cloud.rs

   1use ai_onboarding::YoungAccountBanner;
   2use anthropic::AnthropicModelMode;
   3use anyhow::{Context as _, Result, anyhow};
   4use chrono::{DateTime, Utc};
   5use client::{Client, UserStore, zed_urls};
   6use cloud_llm_client::{
   7    CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CLIENT_SUPPORTS_X_AI_HEADER_NAME, CompletionBody,
   8    CompletionEvent, CountTokensBody, CountTokensResponse, EXPIRED_LLM_TOKEN_HEADER_NAME,
   9    ListModelsResponse, Plan, PlanV2, SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME,
  10    ZED_VERSION_HEADER_NAME,
  11};
  12use futures::{
  13    AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream,
  14};
  15use google_ai::GoogleModelMode;
  16use gpui::{AnyElement, AnyView, App, AsyncApp, Context, Entity, Subscription, Task};
  17use http_client::http::{HeaderMap, HeaderValue};
  18use http_client::{AsyncBody, HttpClient, HttpRequestExt, Method, Response, StatusCode};
  19use language_model::{
  20    AuthenticateError, IconOrSvg, LanguageModel, LanguageModelCacheConfiguration,
  21    LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
  22    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  23    LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
  24    LanguageModelToolSchemaFormat, LlmApiToken, PaymentRequiredError, RateLimiter,
  25    RefreshLlmTokenListener,
  26};
  27use release_channel::AppVersion;
  28use schemars::JsonSchema;
  29use semver::Version;
  30use serde::{Deserialize, Serialize, de::DeserializeOwned};
  31use settings::SettingsStore;
  32pub use settings::ZedDotDevAvailableModel as AvailableModel;
  33pub use settings::ZedDotDevAvailableProvider as AvailableProvider;
  34use smol::io::{AsyncReadExt, BufReader};
  35use std::pin::Pin;
  36use std::sync::Arc;
  37use std::time::Duration;
  38use thiserror::Error;
  39use ui::{TintColor, prelude::*};
  40use util::{ResultExt as _, maybe};
  41
  42use crate::provider::anthropic::{
  43    AnthropicEventMapper, count_anthropic_tokens_with_tiktoken, into_anthropic,
  44};
  45use crate::provider::google::{GoogleEventMapper, into_google};
  46use crate::provider::open_ai::{
  47    OpenAiEventMapper, OpenAiResponseEventMapper, count_open_ai_tokens, into_open_ai,
  48    into_open_ai_response,
  49};
  50use crate::provider::x_ai::count_xai_tokens;
  51
  52const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID;
  53const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME;
  54
  55#[derive(Default, Clone, Debug, PartialEq)]
  56pub struct ZedDotDevSettings {
  57    pub available_models: Vec<AvailableModel>,
  58}
  59#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  60#[serde(tag = "type", rename_all = "lowercase")]
  61pub enum ModelMode {
  62    #[default]
  63    Default,
  64    Thinking {
  65        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  66        budget_tokens: Option<u32>,
  67    },
  68}
  69
  70impl From<ModelMode> for AnthropicModelMode {
  71    fn from(value: ModelMode) -> Self {
  72        match value {
  73            ModelMode::Default => AnthropicModelMode::Default,
  74            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
  75        }
  76    }
  77}
  78
  79pub struct CloudLanguageModelProvider {
  80    client: Arc<Client>,
  81    state: Entity<State>,
  82    _maintain_client_status: Task<()>,
  83}
  84
  85pub struct State {
  86    client: Arc<Client>,
  87    llm_api_token: LlmApiToken,
  88    user_store: Entity<UserStore>,
  89    status: client::Status,
  90    models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  91    default_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  92    default_fast_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  93    recommended_models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  94    _fetch_models_task: Task<()>,
  95    _settings_subscription: Subscription,
  96    _llm_token_subscription: Subscription,
  97}
  98
  99impl State {
 100    fn new(
 101        client: Arc<Client>,
 102        user_store: Entity<UserStore>,
 103        status: client::Status,
 104        cx: &mut Context<Self>,
 105    ) -> Self {
 106        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
 107        let mut current_user = user_store.read(cx).watch_current_user();
 108        Self {
 109            client: client.clone(),
 110            llm_api_token: LlmApiToken::default(),
 111            user_store,
 112            status,
 113            models: Vec::new(),
 114            default_model: None,
 115            default_fast_model: None,
 116            recommended_models: Vec::new(),
 117            _fetch_models_task: cx.spawn(async move |this, cx| {
 118                maybe!(async move {
 119                    let (client, llm_api_token) = this
 120                        .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?;
 121
 122                    while current_user.borrow().is_none() {
 123                        current_user.next().await;
 124                    }
 125
 126                    let response =
 127                        Self::fetch_models(client.clone(), llm_api_token.clone()).await?;
 128                    this.update(cx, |this, cx| this.update_models(response, cx))?;
 129                    anyhow::Ok(())
 130                })
 131                .await
 132                .context("failed to fetch Zed models")
 133                .log_err();
 134            }),
 135            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 136                cx.notify();
 137            }),
 138            _llm_token_subscription: cx.subscribe(
 139                &refresh_llm_token_listener,
 140                move |this, _listener, _event, cx| {
 141                    let client = this.client.clone();
 142                    let llm_api_token = this.llm_api_token.clone();
 143                    cx.spawn(async move |this, cx| {
 144                        llm_api_token.refresh(&client).await?;
 145                        let response = Self::fetch_models(client, llm_api_token).await?;
 146                        this.update(cx, |this, cx| {
 147                            this.update_models(response, cx);
 148                        })
 149                    })
 150                    .detach_and_log_err(cx);
 151                },
 152            ),
 153        }
 154    }
 155
 156    fn is_signed_out(&self, cx: &App) -> bool {
 157        self.user_store.read(cx).current_user().is_none()
 158    }
 159
 160    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 161        let client = self.client.clone();
 162        cx.spawn(async move |state, cx| {
 163            client.sign_in_with_optional_connect(true, cx).await?;
 164            state.update(cx, |_, cx| cx.notify())
 165        })
 166    }
 167    fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context<Self>) {
 168        let mut models = Vec::new();
 169
 170        for model in response.models {
 171            models.push(Arc::new(model.clone()));
 172
 173            // Right now we represent thinking variants of models as separate models on the client,
 174            // so we need to insert variants for any model that supports thinking.
