shaders.wgsl

  1struct GlobalParams {
  2    viewport_size: vec2<f32>,
  3    premultiplied_alpha: u32,
  4    pad: u32,
  5}
  6
  7var<uniform> globals: GlobalParams;
  8var t_sprite: texture_2d<f32>;
  9var s_sprite: sampler;
 10
 11const M_PI_F: f32 = 3.1415926;
 12const GRAYSCALE_FACTORS: vec3<f32> = vec3<f32>(0.2126, 0.7152, 0.0722);
 13
 14struct Bounds {
 15    origin: vec2<f32>,
 16    size: vec2<f32>,
 17}
 18
 19struct Corners {
 20    top_left: f32,
 21    top_right: f32,
 22    bottom_right: f32,
 23    bottom_left: f32,
 24}
 25
 26struct Edges {
 27    top: f32,
 28    right: f32,
 29    bottom: f32,
 30    left: f32,
 31}
 32
 33struct Hsla {
 34    h: f32,
 35    s: f32,
 36    l: f32,
 37    a: f32,
 38}
 39
 40struct LinearColorStop {
 41    color: Hsla,
 42    percentage: f32,
 43}
 44
 45struct Background {
 46    // 0u is Solid
 47    // 1u is LinearGradient
 48    // 2u is PatternSlash
 49    tag: u32,
 50    // 0u is sRGB linear color
 51    // 1u is Oklab color
 52    color_space: u32,
 53    solid: Hsla,
 54    gradient_angle_or_pattern_height: f32,
 55    colors: array<LinearColorStop, 2>,
 56    pad: u32,
 57}
 58
 59struct AtlasTextureId {
 60    index: u32,
 61    kind: u32,
 62}
 63
 64struct AtlasBounds {
 65    origin: vec2<i32>,
 66    size: vec2<i32>,
 67}
 68
 69struct AtlasTile {
 70    texture_id: AtlasTextureId,
 71    tile_id: u32,
 72    padding: u32,
 73    bounds: AtlasBounds,
 74}
 75
 76struct TransformationMatrix {
 77    rotation_scale: mat2x2<f32>,
 78    translation: vec2<f32>,
 79}
 80
 81fn to_device_position_impl(position: vec2<f32>) -> vec4<f32> {
 82    let device_position = position / globals.viewport_size * vec2<f32>(2.0, -2.0) + vec2<f32>(-1.0, 1.0);
 83    return vec4<f32>(device_position, 0.0, 1.0);
 84}
 85
 86fn to_device_position(unit_vertex: vec2<f32>, bounds: Bounds) -> vec4<f32> {
 87    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 88    return to_device_position_impl(position);
 89}
 90
 91fn to_device_position_transformed(unit_vertex: vec2<f32>, bounds: Bounds, transform: TransformationMatrix) -> vec4<f32> {
 92    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 93    //Note: Rust side stores it as row-major, so transposing here
 94    let transformed = transpose(transform.rotation_scale) * position + transform.translation;
 95    return to_device_position_impl(transformed);
 96}
 97
 98fn to_tile_position(unit_vertex: vec2<f32>, tile: AtlasTile) -> vec2<f32> {
 99  let atlas_size = vec2<f32>(textureDimensions(t_sprite, 0));
100  return (vec2<f32>(tile.bounds.origin) + unit_vertex * vec2<f32>(tile.bounds.size)) / atlas_size;
101}
102
103fn distance_from_clip_rect_impl(position: vec2<f32>, clip_bounds: Bounds) -> vec4<f32> {
104    let tl = position - clip_bounds.origin;
105    let br = clip_bounds.origin + clip_bounds.size - position;
106    return vec4<f32>(tl.x, br.x, tl.y, br.y);
107}
108
109fn distance_from_clip_rect(unit_vertex: vec2<f32>, bounds: Bounds, clip_bounds: Bounds) -> vec4<f32> {
110    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
111    return distance_from_clip_rect_impl(position, clip_bounds);
112}
113
114// https://gamedev.stackexchange.com/questions/92015/optimized-linear-to-srgb-glsl
115fn srgb_to_linear(srgb: vec3<f32>) -> vec3<f32> {
116    let cutoff = srgb < vec3<f32>(0.04045);
117    let higher = pow((srgb + vec3<f32>(0.055)) / vec3<f32>(1.055), vec3<f32>(2.4));
118    let lower = srgb / vec3<f32>(12.92);
119    return select(higher, lower, cutoff);
120}
121
122fn linear_to_srgb(linear: vec3<f32>) -> vec3<f32> {
123    let cutoff = linear < vec3<f32>(0.0031308);
124    let higher = vec3<f32>(1.055) * pow(linear, vec3<f32>(1.0 / 2.4)) - vec3<f32>(0.055);
125    let lower = linear * vec3<f32>(12.92);
126    return select(higher, lower, cutoff);
127}
128
129/// Convert a linear color to sRGBA space.
