {
3181 let cx = self.to_async(cx);
3182 self.next_frame
3183 .input_handlers
3184 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3185 }
3186 }
3187
3188 /// Register a mouse event listener on the window for the next frame. The type of event
3189 /// is determined by the first parameter of the given listener. When the next frame is rendered
3190 /// the listener will be cleared.
3191 ///
3192 /// This method should only be called as part of the paint phase of element drawing.
3193 pub fn on_mouse_event<Event: MouseEvent>(
3194 &mut self,
3195 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3196 ) {
3197 self.invalidator.debug_assert_paint();
3198
3199 self.next_frame.mouse_listeners.push(Some(Box::new(
3200 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3201 if let Some(event) = event.downcast_ref() {
3202 handler(event, phase, window, cx)
3203 }
3204 },
3205 )));
3206 }
3207
3208 /// Register a key event listener on the window for the next frame. The type of event
3209 /// is determined by the first parameter of the given listener. When the next frame is rendered
3210 /// the listener will be cleared.
3211 ///
3212 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3213 /// a specific need to register a global listener.
3214 ///
3215 /// This method should only be called as part of the paint phase of element drawing.
3216 pub fn on_key_event<Event: KeyEvent>(
3217 &mut self,
3218 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3219 ) {
3220 self.invalidator.debug_assert_paint();
3221
3222 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3223 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3224 if let Some(event) = event.downcast_ref::<Event>() {
3225 listener(event, phase, window, cx)
3226 }
3227 },
3228 ));
3229 }
3230
3231 /// Register a modifiers changed event listener on the window for the next frame.
3232 ///
3233 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3234 /// a specific need to register a global listener.
3235 ///
3236 /// This method should only be called as part of the paint phase of element drawing.
3237 pub fn on_modifiers_changed(
3238 &mut self,
3239 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3240 ) {
3241 self.invalidator.debug_assert_paint();
3242
3243 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3244 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3245 listener(event, window, cx)
3246 },
3247 ));
3248 }
3249
3250 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3251 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3252 /// Returns a subscription and persists until the subscription is dropped.
3253 pub fn on_focus_in(
3254 &mut self,
3255 handle: &FocusHandle,
3256 cx: &mut App,
3257 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3258 ) -> Subscription {
3259 let focus_id = handle.id;
3260 let (subscription, activate) =
3261 self.new_focus_listener(Box::new(move |event, window, cx| {
3262 if event.is_focus_in(focus_id) {
3263 listener(window, cx);
3264 }
3265 true
3266 }));
3267 cx.defer(move |_| activate());
3268 subscription
3269 }
3270
3271 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3272 /// Returns a subscription and persists until the subscription is dropped.
3273 pub fn on_focus_out(
3274 &mut self,
3275 handle: &FocusHandle,
3276 cx: &mut App,
3277 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3278 ) -> Subscription {
3279 let focus_id = handle.id;
3280 let (subscription, activate) =
3281 self.new_focus_listener(Box::new(move |event, window, cx| {
3282 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
3283 if event.is_focus_out(focus_id) {
3284 let event = FocusOutEvent {
3285 blurred: WeakFocusHandle {
3286 id: blurred_id,
3287 handles: Arc::downgrade(&cx.focus_handles),
3288 },
3289 };
3290 listener(event, window, cx)
3291 }
3292 }
3293 true
3294 }));
3295 cx.defer(move |_| activate());
3296 subscription
3297 }
3298
3299 fn reset_cursor_style(&self, cx: &mut App) {
3300 // Set the cursor only if we're the active window.
3301 if self.is_window_hovered() {
3302 let style = self
3303 .rendered_frame
3304 .cursor_style(self)
3305 .unwrap_or(CursorStyle::Arrow);
3306 cx.platform.set_cursor_style(style);
3307 }
3308 }
3309
3310 /// Dispatch a given keystroke as though the user had typed it.
3311 /// You can create a keystroke with Keystroke::parse("").
3312 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3313 let keystroke = keystroke.with_simulated_ime();
3314 let result = self.dispatch_event(
3315 PlatformInput::KeyDown(KeyDownEvent {
3316 keystroke: keystroke.clone(),
3317 is_held: false,
3318 }),
3319 cx,
3320 );
3321 if !result.propagate {
3322 return true;
3323 }
3324
3325 if let Some(input) = keystroke.key_char {
3326 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3327 input_handler.dispatch_input(&input, self, cx);
3328 self.platform_window.set_input_handler(input_handler);
3329 return true;
3330 }
3331 }
3332
3333 false
3334 }
3335
3336 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3337 /// binding for the action (last binding added to the keymap).
3338 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3339 self.highest_precedence_binding_for_action(action)
3340 .map(|binding| {
3341 binding
3342 .keystrokes()
3343 .iter()
3344 .map(ToString::to_string)
3345 .collect::<Vec<_>>()
3346 .join(" ")
3347 })
3348 .unwrap_or_else(|| action.name().to_string())
3349 }
3350
3351 /// Dispatch a mouse or keyboard event on the window.
3352 #[profiling::function]
3353 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3354 self.last_input_timestamp.set(Instant::now());
3355 // Handlers may set this to false by calling `stop_propagation`.
3356 cx.propagate_event = true;
3357 // Handlers may set this to true by calling `prevent_default`.
3358 self.default_prevented = false;
3359
3360 let event = match event {
3361 // Track the mouse position with our own state, since accessing the platform
3362 // API for the mouse position can only occur on the main thread.