 175            if model.supports_thinking {
 176                models.push(Arc::new(cloud_llm_client::LanguageModel {
 177                    id: cloud_llm_client::LanguageModelId(format!("{}-thinking", model.id).into()),
 178                    display_name: format!("{} Thinking", model.display_name),
 179                    ..model
 180                }));
 181            }
 182        }
 183
 184        self.default_model = models
 185            .iter()
 186            .find(|model| {
 187                response
 188                    .default_model
 189                    .as_ref()
 190                    .is_some_and(|default_model_id| &model.id == default_model_id)
 191            })
 192            .cloned();
 193        self.default_fast_model = models
 194            .iter()
 195            .find(|model| {
 196                response
 197                    .default_fast_model
 198                    .as_ref()
 199                    .is_some_and(|default_fast_model_id| &model.id == default_fast_model_id)
 200            })
 201            .cloned();
 202        self.recommended_models = response
 203            .recommended_models
 204            .iter()
 205            .filter_map(|id| models.iter().find(|model| &model.id == id))
 206            .cloned()
 207            .collect();
 208        self.models = models;
 209        cx.notify();
 210    }
 211
 212    async fn fetch_models(
 213        client: Arc<Client>,
 214        llm_api_token: LlmApiToken,
 215    ) -> Result<ListModelsResponse> {
 216        let http_client = &client.http_client();
 217        let token = llm_api_token.acquire(&client).await?;
 218
 219        let request = http_client::Request::builder()
 220            .method(Method::GET)
 221            .header(CLIENT_SUPPORTS_X_AI_HEADER_NAME, "true")
 222            .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref())
 223            .header("Authorization", format!("Bearer {token}"))
 224            .body(AsyncBody::empty())?;
 225        let mut response = http_client
 226            .send(request)
 227            .await
 228            .context("failed to send list models request")?;
 229
 230        if response.status().is_success() {
 231            let mut body = String::new();
 232            response.body_mut().read_to_string(&mut body).await?;
 233            Ok(serde_json::from_str(&body)?)
 234        } else {
 235            let mut body = String::new();
 236            response.body_mut().read_to_string(&mut body).await?;
 237            anyhow::bail!(
 238                "error listing models.\nStatus: {:?}\nBody: {body}",
 239                response.status(),
 240            );
 241        }
 242    }
 243}
 244
 245impl CloudLanguageModelProvider {
 246    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
 247        let mut status_rx = client.status();
 248        let status = *status_rx.borrow();
 249
 250        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
 251
 252        let state_ref = state.downgrade();
 253        let maintain_client_status = cx.spawn(async move |cx| {
 254            while let Some(status) = status_rx.next().await {
 255                if let Some(this) = state_ref.upgrade() {
 256                    _ = this.update(cx, |this, cx| {
 257                        if this.status != status {
 258                            this.status = status;
 259                            cx.notify();
 260                        }
 261                    });
 262                } else {
 263                    break;
 264                }
 265            }
 266        });
 267
 268        Self {
 269            client,
 270            state,
 271            _maintain_client_status: maintain_client_status,
 272        }
 273    }
 274
 275    fn create_language_model(
 276        &self,
 277        model: Arc<cloud_llm_client::LanguageModel>,
 278        llm_api_token: LlmApiToken,
 279    ) -> Arc<dyn LanguageModel> {
 280        Arc::new(CloudLanguageModel {
 281            id: LanguageModelId(SharedString::from(model.id.0.clone())),
 282            model,
 283            llm_api_token,
 284            client: self.client.clone(),
 285            request_limiter: RateLimiter::new(4),
 286        })
 287    }
 288}
 289
 290impl LanguageModelProviderState for CloudLanguageModelProvider {
 291    type ObservableEntity = State;
 292
 293    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
 294        Some(self.state.clone())
 295    }
 296}
 297
 298impl LanguageModelProvider for CloudLanguageModelProvider {
 299    fn id(&self) -> LanguageModelProviderId {
 300        PROVIDER_ID
 301    }
 302
 303    fn name(&self) -> LanguageModelProviderName {
 304        PROVIDER_NAME
 305    }
 306
 307    fn icon(&self) -> IconOrSvg {
 308        IconOrSvg::Icon(IconName::AiZed)
 309    }
 310
 311    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 312        let default_model = self.state.read(cx).default_model.clone()?;
 313        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 314        Some(self.create_language_model(default_model, llm_api_token))
 315    }
 316
 317    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 318        let default_fast_model = self.state.read(cx).default_fast_model.clone()?;
 319        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 320        Some(self.create_language_model(default_fast_model, llm_api_token))
 321    }
 322
 323    fn recommended_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 324        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 325        self.state
 326            .read(cx)
 327            .recommended_models
 328            .iter()
 329            .cloned()
 330            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 331            .collect()
 332    }
 333