130fn linear_to_srgba(color: vec4<f32>) -> vec4<f32> {
131    return vec4<f32>(linear_to_srgb(color.rgb), color.a);
132}
133
134/// Convert a sRGBA color to linear space.
135fn srgba_to_linear(color: vec4<f32>) -> vec4<f32> {
136    return vec4<f32>(srgb_to_linear(color.rgb), color.a);
137}
138
139/// Hsla to linear RGBA conversion.
140fn hsla_to_rgba(hsla: Hsla) -> vec4<f32> {
141    let h = hsla.h * 6.0; // Now, it's an angle but scaled in [0, 6) range
142    let s = hsla.s;
143    let l = hsla.l;
144    let a = hsla.a;
145
146    let c = (1.0 - abs(2.0 * l - 1.0)) * s;
147    let x = c * (1.0 - abs(h % 2.0 - 1.0));
148    let m = l - c / 2.0;
149    var color = vec3<f32>(m);
150
151    if (h >= 0.0 && h < 1.0) {
152        color.r += c;
153        color.g += x;
154    } else if (h >= 1.0 && h < 2.0) {
155        color.r += x;
156        color.g += c;
157    } else if (h >= 2.0 && h < 3.0) {
158        color.g += c;
159        color.b += x;
160    } else if (h >= 3.0 && h < 4.0) {
161        color.g += x;
162        color.b += c;
163    } else if (h >= 4.0 && h < 5.0) {
164        color.r += x;
165        color.b += c;
166    } else {
167        color.r += c;
168        color.b += x;
169    }
170
171    // Input colors are assumed to be in sRGB space,
172    // but blending and rendering needs to happen in linear space.
173    // The output will be converted to sRGB by either the target
174    // texture format or the swapchain color space.
175    let linear = srgb_to_linear(color);
176    return vec4<f32>(linear, a);
177}
178
179/// Convert a linear sRGB to Oklab space.
180/// Reference: https://bottosson.github.io/posts/oklab/#converting-from-linear-srgb-to-oklab
181fn linear_srgb_to_oklab(color: vec4<f32>) -> vec4<f32> {
182	let l = 0.4122214708 * color.r + 0.5363325363 * color.g + 0.0514459929 * color.b;
183	let m = 0.2119034982 * color.r + 0.6806995451 * color.g + 0.1073969566 * color.b;
184	let s = 0.0883024619 * color.r + 0.2817188376 * color.g + 0.6299787005 * color.b;
185
186	let l_ = pow(l, 1.0 / 3.0);
187	let m_ = pow(m, 1.0 / 3.0);
188	let s_ = pow(s, 1.0 / 3.0);
189
190	return vec4<f32>(
191		0.2104542553 * l_ + 0.7936177850 * m_ - 0.0040720468 * s_,
192		1.9779984951 * l_ - 2.4285922050 * m_ + 0.4505937099 * s_,
193		0.0259040371 * l_ + 0.7827717662 * m_ - 0.8086757660 * s_,
194		color.a
195	);
196}
197
198/// Convert an Oklab color to linear sRGB space.