3363 PlatformInput::MouseMove(mouse_move) => {
3364 self.mouse_position = mouse_move.position;
3365 self.modifiers = mouse_move.modifiers;
3366 PlatformInput::MouseMove(mouse_move)
3367 }
3368 PlatformInput::MouseDown(mouse_down) => {
3369 self.mouse_position = mouse_down.position;
3370 self.modifiers = mouse_down.modifiers;
3371 PlatformInput::MouseDown(mouse_down)
3372 }
3373 PlatformInput::MouseUp(mouse_up) => {
3374 self.mouse_position = mouse_up.position;
3375 self.modifiers = mouse_up.modifiers;
3376 PlatformInput::MouseUp(mouse_up)
3377 }
3378 PlatformInput::MouseExited(mouse_exited) => {
3379 self.modifiers = mouse_exited.modifiers;
3380 PlatformInput::MouseExited(mouse_exited)
3381 }
3382 PlatformInput::ModifiersChanged(modifiers_changed) => {
3383 self.modifiers = modifiers_changed.modifiers;
3384 self.capslock = modifiers_changed.capslock;
3385 PlatformInput::ModifiersChanged(modifiers_changed)
3386 }
3387 PlatformInput::ScrollWheel(scroll_wheel) => {
3388 self.mouse_position = scroll_wheel.position;
3389 self.modifiers = scroll_wheel.modifiers;
3390 PlatformInput::ScrollWheel(scroll_wheel)
3391 }
3392 // Translate dragging and dropping of external files from the operating system
3393 // to internal drag and drop events.
3394 PlatformInput::FileDrop(file_drop) => match file_drop {
3395 FileDropEvent::Entered { position, paths } => {
3396 self.mouse_position = position;
3397 if cx.active_drag.is_none() {
3398 cx.active_drag = Some(AnyDrag {
3399 value: Arc::new(paths.clone()),
3400 view: cx.new(|_| paths).into(),
3401 cursor_offset: position,
3402 cursor_style: None,
3403 });
3404 }
3405 PlatformInput::MouseMove(MouseMoveEvent {
3406 position,
3407 pressed_button: Some(MouseButton::Left),
3408 modifiers: Modifiers::default(),
3409 })
3410 }
3411 FileDropEvent::Pending { position } => {
3412 self.mouse_position = position;
3413 PlatformInput::MouseMove(MouseMoveEvent {
3414 position,
3415 pressed_button: Some(MouseButton::Left),
3416 modifiers: Modifiers::default(),
3417 })
3418 }
3419 FileDropEvent::Submit { position } => {
3420 cx.activate(true);
3421 self.mouse_position = position;
3422 PlatformInput::MouseUp(MouseUpEvent {
3423 button: MouseButton::Left,
3424 position,
3425 modifiers: Modifiers::default(),
3426 click_count: 1,
3427 })
3428 }
3429 FileDropEvent::Exited => {
3430 cx.active_drag.take();
3431 PlatformInput::FileDrop(FileDropEvent::Exited)
3432 }
3433 },
3434 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3435 };
3436
3437 if let Some(any_mouse_event) = event.mouse_event() {
3438 self.dispatch_mouse_event(any_mouse_event, cx);
3439 } else if let Some(any_key_event) = event.keyboard_event() {
3440 self.dispatch_key_event(any_key_event, cx);
3441 }
3442
3443 DispatchEventResult {
3444 propagate: cx.propagate_event,
3445 default_prevented: self.default_prevented,
3446 }
3447 }
3448
3449 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3450 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3451 if hit_test != self.mouse_hit_test {
3452 self.mouse_hit_test = hit_test;
3453 self.reset_cursor_style(cx);
3454 }
3455
3456 #[cfg(any(feature = "inspector", debug_assertions))]
3457 if self.is_inspector_picking(cx) {
3458 self.handle_inspector_mouse_event(event, cx);
3459 // When inspector is picking, all other mouse handling is skipped.
3460 return;
3461 }
3462
3463 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3464
3465 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3466 // special purposes, such as detecting events outside of a given Bounds.
3467 for listener in &mut mouse_listeners {
3468 let listener = listener.as_mut().unwrap();
3469 listener(event, DispatchPhase::Capture, self, cx);
3470 if !cx.propagate_event {
3471 break;
3472 }
3473 }
3474
3475 // Bubble phase, where most normal handlers do their work.
3476 if cx.propagate_event {
3477 for listener in mouse_listeners.iter_mut().rev() {
3478 let listener = listener.as_mut().unwrap();
3479 listener(event, DispatchPhase::Bubble, self, cx);
3480 if !cx.propagate_event {
3481 break;
3482 }
3483 }
3484 }
3485
3486 self.rendered_frame.mouse_listeners = mouse_listeners;
3487
3488 if cx.has_active_drag() {
3489 if event.is::<MouseMoveEvent>() {
3490 // If this was a mouse move event, redraw the window so that the
3491 // active drag can follow the mouse cursor.
3492 self.refresh();
3493 } else if event.is::<MouseUpEvent>() {
3494 // If this was a mouse up event, cancel the active drag and redraw
3495 // the window.
