window.rs

   1use crate::{
   2    px, size, Action, AnyBox, AnyDrag, AnyView, AppContext, AsyncWindowContext, AvailableSpace,
   3    Bounds, BoxShadow, Context, Corners, CursorStyle, DevicePixels, DispatchContext, DisplayId,
   4    Edges, Effect, Entity, EntityId, EventEmitter, FileDropEvent, FocusEvent, FontId,
   5    GlobalElementId, GlyphId, Hsla, ImageData, InputEvent, IsZero, KeyListener, KeyMatch,
   6    KeyMatcher, Keystroke, LayoutId, Model, ModelContext, Modifiers, MonochromeSprite, MouseButton,
   7    MouseDownEvent, MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay,
   8    PlatformWindow, Point, PolychromeSprite, PromptLevel, Quad, Render, RenderGlyphParams,
   9    RenderImageParams, RenderSvgParams, ScaledPixels, SceneBuilder, Shadow, SharedString, Size,
  10    Style, SubscriberSet, Subscription, TaffyLayoutEngine, Task, Underline, UnderlineStyle, View,
  11    VisualContext, WeakView, WindowBounds, WindowOptions, SUBPIXEL_VARIANTS,
  12};
  13use anyhow::{anyhow, Result};
  14use collections::HashMap;
  15use derive_more::{Deref, DerefMut};
  16use futures::{
  17    channel::{mpsc, oneshot},
  18    StreamExt,
  19};
  20use parking_lot::RwLock;
  21use slotmap::SlotMap;
  22use smallvec::SmallVec;
  23use std::{
  24    any::{Any, TypeId},
  25    borrow::{Borrow, BorrowMut, Cow},
  26    fmt::Debug,
  27    future::Future,
  28    hash::{Hash, Hasher},
  29    marker::PhantomData,
  30    mem,
  31    rc::Rc,
  32    sync::{
  33        atomic::{AtomicUsize, Ordering::SeqCst},
  34        Arc,
  35    },
  36};
  37use util::ResultExt;
  38
  39/// A global stacking order, which is created by stacking successive z-index values.
  40/// Each z-index will always be interpreted in the context of its parent z-index.
  41#[derive(Deref, DerefMut, Ord, PartialOrd, Eq, PartialEq, Clone, Default)]
  42pub(crate) struct StackingOrder(pub(crate) SmallVec<[u32; 16]>);
  43
  44/// Represents the two different phases when dispatching events.
  45#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
  46pub enum DispatchPhase {
  47    /// After the capture phase comes the bubble phase, in which mouse event listeners are
  48    /// invoked front to back and keyboard event listeners are invoked from the focused element
  49    /// to the root of the element tree. This is the phase you'll most commonly want to use when
  50    /// registering event listeners.
  51    #[default]
  52    Bubble,
  53    /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
  54    /// listeners are invoked from the root of the tree downward toward the focused element. This phase
  55    /// is used for special purposes such as clearing the "pressed" state for click events. If
  56    /// you stop event propagation during this phase, you need to know what you're doing. Handlers
  57    /// outside of the immediate region may rely on detecting non-local events during this phase.
  58    Capture,
  59}
  60
  61type AnyObserver = Box<dyn FnMut(&mut WindowContext) -> bool + 'static>;
  62type AnyListener = Box<dyn Fn(&dyn Any, DispatchPhase, &mut WindowContext) + 'static>;
  63type AnyKeyListener = Box<
  64    dyn Fn(
  65            &dyn Any,
  66            &[&DispatchContext],
  67            DispatchPhase,
  68            &mut WindowContext,
  69        ) -> Option<Box<dyn Action>>
  70        + 'static,
  71>;
  72type AnyFocusListener = Box<dyn Fn(&FocusEvent, &mut WindowContext) + 'static>;
  73
  74slotmap::new_key_type! { pub struct FocusId; }
  75
  76/// A handle which can be used to track and manipulate the focused element in a window.
  77pub struct FocusHandle {
  78    pub(crate) id: FocusId,
  79    handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
  80}
  81
  82impl FocusHandle {
  83    pub(crate) fn new(handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>) -> Self {
  84        let id = handles.write().insert(AtomicUsize::new(1));
  85        Self {
  86            id,
  87            handles: handles.clone(),
  88        }
  89    }
  90
  91    pub(crate) fn for_id(
  92        id: FocusId,
  93        handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
  94    ) -> Option<Self> {
  95        let lock = handles.read();
  96        let ref_count = lock.get(id)?;
  97        if ref_count.load(SeqCst) == 0 {
  98            None
  99        } else {
 100            ref_count.fetch_add(1, SeqCst);
 101            Some(Self {
 102                id,
 103                handles: handles.clone(),
 104            })
 105        }
 106    }
 107
 108    /// Obtains whether the element associated with this handle is currently focused.