199fn oklab_to_linear_srgb(color: vec4<f32>) -> vec4<f32> {
200	let l_ = color.r + 0.3963377774 * color.g + 0.2158037573 * color.b;
201	let m_ = color.r - 0.1055613458 * color.g - 0.0638541728 * color.b;
202	let s_ = color.r - 0.0894841775 * color.g - 1.2914855480 * color.b;
203
204	let l = l_ * l_ * l_;
205	let m = m_ * m_ * m_;
206	let s = s_ * s_ * s_;
207
208	return vec4<f32>(
209		4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s,
210		-1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s,
211		-0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s,
212		color.a
213	);
214}
215
216fn over(below: vec4<f32>, above: vec4<f32>) -> vec4<f32> {
217    let alpha = above.a + below.a * (1.0 - above.a);
218    let color = (above.rgb * above.a + below.rgb * below.a * (1.0 - above.a)) / alpha;
219    return vec4<f32>(color, alpha);
220}
221
222// A standard gaussian function, used for weighting samples
223fn gaussian(x: f32, sigma: f32) -> f32{
224    return exp(-(x * x) / (2.0 * sigma * sigma)) / (sqrt(2.0 * M_PI_F) * sigma);
225}
226
227// This approximates the error function, needed for the gaussian integral
228fn erf(v: vec2<f32>) -> vec2<f32> {
229    let s = sign(v);
230    let a = abs(v);
231    let r1 = 1.0 + (0.278393 + (0.230389 + (0.000972 + 0.078108 * a) * a) * a) * a;
232    let r2 = r1 * r1;
233    return s - s / (r2 * r2);
234}
235
236fn blur_along_x(x: f32, y: f32, sigma: f32, corner: f32, half_size: vec2<f32>) -> f32 {
237  let delta = min(half_size.y - corner - abs(y), 0.0);
238  let curved = half_size.x - corner + sqrt(max(0.0, corner * corner - delta * delta));
239  let integral = 0.5 + 0.5 * erf((x + vec2<f32>(-curved, curved)) * (sqrt(0.5) / sigma));
240  return integral.y - integral.x;
241}
242
243fn pick_corner_radius(point: vec2<f32>, radii: Corners) -> f32 {
244    if (point.x < 0.0) {
245        if (point.y < 0.0) {
246            return radii.top_left;
247        } else {
248            return radii.bottom_left;
249        }
250    } else {
251        if (point.y < 0.0) {
252            return radii.top_right;
253        } else {
254            return radii.bottom_right;
255        }
256    }
257}
258
259fn quad_sdf(point: vec2<f32>, bounds: Bounds, corner_radii: Corners) -> f32 {
260    let half_size = bounds.size / 2.0;
261    let center = bounds.origin + half_size;
262    let center_to_point = point - center;
263    let corner_radius = pick_corner_radius(center_to_point, corner_radii);
264    let rounded_edge_to_point = abs(center_to_point) - half_size + corner_radius;
265    return length(max(vec2<f32>(0.0), rounded_edge_to_point)) +
266        min(0.0, max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
267        corner_radius;
268}
269
270// Abstract away the final color transformation based on the
271// target alpha compositing mode.
272fn blend_color(color: vec4<f32>, alpha_factor: f32) -> vec4<f32> {
273    let alpha = color.a * alpha_factor;
274    let multiplier = select(1.0, alpha, globals.premultiplied_alpha != 0u);
275    return vec4<f32>(color.rgb * multiplier, alpha);
276}
277
278
279struct GradientColor {
280    solid: vec4<f32>,
281    color0: vec4<f32>,
282    color1: vec4<f32>,
283}
284
285fn prepare_gradient_color(tag: u32, color_space: u32,
286    solid: Hsla, colors: array<LinearColorStop, 2>) -> GradientColor {
287    var result = GradientColor();
288
289    if (tag == 0u || tag == 2u) {
290        result.solid = hsla_to_rgba(solid);
291    } else if (tag == 1u) {
292        // The hsla_to_rgba is returns a linear sRGB color
293        result.color0 = hsla_to_rgba(colors[0].color);
294        result.color1 = hsla_to_rgba(colors[1].color);
295
296        // Prepare color space in vertex for avoid conversion
297        // in fragment shader for performance reasons
298        if (color_space == 0u) {
299            // sRGB
300            result.color0 = linear_to_srgba(result.color0);
301            result.color1 = linear_to_srgba(result.color1);
302        } else if (color_space == 1u) {
303            // Oklab
304            result.color0 = linear_srgb_to_oklab(result.color0);
305            result.color1 = linear_srgb_to_oklab(result.color1);
306        }
307    }
308
309    return result;
310}
311
312fn gradient_color(background: Background, position: vec2<f32>, bounds: Bounds,
313    solid_color: vec4<f32>, color0: vec4<f32>, color1: vec4<f32>) -> vec4<f32> {
314    var background_color = vec4<f32>(0.0);
315
316    switch (background.tag) {
317        default: {
318            return solid_color;
319        }
320        case 1u: {
321            // Linear gradient background.