3496 cx.active_drag = None;
3497 self.refresh();
3498 }
3499 }
3500 }
3501
3502 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3503 if self.invalidator.is_dirty() {
3504 self.draw(cx).clear();
3505 }
3506
3507 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3508 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3509
3510 let mut keystroke: Option<Keystroke> = None;
3511
3512 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3513 if event.modifiers.number_of_modifiers() == 0
3514 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3515 && !self.pending_modifier.saw_keystroke
3516 {
3517 let key = match self.pending_modifier.modifiers {
3518 modifiers if modifiers.shift => Some("shift"),
3519 modifiers if modifiers.control => Some("control"),
3520 modifiers if modifiers.alt => Some("alt"),
3521 modifiers if modifiers.platform => Some("platform"),
3522 modifiers if modifiers.function => Some("function"),
3523 _ => None,
3524 };
3525 if let Some(key) = key {
3526 keystroke = Some(Keystroke {
3527 key: key.to_string(),
3528 key_char: None,
3529 modifiers: Modifiers::default(),
3530 });
3531 }
3532 }
3533
3534 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3535 && event.modifiers.number_of_modifiers() == 1
3536 {
3537 self.pending_modifier.saw_keystroke = false
3538 }
3539 self.pending_modifier.modifiers = event.modifiers
3540 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3541 self.pending_modifier.saw_keystroke = true;
3542 keystroke = Some(key_down_event.keystroke.clone());
3543 }
3544
3545 let Some(keystroke) = keystroke else {
3546 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3547 return;
3548 };
3549
3550 cx.propagate_event = true;
3551 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3552 if !cx.propagate_event {
3553 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3554 return;
3555 }
3556
3557 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3558 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3559 currently_pending = PendingInput::default();
3560 }
3561
3562 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3563 currently_pending.keystrokes,
3564 keystroke,
3565 &dispatch_path,
3566 );
3567
3568 if !match_result.to_replay.is_empty() {
3569 self.replay_pending_input(match_result.to_replay, cx)
3570 }
3571
3572 if !match_result.pending.is_empty() {
3573 currently_pending.keystrokes = match_result.pending;
3574 currently_pending.focus = self.focus;
3575 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3576 cx.background_executor.timer(Duration::from_secs(1)).await;
3577 cx.update(move |window, cx| {
3578 let Some(currently_pending) = window
3579 .pending_input
3580 .take()
3581 .filter(|pending| pending.focus == window.focus)
3582 else {
3583 return;
3584 };
3585
3586 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3587 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3588
3589 let to_replay = window
3590 .rendered_frame
3591 .dispatch_tree
3592 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3593
3594 window.pending_input_changed(cx);
3595 window.replay_pending_input(to_replay, cx)
3596 })
3597 .log_err();
3598 }));
3599 self.pending_input = Some(currently_pending);
3600 self.pending_input_changed(cx);
3601 cx.propagate_event = false;
3602 return;
3603 }
3604
3605 for binding in match_result.bindings {
3606 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3607 if !cx.propagate_event {
3608 self.dispatch_keystroke_observers(
3609 event,
3610 Some(binding.action),
3611 match_result.context_stack.clone(),
3612 cx,
3613 );
3614 self.pending_input_changed(cx);
3615 return;
3616 }
3617 }
3618
3619 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3620 self.pending_input_changed(cx);
3621 }
3622
3623 fn finish_dispatch_key_event(
3624 &mut self,
3625 event: &dyn Any,
3626 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3627 context_stack: Vec<KeyContext>,
3628 cx: &mut App,
3629 ) {
3630 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3631 if !cx.propagate_event {
3632 return;
3633 }
3634
3635 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3636 if !cx.propagate_event {
3637 return;
3638 }
3639
3640 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3641 }
3642
3643 fn pending_input_changed(&mut self, cx: &mut App) {
3644 self.pending_input_observers
3645 .clone()
3646 .retain(&(), |callback| callback(self, cx));
3647 }
3648
3649 fn dispatch_key_down_up_event(
3650 &mut self,
3651 event: &dyn Any,
3652 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3653 cx: &mut App,
3654 ) {
3655 // Capture phase
3656 for node_id in dispatch_path {
3657 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3658
3659 for key_listener in node.key_listeners.clone() {
3660 key_listener(event, DispatchPhase::Capture, self, cx);
3661 if !cx.propagate_event {
3662 return;
3663 }
3664 }
3665 }
3666
3667 // Bubble phase
3668 for node_id in dispatch_path.iter().rev() {
3669 // Handle low level key events
3670 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3671 for key_listener in node.key_listeners.clone() {
3672 key_listener(event, DispatchPhase::Bubble, self, cx);
3673 if !cx.propagate_event {
3674 return;
3675 }
3676 }
3677 }
3678 }
3679
3680 fn dispatch_modifiers_changed_event(
3681 &mut self,
3682 event: &dyn Any,
3683 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3684 cx: &mut App,
3685 ) {
3686 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3687 return;
3688 };
3689 for node_id in dispatch_path.iter().rev() {
3690 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3691 for listener in node.modifiers_changed_listeners.clone() {
3692 listener(event, self, cx);
3693 if !cx.propagate_event {
3694 return;
3695 }
3696 }
3697 }
3698 }
3699
3700 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3701 pub fn has_pending_keystrokes(&self) -> bool {
3702 self.pending_input.is_some()
3703 }
3704
3705 pub(crate) fn clear_pending_keystrokes(&mut self) {
3706 self.pending_input.take();
3707 }
3708
3709 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3710 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3711 self.pending_input
3712 .as_ref()
3713 .map(|pending_input| pending_input.keystrokes.as_slice())
3714 }
3715
3716 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3717 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3718 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3719
3720 'replay: for replay in replays {
3721 let event = KeyDownEvent {
3722 keystroke: replay.keystroke.clone(),
3723 is_held: false,
3724 };
3725
3726 cx.propagate_event = true;
3727 for binding in replay.bindings {
3728 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3729 if !cx.propagate_event {
3730 self.dispatch_keystroke_observers(
3731 &event,
3732 Some(binding.action),
3733 Vec::default(),
3734 cx,
3735 );
3736 continue 'replay;
3737 }
3738 }
3739
3740 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3741 if !cx.propagate_event {
3742 continue 'replay;
3743 }
3744 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3745 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3746 input_handler.dispatch_input(&input, self, cx);
3747 self.platform_window.set_input_handler(input_handler)
3748 }
3749 }
3750 }
3751 }
3752
3753 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3754 focus_id
3755 .and_then(|focus_id| {
3756 self.rendered_frame
3757 .dispatch_tree
3758 .focusable_node_id(focus_id)
3759 })
3760 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
3761 }
3762
3763 fn dispatch_action_on_node(
3764 &mut self,
3765 node_id: DispatchNodeId,
3766 action: &dyn Action,
3767 cx: &mut App,
3768 ) {
3769 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3770
3771 // Capture phase for global actions.
