window.rs

   1use crate::{
   2    px, size, Action, AnyBox, AnyDrag, AnyView, AppContext, AsyncWindowContext, AvailableSpace,
   3    Bounds, BoxShadow, Context, Corners, DevicePixels, DispatchContext, DisplayId, Edges, Effect,
   4    Entity, EntityId, EventEmitter, FileDropEvent, FocusEvent, FontId, GlobalElementId, GlyphId,
   5    Hsla, ImageData, InputEvent, IsZero, KeyListener, KeyMatch, KeyMatcher, Keystroke, LayoutId,
   6    Model, ModelContext, Modifiers, MonochromeSprite, MouseButton, MouseDownEvent, MouseMoveEvent,
   7    MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformWindow, Point, PolychromeSprite,
   8    PromptLevel, Quad, Render, RenderGlyphParams, RenderImageParams, RenderSvgParams, ScaledPixels,
   9    SceneBuilder, Shadow, SharedString, Size, Style, Subscription, TaffyLayoutEngine, Task,
  10    Underline, UnderlineStyle, View, VisualContext, WeakView, WindowOptions, SUBPIXEL_VARIANTS,
  11};
  12use anyhow::{anyhow, Result};
  13use collections::HashMap;
  14use derive_more::{Deref, DerefMut};
  15use futures::channel::oneshot;
  16use parking_lot::RwLock;
  17use slotmap::SlotMap;
  18use smallvec::SmallVec;
  19use std::{
  20    any::{Any, TypeId},
  21    borrow::{Borrow, BorrowMut, Cow},
  22    fmt::Debug,
  23    future::Future,
  24    hash::{Hash, Hasher},
  25    marker::PhantomData,
  26    mem,
  27    sync::{
  28        atomic::{AtomicUsize, Ordering::SeqCst},
  29        Arc,
  30    },
  31};
  32use util::ResultExt;
  33
  34/// A global stacking order, which is created by stacking successive z-index values.
  35/// Each z-index will always be interpreted in the context of its parent z-index.
  36#[derive(Deref, DerefMut, Ord, PartialOrd, Eq, PartialEq, Clone, Default)]
  37pub(crate) struct StackingOrder(pub(crate) SmallVec<[u32; 16]>);
  38
  39/// Represents the two different phases when dispatching events.
  40#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
  41pub enum DispatchPhase {
  42    /// After the capture phase comes the bubble phase, in which mouse event listeners are
  43    /// invoked front to back and keyboard event listeners are invoked from the focused element
  44    /// to the root of the element tree. This is the phase you'll most commonly want to use when
  45    /// registering event listeners.
  46    #[default]
  47    Bubble,
  48    /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
  49    /// listeners are invoked from the root of the tree downward toward the focused element. This phase
  50    /// is used for special purposes such as clearing the "pressed" state for click events. If
  51    /// you stop event propagation during this phase, you need to know what you're doing. Handlers
  52    /// outside of the immediate region may rely on detecting non-local events during this phase.
  53    Capture,
  54}
  55
  56type AnyListener = Box<dyn Fn(&dyn Any, DispatchPhase, &mut WindowContext) + 'static>;
  57type AnyKeyListener = Box<
  58    dyn Fn(
  59            &dyn Any,
  60            &[&DispatchContext],
  61            DispatchPhase,
  62            &mut WindowContext,
  63        ) -> Option<Box<dyn Action>>
  64        + 'static,
  65>;
  66type AnyFocusListener = Box<dyn Fn(&FocusEvent, &mut WindowContext) + 'static>;
  67
  68slotmap::new_key_type! { pub struct FocusId; }
  69
  70/// A handle which can be used to track and manipulate the focused element in a window.
  71pub struct FocusHandle {
  72    pub(crate) id: FocusId,
  73    handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
  74}
  75
  76impl FocusHandle {
  77    pub(crate) fn new(handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>) -> Self {
  78        let id = handles.write().insert(AtomicUsize::new(1));
  79        Self {
  80            id,
  81            handles: handles.clone(),
  82        }
  83    }
  84
  85    pub(crate) fn for_id(
  86        id: FocusId,
  87        handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
  88    ) -> Option<Self> {
  89        let lock = handles.read();
  90        let ref_count = lock.get(id)?;
  91        if ref_count.load(SeqCst) == 0 {
  92            None
  93        } else {
  94            ref_count.fetch_add(1, SeqCst);
  95            Some(Self {
  96                id,
  97                handles: handles.clone(),
  98            })
  99        }
 100    }
 101
 102    /// Obtains whether the element associated with this handle is currently focused.
 103    pub fn is_focused(&self, cx: &WindowContext) -> bool {
 104        cx.window.focus == Some(self.id)
 105    }
 106
 107    /// Obtains whether the element associated with this handle contains the focused
 108    /// element or is itself focused.
 109    pub fn contains_focused(&self, cx: &WindowContext) -> bool {
 110        cx.focused()
 111            .map_or(false, |focused| self.contains(&focused, cx))
 112    }
 113
 114    /// Obtains whether the element associated with this handle is contained within the
 115    /// focused element or is itself focused.
 116    pub fn within_focused(&self, cx: &WindowContext) -> bool {
 117        let focused = cx.focused();
 118        focused.map_or(false, |focused| focused.contains(self, cx))
 119    }
 120
 121    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 122    pub(crate) fn contains(&self, other: &Self, cx: &WindowContext) -> bool {
 123        let mut ancestor = Some(other.id);
 124        while let Some(ancestor_id) = ancestor {
 125            if self.id == ancestor_id {
 126                return true;
 127            } else {
 128                ancestor = cx.window.focus_parents_by_child.get(&ancestor_id).copied();
 129            }
 130        }
 131        false
 132    }
 133}
 134
 135impl Clone for FocusHandle {
 136    fn clone(&self) -> Self {
 137        Self::for_id(self.id, &self.handles).unwrap()
 138    }
 139}
 140
 141impl PartialEq for FocusHandle {
 142    fn eq(&self, other: &Self) -> bool {
 143        self.id == other.id
 144    }
 145}
 146
 147impl Eq for FocusHandle {}
 148
 149impl Drop for FocusHandle {
 150    fn drop(&mut self) {
 151        self.handles
 152            .read()
 153            .get(self.id)
 154            .unwrap()
 155            .fetch_sub(1, SeqCst);
 156    }
 157}
 158
 159// Holds the state for a specific window.
 160pub struct Window {
 161    pub(crate) handle: AnyWindowHandle,
 162    pub(crate) removed: bool,
 163    platform_window: Box<dyn PlatformWindow>,
 164    display_id: DisplayId,
 165    sprite_atlas: Arc<dyn PlatformAtlas>,
 166    rem_size: Pixels,
 167    content_size: Size<Pixels>,
 168    pub(crate) layout_engine: TaffyLayoutEngine,
 169    pub(crate) root_view: Option<AnyView>,
 170    pub(crate) element_id_stack: GlobalElementId,
 171    prev_frame_element_states: HashMap<GlobalElementId, AnyBox>,
 172    element_states: HashMap<GlobalElementId, AnyBox>,
 173    prev_frame_key_matchers: HashMap<GlobalElementId, KeyMatcher>,
 174    key_matchers: HashMap<GlobalElementId, KeyMatcher>,
 175    z_index_stack: StackingOrder,
 176    content_mask_stack: Vec<ContentMask<Pixels>>,
 177    element_offset_stack: Vec<Point<Pixels>>,
 178    mouse_listeners: HashMap<TypeId, Vec<(StackingOrder, AnyListener)>>,
 179    key_dispatch_stack: Vec<KeyDispatchStackFrame>,
 180    freeze_key_dispatch_stack: bool,
 181    focus_stack: Vec<FocusId>,
 182    focus_parents_by_child: HashMap<FocusId, FocusId>,
 183    pub(crate) focus_listeners: Vec<AnyFocusListener>,
 184    pub(crate) focus_handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
 185    default_prevented: bool,
 186    mouse_position: Point<Pixels>,
 187    scale_factor: f32,
 188    pub(crate) scene_builder: SceneBuilder,
 189    pub(crate) dirty: bool,
 190    pub(crate) last_blur: Option<Option<FocusId>>,
 191    pub(crate) focus: Option<FocusId>,
 192}
 193
 194impl Window {
 195    pub(crate) fn new(
 196        handle: AnyWindowHandle,
 197        options: WindowOptions,
 198        cx: &mut AppContext,
 199    ) -> Self {
 200        let platform_window = cx.platform.open_window(handle, options);
 201        let display_id = platform_window.display().id();
 202        let sprite_atlas = platform_window.sprite_atlas();
 203        let mouse_position = platform_window.mouse_position();
 204        let content_size = platform_window.content_size();
 205        let scale_factor = platform_window.scale_factor();
 206        platform_window.on_resize(Box::new({
 207            let mut cx = cx.to_async();
 208            move |content_size, scale_factor| {
 209                handle
 210                    .update(&mut cx, |_, cx| {
 211                        cx.window.scale_factor = scale_factor;
 212                        cx.window.scene_builder = SceneBuilder::new();
 213                        cx.window.content_size = content_size;
 214                        cx.window.display_id = cx.window.platform_window.display().id();
 215                        cx.window.dirty = true;
 216                    })
 217                    .log_err();
 218            }
 219        }));
 220
 221        platform_window.on_input({
 222            let mut cx = cx.to_async();
 223            Box::new(move |event| {
 224                handle
 225                    .update(&mut cx, |_, cx| cx.dispatch_event(event))
 226                    .log_err()
 227                    .unwrap_or(true)
 228            })
 229        });
 230
 231        Window {
 232            handle,
 233            removed: false,
 234            platform_window,
 235            display_id,
 236            sprite_atlas,
 237            rem_size: px(16.),
 238            content_size,
 239            layout_engine: TaffyLayoutEngine::new(),
 240            root_view: None,
 241            element_id_stack: GlobalElementId::default(),
 242            prev_frame_element_states: HashMap::default(),
 243            element_states: HashMap::default(),
 244            prev_frame_key_matchers: HashMap::default(),
 245            key_matchers: HashMap::default(),
 246            z_index_stack: StackingOrder(SmallVec::new()),
 247            content_mask_stack: Vec::new(),
 248            element_offset_stack: Vec::new(),
 249            mouse_listeners: HashMap::default(),
 250            key_dispatch_stack: Vec::new(),
 251            freeze_key_dispatch_stack: false,
 252            focus_stack: Vec::new(),
 253            focus_parents_by_child: HashMap::default(),
 254            focus_listeners: Vec::new(),
 255            focus_handles: Arc::new(RwLock::new(SlotMap::with_key())),
 256            default_prevented: true,
 257            mouse_position,
 258            scale_factor,
 259            scene_builder: SceneBuilder::new(),
 260            dirty: true,
 261            last_blur: None,
 262            focus: None,
 263        }
 264    }
 265}
 266
 267/// When constructing the element tree, we maintain a stack of key dispatch frames until we
 268/// find the focused element. We interleave key listeners with dispatch contexts so we can use the
 269/// contexts when matching key events against the keymap.