322            // -90 degrees to match the CSS gradient angle.
323            let angle = background.gradient_angle_or_pattern_height;
324            let radians = (angle % 360.0 - 90.0) * M_PI_F / 180.0;
325            var direction = vec2<f32>(cos(radians), sin(radians));
326            let stop0_percentage = background.colors[0].percentage;
327            let stop1_percentage = background.colors[1].percentage;
328
329            // Expand the short side to be the same as the long side
330            if (bounds.size.x > bounds.size.y) {
331                direction.y *= bounds.size.y / bounds.size.x;
332            } else {
333                direction.x *= bounds.size.x / bounds.size.y;
334            }
335
336            // Get the t value for the linear gradient with the color stop percentages.
337            let half_size = bounds.size / 2.0;
338            let center = bounds.origin + half_size;
339            let center_to_point = position - center;
340            var t = dot(center_to_point, direction) / length(direction);
341            // Check the direct to determine the use x or y
342            if (abs(direction.x) > abs(direction.y)) {
343                t = (t + half_size.x) / bounds.size.x;
344            } else {
345                t = (t + half_size.y) / bounds.size.y;
346            }
347
348            // Adjust t based on the stop percentages
349            t = (t - stop0_percentage) / (stop1_percentage - stop0_percentage);
350            t = clamp(t, 0.0, 1.0);
351
352            switch (background.color_space) {
353                default: {
354                    background_color = srgba_to_linear(mix(color0, color1, t));
355                }
356                case 1u: {
357                    let oklab_color = mix(color0, color1, t);
358                    background_color = oklab_to_linear_srgb(oklab_color);
359                }
360            }
361        }
362        case 2u: {
363            let pattern_height = background.gradient_angle_or_pattern_height;
364            let stripe_angle = M_PI_F / 4.0;
365            let pattern_period = pattern_height * sin(stripe_angle);
366            let rotation = mat2x2<f32>(
367                cos(stripe_angle), -sin(stripe_angle),
368                sin(stripe_angle), cos(stripe_angle)
369            );
370            let relative_position = position - bounds.origin;
371            let rotated_point = rotation * relative_position;
372            let pattern = rotated_point.x % pattern_period;
373            let distance = min(pattern, pattern_period - pattern) - pattern_period / 4;
374            background_color = solid_color;
375            background_color.a *= saturate(0.5 - distance);
376        }
377    }
378
379    return background_color;
380}
381
382// --- quads --- //
383
384struct Quad {
385    order: u32,
386    pad: u32,
387    bounds: Bounds,
388    content_mask: Bounds,
389    background: Background,
390    border_color: Hsla,
391    corner_radii: Corners,
392    border_widths: Edges,
393}
394var<storage, read> b_quads: array<Quad>;
395
396struct QuadVarying {
397    @builtin(position) position: vec4<f32>,
398    @location(0) @interpolate(flat) border_color: vec4<f32>,
399    @location(1) @interpolate(flat) quad_id: u32,
400    // TODO: use `clip_distance` once Naga supports it
401    @location(2) clip_distances: vec4<f32>,
402    @location(3) @interpolate(flat) background_solid: vec4<f32>,
403    @location(4) @interpolate(flat) background_color0: vec4<f32>,
404    @location(5) @interpolate(flat) background_color1: vec4<f32>,
405}
406
407@vertex
408fn vs_quad(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> QuadVarying {
409    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
410    let quad = b_quads[instance_id];
411
412    var out = QuadVarying();
413    out.position = to_device_position(unit_vertex, quad.bounds);
414
415    let gradient = prepare_gradient_color(
416        quad.background.tag,
417        quad.background.color_space,
418        quad.background.solid,
419        quad.background.colors
420    );
421    out.background_solid = gradient.solid;
422    out.background_color0 = gradient.color0;
423    out.background_color1 = gradient.color1;
424    out.border_color = hsla_to_rgba(quad.border_color);
425    out.quad_id = instance_id;
426    out.clip_distances = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask);
427    return out;
428}
429
430@fragment
431fn fs_quad(input: QuadVarying) -> @location(0) vec4<f32> {
432    // Alpha clip first, since we don't have `clip_distance`.