3772 cx.propagate_event = true;
3773 if let Some(mut global_listeners) = cx
3774 .global_action_listeners
3775 .remove(&action.as_any().type_id())
3776 {
3777 for listener in &global_listeners {
3778 listener(action.as_any(), DispatchPhase::Capture, cx);
3779 if !cx.propagate_event {
3780 break;
3781 }
3782 }
3783
3784 global_listeners.extend(
3785 cx.global_action_listeners
3786 .remove(&action.as_any().type_id())
3787 .unwrap_or_default(),
3788 );
3789
3790 cx.global_action_listeners
3791 .insert(action.as_any().type_id(), global_listeners);
3792 }
3793
3794 if !cx.propagate_event {
3795 return;
3796 }
3797
3798 // Capture phase for window actions.
3799 for node_id in &dispatch_path {
3800 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3801 for DispatchActionListener {
3802 action_type,
3803 listener,
3804 } in node.action_listeners.clone()
3805 {
3806 let any_action = action.as_any();
3807 if action_type == any_action.type_id() {
3808 listener(any_action, DispatchPhase::Capture, self, cx);
3809
3810 if !cx.propagate_event {
3811 return;
3812 }
3813 }
3814 }
3815 }
3816
3817 // Bubble phase for window actions.
3818 for node_id in dispatch_path.iter().rev() {
3819 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3820 for DispatchActionListener {
3821 action_type,
3822 listener,
3823 } in node.action_listeners.clone()
3824 {
3825 let any_action = action.as_any();
3826 if action_type == any_action.type_id() {
3827 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3828 listener(any_action, DispatchPhase::Bubble, self, cx);
3829
3830 if !cx.propagate_event {
3831 return;
3832 }
3833 }
3834 }
3835 }
3836
3837 // Bubble phase for global actions.
3838 if let Some(mut global_listeners) = cx
3839 .global_action_listeners
3840 .remove(&action.as_any().type_id())
3841 {
3842 for listener in global_listeners.iter().rev() {
3843 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3844
3845 listener(action.as_any(), DispatchPhase::Bubble, cx);
3846 if !cx.propagate_event {
3847 break;
3848 }
3849 }
3850
3851 global_listeners.extend(
3852 cx.global_action_listeners
3853 .remove(&action.as_any().type_id())
3854 .unwrap_or_default(),
3855 );
3856
3857 cx.global_action_listeners
3858 .insert(action.as_any().type_id(), global_listeners);
3859 }
3860 }
3861
3862 /// Register the given handler to be invoked whenever the global of the given type
3863 /// is updated.
3864 pub fn observe_global<G: Global>(
3865 &mut self,
3866 cx: &mut App,
3867 f: impl Fn(&mut Window, &mut App) + 'static,
3868 ) -> Subscription {
3869 let window_handle = self.handle;
3870 let (subscription, activate) = cx.global_observers.insert(
3871 TypeId::of::<G>(),
3872 Box::new(move |cx| {
3873 window_handle
3874 .update(cx, |_, window, cx| f(window, cx))
3875 .is_ok()
3876 }),
3877 );
3878 cx.defer(move |_| activate());
3879 subscription
3880 }
3881
3882 /// Focus the current window and bring it to the foreground at the platform level.
3883 pub fn activate_window(&self) {
3884 self.platform_window.activate();
3885 }
3886
3887 /// Minimize the current window at the platform level.
3888 pub fn minimize_window(&self) {
3889 self.platform_window.minimize();
3890 }
3891
3892 /// Toggle full screen status on the current window at the platform level.
3893 pub fn toggle_fullscreen(&self) {
3894 self.platform_window.toggle_fullscreen();
3895 }
3896
3897 /// Updates the IME panel position suggestions for languages like japanese, chinese.
3898 pub fn invalidate_character_coordinates(&self) {
3899 self.on_next_frame(|window, cx| {
3900 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3901 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3902 window
3903 .platform_window
3904 .update_ime_position(bounds.scale(window.scale_factor()));
3905 }
3906 window.platform_window.set_input_handler(input_handler);
3907 }
3908 });
3909 }
3910
3911 /// Present a platform dialog.
3912 /// The provided message will be presented, along with buttons for each answer.
3913 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3914 pub fn prompt<T>(
3915 &mut self,
3916 level: PromptLevel,
3917 message: &str,
3918 detail: Option<&str>,
3919 answers: &[T],
3920 cx: &mut App,
3921 ) -> oneshot::Receiver<usize>
3922 where
3923 T: Clone + Into<PromptButton>,
3924 {
3925 let prompt_builder = cx.prompt_builder.take();
3926 let Some(prompt_builder) = prompt_builder else {
3927 unreachable!("Re-entrant window prompting is not supported by GPUI");
3928 };
3929
3930 let answers = answers
3931 .iter()
3932 .map(|answer| answer.clone().into())
3933 .collect::<Vec<_>>();
3934
3935 let receiver = match &prompt_builder {
3936 PromptBuilder::Default => self
3937 .platform_window
3938 .prompt(level, message, detail, &answers)
3939 .unwrap_or_else(|| {
3940 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3941 }),
3942 PromptBuilder::Custom(_) => {
3943 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3944 }
3945 };
3946
3947 cx.prompt_builder = Some(prompt_builder);
3948
3949 receiver
3950 }
3951
3952 fn build_custom_prompt(
3953 &mut self,
3954 prompt_builder: &PromptBuilder,
3955 level: PromptLevel,
3956 message: &str,
3957 detail: Option<&str>,
3958 answers: &[PromptButton],
3959 cx: &mut App,
3960 ) -> oneshot::Receiver<usize> {
3961 let (sender, receiver) = oneshot::channel();
3962 let handle = PromptHandle::new(sender);
3963 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
3964 self.prompt = Some(handle);
3965 receiver
3966 }
3967
3968 /// Returns the current context stack.
3969 pub fn context_stack(&self) -> Vec<KeyContext> {
3970 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3971 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3972 dispatch_tree
3973 .dispatch_path(node_id)
3974 .iter()
3975 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
3976 .collect()
3977 }
3978
3979 /// Returns all available actions for the focused element.