 270enum KeyDispatchStackFrame {
 271    Listener {
 272        event_type: TypeId,
 273        listener: AnyKeyListener,
 274    },
 275    Context(DispatchContext),
 276}
 277
 278/// Indicates which region of the window is visible. Content falling outside of this mask will not be
 279/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
 280/// to leave room to support more complex shapes in the future.
 281#[derive(Clone, Debug, Default, PartialEq, Eq)]
 282#[repr(C)]
 283pub struct ContentMask<P: Clone + Default + Debug> {
 284    pub bounds: Bounds<P>,
 285}
 286
 287impl ContentMask<Pixels> {
 288    /// Scale the content mask's pixel units by the given scaling factor.
 289    pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
 290        ContentMask {
 291            bounds: self.bounds.scale(factor),
 292        }
 293    }
 294
 295    /// Intersect the content mask with the given content mask.
 296    pub fn intersect(&self, other: &Self) -> Self {
 297        let bounds = self.bounds.intersect(&other.bounds);
 298        ContentMask { bounds }
 299    }
 300}
 301
 302/// Provides access to application state in the context of a single window. Derefs
 303/// to an `AppContext`, so you can also pass a `WindowContext` to any method that takes
 304/// an `AppContext` and call any `AppContext` methods.
 305pub struct WindowContext<'a> {
 306    pub(crate) app: &'a mut AppContext,
 307    pub(crate) window: &'a mut Window,
 308}
 309
 310impl<'a> WindowContext<'a> {
 311    pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self {
 312        Self { app, window }
 313    }
 314
 315    /// Obtain a handle to the window that belongs to this context.
 316    pub fn window_handle(&self) -> AnyWindowHandle {
 317        self.window.handle
 318    }
 319
 320    /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
 321    pub fn notify(&mut self) {
 322        self.window.dirty = true;
 323    }
 324
 325    /// Close this window.
 326    pub fn remove_window(&mut self) {
 327        self.window.removed = true;
 328    }
 329
 330    /// Obtain a new `FocusHandle`, which allows you to track and manipulate the keyboard focus
 331    /// for elements rendered within this window.
 332    pub fn focus_handle(&mut self) -> FocusHandle {
 333        FocusHandle::new(&self.window.focus_handles)
 334    }
 335
 336    /// Obtain the currently focused `FocusHandle`. If no elements are focused, returns `None`.
 337    pub fn focused(&self) -> Option<FocusHandle> {
 338        self.window
 339            .focus
 340            .and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles))
 341    }
 342
 343    /// Move focus to the element associated with the given `FocusHandle`.
 344    pub fn focus(&mut self, handle: &FocusHandle) {
 345        if self.window.last_blur.is_none() {
 346            self.window.last_blur = Some(self.window.focus);
 347        }
 348
 349        self.window.focus = Some(handle.id);
 350        self.app.push_effect(Effect::FocusChanged {
 351            window_handle: self.window.handle,
 352            focused: Some(handle.id),
 353        });
 354        self.notify();
 355    }
 356
 357    /// Remove focus from all elements within this context's window.
 358    pub fn blur(&mut self) {
 359        if self.window.last_blur.is_none() {
 360            self.window.last_blur = Some(self.window.focus);
 361        }
 362
 363        self.window.focus = None;
 364        self.app.push_effect(Effect::FocusChanged {
 365            window_handle: self.window.handle,
 366            focused: None,
 367        });
 368        self.notify();
 369    }
 370
 371    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
 372    /// that are currently on the stack to be returned to the app.
 373    pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) {
 374        let handle = self.window.handle;
 375        self.app.defer(move |cx| {
 376            handle.update(cx, |_, cx| f(cx)).ok();
 377        });
 378    }
 379
 380    pub fn subscribe<Emitter, E>(
 381        &mut self,
 382        entity: &E,
 383        mut on_event: impl FnMut(E, &Emitter::Event, &mut WindowContext<'_>) + 'static,
 384    ) -> Subscription
 385    where
 386        Emitter: EventEmitter,
 387        E: Entity<Emitter>,
 388    {
 389        let entity_id = entity.entity_id();
 390        let entity = entity.downgrade();
 391        let window_handle = self.window.handle;
 392        self.app.event_listeners.insert(
 393            entity_id,
 394            Box::new(move |event, cx| {
 395                window_handle
 396                    .update(cx, |_, cx| {
 397                        if let Some(handle) = E::upgrade_from(&entity) {
 398                            let event = event.downcast_ref().expect("invalid event type");
 399                            on_event(handle, event, cx);
 400                            true
 401                        } else {
 402                            false
 403                        }
 404                    })
 405                    .unwrap_or(false)
 406            }),
 407        )
 408    }
 409
 410    /// Create an `AsyncWindowContext`, which has a static lifetime and can be held across
 411    /// await points in async code.
 412    pub fn to_async(&self) -> AsyncWindowContext {
 413        AsyncWindowContext::new(self.app.to_async(), self.window.handle)
 414    }
 415
 416    /// Schedule the given closure to be run directly after the current frame is rendered.
 417    pub fn on_next_frame(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) {
 418        let f = Box::new(f);
 419        let display_id = self.window.display_id;
 420
 421        if let Some(callbacks) = self.next_frame_callbacks.get_mut(&display_id) {
 422            callbacks.push(f);
 423            // If there was already a callback, it means that we already scheduled a frame.
 424            if callbacks.len() > 1 {
 425                return;
 426            }
 427        } else {
 428            let mut async_cx = self.to_async();
 429            self.next_frame_callbacks.insert(display_id, vec![f]);
 430            self.platform.set_display_link_output_callback(
 431                display_id,
 432                Box::new(move |_current_time, _output_time| {
 433                    let _ = async_cx.update(|_, cx| {
 434                        let callbacks = cx
 435                            .next_frame_callbacks
 436                            .get_mut(&display_id)
 437                            .unwrap()
 438                            .drain(..)
 439                            .collect::<Vec<_>>();
 440                        for callback in callbacks {
 441                            callback(cx);
 442                        }
 443
 444                        if cx.next_frame_callbacks.get(&display_id).unwrap().is_empty() {
 445                            cx.platform.stop_display_link(display_id);
 446                        }
 447                    });
 448                }),
 449            );
 450        }
 451
 452        self.platform.start_display_link(display_id);
 453    }
 454
 455    /// Spawn the future returned by the given closure on the application thread pool.
 456    /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
 457    /// use within your future.