433    if (any(input.clip_distances < vec4<f32>(0.0))) {
434        return vec4<f32>(0.0);
435    }
436
437    let quad = b_quads[input.quad_id];
438    let half_size = quad.bounds.size / 2.0;
439    let center = quad.bounds.origin + half_size;
440    let center_to_point = input.position.xy - center;
441
442    let background_color = gradient_color(quad.background, input.position.xy, quad.bounds,
443        input.background_solid, input.background_color0, input.background_color1);
444
445    // Fast path when the quad is not rounded and doesn't have any border.
446    if (quad.corner_radii.top_left == 0.0 && quad.corner_radii.bottom_left == 0.0 &&
447        quad.corner_radii.top_right == 0.0 &&
448        quad.corner_radii.bottom_right == 0.0 && quad.border_widths.top == 0.0 &&
449        quad.border_widths.left == 0.0 && quad.border_widths.right == 0.0 &&
450        quad.border_widths.bottom == 0.0) {
451        return blend_color(background_color, 1.0);
452    }
453
454    let corner_radius = pick_corner_radius(center_to_point, quad.corner_radii);
455    let rounded_edge_to_point = abs(center_to_point) - half_size + corner_radius;
456    let distance =
457      length(max(vec2<f32>(0.0), rounded_edge_to_point)) +
458      min(0.0, max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
459      corner_radius;
460
461    let vertical_border = select(quad.border_widths.left, quad.border_widths.right, center_to_point.x > 0.0);
462    let horizontal_border = select(quad.border_widths.top, quad.border_widths.bottom, center_to_point.y > 0.0);
463    let inset_size = half_size - corner_radius - vec2<f32>(vertical_border, horizontal_border);
464    let point_to_inset_corner = abs(center_to_point) - inset_size;
465
466    var border_width = 0.0;
467    if (point_to_inset_corner.x < 0.0 && point_to_inset_corner.y < 0.0) {
468        border_width = 0.0;
469    } else if (point_to_inset_corner.y > point_to_inset_corner.x) {
470        border_width = horizontal_border;
471    } else {
472        border_width = vertical_border;
473    }
474
475    var color = background_color;
476    if (border_width > 0.0) {
477        let inset_distance = distance + border_width;
478        // Blend the border on top of the background and then linearly interpolate
479        // between the two as we slide inside the background.
480        let blended_border = over(background_color, input.border_color);
481        color = mix(blended_border, background_color,
482                    saturate(0.5 - inset_distance));
483    }
484
485    return blend_color(color, saturate(0.5 - distance));
486}
487
488// --- shadows --- //
489
490struct Shadow {
491    order: u32,
492    blur_radius: f32,
493    bounds: Bounds,
494    corner_radii: Corners,
495    content_mask: Bounds,
496    color: Hsla,
497}
498var<storage, read> b_shadows: array<Shadow>;
499
500struct ShadowVarying {
501    @builtin(position) position: vec4<f32>,
502    @location(0) @interpolate(flat) color: vec4<f32>,
503    @location(1) @interpolate(flat) shadow_id: u32,
504    //TODO: use `clip_distance` once Naga supports it
505    @location(3) clip_distances: vec4<f32>,
506}
507
508@vertex
509fn vs_shadow(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> ShadowVarying {
510    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
511    var shadow = b_shadows[instance_id];
512
513    let margin = 3.0 * shadow.blur_radius;
514    // Set the bounds of the shadow and adjust its size based on the shadow's
515    // spread radius to achieve the spreading effect
516    shadow.bounds.origin -= vec2<f32>(margin);
517    shadow.bounds.size += 2.0 * vec2<f32>(margin);
518
519    var out = ShadowVarying();
520    out.position = to_device_position(unit_vertex, shadow.bounds);
521    out.color = hsla_to_rgba(shadow.color);
522    out.shadow_id = instance_id;
523    out.clip_distances = distance_from_clip_rect(unit_vertex, shadow.bounds, shadow.content_mask);
524    return out;
525}
526
527@fragment
528fn fs_shadow(input: ShadowVarying) -> @location(0) vec4<f32> {
529    // Alpha clip first, since we don't have `clip_distance`.