3980 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
3981 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3982 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
3983 for action_type in cx.global_action_listeners.keys() {
3984 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
3985 let action = cx.actions.build_action_type(action_type).ok();
3986 if let Some(action) = action {
3987 actions.insert(ix, action);
3988 }
3989 }
3990 }
3991 actions
3992 }
3993
3994 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
3995 /// returned in the order they were added. For display, the last binding should take precedence.
3996 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
3997 self.rendered_frame
3998 .dispatch_tree
3999 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4000 }
4001
4002 /// Returns the highest precedence key binding that invokes an action on the currently focused
4003 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4004 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4005 self.rendered_frame
4006 .dispatch_tree
4007 .highest_precedence_binding_for_action(
4008 action,
4009 &self.rendered_frame.dispatch_tree.context_stack,
4010 )
4011 }
4012
4013 /// Returns the key bindings for an action in a context.
4014 pub fn bindings_for_action_in_context(
4015 &self,
4016 action: &dyn Action,
4017 context: KeyContext,
4018 ) -> Vec<KeyBinding> {
4019 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4020 dispatch_tree.bindings_for_action(action, &[context])
4021 }
4022
4023 /// Returns the highest precedence key binding for an action in a context. This is more
4024 /// efficient than getting the last result of `bindings_for_action_in_context`.
4025 pub fn highest_precedence_binding_for_action_in_context(
4026 &self,
4027 action: &dyn Action,
4028 context: KeyContext,
4029 ) -> Option<KeyBinding> {
4030 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4031 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4032 }
4033
4034 /// Returns any bindings that would invoke an action on the given focus handle if it were
4035 /// focused. Bindings are returned in the order they were added. For display, the last binding
4036 /// should take precedence.
4037 pub fn bindings_for_action_in(
4038 &self,
4039 action: &dyn Action,
4040 focus_handle: &FocusHandle,
4041 ) -> Vec<KeyBinding> {
4042 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4043 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4044 return vec![];
4045 };
4046 dispatch_tree.bindings_for_action(action, &context_stack)
4047 }
4048
4049 /// Returns the highest precedence key binding that would invoke an action on the given focus
4050 /// handle if it were focused. This is more efficient than getting the last result of
4051 /// `bindings_for_action_in`.
4052 pub fn highest_precedence_binding_for_action_in(
4053 &self,
4054 action: &dyn Action,
4055 focus_handle: &FocusHandle,
4056 ) -> Option<KeyBinding> {
4057 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4058 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4059 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4060 }
4061
4062 fn context_stack_for_focus_handle(
4063 &self,
4064 focus_handle: &FocusHandle,
4065 ) -> Option<Vec<KeyContext>> {
4066 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4067 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4068 let context_stack: Vec<_> = dispatch_tree
4069 .dispatch_path(node_id)
4070 .into_iter()
4071 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4072 .collect();
4073 Some(context_stack)
4074 }
4075
4076 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4077 pub fn listener_for<V: Render, E>(
4078 &self,
4079 view: &Entity<V>,
4080 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4081 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4082 let view = view.downgrade();
4083 move |e: &E, window: &mut Window, cx: &mut App| {
4084 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4085 }
4086 }
4087
4088 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4089 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4090 &self,
4091 view: &Entity<V>,
4092 f: Callback,
4093 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4094 let view = view.downgrade();
4095 move |window: &mut Window, cx: &mut App| {
4096 view.update(cx, |view, cx| f(view, window, cx)).ok();
4097 }
4098 }
4099
4100 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4101 /// If the callback returns false, the window won't be closed.
4102 pub fn on_window_should_close(
4103 &self,
4104 cx: &App,
4105 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4106 ) {
4107 let mut cx = self.to_async(cx);
4108 self.platform_window.on_should_close(Box::new(move || {
4109 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4110 }))
4111 }
4112
4113 /// Register an action listener on the window for the next frame. The type of action
4114 /// is determined by the first parameter of the given listener. When the next frame is rendered
4115 /// the listener will be cleared.
4116 ///
4117 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4118 /// a specific need to register a global listener.
4119 pub fn on_action(
4120 &mut self,
4121 action_type: TypeId,
4122 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4123 ) {
4124 self.next_frame
4125 .dispatch_tree
4126 .on_action(action_type, Rc::new(listener));
4127 }
4128
4129 /// Read information about the GPU backing this window.
4130 /// Currently returns None on Mac and Windows.
4131 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4132 self.platform_window.gpu_specs()
4133 }
4134
4135 /// Perform titlebar double-click action.
4136 /// This is MacOS specific.
4137 pub fn titlebar_double_click(&self) {
4138 self.platform_window.titlebar_double_click();
4139 }
4140
4141 /// Toggles the inspector mode on this window.
4142 #[cfg(any(feature = "inspector", debug_assertions))]
4143 pub fn toggle_inspector(&mut self, cx: &mut App) {
4144 self.inspector = match self.inspector {
4145 None => Some(cx.new(|_| Inspector::new())),
4146 Some(_) => None,
4147 };
4148 self.refresh();
4149 }
4150
4151 /// Returns true if the window is in inspector mode.
4152 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4153 #[cfg(any(feature = "inspector", debug_assertions))]
4154 {
4155 if let Some(inspector) = &self.inspector {
4156 return inspector.read(_cx).is_picking();
4157 }
4158 }
4159 false
4160 }
4161
4162 /// Executes the provided function with mutable access to an inspector state.