 458    pub fn spawn<Fut, R>(&mut self, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
 459    where
 460        R: 'static,
 461        Fut: Future<Output = R> + 'static,
 462    {
 463        self.app
 464            .spawn(|app| f(AsyncWindowContext::new(app, self.window.handle)))
 465    }
 466
 467    /// Update the global of the given type. The given closure is given simultaneous mutable
 468    /// access both to the global and the context.
 469    pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
 470    where
 471        G: 'static,
 472    {
 473        let mut global = self.app.lease_global::<G>();
 474        let result = f(&mut global, self);
 475        self.app.end_global_lease(global);
 476        result
 477    }
 478
 479    /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
 480    /// layout is being requested, along with the layout ids of any children. This method is called during
 481    /// calls to the `Element::layout` trait method and enables any element to participate in layout.
 482    pub fn request_layout(
 483        &mut self,
 484        style: &Style,
 485        children: impl IntoIterator<Item = LayoutId>,
 486    ) -> LayoutId {
 487        self.app.layout_id_buffer.clear();
 488        self.app.layout_id_buffer.extend(children.into_iter());
 489        let rem_size = self.rem_size();
 490
 491        self.window
 492            .layout_engine
 493            .request_layout(style, rem_size, &self.app.layout_id_buffer)
 494    }
 495
 496    /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
 497    /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
 498    /// determine the element's size. One place this is used internally is when measuring text.
 499    ///
 500    /// The given closure is invoked at layout time with the known dimensions and available space and
 501    /// returns a `Size`.
 502    pub fn request_measured_layout<
 503        F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>) -> Size<Pixels> + Send + Sync + 'static,
 504    >(
 505        &mut self,
 506        style: Style,
 507        rem_size: Pixels,
 508        measure: F,
 509    ) -> LayoutId {
 510        self.window
 511            .layout_engine
 512            .request_measured_layout(style, rem_size, measure)
 513    }
 514
 515    /// Obtain the bounds computed for the given LayoutId relative to the window. This method should not
 516    /// be invoked until the paint phase begins, and will usually be invoked by GPUI itself automatically
 517    /// in order to pass your element its `Bounds` automatically.
 518    pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
 519        let mut bounds = self
 520            .window
 521            .layout_engine
 522            .layout_bounds(layout_id)
 523            .map(Into::into);
 524        bounds.origin += self.element_offset();
 525        bounds
 526    }
 527
 528    /// The scale factor of the display associated with the window. For example, it could
 529    /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
 530    /// be rendered as two pixels on screen.
 531    pub fn scale_factor(&self) -> f32 {
 532        self.window.scale_factor
 533    }
 534
 535    /// The size of an em for the base font of the application. Adjusting this value allows the
 536    /// UI to scale, just like zooming a web page.
 537    pub fn rem_size(&self) -> Pixels {
 538        self.window.rem_size
 539    }
 540
 541    /// Sets the size of an em for the base font of the application. Adjusting this value allows the
 542    /// UI to scale, just like zooming a web page.
 543    pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
 544        self.window.rem_size = rem_size.into();
 545    }
 546
 547    /// The line height associated with the current text style.
 548    pub fn line_height(&self) -> Pixels {
 549        let rem_size = self.rem_size();
 550        let text_style = self.text_style();
 551        text_style
 552            .line_height
 553            .to_pixels(text_style.font_size.into(), rem_size)
 554    }
 555
 556    /// Call to prevent the default action of an event. Currently only used to prevent
 557    /// parent elements from becoming focused on mouse down.
 558    pub fn prevent_default(&mut self) {
 559        self.window.default_prevented = true;
 560    }
 561
 562    /// Obtain whether default has been prevented for the event currently being dispatched.
 563    pub fn default_prevented(&self) -> bool {
 564        self.window.default_prevented
 565    }
 566
 567    /// Register a mouse event listener on the window for the current frame. The type of event
 568    /// is determined by the first parameter of the given listener. When the next frame is rendered
 569    /// the listener will be cleared.
 570    ///
 571    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
 572    /// a specific need to register a global listener.
 573    pub fn on_mouse_event<Event: 'static>(
 574        &mut self,
 575        handler: impl Fn(&Event, DispatchPhase, &mut WindowContext) + 'static,
 576    ) {
 577        let order = self.window.z_index_stack.clone();
 578        self.window
 579            .mouse_listeners
 580            .entry(TypeId::of::<Event>())
 581            .or_default()
 582            .push((
 583                order,
 584                Box::new(move |event: &dyn Any, phase, cx| {
 585                    handler(event.downcast_ref().unwrap(), phase, cx)
 586                }),
 587            ))
 588    }
 589
 590    /// The position of the mouse relative to the window.
 591    pub fn mouse_position(&self) -> Point<Pixels> {
 592        self.window.mouse_position
 593    }
 594
 595    /// Called during painting to invoke the given closure in a new stacking context. The given
 596    /// z-index is interpreted relative to the previous call to `stack`.
 597    pub fn stack<R>(&mut self, z_index: u32, f: impl FnOnce(&mut Self) -> R) -> R {
 598        self.window.z_index_stack.push(z_index);
 599        let result = f(self);
 600        self.window.z_index_stack.pop();
 601        result
 602    }
 603
 604    /// Paint one or more drop shadows into the scene for the current frame at the current z-index.
 605    pub fn paint_shadows(
 606        &mut self,
 607        bounds: Bounds<Pixels>,
 608        corner_radii: Corners<Pixels>,
 609        shadows: &[BoxShadow],
 610    ) {
 611        let scale_factor = self.scale_factor();
 612        let content_mask = self.content_mask();
 613        let window = &mut *self.window;
 614        for shadow in shadows {
 615            let mut shadow_bounds = bounds;
 616            shadow_bounds.origin += shadow.offset;
 617            shadow_bounds.dilate(shadow.spread_radius);
 618            window.scene_builder.insert(
 619                &window.z_index_stack,
 620                Shadow {
 621                    order: 0,
 622                    bounds: shadow_bounds.scale(scale_factor),
 623                    content_mask: content_mask.scale(scale_factor),
 624                    corner_radii: corner_radii.scale(scale_factor),
 625                    color: shadow.color,
 626                    blur_radius: shadow.blur_radius.scale(scale_factor),
 627                },
 628            );
 629        }
 630    }
 631
 632    /// Paint one or more quads into the scene for the current frame at the current stacking context.
 633    /// Quads are colored rectangular regions with an optional background, border, and corner radius.
 634    pub fn paint_quad(
 635        &mut self,
 636        bounds: Bounds<Pixels>,
 637        corner_radii: Corners<Pixels>,
 638        background: impl Into<Hsla>,
 639        border_widths: Edges<Pixels>,
 640        border_color: impl Into<Hsla>,
 641    ) {
 642        let scale_factor = self.scale_factor();
 643        let content_mask = self.content_mask();
 644
 645        let window = &mut *self.window;
 646        window.scene_builder.insert(
 647            &window.z_index_stack,
 648            Quad {
 649                order: 0,
 650                bounds: bounds.scale(scale_factor),
 651                content_mask: content_mask.scale(scale_factor),
 652                background: background.into(),
 653                border_color: border_color.into(),
 654                corner_radii: corner_radii.scale(scale_factor),
 655                border_widths: border_widths.scale(scale_factor),
 656            },
 657        );
 658    }
 659
 660    /// Paint the given `Path` into the scene for the current frame at the current z-index.
 661    pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Hsla>) {
 662        let scale_factor = self.scale_factor();
 663        let content_mask = self.content_mask();
 664        path.content_mask = content_mask;
 665        path.color = color.into();
 666        let window = &mut *self.window;
 667        window
 668            .scene_builder
 669            .insert(&window.z_index_stack, path.scale(scale_factor));
 670    }
 671
 672    /// Paint an underline into the scene for the current frame at the current z-index.
 673    pub fn paint_underline(
 674        &mut self,
 675        origin: Point<Pixels>,
 676        width: Pixels,
 677        style: &UnderlineStyle,
 678    ) -> Result<()> {
 679        let scale_factor = self.scale_factor();
 680        let height = if style.wavy {
 681            style.thickness * 3.
 682        } else {
 683            style.thickness
 684        };
 685        let bounds = Bounds {
 686            origin,
 687            size: size(width, height),
 688        };
 689        let content_mask = self.content_mask();
 690        let window = &mut *self.window;
 691        window.scene_builder.insert(
 692            &window.z_index_stack,
 693            Underline {
 694                order: 0,
 695                bounds: bounds.scale(scale_factor),
 696                content_mask: content_mask.scale(scale_factor),
 697                thickness: style.thickness.scale(scale_factor),
 698                color: style.color.unwrap_or_default(),
 699                wavy: style.wavy,
 700            },
 701        );
 702        Ok(())
 703    }
 704
 705    /// Paint a monochrome (non-emoji) glyph into the scene for the current frame at the current z-index.