 334    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 335        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 336        self.state
 337            .read(cx)
 338            .models
 339            .iter()
 340            .cloned()
 341            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 342            .collect()
 343    }
 344
 345    fn is_authenticated(&self, cx: &App) -> bool {
 346        let state = self.state.read(cx);
 347        !state.is_signed_out(cx)
 348    }
 349
 350    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 351        Task::ready(Ok(()))
 352    }
 353
 354    fn configuration_view(
 355        &self,
 356        _target_agent: language_model::ConfigurationViewTargetAgent,
 357        _: &mut Window,
 358        cx: &mut App,
 359    ) -> AnyView {
 360        cx.new(|_| ConfigurationView::new(self.state.clone()))
 361            .into()
 362    }
 363
 364    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
 365        Task::ready(Ok(()))
 366    }
 367}
 368
 369pub struct CloudLanguageModel {
 370    id: LanguageModelId,
 371    model: Arc<cloud_llm_client::LanguageModel>,
 372    llm_api_token: LlmApiToken,
 373    client: Arc<Client>,
 374    request_limiter: RateLimiter,
 375}
 376
 377struct PerformLlmCompletionResponse {
 378    response: Response<AsyncBody>,
 379    includes_status_messages: bool,
 380}
 381
 382impl CloudLanguageModel {
 383    async fn perform_llm_completion(
 384        client: Arc<Client>,
 385        llm_api_token: LlmApiToken,
 386        app_version: Option<Version>,
 387        body: CompletionBody,
 388    ) -> Result<PerformLlmCompletionResponse> {
 389        let http_client = &client.http_client();
 390
 391        let mut token = llm_api_token.acquire(&client).await?;
 392        let mut refreshed_token = false;
 393
 394        loop {
 395            let request = http_client::Request::builder()
 396                .method(Method::POST)
 397                .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref())
 398                .when_some(app_version.as_ref(), |builder, app_version| {
 399                    builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string())
 400                })
 401                .header("Content-Type", "application/json")
 402                .header("Authorization", format!("Bearer {token}"))
 403                .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true")
 404                .body(serde_json::to_string(&body)?.into())?;
 405
 406            let mut response = http_client.send(request).await?;
 407            let status = response.status();
 408            if status.is_success() {
 409                let includes_status_messages = response
 410                    .headers()
 411                    .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME)
 412                    .is_some();
 413
 414                return Ok(PerformLlmCompletionResponse {
 415                    response,
 416                    includes_status_messages,
 417                });
 418            }
 419
 420            if !refreshed_token
 421                && response
 422                    .headers()
 423                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
 424                    .is_some()
 425            {
 426                token = llm_api_token.refresh(&client).await?;
 427                refreshed_token = true;
 428                continue;
 429            }
 430
 431            if status == StatusCode::PAYMENT_REQUIRED {
 432                return Err(anyhow!(PaymentRequiredError));
 433            }
 434
 435            let mut body = String::new();
 436            let headers = response.headers().clone();
 437            response.body_mut().read_to_string(&mut body).await?;
 438            return Err(anyhow!(ApiError {
 439                status,
 440                body,
 441                headers
 442            }));
 443        }
 444    }
 445}
 446
 447#[derive(Debug, Error)]
 448#[error("cloud language model request failed with status {status}: {body}")]
 449struct ApiError {
 450    status: StatusCode,
 451    body: String,
 452    headers: HeaderMap<HeaderValue>,
 453}
 454
 455/// Represents error responses from Zed's cloud API.
 456///
 457/// Example JSON for an upstream HTTP error:
 458/// ```json
 459/// {
 460///   "code": "upstream_http_error",
 461///   "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout",
 462///   "upstream_status": 503
 463/// }
 464/// ```
 465#[derive(Debug, serde::Deserialize)]
 466struct CloudApiError {
 467    code: String,
 468    message: String,
 469    #[serde(default)]
 470    #[serde(deserialize_with = "deserialize_optional_status_code")]
 471    upstream_status: Option<StatusCode>,
 472    #[serde(default)]
 473    retry_after: Option<f64>,
 474}
 475
 476fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result<Option<StatusCode>, D::Error>
 477where
 478    D: serde::Deserializer<'de>,
 479{
 480    let opt: Option<u16> = Option::deserialize(deserializer)?;
 481    Ok(opt.and_then(|code| StatusCode::from_u16(code).ok()))
 482}
 483
 484impl From<ApiError> for LanguageModelCompletionError {
 485    fn from(error: ApiError) -> Self {
 486        if let Ok(cloud_error) = serde_json::from_str::<CloudApiError>(&error.body) {
 487            if cloud_error.code.starts_with("upstream_http_") {
 488                let status = if let Some(status) = cloud_error.upstream_status {
 489                    status
 490                } else if cloud_error.code.ends_with("_error") {
 491                    error.status
 492                } else {
 493                    // If there's a status code in the code string (e.g. "upstream_http_429")
 494                    // then use that; otherwise, see if the JSON contains a status code.