4163 #[cfg(any(feature = "inspector", debug_assertions))]
4164 pub fn with_inspector_state<T: 'static, R>(
4165 &mut self,
4166 _inspector_id: Option<&crate::InspectorElementId>,
4167 cx: &mut App,
4168 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4169 ) -> R {
4170 if let Some(inspector_id) = _inspector_id {
4171 if let Some(inspector) = &self.inspector {
4172 let inspector = inspector.clone();
4173 let active_element_id = inspector.read(cx).active_element_id();
4174 if Some(inspector_id) == active_element_id {
4175 return inspector.update(cx, |inspector, _cx| {
4176 inspector.with_active_element_state(self, f)
4177 });
4178 }
4179 }
4180 }
4181 f(&mut None, self)
4182 }
4183
4184 #[cfg(any(feature = "inspector", debug_assertions))]
4185 pub(crate) fn build_inspector_element_id(
4186 &mut self,
4187 path: crate::InspectorElementPath,
4188 ) -> crate::InspectorElementId {
4189 self.invalidator.debug_assert_paint_or_prepaint();
4190 let path = Rc::new(path);
4191 let next_instance_id = self
4192 .next_frame
4193 .next_inspector_instance_ids
4194 .entry(path.clone())
4195 .or_insert(0);
4196 let instance_id = *next_instance_id;
4197 *next_instance_id += 1;
4198 crate::InspectorElementId { path, instance_id }
4199 }
4200
4201 #[cfg(any(feature = "inspector", debug_assertions))]
4202 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4203 if let Some(inspector) = self.inspector.take() {
4204 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4205 inspector_element.prepaint_as_root(
4206 point(self.viewport_size.width - inspector_width, px(0.0)),
4207 size(inspector_width, self.viewport_size.height).into(),
4208 self,
4209 cx,
4210 );
4211 self.inspector = Some(inspector);
4212 Some(inspector_element)
4213 } else {
4214 None
4215 }
4216 }
4217
4218 #[cfg(any(feature = "inspector", debug_assertions))]
4219 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4220 if let Some(mut inspector_element) = inspector_element {
4221 inspector_element.paint(self, cx);
4222 };
4223 }
4224
4225 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4226 /// inspect UI elements by clicking on them.
4227 #[cfg(any(feature = "inspector", debug_assertions))]
4228 pub fn insert_inspector_hitbox(
4229 &mut self,
4230 hitbox_id: HitboxId,
4231 inspector_id: Option<&crate::InspectorElementId>,
4232 cx: &App,
4233 ) {
4234 self.invalidator.debug_assert_paint_or_prepaint();
4235 if !self.is_inspector_picking(cx) {
4236 return;
4237 }
4238 if let Some(inspector_id) = inspector_id {
4239 self.next_frame
4240 .inspector_hitboxes
4241 .insert(hitbox_id, inspector_id.clone());
4242 }
4243 }
4244
4245 #[cfg(any(feature = "inspector", debug_assertions))]
4246 fn paint_inspector_hitbox(&mut self, cx: &App) {
4247 if let Some(inspector) = self.inspector.as_ref() {
4248 let inspector = inspector.read(cx);
4249 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4250 {
4251 if let Some(hitbox) = self
4252 .next_frame
4253 .hitboxes
4254 .iter()
4255 .find(|hitbox| hitbox.id == hitbox_id)
4256 {
4257 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4258 }
4259 }
4260 }
4261 }
4262
4263 #[cfg(any(feature = "inspector", debug_assertions))]
4264 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4265 let Some(inspector) = self.inspector.clone() else {
4266 return;
4267 };
4268 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4269 inspector.update(cx, |inspector, _cx| {
4270 if let Some((_, inspector_id)) =
4271 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4272 {
4273 inspector.hover(inspector_id, self);
4274 }
4275 });
4276 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4277 inspector.update(cx, |inspector, _cx| {
4278 if let Some((_, inspector_id)) =
4279 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4280 {
4281 inspector.select(inspector_id, self);
4282 }
4283 });
4284 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4285 // This should be kept in sync with SCROLL_LINES in x11 platform.
4286 const SCROLL_LINES: f32 = 3.0;
4287 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4288 let delta_y = event
4289 .delta
4290 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4291 .y;
4292 if let Some(inspector) = self.inspector.clone() {
4293 inspector.update(cx, |inspector, _cx| {
4294 if let Some(depth) = inspector.pick_depth.as_mut() {
4295 *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4296 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4297 if *depth < 0.0 {
4298 *depth = 0.0;
4299 } else if *depth > max_depth {
4300 *depth = max_depth;
4301 }
4302 if let Some((_, inspector_id)) =
4303 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4304 {
4305 inspector.set_active_element_id(inspector_id.clone(), self);
4306 }
4307 }
4308 });
4309 }
4310 }
4311 }
4312
4313 #[cfg(any(feature = "inspector", debug_assertions))]
4314 fn hovered_inspector_hitbox(
4315 &self,
4316 inspector: &Inspector,
4317 frame: &Frame,
4318 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4319 if let Some(pick_depth) = inspector.pick_depth {
4320 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4321 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4322 let skip_count = (depth as usize).min(max_skipped);
4323 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4324 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4325 return Some((*hitbox_id, inspector_id.clone()));
4326 }
4327 }
4328 }
4329 return None;
4330 }
4331}
4332
4333// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4334slotmap::new_key_type! {
4335 /// A unique identifier for a window.
4336 pub struct WindowId;
4337}
4338
4339impl WindowId {
4340 /// Converts this window ID to a `u64`.
4341 pub fn as_u64(&self) -> u64 {
4342 self.0.as_ffi()
4343 }
4344}
4345
4346impl From<u64> for WindowId {
4347 fn from(value: u64) -> Self {
4348 WindowId(slotmap::KeyData::from_ffi(value))
4349 }
4350}
4351
4352/// A handle to a window with a specific root view type.
4353/// Note that this does not keep the window alive on its own.
4354#[derive(Deref, DerefMut)]
4355pub struct WindowHandle<V> {
4356 #[deref]
4357 #[deref_mut]
4358 pub(crate) any_handle: AnyWindowHandle,
4359 state_type: PhantomData<V>,
4360}
4361
4362impl<V: 'static + Render> WindowHandle<V> {
4363 /// Creates a new handle from a window ID.
4364 /// This does not check if the root type of the window is `V`.