 706    pub fn paint_glyph(
 707        &mut self,
 708        origin: Point<Pixels>,
 709        font_id: FontId,
 710        glyph_id: GlyphId,
 711        font_size: Pixels,
 712        color: Hsla,
 713    ) -> Result<()> {
 714        let scale_factor = self.scale_factor();
 715        let glyph_origin = origin.scale(scale_factor);
 716        let subpixel_variant = Point {
 717            x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
 718            y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
 719        };
 720        let params = RenderGlyphParams {
 721            font_id,
 722            glyph_id,
 723            font_size,
 724            subpixel_variant,
 725            scale_factor,
 726            is_emoji: false,
 727        };
 728
 729        let raster_bounds = self.text_system().raster_bounds(&params)?;
 730        if !raster_bounds.is_zero() {
 731            let tile =
 732                self.window
 733                    .sprite_atlas
 734                    .get_or_insert_with(&params.clone().into(), &mut || {
 735                        let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
 736                        Ok((size, Cow::Owned(bytes)))
 737                    })?;
 738            let bounds = Bounds {
 739                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
 740                size: tile.bounds.size.map(Into::into),
 741            };
 742            let content_mask = self.content_mask().scale(scale_factor);
 743            let window = &mut *self.window;
 744            window.scene_builder.insert(
 745                &window.z_index_stack,
 746                MonochromeSprite {
 747                    order: 0,
 748                    bounds,
 749                    content_mask,
 750                    color,
 751                    tile,
 752                },
 753            );
 754        }
 755        Ok(())
 756    }
 757
 758    /// Paint an emoji glyph into the scene for the current frame at the current z-index.
 759    pub fn paint_emoji(
 760        &mut self,
 761        origin: Point<Pixels>,
 762        font_id: FontId,
 763        glyph_id: GlyphId,
 764        font_size: Pixels,
 765    ) -> Result<()> {
 766        let scale_factor = self.scale_factor();
 767        let glyph_origin = origin.scale(scale_factor);
 768        let params = RenderGlyphParams {
 769            font_id,
 770            glyph_id,
 771            font_size,
 772            // We don't render emojis with subpixel variants.
 773            subpixel_variant: Default::default(),
 774            scale_factor,
 775            is_emoji: true,
 776        };
 777
 778        let raster_bounds = self.text_system().raster_bounds(&params)?;
 779        if !raster_bounds.is_zero() {
 780            let tile =
 781                self.window
 782                    .sprite_atlas
 783                    .get_or_insert_with(&params.clone().into(), &mut || {
 784                        let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
 785                        Ok((size, Cow::Owned(bytes)))
 786                    })?;
 787            let bounds = Bounds {
 788                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
 789                size: tile.bounds.size.map(Into::into),
 790            };
 791            let content_mask = self.content_mask().scale(scale_factor);
 792            let window = &mut *self.window;
 793
 794            window.scene_builder.insert(
 795                &window.z_index_stack,
 796                PolychromeSprite {
 797                    order: 0,
 798                    bounds,
 799                    corner_radii: Default::default(),
 800                    content_mask,
 801                    tile,
 802                    grayscale: false,
 803                },
 804            );
 805        }
 806        Ok(())
 807    }
 808
 809    /// Paint a monochrome SVG into the scene for the current frame at the current stacking context.
 810    pub fn paint_svg(
 811        &mut self,
 812        bounds: Bounds<Pixels>,
 813        path: SharedString,
 814        color: Hsla,
 815    ) -> Result<()> {
 816        let scale_factor = self.scale_factor();
 817        let bounds = bounds.scale(scale_factor);
 818        // Render the SVG at twice the size to get a higher quality result.
 819        let params = RenderSvgParams {
 820            path,
 821            size: bounds
 822                .size
 823                .map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
 824        };
 825
 826        let tile =
 827            self.window
 828                .sprite_atlas
 829                .get_or_insert_with(&params.clone().into(), &mut || {
 830                    let bytes = self.svg_renderer.render(&params)?;
 831                    Ok((params.size, Cow::Owned(bytes)))
 832                })?;
 833        let content_mask = self.content_mask().scale(scale_factor);
 834
 835        let window = &mut *self.window;
 836        window.scene_builder.insert(
 837            &window.z_index_stack,
 838            MonochromeSprite {
 839                order: 0,
 840                bounds,
 841                content_mask,
 842                color,
 843                tile,
 844            },
 845        );
 846
 847        Ok(())
 848    }
 849
 850    /// Paint an image into the scene for the current frame at the current z-index.
 851    pub fn paint_image(
 852        &mut self,
 853        bounds: Bounds<Pixels>,
 854        corner_radii: Corners<Pixels>,
 855        data: Arc<ImageData>,
 856        grayscale: bool,
 857    ) -> Result<()> {
 858        let scale_factor = self.scale_factor();
 859        let bounds = bounds.scale(scale_factor);
 860        let params = RenderImageParams { image_id: data.id };
 861
 862        let tile = self
 863            .window
 864            .sprite_atlas
 865            .get_or_insert_with(&params.clone().into(), &mut || {
 866                Ok((data.size(), Cow::Borrowed(data.as_bytes())))
 867            })?;
 868        let content_mask = self.content_mask().scale(scale_factor);
 869        let corner_radii = corner_radii.scale(scale_factor);
 870
 871        let window = &mut *self.window;
 872        window.scene_builder.insert(
 873            &window.z_index_stack,
 874            PolychromeSprite {
 875                order: 0,
 876                bounds,
 877                content_mask,
 878                corner_radii,
 879                tile,
 880                grayscale,
 881            },
 882        );
 883        Ok(())
 884    }
 885
 886    /// Draw pixels to the display for this window based on the contents of its scene.
 887    pub(crate) fn draw(&mut self) {
 888        let root_view = self.window.root_view.take().unwrap();
 889
 890        self.start_frame();
 891
 892        self.stack(0, |cx| {
 893            let available_space = cx.window.content_size.map(Into::into);
 894            root_view.draw(available_space, cx);
 895        });
 896
 897        if let Some(active_drag) = self.app.active_drag.take() {
 898            self.stack(1, |cx| {
 899                let offset = cx.mouse_position() - active_drag.cursor_offset;
 900                cx.with_element_offset(Some(offset), |cx| {
 901                    let available_space =
 902                        size(AvailableSpace::MinContent, AvailableSpace::MinContent);
 903                    active_drag.view.draw(available_space, cx);
 904                    cx.active_drag = Some(active_drag);
 905                });
 906            });
 907        }
 908
 909        self.window.root_view = Some(root_view);
 910        let scene = self.window.scene_builder.build();
 911
 912        self.window.platform_window.draw(scene);
 913        self.window.dirty = false;
 914    }
 915
 916    fn start_frame(&mut self) {
 917        self.text_system().start_frame();
 918
 919        let window = &mut *self.window;
 920
 921        // Move the current frame element states to the previous frame.
 922        // The new empty element states map will be populated for any element states we
 923        // reference during the upcoming frame.
 924        mem::swap(
 925            &mut window.element_states,
 926            &mut window.prev_frame_element_states,
 927        );
 928        window.element_states.clear();
 929
 930        // Make the current key matchers the previous, and then clear the current.
 931        // An empty key matcher map will be created for every identified element in the
 932        // upcoming frame.
 933        mem::swap(
 934            &mut window.key_matchers,
 935            &mut window.prev_frame_key_matchers,
 936        );
 937        window.key_matchers.clear();
 938
 939        // Clear mouse event listeners, because elements add new element listeners
 940        // when the upcoming frame is painted.
 941        window.mouse_listeners.values_mut().for_each(Vec::clear);
 942
 943        // Clear focus state, because we determine what is focused when the new elements
 944        // in the upcoming frame are initialized.
 945        window.focus_listeners.clear();
 946        window.key_dispatch_stack.clear();
 947        window.focus_parents_by_child.clear();
 948        window.freeze_key_dispatch_stack = false;
 949    }
 950
 951    /// Dispatch a mouse or keyboard event on the window.
 952    fn dispatch_event(&mut self, event: InputEvent) -> bool {
 953        let event = match event {
 954            // Track the mouse position with our own state, since accessing the platform
 955            // API for the mouse position can only occur on the main thread.
 956            InputEvent::MouseMove(mouse_move) => {
 957                self.window.mouse_position = mouse_move.position;
 958                InputEvent::MouseMove(mouse_move)
 959            }
 960            // Translate dragging and dropping of external files from the operating system
 961            // to internal drag and drop events.