 495                    cloud_error
 496                        .code
 497                        .strip_prefix("upstream_http_")
 498                        .and_then(|code_str| code_str.parse::<u16>().ok())
 499                        .and_then(|code| StatusCode::from_u16(code).ok())
 500                        .unwrap_or(error.status)
 501                };
 502
 503                return LanguageModelCompletionError::UpstreamProviderError {
 504                    message: cloud_error.message,
 505                    status,
 506                    retry_after: cloud_error.retry_after.map(Duration::from_secs_f64),
 507                };
 508            }
 509
 510            return LanguageModelCompletionError::from_http_status(
 511                PROVIDER_NAME,
 512                error.status,
 513                cloud_error.message,
 514                None,
 515            );
 516        }
 517
 518        let retry_after = None;
 519        LanguageModelCompletionError::from_http_status(
 520            PROVIDER_NAME,
 521            error.status,
 522            error.body,
 523            retry_after,
 524        )
 525    }
 526}
 527
 528impl LanguageModel for CloudLanguageModel {
 529    fn id(&self) -> LanguageModelId {
 530        self.id.clone()
 531    }
 532
 533    fn name(&self) -> LanguageModelName {
 534        LanguageModelName::from(self.model.display_name.clone())
 535    }
 536
 537    fn provider_id(&self) -> LanguageModelProviderId {
 538        PROVIDER_ID
 539    }
 540
 541    fn provider_name(&self) -> LanguageModelProviderName {
 542        PROVIDER_NAME
 543    }
 544
 545    fn upstream_provider_id(&self) -> LanguageModelProviderId {
 546        use cloud_llm_client::LanguageModelProvider::*;
 547        match self.model.provider {
 548            Anthropic => language_model::ANTHROPIC_PROVIDER_ID,
 549            OpenAi => language_model::OPEN_AI_PROVIDER_ID,
 550            Google => language_model::GOOGLE_PROVIDER_ID,
 551            XAi => language_model::X_AI_PROVIDER_ID,
 552        }
 553    }
 554
 555    fn upstream_provider_name(&self) -> LanguageModelProviderName {
 556        use cloud_llm_client::LanguageModelProvider::*;
 557        match self.model.provider {
 558            Anthropic => language_model::ANTHROPIC_PROVIDER_NAME,
 559            OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 560            Google => language_model::GOOGLE_PROVIDER_NAME,
 561            XAi => language_model::X_AI_PROVIDER_NAME,
 562        }
 563    }
 564
 565    fn supports_tools(&self) -> bool {
 566        self.model.supports_tools
 567    }
 568
 569    fn supports_images(&self) -> bool {
 570        self.model.supports_images
 571    }
 572
 573    fn supports_streaming_tools(&self) -> bool {
 574        self.model.supports_streaming_tools
 575    }
 576
 577    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 578        match choice {
 579            LanguageModelToolChoice::Auto
 580            | LanguageModelToolChoice::Any
 581            | LanguageModelToolChoice::None => true,
 582        }
 583    }
 584
 585    fn supports_split_token_display(&self) -> bool {
 586        use cloud_llm_client::LanguageModelProvider::*;
 587        matches!(self.model.provider, OpenAi)
 588    }
 589
 590    fn telemetry_id(&self) -> String {
 591        format!("zed.dev/{}", self.model.id)
 592    }
 593
 594    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 595        match self.model.provider {
 596            cloud_llm_client::LanguageModelProvider::Anthropic
 597            | cloud_llm_client::LanguageModelProvider::OpenAi
 598            | cloud_llm_client::LanguageModelProvider::XAi => {
 599                LanguageModelToolSchemaFormat::JsonSchema
 600            }
 601            cloud_llm_client::LanguageModelProvider::Google => {
 602                LanguageModelToolSchemaFormat::JsonSchemaSubset
 603            }
 604        }
 605    }
 606
 607    fn max_token_count(&self) -> u64 {
 608        self.model.max_token_count as u64
 609    }
 610
 611    fn max_output_tokens(&self) -> Option<u64> {
 612        Some(self.model.max_output_tokens as u64)
 613    }
 614
 615    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
 616        match &self.model.provider {
 617            cloud_llm_client::LanguageModelProvider::Anthropic => {
 618                Some(LanguageModelCacheConfiguration {
 619                    min_total_token: 2_048,
 620                    should_speculate: true,
 621                    max_cache_anchors: 4,
 622                })
 623            }
 624            cloud_llm_client::LanguageModelProvider::OpenAi
 625            | cloud_llm_client::LanguageModelProvider::XAi
 626            | cloud_llm_client::LanguageModelProvider::Google => None,
 627        }
 628    }
 629
 630    fn count_tokens(
 631        &self,
 632        request: LanguageModelRequest,
 633        cx: &App,
 634    ) -> BoxFuture<'static, Result<u64>> {
 635        match self.model.provider {
 636            cloud_llm_client::LanguageModelProvider::Anthropic => cx
 637                .background_spawn(async move { count_anthropic_tokens_with_tiktoken(request) })
 638                .boxed(),
 639            cloud_llm_client::LanguageModelProvider::OpenAi => {
 640                let model = match open_ai::Model::from_id(&self.model.id.0) {
 641                    Ok(model) => model,
 642                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 643                };
 644                count_open_ai_tokens(request, model, cx)
 645            }
 646            cloud_llm_client::LanguageModelProvider::XAi => {
 647                let model = match x_ai::Model::from_id(&self.model.id.0) {
 648                    Ok(model) => model,
 649                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 650                };
 651                count_xai_tokens(request, model, cx)
 652            }
 653            cloud_llm_client::LanguageModelProvider::Google => {
 654                let client = self.client.clone();
 655                let llm_api_token = self.llm_api_token.clone();
 656                let model_id = self.model.id.to_string();
 657                let generate_content_request =
 658                    into_google(request, model_id.clone(), GoogleModelMode::Default);
 659                async move {
 660                    let http_client = &client.http_client();
 661                    let token = llm_api_token.acquire(&client).await?;
 662
 663                    let request_body = CountTokensBody {
 664                        provider: cloud_llm_client::LanguageModelProvider::Google,
 665                        model: model_id,
 666                        provider_request: serde_json::to_value(&google_ai::CountTokensRequest {
 667                            generate_content_request,
 668                        })?,
 669                    };
 670                    let request = http_client::Request::builder()
 671                        .method(Method::POST)
 672                        .uri(
 673                            http_client
 674                                .build_zed_llm_url("/count_tokens", &[])?