530    if (any(input.clip_distances < vec4<f32>(0.0))) {
531        return vec4<f32>(0.0);
532    }
533
534    let shadow = b_shadows[input.shadow_id];
535    let half_size = shadow.bounds.size / 2.0;
536    let center = shadow.bounds.origin + half_size;
537    let center_to_point = input.position.xy - center;
538
539    let corner_radius = pick_corner_radius(center_to_point, shadow.corner_radii);
540
541    // The signal is only non-zero in a limited range, so don't waste samples
542    let low = center_to_point.y - half_size.y;
543    let high = center_to_point.y + half_size.y;
544    let start = clamp(-3.0 * shadow.blur_radius, low, high);
545    let end = clamp(3.0 * shadow.blur_radius, low, high);
546
547    // Accumulate samples (we can get away with surprisingly few samples)
548    let step = (end - start) / 4.0;
549    var y = start + step * 0.5;
550    var alpha = 0.0;
551    for (var i = 0; i < 4; i += 1) {
552        let blur = blur_along_x(center_to_point.x, center_to_point.y - y,
553            shadow.blur_radius, corner_radius, half_size);
554        alpha +=  blur * gaussian(y, shadow.blur_radius) * step;
555        y += step;
556    }
557
558    return blend_color(input.color, alpha);
559}
560
561// --- path rasterization --- //
562
563struct PathVertex {
564    xy_position: vec2<f32>,
565    st_position: vec2<f32>,
566    content_mask: Bounds,
567}
568var<storage, read> b_path_vertices: array<PathVertex>;
569
570struct PathRasterizationVarying {
571    @builtin(position) position: vec4<f32>,
572    @location(0) st_position: vec2<f32>,
573    //TODO: use `clip_distance` once Naga supports it
574    @location(3) clip_distances: vec4<f32>,
575}
576
577@vertex
578fn vs_path_rasterization(@builtin(vertex_index) vertex_id: u32) -> PathRasterizationVarying {
579    let v = b_path_vertices[vertex_id];
580
581    var out = PathRasterizationVarying();
582    out.position = to_device_position_impl(v.xy_position);
583    out.st_position = v.st_position;
584    out.clip_distances = distance_from_clip_rect_impl(v.xy_position, v.content_mask);
585    return out;
586}
587
588@fragment
589fn fs_path_rasterization(input: PathRasterizationVarying) -> @location(0) f32 {
590    let dx = dpdx(input.st_position);
591    let dy = dpdy(input.st_position);
592    if (any(input.clip_distances < vec4<f32>(0.0))) {
593        return 0.0;
594    }
595
596    let gradient = 2.0 * input.st_position.xx * vec2<f32>(dx.x, dy.x) - vec2<f32>(dx.y, dy.y);
597    let f = input.st_position.x * input.st_position.x - input.st_position.y;
598    let distance = f / length(gradient);
599    return saturate(0.5 - distance);
600}
601
602// --- paths --- //
603
604struct PathSprite {
605    bounds: Bounds,
606    color: Background,
607    tile: AtlasTile,
608}
609var<storage, read> b_path_sprites: array<PathSprite>;
610
611struct PathVarying {
612    @builtin(position) position: vec4<f32>,
613    @location(0) tile_position: vec2<f32>,
614    @location(1) @interpolate(flat) instance_id: u32,
615    @location(2) @interpolate(flat) color_solid: vec4<f32>,
616    @location(3) @interpolate(flat) color0: vec4<f32>,
617    @location(4) @interpolate(flat) color1: vec4<f32>,
618}
619
620@vertex
621fn vs_path(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PathVarying {
622    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
623    let sprite = b_path_sprites[instance_id];
624    // Don't apply content mask because it was already accounted for when rasterizing the path.