 962            InputEvent::FileDrop(file_drop) => match file_drop {
 963                FileDropEvent::Entered { position, files } => {
 964                    self.window.mouse_position = position;
 965                    if self.active_drag.is_none() {
 966                        self.active_drag = Some(AnyDrag {
 967                            view: self.build_view(|_| files).into(),
 968                            cursor_offset: position,
 969                        });
 970                    }
 971                    InputEvent::MouseDown(MouseDownEvent {
 972                        position,
 973                        button: MouseButton::Left,
 974                        click_count: 1,
 975                        modifiers: Modifiers::default(),
 976                    })
 977                }
 978                FileDropEvent::Pending { position } => {
 979                    self.window.mouse_position = position;
 980                    InputEvent::MouseMove(MouseMoveEvent {
 981                        position,
 982                        pressed_button: Some(MouseButton::Left),
 983                        modifiers: Modifiers::default(),
 984                    })
 985                }
 986                FileDropEvent::Submit { position } => {
 987                    self.window.mouse_position = position;
 988                    InputEvent::MouseUp(MouseUpEvent {
 989                        button: MouseButton::Left,
 990                        position,
 991                        modifiers: Modifiers::default(),
 992                        click_count: 1,
 993                    })
 994                }
 995                FileDropEvent::Exited => InputEvent::MouseUp(MouseUpEvent {
 996                    button: MouseButton::Left,
 997                    position: Point::default(),
 998                    modifiers: Modifiers::default(),
 999                    click_count: 1,
1000                }),
1001            },
1002            _ => event,
1003        };
1004
1005        if let Some(any_mouse_event) = event.mouse_event() {
1006            // Handlers may set this to false by calling `stop_propagation`
1007            self.app.propagate_event = true;
1008            self.window.default_prevented = false;
1009
1010            if let Some(mut handlers) = self
1011                .window
1012                .mouse_listeners
1013                .remove(&any_mouse_event.type_id())
1014            {
1015                // Because handlers may add other handlers, we sort every time.
1016                handlers.sort_by(|(a, _), (b, _)| a.cmp(b));
1017
1018                // Capture phase, events bubble from back to front. Handlers for this phase are used for
1019                // special purposes, such as detecting events outside of a given Bounds.
1020                for (_, handler) in &handlers {
1021                    handler(any_mouse_event, DispatchPhase::Capture, self);
1022                    if !self.app.propagate_event {
1023                        break;
1024                    }
1025                }
1026
1027                // Bubble phase, where most normal handlers do their work.
1028                if self.app.propagate_event {
1029                    for (_, handler) in handlers.iter().rev() {
1030                        handler(any_mouse_event, DispatchPhase::Bubble, self);
1031                        if !self.app.propagate_event {
1032                            break;
1033                        }
1034                    }
1035                }
1036
1037                if self.app.propagate_event
1038                    && any_mouse_event.downcast_ref::<MouseUpEvent>().is_some()
1039                {
1040                    self.active_drag = None;
1041                }
1042
1043                // Just in case any handlers added new handlers, which is weird, but possible.
1044                handlers.extend(
1045                    self.window
1046                        .mouse_listeners
1047                        .get_mut(&any_mouse_event.type_id())
1048                        .into_iter()
1049                        .flat_map(|handlers| handlers.drain(..)),
1050                );
1051                self.window
1052                    .mouse_listeners
1053                    .insert(any_mouse_event.type_id(), handlers);
1054            }
1055        } else if let Some(any_key_event) = event.keyboard_event() {
1056            let key_dispatch_stack = mem::take(&mut self.window.key_dispatch_stack);
1057            let key_event_type = any_key_event.type_id();
1058            let mut context_stack = SmallVec::<[&DispatchContext; 16]>::new();
1059
1060            for (ix, frame) in key_dispatch_stack.iter().enumerate() {
1061                match frame {
1062                    KeyDispatchStackFrame::Listener {
1063                        event_type,
1064                        listener,
1065                    } => {
1066                        if key_event_type == *event_type {
1067                            if let Some(action) = listener(
1068                                any_key_event,
1069                                &context_stack,
1070                                DispatchPhase::Capture,
1071                                self,
1072                            ) {
1073                                self.dispatch_action(action, &key_dispatch_stack[..ix]);
1074                            }
1075                            if !self.app.propagate_event {
1076                                break;
1077                            }
1078                        }
1079                    }
1080                    KeyDispatchStackFrame::Context(context) => {
1081                        context_stack.push(&context);
1082                    }
1083                }
1084            }
1085
1086            if self.app.propagate_event {
1087                for (ix, frame) in key_dispatch_stack.iter().enumerate().rev() {
1088                    match frame {
1089                        KeyDispatchStackFrame::Listener {
1090                            event_type,
1091                            listener,
1092                        } => {
1093                            if key_event_type == *event_type {
1094                                if let Some(action) = listener(
1095                                    any_key_event,
1096                                    &context_stack,
1097                                    DispatchPhase::Bubble,
1098                                    self,
1099                                ) {
1100                                    self.dispatch_action(action, &key_dispatch_stack[..ix]);
1101                                }
1102
1103                                if !self.app.propagate_event {
1104                                    break;
1105                                }
1106                            }
1107                        }
1108                        KeyDispatchStackFrame::Context(_) => {
1109                            context_stack.pop();
1110                        }
1111                    }
1112                }
1113            }
1114
1115            drop(context_stack);
1116            self.window.key_dispatch_stack = key_dispatch_stack;
1117        }
1118
1119        true
1120    }
1121
1122    /// Attempt to map a keystroke to an action based on the keymap.
1123    pub fn match_keystroke(
1124        &mut self,
1125        element_id: &GlobalElementId,
1126        keystroke: &Keystroke,
1127        context_stack: &[&DispatchContext],
1128    ) -> KeyMatch {
1129        let key_match = self
1130            .window
1131            .key_matchers
1132            .get_mut(element_id)
1133            .unwrap()
1134            .match_keystroke(keystroke, context_stack);
1135
1136        if key_match.is_some() {
1137            for matcher in self.window.key_matchers.values_mut() {
1138                matcher.clear_pending();
1139            }
1140        }
1141
1142        key_match
1143    }
1144
1145    /// Register the given handler to be invoked whenever the global of the given type
1146    /// is updated.
1147    pub fn observe_global<G: 'static>(
1148        &mut self,
1149        f: impl Fn(&mut WindowContext<'_>) + 'static,
1150    ) -> Subscription {
1151        let window_handle = self.window.handle;
1152        self.global_observers.insert(
1153            TypeId::of::<G>(),
1154            Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()),
1155        )
1156    }
1157
1158    pub fn activate_window(&self) {
1159        self.window.platform_window.activate();
1160    }
1161
1162    pub fn prompt(
1163        &self,
1164        level: PromptLevel,
1165        msg: &str,
1166        answers: &[&str],
1167    ) -> oneshot::Receiver<usize> {
1168        self.window.platform_window.prompt(level, msg, answers)
1169    }
1170
1171    fn dispatch_action(
1172        &mut self,
1173        action: Box<dyn Action>,
1174        dispatch_stack: &[KeyDispatchStackFrame],
1175    ) {
1176        let action_type = action.as_any().type_id();
1177
1178        if let Some(mut global_listeners) = self.app.global_action_listeners.remove(&action_type) {
1179            for listener in &global_listeners {
1180                listener(action.as_ref(), DispatchPhase::Capture, self);
1181                if !self.app.propagate_event {
1182                    break;
1183                }
1184            }
1185            global_listeners.extend(
1186                self.global_action_listeners
1187                    .remove(&action_type)
1188                    .unwrap_or_default(),
1189            );
1190            self.global_action_listeners
1191                .insert(action_type, global_listeners);
1192        }
1193
1194        if self.app.propagate_event {
1195            for stack_frame in dispatch_stack {
1196                if let KeyDispatchStackFrame::Listener {
1197                    event_type,
1198                    listener,
1199                } = stack_frame
1200                {
1201                    if action_type == *event_type {
1202                        listener(action.as_any(), &[], DispatchPhase::Capture, self);
1203                        if !self.app.propagate_event {
1204                            break;
1205                        }
1206                    }
1207                }
1208            }
1209        }
1210
1211        if self.app.propagate_event {
1212            for stack_frame in dispatch_stack.iter().rev() {
1213                if let KeyDispatchStackFrame::Listener {
1214                    event_type,
1215                    listener,
1216                } = stack_frame
1217                {
1218                    if action_type == *event_type {
1219                        listener(action.as_any(), &[], DispatchPhase::Bubble, self);
1220                        if !self.app.propagate_event {
1221                            break;
1222                        }
1223                    }
1224                }
1225            }
1226        }
1227
1228        if self.app.propagate_event {
1229            if let Some(mut global_listeners) =
1230                self.app.global_action_listeners.remove(&action_type)
1231            {
1232                for listener in global_listeners.iter().rev() {
1233                    listener(action.as_ref(), DispatchPhase::Bubble, self);
1234                    if !self.app.propagate_event {
1235                        break;
1236                    }
1237                }
1238                global_listeners.extend(
1239                    self.global_action_listeners
1240                        .remove(&action_type)
1241                        .unwrap_or_default(),
1242                );
1243                self.global_action_listeners
1244                    .insert(action_type, global_listeners);
1245            }
1246        }
1247    }
1248}
1249
1250impl Context for WindowContext<'_> {
1251    type Result<T> = T;
1252
1253    fn build_model<T>(
1254        &mut self,
1255        build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
1256    ) -> Model<T>
1257    where
1258        T: 'static,
1259    {
1260        let slot = self.app.entities.reserve();
1261        let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade()));
1262        self.entities.insert(slot, model)
1263    }
1264
1265    fn update_model<T: 'static, R>(
1266        &mut self,
1267        model: &Model<T>,
1268        update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
1269    ) -> R {
1270        let mut entity = self.entities.lease(model);
1271        let result = update(
1272            &mut *entity,
1273            &mut ModelContext::new(&mut *self.app, model.downgrade()),
1274        );
1275        self.entities.end_lease(entity);
1276        result
1277    }
1278
1279    fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
1280    where
1281        F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
1282    {
1283        if window == self.window.handle {
1284            let root_view = self.window.root_view.clone().unwrap();
1285            Ok(update(root_view, self))
1286        } else {
1287            window.update(self.app, update)
1288        }
1289    }
1290}
1291
1292impl VisualContext for WindowContext<'_> {
1293    fn build_view<V>(
1294        &mut self,
1295        build_view_state: impl FnOnce(&mut ViewContext<'_, V>) -> V,
1296    ) -> Self::Result<View<V>>
1297    where
1298        V: 'static,
1299    {
1300        let slot = self.app.entities.reserve();
1301        let view = View {
1302            model: slot.clone(),
1303        };
1304        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1305        let entity = build_view_state(&mut cx);
1306        self.entities.insert(slot, entity);
1307        view
1308    }
1309
1310    /// Update the given view. Prefer calling `View::update` instead, which calls this method.