 675                                .as_ref(),
 676                        )
 677                        .header("Content-Type", "application/json")
 678                        .header("Authorization", format!("Bearer {token}"))
 679                        .body(serde_json::to_string(&request_body)?.into())?;
 680                    let mut response = http_client.send(request).await?;
 681                    let status = response.status();
 682                    let headers = response.headers().clone();
 683                    let mut response_body = String::new();
 684                    response
 685                        .body_mut()
 686                        .read_to_string(&mut response_body)
 687                        .await?;
 688
 689                    if status.is_success() {
 690                        let response_body: CountTokensResponse =
 691                            serde_json::from_str(&response_body)?;
 692
 693                        Ok(response_body.tokens as u64)
 694                    } else {
 695                        Err(anyhow!(ApiError {
 696                            status,
 697                            body: response_body,
 698                            headers
 699                        }))
 700                    }
 701                }
 702                .boxed()
 703            }
 704        }
 705    }
 706
 707    fn stream_completion(
 708        &self,
 709        request: LanguageModelRequest,
 710        cx: &AsyncApp,
 711    ) -> BoxFuture<
 712        'static,
 713        Result<
 714            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
 715            LanguageModelCompletionError,
 716        >,
 717    > {
 718        let thread_id = request.thread_id.clone();
 719        let prompt_id = request.prompt_id.clone();
 720        let intent = request.intent;
 721        let bypass_rate_limit = request.bypass_rate_limit;
 722        let app_version = Some(cx.update(|cx| AppVersion::global(cx)));
 723        let thinking_allowed = request.thinking_allowed;
 724        let provider_name = provider_name(&self.model.provider);
 725        match self.model.provider {
 726            cloud_llm_client::LanguageModelProvider::Anthropic => {
 727                let request = into_anthropic(
 728                    request,
 729                    self.model.id.to_string(),
 730                    1.0,
 731                    self.model.max_output_tokens as u64,
 732                    if thinking_allowed && self.model.id.0.ends_with("-thinking") {
 733                        AnthropicModelMode::Thinking {
 734                            budget_tokens: Some(4_096),
 735                        }
 736                    } else {
 737                        AnthropicModelMode::Default
 738                    },
 739                );
 740                let client = self.client.clone();
 741                let llm_api_token = self.llm_api_token.clone();
 742                let future = self.request_limiter.stream_with_bypass(
 743                    async move {
 744                        let PerformLlmCompletionResponse {
 745                            response,
 746                            includes_status_messages,
 747                        } = Self::perform_llm_completion(
 748                            client.clone(),
 749                            llm_api_token,
 750                            app_version,
 751                            CompletionBody {
 752                                thread_id,
 753                                prompt_id,
 754                                intent,
 755                                provider: cloud_llm_client::LanguageModelProvider::Anthropic,
 756                                model: request.model.clone(),
 757                                provider_request: serde_json::to_value(&request)
 758                                    .map_err(|e| anyhow!(e))?,
 759                            },
 760                        )
 761                        .await
 762                        .map_err(|err| {
 763                            match err.downcast::<ApiError>() {
 764                                Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)),
 765                                Err(err) => anyhow!(err),
 766                            }
 767                        })?;
 768
 769                        let mut mapper = AnthropicEventMapper::new();
 770                        Ok(map_cloud_completion_events(
 771                            Box::pin(response_lines(response, includes_status_messages)),
 772                            &provider_name,
 773                            move |event| mapper.map_event(event),
 774                        ))
 775                    },
 776                    bypass_rate_limit,
 777                );
 778                async move { Ok(future.await?.boxed()) }.boxed()
 779            }
 780            cloud_llm_client::LanguageModelProvider::OpenAi => {
 781                let client = self.client.clone();
 782                let llm_api_token = self.llm_api_token.clone();
 783
 784                let request = into_open_ai_response(
 785                    request,
 786                    &self.model.id.0,
 787                    self.model.supports_parallel_tool_calls,
 788                    true,
 789                    None,
 790                    None,
 791                );
 792                let future = self.request_limiter.stream_with_bypass(
 793                    async move {
 794                        let PerformLlmCompletionResponse {
 795                            response,
 796                            includes_status_messages,
 797                        } = Self::perform_llm_completion(
 798                            client.clone(),
 799                            llm_api_token,
 800                            app_version,
 801                            CompletionBody {
 802                                thread_id,
 803                                prompt_id,
 804                                intent,
 805                                provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 806                                model: request.model.clone(),
 807                                provider_request: serde_json::to_value(&request)
 808                                    .map_err(|e| anyhow!(e))?,
 809                            },
 810                        )
 811                        .await?;
 812
 813                        let mut mapper = OpenAiResponseEventMapper::new();
 814                        Ok(map_cloud_completion_events(
 815                            Box::pin(response_lines(response, includes_status_messages)),
 816                            &provider_name,