4365 pub fn new(id: WindowId) -> Self {
4366 WindowHandle {
4367 any_handle: AnyWindowHandle {
4368 id,
4369 state_type: TypeId::of::<V>(),
4370 },
4371 state_type: PhantomData,
4372 }
4373 }
4374
4375 /// Get the root view out of this window.
4376 ///
4377 /// This will fail if the window is closed or if the root view's type does not match `V`.
4378 #[cfg(any(test, feature = "test-support"))]
4379 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4380 where
4381 C: AppContext,
4382 {
4383 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4384 root_view
4385 .downcast::<V>()
4386 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4387 }))
4388 }
4389
4390 /// Updates the root view of this window.
4391 ///
4392 /// This will fail if the window has been closed or if the root view's type does not match
4393 pub fn update<C, R>(
4394 &self,
4395 cx: &mut C,
4396 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4397 ) -> Result<R>
4398 where
4399 C: AppContext,
4400 {
4401 cx.update_window(self.any_handle, |root_view, window, cx| {
4402 let view = root_view
4403 .downcast::<V>()
4404 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4405
4406 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4407 })?
4408 }
4409
4410 /// Read the root view out of this window.
4411 ///
4412 /// This will fail if the window is closed or if the root view's type does not match `V`.
4413 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4414 let x = cx
4415 .windows
4416 .get(self.id)
4417 .and_then(|window| {
4418 window
4419 .as_ref()
4420 .and_then(|window| window.root.clone())
4421 .map(|root_view| root_view.downcast::<V>())
4422 })
4423 .context("window not found")?
4424 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4425
4426 Ok(x.read(cx))
4427 }
4428
4429 /// Read the root view out of this window, with a callback
4430 ///
4431 /// This will fail if the window is closed or if the root view's type does not match `V`.
4432 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4433 where
4434 C: AppContext,
4435 {
4436 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4437 }
4438
4439 /// Read the root view pointer off of this window.
4440 ///
4441 /// This will fail if the window is closed or if the root view's type does not match `V`.
4442 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4443 where
4444 C: AppContext,
4445 {
4446 cx.read_window(self, |root_view, _cx| root_view.clone())
4447 }
4448
4449 /// Check if this window is 'active'.
4450 ///
4451 /// Will return `None` if the window is closed or currently
4452 /// borrowed.
4453 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4454 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4455 .ok()
4456 }
4457}
4458
4459impl<V> Copy for WindowHandle<V> {}
4460
4461impl<V> Clone for WindowHandle<V> {
4462 fn clone(&self) -> Self {
4463 *self
4464 }
4465}
4466
4467impl<V> PartialEq for WindowHandle<V> {
4468 fn eq(&self, other: &Self) -> bool {
4469 self.any_handle == other.any_handle
4470 }
4471}
4472
4473impl<V> Eq for WindowHandle<V> {}
4474
4475impl<V> Hash for WindowHandle<V> {
4476 fn hash<H: Hasher>(&self, state: &mut H) {
4477 self.any_handle.hash(state);
4478 }
4479}
4480
4481impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4482 fn from(val: WindowHandle<V>) -> Self {
4483 val.any_handle
4484 }
4485}
4486
4487unsafe impl<V> Send for WindowHandle<V> {}
4488unsafe impl<V> Sync for WindowHandle<V> {}
4489
4490/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4491#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4492pub struct AnyWindowHandle {
4493 pub(crate) id: WindowId,
4494 state_type: TypeId,
4495}
4496
4497impl AnyWindowHandle {
4498 /// Get the ID of this window.
4499 pub fn window_id(&self) -> WindowId {
4500 self.id
4501 }
4502
4503 /// Attempt to convert this handle to a window handle with a specific root view type.
4504 /// If the types do not match, this will return `None`.
4505 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4506 if TypeId::of::<T>() == self.state_type {
4507 Some(WindowHandle {
4508 any_handle: *self,
4509 state_type: PhantomData,
4510 })
4511 } else {
4512 None
4513 }
4514 }
4515
4516 /// Updates the state of the root view of this window.
4517 ///
4518 /// This will fail if the window has been closed.
4519 pub fn update<C, R>(
4520 self,
4521 cx: &mut C,
4522 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4523 ) -> Result<R>
4524 where
4525 C: AppContext,
4526 {
4527 cx.update_window(self, update)
4528 }
4529
4530 /// Read the state of the root view of this window.
4531 ///
4532 /// This will fail if the window has been closed.
4533 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4534 where
4535 C: AppContext,
4536 T: 'static,
4537 {
4538 let view = self
4539 .downcast::<T>()
4540 .context("the type of the window's root view has changed")?;
4541
4542 cx.read_window(&view, read)
4543 }
4544}
4545
4546impl HasWindowHandle for Window {
4547 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4548 self.platform_window.window_handle()
4549 }
4550}
4551
4552impl HasDisplayHandle for Window {
4553 fn display_handle(
4554 &self,
4555 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4556 self.platform_window.display_handle()
4557 }
4558}
4559
4560/// An identifier for an [`Element`](crate::Element).
4561///
4562/// Can be constructed with a string, a number, or both, as well
4563/// as other internal representations.
4564#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4565pub enum ElementId {
4566 /// The ID of a View element
4567 View(EntityId),
4568 /// An integer ID.
4569 Integer(u64),
4570 /// A string based ID.
4571 Name(SharedString),
4572 /// A UUID.
4573 Uuid(Uuid),
4574 /// An ID that's equated with a focus handle.
4575 FocusHandle(FocusId),
4576 /// A combination of a name and an integer.
4577 NamedInteger(SharedString, u64),
4578 /// A path.