1311    fn update_view<T: 'static, R>(
1312        &mut self,
1313        view: &View<T>,
1314        update: impl FnOnce(&mut T, &mut ViewContext<'_, T>) -> R,
1315    ) -> Self::Result<R> {
1316        let mut lease = self.app.entities.lease(&view.model);
1317        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1318        let result = update(&mut *lease, &mut cx);
1319        cx.app.entities.end_lease(lease);
1320        result
1321    }
1322
1323    fn replace_root_view<V>(
1324        &mut self,
1325        build_view: impl FnOnce(&mut ViewContext<'_, V>) -> V,
1326    ) -> Self::Result<View<V>>
1327    where
1328        V: Render,
1329    {
1330        let slot = self.app.entities.reserve();
1331        let view = View {
1332            model: slot.clone(),
1333        };
1334        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1335        let entity = build_view(&mut cx);
1336        self.entities.insert(slot, entity);
1337        self.window.root_view = Some(view.clone().into());
1338        view
1339    }
1340}
1341
1342impl<'a> std::ops::Deref for WindowContext<'a> {
1343    type Target = AppContext;
1344
1345    fn deref(&self) -> &Self::Target {
1346        &self.app
1347    }
1348}
1349
1350impl<'a> std::ops::DerefMut for WindowContext<'a> {
1351    fn deref_mut(&mut self) -> &mut Self::Target {
1352        &mut self.app
1353    }
1354}
1355
1356impl<'a> Borrow<AppContext> for WindowContext<'a> {
1357    fn borrow(&self) -> &AppContext {
1358        &self.app
1359    }
1360}
1361
1362impl<'a> BorrowMut<AppContext> for WindowContext<'a> {
1363    fn borrow_mut(&mut self) -> &mut AppContext {
1364        &mut self.app
1365    }
1366}
1367
1368pub trait BorrowWindow: BorrowMut<Window> + BorrowMut<AppContext> {
1369    fn app_mut(&mut self) -> &mut AppContext {
1370        self.borrow_mut()
1371    }
1372
1373    fn window(&self) -> &Window {
1374        self.borrow()
1375    }
1376
1377    fn window_mut(&mut self) -> &mut Window {
1378        self.borrow_mut()
1379    }
1380
1381    /// Pushes the given element id onto the global stack and invokes the given closure
1382    /// with a `GlobalElementId`, which disambiguates the given id in the context of its ancestor
1383    /// ids. Because elements are discarded and recreated on each frame, the `GlobalElementId` is
1384    /// used to associate state with identified elements across separate frames.
1385    fn with_element_id<R>(
1386        &mut self,
1387        id: impl Into<ElementId>,
1388        f: impl FnOnce(GlobalElementId, &mut Self) -> R,
1389    ) -> R {
1390        let keymap = self.app_mut().keymap.clone();
1391        let window = self.window_mut();
1392        window.element_id_stack.push(id.into());
1393        let global_id = window.element_id_stack.clone();
1394
1395        if window.key_matchers.get(&global_id).is_none() {
1396            window.key_matchers.insert(
1397                global_id.clone(),
1398                window
1399                    .prev_frame_key_matchers
1400                    .remove(&global_id)
1401                    .unwrap_or_else(|| KeyMatcher::new(keymap)),
1402            );
1403        }
1404
1405        let result = f(global_id, self);
1406        let window: &mut Window = self.borrow_mut();
1407        window.element_id_stack.pop();
1408        result
1409    }
1410
1411    /// Invoke the given function with the given content mask after intersecting it
1412    /// with the current mask.
1413    fn with_content_mask<R>(
1414        &mut self,
1415        mask: ContentMask<Pixels>,
1416        f: impl FnOnce(&mut Self) -> R,
1417    ) -> R {
1418        let mask = mask.intersect(&self.content_mask());
1419        self.window_mut().content_mask_stack.push(mask);
1420        let result = f(self);
1421        self.window_mut().content_mask_stack.pop();
1422        result
1423    }
1424
1425    /// Update the global element offset based on the given offset. This is used to implement
1426    /// scrolling and position drag handles.
1427    fn with_element_offset<R>(
1428        &mut self,
1429        offset: Option<Point<Pixels>>,
1430        f: impl FnOnce(&mut Self) -> R,
1431    ) -> R {
1432        let Some(offset) = offset else {
1433            return f(self);
1434        };
1435
1436        let offset = self.element_offset() + offset;
1437        self.window_mut().element_offset_stack.push(offset);
1438        let result = f(self);
1439        self.window_mut().element_offset_stack.pop();
1440        result
1441    }
1442
1443    /// Obtain the current element offset.
1444    fn element_offset(&self) -> Point<Pixels> {
1445        self.window()
1446            .element_offset_stack
1447            .last()
1448            .copied()
1449            .unwrap_or_default()
1450    }
1451
1452    /// Update or intialize state for an element with the given id that lives across multiple
1453    /// frames. If an element with this id existed in the previous frame, its state will be passed
1454    /// to the given closure. The state returned by the closure will be stored so it can be referenced
1455    /// when drawing the next frame.
1456    fn with_element_state<S, R>(
1457        &mut self,
1458        id: ElementId,
1459        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
1460    ) -> R
1461    where
1462        S: 'static,
1463    {
1464        self.with_element_id(id, |global_id, cx| {
1465            if let Some(any) = cx
1466                .window_mut()
1467                .element_states
1468                .remove(&global_id)
1469                .or_else(|| cx.window_mut().prev_frame_element_states.remove(&global_id))
1470            {
1471                // Using the extra inner option to avoid needing to reallocate a new box.
1472                let mut state_box = any
1473                    .downcast::<Option<S>>()
1474                    .expect("invalid element state type for id");
1475                let state = state_box
1476                    .take()
1477                    .expect("element state is already on the stack");
1478                let (result, state) = f(Some(state), cx);
1479                state_box.replace(state);
1480                cx.window_mut().element_states.insert(global_id, state_box);
1481                result
1482            } else {
1483                let (result, state) = f(None, cx);
1484                cx.window_mut()
1485                    .element_states
1486                    .insert(global_id, Box::new(Some(state)));
1487                result
1488            }
1489        })
1490    }
1491
1492    /// Like `with_element_state`, but for situations where the element_id is optional. If the
1493    /// id is `None`, no state will be retrieved or stored.
1494    fn with_optional_element_state<S, R>(
1495        &mut self,
1496        element_id: Option<ElementId>,
1497        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
1498    ) -> R
1499    where
1500        S: 'static,
1501    {
1502        if let Some(element_id) = element_id {
1503            self.with_element_state(element_id, f)
1504        } else {
1505            f(None, self).0
1506        }
1507    }
1508
1509    /// Obtain the current content mask.
1510    fn content_mask(&self) -> ContentMask<Pixels> {
1511        self.window()
1512            .content_mask_stack
1513            .last()
1514            .cloned()
1515            .unwrap_or_else(|| ContentMask {
1516                bounds: Bounds {
1517                    origin: Point::default(),
1518                    size: self.window().content_size,
1519                },
1520            })
1521    }
1522
1523    /// The size of an em for the base font of the application. Adjusting this value allows the
1524    /// UI to scale, just like zooming a web page.