 817                            move |event| mapper.map_event(event),
 818                        ))
 819                    },
 820                    bypass_rate_limit,
 821                );
 822                async move { Ok(future.await?.boxed()) }.boxed()
 823            }
 824            cloud_llm_client::LanguageModelProvider::XAi => {
 825                let client = self.client.clone();
 826                let request = into_open_ai(
 827                    request,
 828                    &self.model.id.0,
 829                    self.model.supports_parallel_tool_calls,
 830                    false,
 831                    None,
 832                    None,
 833                );
 834                let llm_api_token = self.llm_api_token.clone();
 835                let future = self.request_limiter.stream_with_bypass(
 836                    async move {
 837                        let PerformLlmCompletionResponse {
 838                            response,
 839                            includes_status_messages,
 840                        } = Self::perform_llm_completion(
 841                            client.clone(),
 842                            llm_api_token,
 843                            app_version,
 844                            CompletionBody {
 845                                thread_id,
 846                                prompt_id,
 847                                intent,
 848                                provider: cloud_llm_client::LanguageModelProvider::XAi,
 849                                model: request.model.clone(),
 850                                provider_request: serde_json::to_value(&request)
 851                                    .map_err(|e| anyhow!(e))?,
 852                            },
 853                        )
 854                        .await?;
 855
 856                        let mut mapper = OpenAiEventMapper::new();
 857                        Ok(map_cloud_completion_events(
 858                            Box::pin(response_lines(response, includes_status_messages)),
 859                            &provider_name,
 860                            move |event| mapper.map_event(event),
 861                        ))
 862                    },
 863                    bypass_rate_limit,
 864                );
 865                async move { Ok(future.await?.boxed()) }.boxed()
 866            }
 867            cloud_llm_client::LanguageModelProvider::Google => {
 868                let client = self.client.clone();
 869                let request =
 870                    into_google(request, self.model.id.to_string(), GoogleModelMode::Default);
 871                let llm_api_token = self.llm_api_token.clone();
 872                let future = self.request_limiter.stream_with_bypass(
 873                    async move {
 874                        let PerformLlmCompletionResponse {
 875                            response,
 876                            includes_status_messages,
 877                        } = Self::perform_llm_completion(
 878                            client.clone(),
 879                            llm_api_token,
 880                            app_version,
 881                            CompletionBody {
 882                                thread_id,
 883                                prompt_id,
 884                                intent,
 885                                provider: cloud_llm_client::LanguageModelProvider::Google,
 886                                model: request.model.model_id.clone(),
 887                                provider_request: serde_json::to_value(&request)
 888                                    .map_err(|e| anyhow!(e))?,
 889                            },
 890                        )
 891                        .await?;
 892
 893                        let mut mapper = GoogleEventMapper::new();
 894                        Ok(map_cloud_completion_events(
 895                            Box::pin(response_lines(response, includes_status_messages)),
 896                            &provider_name,
 897                            move |event| mapper.map_event(event),
 898                        ))
 899                    },
 900                    bypass_rate_limit,
 901                );
 902                async move { Ok(future.await?.boxed()) }.boxed()
 903            }
 904        }
 905    }
 906}
 907
 908fn map_cloud_completion_events<T, F>(
 909    stream: Pin<Box<dyn Stream<Item = Result<CompletionEvent<T>>> + Send>>,
 910    provider: &LanguageModelProviderName,
 911    mut map_callback: F,
 912) -> BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 913where
 914    T: DeserializeOwned + 'static,
 915    F: FnMut(T) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 916        + Send
 917        + 'static,
 918{
 919    let provider = provider.clone();
 920    stream
 921        .flat_map(move |event| {
 922            futures::stream::iter(match event {
 923                Err(error) => {
 924                    vec![Err(LanguageModelCompletionError::from(error))]
 925                }
 926                Ok(CompletionEvent::Status(event)) => {
 927                    vec![
 928                        LanguageModelCompletionEvent::from_completion_request_status(
 929                            event,
 930                            provider.clone(),
 931                        ),
 932                    ]
 933                }
 934                Ok(CompletionEvent::Event(event)) => map_callback(event),
 935            })
 936        })
 937        .boxed()
 938}
 939
 940fn provider_name(provider: &cloud_llm_client::LanguageModelProvider) -> LanguageModelProviderName {
 941    match provider {
 942        cloud_llm_client::LanguageModelProvider::Anthropic => {
 943            language_model::ANTHROPIC_PROVIDER_NAME
 944        }
 945        cloud_llm_client::LanguageModelProvider::OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 946        cloud_llm_client::LanguageModelProvider::Google => language_model::GOOGLE_PROVIDER_NAME,
 947        cloud_llm_client::LanguageModelProvider::XAi => language_model::X_AI_PROVIDER_NAME,
 948    }
 949}
 950
 951fn response_lines<T: DeserializeOwned>(
 952    response: Response<AsyncBody>,
 953    includes_status_messages: bool,
 954) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 955    futures::stream::try_unfold(
 956        (String::new(), BufReader::new(response.into_body())),
 957        move |(mut line, mut body)| async move {
 958            match body.read_line(&mut line).await {
 959                Ok(0) => Ok(None),
 960                Ok(_) => {
 961                    let event = if includes_status_messages {
 962                        serde_json::from_str::<CompletionEvent<T>>(&line)?