4579 Path(Arc<std::path::Path>),
4580}
4581
4582impl ElementId {
4583 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4584 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4585 Self::NamedInteger(name.into(), integer as u64)
4586 }
4587}
4588
4589impl Display for ElementId {
4590 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4591 match self {
4592 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4593 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4594 ElementId::Name(name) => write!(f, "{}", name)?,
4595 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4596 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4597 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4598 ElementId::Path(path) => write!(f, "{}", path.display())?,
4599 }
4600
4601 Ok(())
4602 }
4603}
4604
4605impl TryInto<SharedString> for ElementId {
4606 type Error = anyhow::Error;
4607
4608 fn try_into(self) -> anyhow::Result<SharedString> {
4609 if let ElementId::Name(name) = self {
4610 Ok(name)
4611 } else {
4612 anyhow::bail!("element id is not string")
4613 }
4614 }
4615}
4616
4617impl From<usize> for ElementId {
4618 fn from(id: usize) -> Self {
4619 ElementId::Integer(id as u64)
4620 }
4621}
4622
4623impl From<i32> for ElementId {
4624 fn from(id: i32) -> Self {
4625 Self::Integer(id as u64)
4626 }
4627}
4628
4629impl From<SharedString> for ElementId {
4630 fn from(name: SharedString) -> Self {
4631 ElementId::Name(name)
4632 }
4633}
4634
4635impl From<Arc<std::path::Path>> for ElementId {
4636 fn from(path: Arc<std::path::Path>) -> Self {
4637 ElementId::Path(path)
4638 }
4639}
4640
4641impl From<&'static str> for ElementId {
4642 fn from(name: &'static str) -> Self {
4643 ElementId::Name(name.into())
4644 }
4645}
4646
4647impl<'a> From<&'a FocusHandle> for ElementId {
4648 fn from(handle: &'a FocusHandle) -> Self {
4649 ElementId::FocusHandle(handle.id)
4650 }
4651}
4652
4653impl From<(&'static str, EntityId)> for ElementId {
4654 fn from((name, id): (&'static str, EntityId)) -> Self {
4655 ElementId::NamedInteger(name.into(), id.as_u64())
4656 }
4657}
4658
4659impl From<(&'static str, usize)> for ElementId {
4660 fn from((name, id): (&'static str, usize)) -> Self {
4661 ElementId::NamedInteger(name.into(), id as u64)
4662 }
4663}
4664
4665impl From<(SharedString, usize)> for ElementId {
4666 fn from((name, id): (SharedString, usize)) -> Self {
4667 ElementId::NamedInteger(name, id as u64)
4668 }
4669}
4670
4671impl From<(&'static str, u64)> for ElementId {
4672 fn from((name, id): (&'static str, u64)) -> Self {
4673 ElementId::NamedInteger(name.into(), id)
4674 }
4675}
4676
4677impl From<Uuid> for ElementId {
4678 fn from(value: Uuid) -> Self {
4679 Self::Uuid(value)
4680 }
4681}
4682
4683impl From<(&'static str, u32)> for ElementId {
4684 fn from((name, id): (&'static str, u32)) -> Self {
4685 ElementId::NamedInteger(name.into(), id.into())
4686 }
4687}
4688
4689/// A rectangle to be rendered in the window at the given position and size.
4690/// Passed as an argument [`Window::paint_quad`].
4691#[derive(Clone)]
4692pub struct PaintQuad {
4693 /// The bounds of the quad within the window.
4694 pub bounds: Bounds<Pixels>,
4695 /// The radii of the quad's corners.
4696 pub corner_radii: Corners<Pixels>,
4697 /// The background color of the quad.
4698 pub background: Background,
4699 /// The widths of the quad's borders.
4700 pub border_widths: Edges<Pixels>,
4701 /// The color of the quad's borders.
4702 pub border_color: Hsla,
4703 /// The style of the quad's borders.
4704 pub border_style: BorderStyle,
4705}
4706
4707impl PaintQuad {
4708 /// Sets the corner radii of the quad.
4709 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4710 PaintQuad {
4711 corner_radii: corner_radii.into(),
4712 ..self
4713 }
4714 }
4715
4716 /// Sets the border widths of the quad.
4717 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4718 PaintQuad {
4719 border_widths: border_widths.into(),
4720 ..self
4721 }
4722 }
4723
4724 /// Sets the border color of the quad.
4725 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4726 PaintQuad {
4727 border_color: border_color.into(),
4728 ..self
4729 }
4730 }
4731
4732 /// Sets the background color of the quad.
4733 pub fn background(self, background: impl Into<Background>) -> Self {
4734 PaintQuad {
4735 background: background.into(),
4736 ..self
4737 }
4738 }
4739}
4740
4741/// Creates a quad with the given parameters.
4742pub fn quad(
4743 bounds: Bounds<Pixels>,
4744 corner_radii: impl Into<Corners<Pixels>>,
4745 background: impl Into<Background>,
4746 border_widths: impl Into<Edges<Pixels>>,
4747 border_color: impl Into<Hsla>,
4748 border_style: BorderStyle,
4749) -> PaintQuad {
4750 PaintQuad {
4751 bounds,
4752 corner_radii: corner_radii.into(),
4753 background: background.into(),
4754 border_widths: border_widths.into(),
4755 border_color: border_color.into(),
4756 border_style,
4757 }
4758}
4759
4760/// Creates a filled quad with the given bounds and background color.
4761pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4762 PaintQuad {
4763 bounds: bounds.into(),
4764 corner_radii: (0.).into(),
4765 background: background.into(),
4766 border_widths: (0.).into(),
4767 border_color: transparent_black(),
4768 border_style: BorderStyle::default(),
4769 }
4770}
4771
4772/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4773pub fn outline(
4774 bounds: impl Into<Bounds<Pixels>>,
4775 border_color: impl Into<Hsla>,
4776 border_style: BorderStyle,
4777) -> PaintQuad {
4778 PaintQuad {
4779 bounds: bounds.into(),
4780 corner_radii: (0.).into(),
4781 background: transparent_black().into(),
4782 border_widths: (1.).into(),
4783 border_color: border_color.into(),
4784 border_style,
4785 }
4786}