1525    fn rem_size(&self) -> Pixels {
1526        self.window().rem_size
1527    }
1528}
1529
1530impl Borrow<Window> for WindowContext<'_> {
1531    fn borrow(&self) -> &Window {
1532        &self.window
1533    }
1534}
1535
1536impl BorrowMut<Window> for WindowContext<'_> {
1537    fn borrow_mut(&mut self) -> &mut Window {
1538        &mut self.window
1539    }
1540}
1541
1542impl<T> BorrowWindow for T where T: BorrowMut<AppContext> + BorrowMut<Window> {}
1543
1544pub struct ViewContext<'a, V> {
1545    window_cx: WindowContext<'a>,
1546    view: &'a View<V>,
1547}
1548
1549impl<V> Borrow<AppContext> for ViewContext<'_, V> {
1550    fn borrow(&self) -> &AppContext {
1551        &*self.window_cx.app
1552    }
1553}
1554
1555impl<V> BorrowMut<AppContext> for ViewContext<'_, V> {
1556    fn borrow_mut(&mut self) -> &mut AppContext {
1557        &mut *self.window_cx.app
1558    }
1559}
1560
1561impl<V> Borrow<Window> for ViewContext<'_, V> {
1562    fn borrow(&self) -> &Window {
1563        &*self.window_cx.window
1564    }
1565}
1566
1567impl<V> BorrowMut<Window> for ViewContext<'_, V> {
1568    fn borrow_mut(&mut self) -> &mut Window {
1569        &mut *self.window_cx.window
1570    }
1571}
1572
1573impl<'a, V: 'static> ViewContext<'a, V> {
1574    pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View<V>) -> Self {
1575        Self {
1576            window_cx: WindowContext::new(app, window),
1577            view,
1578        }
1579    }
1580
1581    pub fn view(&self) -> View<V> {
1582        self.view.clone()
1583    }
1584
1585    pub fn model(&self) -> Model<V> {
1586        self.view.model.clone()
1587    }
1588
1589    pub fn stack<R>(&mut self, order: u32, f: impl FnOnce(&mut Self) -> R) -> R {
1590        self.window.z_index_stack.push(order);
1591        let result = f(self);
1592        self.window.z_index_stack.pop();
1593        result
1594    }
1595
1596    pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static)
1597    where
1598        V: 'static,
1599    {
1600        let view = self.view();
1601        self.window_cx.on_next_frame(move |cx| view.update(cx, f));
1602    }
1603
1604    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1605    /// that are currently on the stack to be returned to the app.
1606    pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static) {
1607        let view = self.view().downgrade();
1608        self.window_cx.defer(move |cx| {
1609            view.update(cx, f).ok();
1610        });
1611    }
1612
1613    pub fn observe<V2, E>(
1614        &mut self,
1615        entity: &E,
1616        mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + 'static,
1617    ) -> Subscription
1618    where
1619        V2: 'static,
1620        V: 'static,
1621        E: Entity<V2>,
1622    {
1623        let view = self.view().downgrade();
1624        let entity_id = entity.entity_id();
1625        let entity = entity.downgrade();
1626        let window_handle = self.window.handle;
1627        self.app.observers.insert(
1628            entity_id,
1629            Box::new(move |cx| {
1630                window_handle
1631                    .update(cx, |_, cx| {
1632                        if let Some(handle) = E::upgrade_from(&entity) {
1633                            view.update(cx, |this, cx| on_notify(this, handle, cx))
1634                                .is_ok()
1635                        } else {
1636                            false
1637                        }
1638                    })
1639                    .unwrap_or(false)
1640            }),
1641        )
1642    }
1643
1644    pub fn subscribe<V2, E>(
1645        &mut self,
1646        entity: &E,
1647        mut on_event: impl FnMut(&mut V, E, &V2::Event, &mut ViewContext<'_, V>) + 'static,
1648    ) -> Subscription
1649    where
1650        V2: EventEmitter,
1651        E: Entity<V2>,
1652    {
1653        let view = self.view().downgrade();
1654        let entity_id = entity.entity_id();
1655        let handle = entity.downgrade();
1656        let window_handle = self.window.handle;
1657        self.app.event_listeners.insert(
1658            entity_id,
1659            Box::new(move |event, cx| {
1660                window_handle
1661                    .update(cx, |_, cx| {
1662                        if let Some(handle) = E::upgrade_from(&handle) {
1663                            let event = event.downcast_ref().expect("invalid event type");
1664                            view.update(cx, |this, cx| on_event(this, handle, event, cx))
1665                                .is_ok()
1666                        } else {
1667                            false
1668                        }
1669                    })
1670                    .unwrap_or(false)
1671            }),
1672        )
1673    }
1674
1675    pub fn on_release(
1676        &mut self,
1677        on_release: impl FnOnce(&mut V, &mut WindowContext) + 'static,
1678    ) -> Subscription {
1679        let window_handle = self.window.handle;
1680        self.app.release_listeners.insert(
1681            self.view.model.entity_id,
1682            Box::new(move |this, cx| {
1683                let this = this.downcast_mut().expect("invalid entity type");
1684                let _ = window_handle.update(cx, |_, cx| on_release(this, cx));
1685            }),
1686        )
1687    }
1688
1689    pub fn observe_release<V2, E>(
1690        &mut self,
1691        entity: &E,
1692        mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + 'static,
1693    ) -> Subscription
1694    where
1695        V: 'static,
1696        V2: 'static,
1697        E: Entity<V2>,
1698    {
1699        let view = self.view().downgrade();
1700        let entity_id = entity.entity_id();
1701        let window_handle = self.window.handle;
1702        self.app.release_listeners.insert(
1703            entity_id,
1704            Box::new(move |entity, cx| {
1705                let entity = entity.downcast_mut().expect("invalid entity type");
1706                let _ = window_handle.update(cx, |_, cx| {
1707                    view.update(cx, |this, cx| on_release(this, entity, cx))
1708                });
1709            }),
1710        )
1711    }
1712
1713    pub fn notify(&mut self) {
1714        self.window_cx.notify();
1715        self.window_cx.app.push_effect(Effect::Notify {
1716            emitter: self.view.model.entity_id,
1717        });
1718    }
1719
1720    pub fn on_focus_changed(
1721        &mut self,
1722        listener: impl Fn(&mut V, &FocusEvent, &mut ViewContext<V>) + 'static,
1723    ) {
1724        let handle = self.view().downgrade();
1725        self.window.focus_listeners.push(Box::new(move |event, cx| {
1726            handle
1727                .update(cx, |view, cx| listener(view, event, cx))
1728                .log_err();
1729        }));
1730    }
1731
1732    pub fn with_key_listeners<R>(
1733        &mut self,
1734        key_listeners: impl IntoIterator<Item = (TypeId, KeyListener<V>)>,
1735        f: impl FnOnce(&mut Self) -> R,
1736    ) -> R {
1737        let old_stack_len = self.window.key_dispatch_stack.len();
1738        if !self.window.freeze_key_dispatch_stack {
1739            for (event_type, listener) in key_listeners {
1740                let handle = self.view().downgrade();
1741                let listener = Box::new(
1742                    move |event: &dyn Any,
1743                          context_stack: &[&DispatchContext],
1744                          phase: DispatchPhase,
1745                          cx: &mut WindowContext<'_>| {
1746                        handle
1747                            .update(cx, |view, cx| {
1748                                listener(view, event, context_stack, phase, cx)
1749                            })
1750                            .log_err()
1751                            .flatten()
1752                    },
1753                );
1754                self.window
1755                    .key_dispatch_stack
1756                    .push(KeyDispatchStackFrame::Listener {
1757                        event_type,
1758                        listener,
1759                    });
1760            }
1761        }
1762
1763        let result = f(self);
1764
1765        if !self.window.freeze_key_dispatch_stack {
1766            self.window.key_dispatch_stack.truncate(old_stack_len);
1767        }
1768
1769        result
1770    }
1771
1772    pub fn with_key_dispatch_context<R>(
1773        &mut self,
1774        context: DispatchContext,
1775        f: impl FnOnce(&mut Self) -> R,
1776    ) -> R {
1777        if context.is_empty() {
1778            return f(self);
1779        }
1780
1781        if !self.window.freeze_key_dispatch_stack {
1782            self.window
1783                .key_dispatch_stack
1784                .push(KeyDispatchStackFrame::Context(context));
1785        }
1786
1787        let result = f(self);
1788
1789        if !self.window.freeze_key_dispatch_stack {