625
626    var out = PathVarying();
627    out.position = to_device_position(unit_vertex, sprite.bounds);
628    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
629    out.instance_id = instance_id;
630
631    let gradient = prepare_gradient_color(
632        sprite.color.tag,
633        sprite.color.color_space,
634        sprite.color.solid,
635        sprite.color.colors
636    );
637    out.color_solid = gradient.solid;
638    out.color0 = gradient.color0;
639    out.color1 = gradient.color1;
640    return out;
641}
642
643@fragment
644fn fs_path(input: PathVarying) -> @location(0) vec4<f32> {
645    let sample = textureSample(t_sprite, s_sprite, input.tile_position).r;
646    let mask = 1.0 - abs(1.0 - sample % 2.0);
647    let sprite = b_path_sprites[input.instance_id];
648    let background = sprite.color;
649    let color = gradient_color(background, input.position.xy, sprite.bounds,
650        input.color_solid, input.color0, input.color1);
651    return blend_color(color, mask);
652}
653
654// --- underlines --- //
655
656struct Underline {
657    order: u32,
658    pad: u32,
659    bounds: Bounds,
660    content_mask: Bounds,
661    color: Hsla,
662    thickness: f32,
663    wavy: u32,
664}
665var<storage, read> b_underlines: array<Underline>;
666
667struct UnderlineVarying {
668    @builtin(position) position: vec4<f32>,
669    @location(0) @interpolate(flat) color: vec4<f32>,
670    @location(1) @interpolate(flat) underline_id: u32,
671    //TODO: use `clip_distance` once Naga supports it
672    @location(3) clip_distances: vec4<f32>,
673}
674
675@vertex
676fn vs_underline(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> UnderlineVarying {
677    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
678    let underline = b_underlines[instance_id];
679
680    var out = UnderlineVarying();
681    out.position = to_device_position(unit_vertex, underline.bounds);
682    out.color = hsla_to_rgba(underline.color);
683    out.underline_id = instance_id;
684    out.clip_distances = distance_from_clip_rect(unit_vertex, underline.bounds, underline.content_mask);
685    return out;
686}
687
688@fragment
689fn fs_underline(input: UnderlineVarying) -> @location(0) vec4<f32> {
690    // Alpha clip first, since we don't have `clip_distance`.
691    if (any(input.clip_distances < vec4<f32>(0.0))) {
692        return vec4<f32>(0.0);
693    }
694
695    let underline = b_underlines[input.underline_id];
696    if ((underline.wavy & 0xFFu) == 0u)
697    {
698        return blend_color(input.color, input.color.a);
699    }
700
701    let half_thickness = underline.thickness * 0.5;
702    let st = (input.position.xy - underline.bounds.origin) / underline.bounds.size.y - vec2<f32>(0.0, 0.5);
703    let frequency = M_PI_F * 3.0 * underline.thickness / 3.0;
704    let amplitude = 1.0 / (4.0 * underline.thickness);
705    let sine = sin(st.x * frequency) * amplitude;
706    let dSine = cos(st.x * frequency) * amplitude * frequency;
707    let distance = (st.y - sine) / sqrt(1.0 + dSine * dSine);
708    let distance_in_pixels = distance * underline.bounds.size.y;
709    let distance_from_top_border = distance_in_pixels - half_thickness;
710    let distance_from_bottom_border = distance_in_pixels + half_thickness;
711    let alpha = saturate(0.5 - max(-distance_from_bottom_border, distance_from_top_border));
712    return blend_color(input.color, alpha * input.color.a);
713}
714
715// --- monochrome sprites --- //
716
717struct MonochromeSprite {
718    order: u32,
719    pad: u32,
720    bounds: Bounds,
721    content_mask: Bounds,
722    color: Hsla,
723    tile: AtlasTile,
724    transformation: TransformationMatrix,
725}
726var<storage, read> b_mono_sprites: array<MonochromeSprite>;
727
728struct MonoSpriteVarying {
729    @builtin(position) position: vec4<f32>,
730    @location(0) tile_position: vec2<f32>,
731    @location(1) @interpolate(flat) color: vec4<f32>,
732    @location(3) clip_distances: vec4<f32>,
733}
734
735@vertex
736fn vs_mono_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> MonoSpriteVarying {
737    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
738    let sprite = b_mono_sprites[instance_id];
739
740    var out = MonoSpriteVarying();
741    out.position = to_device_position_transformed(unit_vertex, sprite.bounds, sprite.transformation);
742
743    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
744    out.color = hsla_to_rgba(sprite.color);
745    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
746    return out;
747}
748
749@fragment
750fn fs_mono_sprite(input: MonoSpriteVarying) -> @location(0) vec4<f32> {
751    let sample = textureSample(t_sprite, s_sprite, input.tile_position).r;
752    // Alpha clip after using the derivatives.