 963                    } else {
 964                        CompletionEvent::Event(serde_json::from_str::<T>(&line)?)
 965                    };
 966
 967                    line.clear();
 968                    Ok(Some((event, (line, body))))
 969                }
 970                Err(e) => Err(e.into()),
 971            }
 972        },
 973    )
 974}
 975
 976#[derive(IntoElement, RegisterComponent)]
 977struct ZedAiConfiguration {
 978    is_connected: bool,
 979    plan: Option<Plan>,
 980    subscription_period: Option<(DateTime<Utc>, DateTime<Utc>)>,
 981    eligible_for_trial: bool,
 982    account_too_young: bool,
 983    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
 984}
 985
 986impl RenderOnce for ZedAiConfiguration {
 987    fn render(self, _window: &mut Window, _cx: &mut App) -> impl IntoElement {
 988        let is_pro = self
 989            .plan
 990            .is_some_and(|plan| plan == Plan::V2(PlanV2::ZedPro));
 991        let subscription_text = match (self.plan, self.subscription_period) {
 992            (Some(Plan::V2(PlanV2::ZedPro)), Some(_)) => {
 993                "You have access to Zed's hosted models through your Pro subscription."
 994            }
 995            (Some(Plan::V2(PlanV2::ZedProTrial)), Some(_)) => {
 996                "You have access to Zed's hosted models through your Pro trial."
 997            }
 998            (Some(Plan::V2(PlanV2::ZedFree)), Some(_)) => {
 999                if self.eligible_for_trial {
1000                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1001                } else {
1002                    "Subscribe for access to Zed's hosted models."
1003                }
1004            }
1005            _ => {
1006                if self.eligible_for_trial {
1007                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1008                } else {
1009                    "Subscribe for access to Zed's hosted models."
1010                }
1011            }
1012        };
1013
1014        let manage_subscription_buttons = if is_pro {
1015            Button::new("manage_settings", "Manage Subscription")
1016                .full_width()
1017                .style(ButtonStyle::Tinted(TintColor::Accent))
1018                .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx)))
1019                .into_any_element()
1020        } else if self.plan.is_none() || self.eligible_for_trial {
1021            Button::new("start_trial", "Start 14-day Free Pro Trial")
1022                .full_width()
1023                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1024                .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx)))
1025                .into_any_element()
1026        } else {
1027            Button::new("upgrade", "Upgrade to Pro")
1028                .full_width()
1029                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1030                .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx)))
1031                .into_any_element()
1032        };
1033
1034        if !self.is_connected {
1035            return v_flex()
1036                .gap_2()
1037                .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models."))
1038                .child(
1039                    Button::new("sign_in", "Sign In to use Zed AI")
1040                        .icon_color(Color::Muted)
1041                        .icon(IconName::Github)
1042                        .icon_size(IconSize::Small)
1043                        .icon_position(IconPosition::Start)
1044                        .full_width()
1045                        .on_click({
1046                            let callback = self.sign_in_callback.clone();
1047                            move |_, window, cx| (callback)(window, cx)
1048                        }),
1049                );
1050        }
1051
1052        v_flex().gap_2().w_full().map(|this| {
1053            if self.account_too_young {
1054                this.child(YoungAccountBanner).child(
1055                    Button::new("upgrade", "Upgrade to Pro")
1056                        .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1057                        .full_width()
1058                        .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))),
1059                )
1060            } else {
1061                this.text_sm()
1062                    .child(subscription_text)
1063                    .child(manage_subscription_buttons)
1064            }
1065        })
1066    }
1067}
1068
1069struct ConfigurationView {
1070    state: Entity<State>,
1071    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1072}
1073
1074impl ConfigurationView {
1075    fn new(state: Entity<State>) -> Self {
1076        let sign_in_callback = Arc::new({
1077            let state = state.clone();
1078            move |_window: &mut Window, cx: &mut App| {
1079                state.update(cx, |state, cx| {
1080                    state.authenticate(cx).detach_and_log_err(cx);
1081                });
1082            }
1083        });
1084
1085        Self {
1086            state,
1087            sign_in_callback,
1088        }
1089    }
1090}
1091
1092impl Render for ConfigurationView {
1093    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1094        let state = self.state.read(cx);
1095        let user_store = state.user_store.read(cx);
1096
1097        ZedAiConfiguration {
1098            is_connected: !state.is_signed_out(cx),
1099            plan: user_store.plan(),
1100            subscription_period: user_store.subscription_period(),
1101            eligible_for_trial: user_store.trial_started_at().is_none(),
1102            account_too_young: user_store.account_too_young(),
1103            sign_in_callback: self.sign_in_callback.clone(),
1104        }
1105    }
1106}
1107
1108impl Component for ZedAiConfiguration {
1109    fn name() -> &'static str {
1110        "AI Configuration Content"
1111    }
1112
1113    fn sort_name() -> &'static str {
1114        "AI Configuration Content"
1115    }
1116
1117    fn scope() -> ComponentScope {
1118        ComponentScope::Onboarding
1119    }
1120
1121    fn preview(_window: &mut Window, _cx: &mut App) -> Option<AnyElement> {
1122        fn configuration(
1123            is_connected: bool,
1124            plan: Option<Plan>,
1125            eligible_for_trial: bool,
1126            account_too_young: bool,
1127        ) -> AnyElement {
1128            ZedAiConfiguration {
1129                is_connected,
1130                plan,
1131                subscription_period: plan
1132                    .is_some()
1133                    .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))),
1134                eligible_for_trial,
1135                account_too_young,
1136                sign_in_callback: Arc::new(|_, _| {}),
1137            }
1138            .into_any_element()
1139        }
1140
1141        Some(
1142            v_flex()
1143                .p_4()
1144                .gap_4()
1145                .children(vec![
1146                    single_example("Not connected", configuration(false, None, false, false)),