1790            self.window.key_dispatch_stack.pop();
1791        }
1792
1793        result
1794    }
1795
1796    pub fn with_focus<R>(
1797        &mut self,
1798        focus_handle: FocusHandle,
1799        f: impl FnOnce(&mut Self) -> R,
1800    ) -> R {
1801        if let Some(parent_focus_id) = self.window.focus_stack.last().copied() {
1802            self.window
1803                .focus_parents_by_child
1804                .insert(focus_handle.id, parent_focus_id);
1805        }
1806        self.window.focus_stack.push(focus_handle.id);
1807
1808        if Some(focus_handle.id) == self.window.focus {
1809            self.window.freeze_key_dispatch_stack = true;
1810        }
1811
1812        let result = f(self);
1813
1814        self.window.focus_stack.pop();
1815        result
1816    }
1817
1818    pub fn spawn<Fut, R>(
1819        &mut self,
1820        f: impl FnOnce(WeakView<V>, AsyncWindowContext) -> Fut,
1821    ) -> Task<R>
1822    where
1823        R: 'static,
1824        Fut: Future<Output = R> + 'static,
1825    {
1826        let view = self.view().downgrade();
1827        self.window_cx.spawn(|cx| f(view, cx))
1828    }
1829
1830    pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
1831    where
1832        G: 'static,
1833    {
1834        let mut global = self.app.lease_global::<G>();
1835        let result = f(&mut global, self);
1836        self.app.end_global_lease(global);
1837        result
1838    }
1839
1840    pub fn observe_global<G: 'static>(
1841        &mut self,
1842        f: impl Fn(&mut V, &mut ViewContext<'_, V>) + 'static,
1843    ) -> Subscription {
1844        let window_handle = self.window.handle;
1845        let view = self.view().downgrade();
1846        self.global_observers.insert(
1847            TypeId::of::<G>(),
1848            Box::new(move |cx| {
1849                window_handle
1850                    .update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok())
1851                    .unwrap_or(false)
1852            }),
1853        )
1854    }
1855
1856    pub fn on_mouse_event<Event: 'static>(
1857        &mut self,
1858        handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
1859    ) {
1860        let handle = self.view();
1861        self.window_cx.on_mouse_event(move |event, phase, cx| {
1862            handle.update(cx, |view, cx| {
1863                handler(view, event, phase, cx);
1864            })
1865        });
1866    }
1867}
1868
1869impl<V> ViewContext<'_, V>
1870where
1871    V: EventEmitter,
1872    V::Event: 'static,
1873{
1874    pub fn emit(&mut self, event: V::Event) {
1875        let emitter = self.view.model.entity_id;
1876        self.app.push_effect(Effect::Emit {
1877            emitter,
1878            event: Box::new(event),
1879        });
1880    }
1881}
1882
1883impl<V> Context for ViewContext<'_, V> {
1884    type Result<U> = U;
1885
1886    fn build_model<T: 'static>(
1887        &mut self,
1888        build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
1889    ) -> Model<T> {
1890        self.window_cx.build_model(build_model)
1891    }
1892
1893    fn update_model<T: 'static, R>(
1894        &mut self,
1895        model: &Model<T>,
1896        update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
1897    ) -> R {
1898        self.window_cx.update_model(model, update)
1899    }
1900
1901    fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
1902    where
1903        F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
1904    {
1905        self.window_cx.update_window(window, update)
1906    }
1907}
1908
1909impl<V: 'static> VisualContext for ViewContext<'_, V> {
1910    fn build_view<W: 'static>(
1911        &mut self,
1912        build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
1913    ) -> Self::Result<View<W>> {
1914        self.window_cx.build_view(build_view)
1915    }
1916
1917    fn update_view<V2: 'static, R>(
1918        &mut self,
1919        view: &View<V2>,
1920        update: impl FnOnce(&mut V2, &mut ViewContext<'_, V2>) -> R,
1921    ) -> Self::Result<R> {
1922        self.window_cx.update_view(view, update)
1923    }
1924
1925    fn replace_root_view<W>(
1926        &mut self,
1927        build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
1928    ) -> Self::Result<View<W>>
1929    where
1930        W: Render,
1931    {
1932        self.window_cx.replace_root_view(build_view)
1933    }
1934}
1935
1936impl<'a, V> std::ops::Deref for ViewContext<'a, V> {
1937    type Target = WindowContext<'a>;
1938
1939    fn deref(&self) -> &Self::Target {
1940        &self.window_cx
1941    }
1942}
1943
1944impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> {
1945    fn deref_mut(&mut self) -> &mut Self::Target {
1946        &mut self.window_cx
1947    }
1948}
1949
1950// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
1951slotmap::new_key_type! { pub struct WindowId; }
1952
1953impl WindowId {
1954    pub fn as_u64(&self) -> u64 {
1955        self.0.as_ffi()
1956    }
1957}
1958
1959#[derive(Deref, DerefMut)]
1960pub struct WindowHandle<V> {
1961    #[deref]
1962    #[deref_mut]
1963    pub(crate) any_handle: AnyWindowHandle,
1964    state_type: PhantomData<V>,
1965}
1966
1967impl<V: 'static + Render> WindowHandle<V> {
1968    pub fn new(id: WindowId) -> Self {
1969        WindowHandle {
1970            any_handle: AnyWindowHandle {
1971                id,
1972                state_type: TypeId::of::<V>(),
1973            },
1974            state_type: PhantomData,
1975        }
1976    }
1977
1978    pub fn update<C, R>(
1979        self,
1980        cx: &mut C,
1981        update: impl FnOnce(&mut V, &mut ViewContext<'_, V>) -> R,
1982    ) -> Result<R>
1983    where
1984        C: Context,
1985    {
1986        cx.update_window(self.any_handle, |root_view, cx| {
1987            let view = root_view
1988                .downcast::<V>()
1989                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
1990            Ok(cx.update_view(&view, update))
1991        })?
1992    }
1993}
1994
1995impl<V> Copy for WindowHandle<V> {}
1996
1997impl<V> Clone for WindowHandle<V> {
1998    fn clone(&self) -> Self {
1999        WindowHandle {
2000            any_handle: self.any_handle,
2001            state_type: PhantomData,
2002        }
2003    }
2004}
2005
2006impl<V> PartialEq for WindowHandle<V> {
2007    fn eq(&self, other: &Self) -> bool {
2008        self.any_handle == other.any_handle
2009    }
2010}
2011
2012impl<V> Eq for WindowHandle<V> {}
2013
2014impl<V> Hash for WindowHandle<V> {
2015    fn hash<H: Hasher>(&self, state: &mut H) {
2016        self.any_handle.hash(state);
2017    }
2018}
2019
2020impl<V: 'static> Into<AnyWindowHandle> for WindowHandle<V> {
2021    fn into(self) -> AnyWindowHandle {
2022        self.any_handle
2023    }
2024}
2025
2026#[derive(Copy, Clone, PartialEq, Eq, Hash)]
2027pub struct AnyWindowHandle {
2028    pub(crate) id: WindowId,
2029    state_type: TypeId,
2030}
2031
2032impl AnyWindowHandle {
2033    pub fn window_id(&self) -> WindowId {
2034        self.id
2035    }
2036
2037    pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
2038        if TypeId::of::<T>() == self.state_type {
2039            Some(WindowHandle {
2040                any_handle: *self,
2041                state_type: PhantomData,
2042            })
2043        } else {
2044            None
2045        }
2046    }
2047
2048    pub fn update<C, R>(
2049        self,
2050        cx: &mut C,
2051        update: impl FnOnce(AnyView, &mut WindowContext<'_>) -> R,
2052    ) -> Result<R>
2053    where
2054        C: Context,
2055    {
2056        cx.update_window(self, update)
2057    }
2058}
2059
2060#[cfg(any(test, feature = "test-support"))]
2061impl From<SmallVec<[u32; 16]>> for StackingOrder {
2062    fn from(small_vec: SmallVec<[u32; 16]>) -> Self {
2063        StackingOrder(small_vec)
2064    }
2065}
2066
2067#[derive(Clone, Debug, Eq, PartialEq, Hash)]
2068pub enum ElementId {
2069    View(EntityId),
2070    Number(usize),
2071    Name(SharedString),
2072    FocusHandle(FocusId),
2073}
2074
2075impl From<EntityId> for ElementId {
2076    fn from(id: EntityId) -> Self {
2077        ElementId::View(id)
2078    }
2079}
2080
2081impl From<usize> for ElementId {
2082    fn from(id: usize) -> Self {
2083        ElementId::Number(id)
2084    }
2085}
2086
2087impl From<i32> for ElementId {
2088    fn from(id: i32) -> Self {
2089        Self::Number(id as usize)
2090    }
2091}
2092
2093impl From<SharedString> for ElementId {
2094    fn from(name: SharedString) -> Self {
2095        ElementId::Name(name)
2096    }
2097}
2098
2099impl From<&'static str> for ElementId {
2100    fn from(name: &'static str) -> Self {
2101        ElementId::Name(name.into())
2102    }
2103}
2104
2105impl<'a> From<&'a FocusHandle> for ElementId {
2106    fn from(handle: &'a FocusHandle) -> Self {
2107        ElementId::FocusHandle(handle.id)
2108    }
2109}