753    if (any(input.clip_distances < vec4<f32>(0.0))) {
754        return vec4<f32>(0.0);
755    }
756    return blend_color(input.color, sample);
757}
758
759// --- polychrome sprites --- //
760
761struct PolychromeSprite {
762    order: u32,
763    pad: u32,
764    grayscale: u32,
765    opacity: f32,
766    bounds: Bounds,
767    content_mask: Bounds,
768    corner_radii: Corners,
769    tile: AtlasTile,
770}
771var<storage, read> b_poly_sprites: array<PolychromeSprite>;
772
773struct PolySpriteVarying {
774    @builtin(position) position: vec4<f32>,
775    @location(0) tile_position: vec2<f32>,
776    @location(1) @interpolate(flat) sprite_id: u32,
777    @location(3) clip_distances: vec4<f32>,
778}
779
780@vertex
781fn vs_poly_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PolySpriteVarying {
782    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
783    let sprite = b_poly_sprites[instance_id];
784
785    var out = PolySpriteVarying();
786    out.position = to_device_position(unit_vertex, sprite.bounds);
787    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
788    out.sprite_id = instance_id;
789    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
790    return out;
791}
792
793@fragment
794fn fs_poly_sprite(input: PolySpriteVarying) -> @location(0) vec4<f32> {
795    let sample = textureSample(t_sprite, s_sprite, input.tile_position);
796    // Alpha clip after using the derivatives.
797    if (any(input.clip_distances < vec4<f32>(0.0))) {
798        return vec4<f32>(0.0);
799    }
800
801    let sprite = b_poly_sprites[input.sprite_id];
802    let distance = quad_sdf(input.position.xy, sprite.bounds, sprite.corner_radii);
803
804    var color = sample;
805    if ((sprite.grayscale & 0xFFu) != 0u) {
806        let grayscale = dot(color.rgb, GRAYSCALE_FACTORS);
807        color = vec4<f32>(vec3<f32>(grayscale), sample.a);
808    }
809    return blend_color(color, sprite.opacity * saturate(0.5 - distance));
810}
811
812// --- surfaces --- //
813
814struct SurfaceParams {
815    bounds: Bounds,
816    content_mask: Bounds,
817}
818
819var<uniform> surface_locals: SurfaceParams;
820var t_y: texture_2d<f32>;
821var t_cb_cr: texture_2d<f32>;
822var s_surface: sampler;
823
824const ycbcr_to_RGB = mat4x4<f32>(
825    vec4<f32>( 1.0000f,  1.0000f,  1.0000f, 0.0),
826    vec4<f32>( 0.0000f, -0.3441f,  1.7720f, 0.0),
827    vec4<f32>( 1.4020f, -0.7141f,  0.0000f, 0.0),
828    vec4<f32>(-0.7010f,  0.5291f, -0.8860f, 1.0),
829);
830
831struct SurfaceVarying {
832    @builtin(position) position: vec4<f32>,
833    @location(0) texture_position: vec2<f32>,
834    @location(3) clip_distances: vec4<f32>,
835}
836
837@vertex
838fn vs_surface(@builtin(vertex_index) vertex_id: u32) -> SurfaceVarying {
839    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
840
841    var out = SurfaceVarying();
842    out.position = to_device_position(unit_vertex, surface_locals.bounds);
843    out.texture_position = unit_vertex;
844    out.clip_distances = distance_from_clip_rect(unit_vertex, surface_locals.bounds, surface_locals.content_mask);
845    return out;
846}
847
848@fragment
849fn fs_surface(input: SurfaceVarying) -> @location(0) vec4<f32> {
850    // Alpha clip after using the derivatives.
851    if (any(input.clip_distances < vec4<f32>(0.0))) {
852        return vec4<f32>(0.0);
853    }
854
855    let y_cb_cr = vec4<f32>(
856        textureSampleLevel(t_y, s_surface, input.texture_position, 0.0).r,
857        textureSampleLevel(t_cb_cr, s_surface, input.texture_position, 0.0).rg,
858        1.0);
859
860    return ycbcr_to_RGB * y_cb_cr;
861}