1147                    single_example(
1148                        "Accept Terms of Service",
1149                        configuration(true, None, true, false),
1150                    ),
1151                    single_example(
1152                        "No Plan - Not eligible for trial",
1153                        configuration(true, None, false, false),
1154                    ),
1155                    single_example(
1156                        "No Plan - Eligible for trial",
1157                        configuration(true, None, true, false),
1158                    ),
1159                    single_example(
1160                        "Free Plan",
1161                        configuration(true, Some(Plan::V2(PlanV2::ZedFree)), true, false),
1162                    ),
1163                    single_example(
1164                        "Zed Pro Trial Plan",
1165                        configuration(true, Some(Plan::V2(PlanV2::ZedProTrial)), true, false),
1166                    ),
1167                    single_example(
1168                        "Zed Pro Plan",
1169                        configuration(true, Some(Plan::V2(PlanV2::ZedPro)), true, false),
1170                    ),
1171                ])
1172                .into_any_element(),
1173        )
1174    }
1175}
1176
1177#[cfg(test)]
1178mod tests {
1179    use super::*;
1180    use http_client::http::{HeaderMap, StatusCode};
1181    use language_model::LanguageModelCompletionError;
1182
1183    #[test]
1184    fn test_api_error_conversion_with_upstream_http_error() {
1185        // upstream_http_error with 503 status should become ServerOverloaded
1186        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#;
1187
1188        let api_error = ApiError {
1189            status: StatusCode::INTERNAL_SERVER_ERROR,
1190            body: error_body.to_string(),
1191            headers: HeaderMap::new(),
1192        };
1193
1194        let completion_error: LanguageModelCompletionError = api_error.into();
1195
1196        match completion_error {
1197            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1198                assert_eq!(
1199                    message,
1200                    "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout"
1201                );
1202            }
1203            _ => panic!(
1204                "Expected UpstreamProviderError for upstream 503, got: {:?}",
1205                completion_error
1206            ),
1207        }
1208
1209        // upstream_http_error with 500 status should become ApiInternalServerError
1210        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#;
1211
1212        let api_error = ApiError {
1213            status: StatusCode::INTERNAL_SERVER_ERROR,
1214            body: error_body.to_string(),
1215            headers: HeaderMap::new(),
1216        };
1217
1218        let completion_error: LanguageModelCompletionError = api_error.into();
1219
1220        match completion_error {
1221            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1222                assert_eq!(
1223                    message,
1224                    "Received an error from the OpenAI API: internal server error"
1225                );
1226            }
1227            _ => panic!(
1228                "Expected UpstreamProviderError for upstream 500, got: {:?}",
1229                completion_error
1230            ),
1231        }
1232
1233        // upstream_http_error with 429 status should become RateLimitExceeded
1234        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#;
1235
1236        let api_error = ApiError {
1237            status: StatusCode::INTERNAL_SERVER_ERROR,
1238            body: error_body.to_string(),
1239            headers: HeaderMap::new(),
1240        };
1241
1242        let completion_error: LanguageModelCompletionError = api_error.into();
1243
1244        match completion_error {
1245            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1246                assert_eq!(
1247                    message,
1248                    "Received an error from the Google API: rate limit exceeded"
1249                );
1250            }
1251            _ => panic!(
1252                "Expected UpstreamProviderError for upstream 429, got: {:?}",
1253                completion_error
1254            ),
1255        }
1256
1257        // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed
1258        let error_body = "Regular internal server error";
1259
1260        let api_error = ApiError {
1261            status: StatusCode::INTERNAL_SERVER_ERROR,
1262            body: error_body.to_string(),
1263            headers: HeaderMap::new(),
1264        };
1265
1266        let completion_error: LanguageModelCompletionError = api_error.into();
1267
1268        match completion_error {
1269            LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
1270                assert_eq!(provider, PROVIDER_NAME);
1271                assert_eq!(message, "Regular internal server error");
1272            }
1273            _ => panic!(
1274                "Expected ApiInternalServerError for regular 500, got: {:?}",
1275                completion_error
1276            ),
1277        }
1278
1279        // upstream_http_429 format should be converted to UpstreamProviderError
1280        let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#;
1281
1282        let api_error = ApiError {
1283            status: StatusCode::INTERNAL_SERVER_ERROR,
1284            body: error_body.to_string(),
1285            headers: HeaderMap::new(),
1286        };
1287
1288        let completion_error: LanguageModelCompletionError = api_error.into();
1289
1290        match completion_error {
1291            LanguageModelCompletionError::UpstreamProviderError {
1292                message,
1293                status,
1294                retry_after,
1295            } => {
1296                assert_eq!(message, "Upstream Anthropic rate limit exceeded.");
1297                assert_eq!(status, StatusCode::TOO_MANY_REQUESTS);
1298                assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5)));
1299            }
1300            _ => panic!(
1301                "Expected UpstreamProviderError for upstream_http_429, got: {:?}",
1302                completion_error
1303            ),
1304        }
1305
1306        // Invalid JSON in error body should fall back to regular error handling
1307        let error_body = "Not JSON at all";
1308
1309        let api_error = ApiError {
1310            status: StatusCode::INTERNAL_SERVER_ERROR,
1311            body: error_body.to_string(),
1312            headers: HeaderMap::new(),
1313        };
1314
1315        let completion_error: LanguageModelCompletionError = api_error.into();
1316
1317        match completion_error {
1318            LanguageModelCompletionError::ApiInternalServerError { provider, .. } => {
1319                assert_eq!(provider, PROVIDER_NAME);
1320            }
1321            _ => panic!(
1322                "Expected ApiInternalServerError for invalid JSON, got: {:?}",
1323                completion_error
1324            ),
1325        }
1326    }
1327}