 109    pub fn is_focused(&self, cx: &WindowContext) -> bool {
 110        cx.window.focus == Some(self.id)
 111    }
 112
 113    /// Obtains whether the element associated with this handle contains the focused
 114    /// element or is itself focused.
 115    pub fn contains_focused(&self, cx: &WindowContext) -> bool {
 116        cx.focused()
 117            .map_or(false, |focused| self.contains(&focused, cx))
 118    }
 119
 120    /// Obtains whether the element associated with this handle is contained within the
 121    /// focused element or is itself focused.
 122    pub fn within_focused(&self, cx: &WindowContext) -> bool {
 123        let focused = cx.focused();
 124        focused.map_or(false, |focused| focused.contains(self, cx))
 125    }
 126
 127    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 128    pub(crate) fn contains(&self, other: &Self, cx: &WindowContext) -> bool {
 129        let mut ancestor = Some(other.id);
 130        while let Some(ancestor_id) = ancestor {
 131            if self.id == ancestor_id {
 132                return true;
 133            } else {
 134                ancestor = cx.window.focus_parents_by_child.get(&ancestor_id).copied();
 135            }
 136        }
 137        false
 138    }
 139}
 140
 141impl Clone for FocusHandle {
 142    fn clone(&self) -> Self {
 143        Self::for_id(self.id, &self.handles).unwrap()
 144    }
 145}
 146
 147impl PartialEq for FocusHandle {
 148    fn eq(&self, other: &Self) -> bool {
 149        self.id == other.id
 150    }
 151}
 152
 153impl Eq for FocusHandle {}
 154
 155impl Drop for FocusHandle {
 156    fn drop(&mut self) {
 157        self.handles
 158            .read()
 159            .get(self.id)
 160            .unwrap()
 161            .fetch_sub(1, SeqCst);
 162    }
 163}
 164
 165// Holds the state for a specific window.
 166pub struct Window {
 167    pub(crate) handle: AnyWindowHandle,
 168    pub(crate) removed: bool,
 169    platform_window: Box<dyn PlatformWindow>,
 170    display_id: DisplayId,
 171    sprite_atlas: Arc<dyn PlatformAtlas>,
 172    rem_size: Pixels,
 173    content_size: Size<Pixels>,
 174    pub(crate) layout_engine: TaffyLayoutEngine,
 175    pub(crate) root_view: Option<AnyView>,
 176    pub(crate) element_id_stack: GlobalElementId,
 177    prev_frame_element_states: HashMap<GlobalElementId, AnyBox>,
 178    element_states: HashMap<GlobalElementId, AnyBox>,
 179    prev_frame_key_matchers: HashMap<GlobalElementId, KeyMatcher>,
 180    key_matchers: HashMap<GlobalElementId, KeyMatcher>,
 181    z_index_stack: StackingOrder,
 182    content_mask_stack: Vec<ContentMask<Pixels>>,
 183    element_offset_stack: Vec<Point<Pixels>>,
 184    mouse_listeners: HashMap<TypeId, Vec<(StackingOrder, AnyListener)>>,
 185    key_dispatch_stack: Vec<KeyDispatchStackFrame>,
 186    freeze_key_dispatch_stack: bool,
 187    focus_stack: Vec<FocusId>,
 188    focus_parents_by_child: HashMap<FocusId, FocusId>,
 189    pub(crate) focus_listeners: Vec<AnyFocusListener>,
 190    pub(crate) focus_handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
 191    default_prevented: bool,
 192    mouse_position: Point<Pixels>,
 193    requested_cursor_style: Option<CursorStyle>,
 194    scale_factor: f32,
 195    bounds: WindowBounds,
 196    bounds_observers: SubscriberSet<(), AnyObserver>,
 197    active: bool,
 198    activation_observers: SubscriberSet<(), AnyObserver>,
 199    pub(crate) scene_builder: SceneBuilder,
 200    pub(crate) dirty: bool,
 201    pub(crate) last_blur: Option<Option<FocusId>>,
 202    pub(crate) focus: Option<FocusId>,
 203}
 204
 205impl Window {
 206    pub(crate) fn new(
 207        handle: AnyWindowHandle,
 208        options: WindowOptions,
 209        cx: &mut AppContext,
 210    ) -> Self {
 211        let platform_window = cx.platform.open_window(handle, options);
 212        let display_id = platform_window.display().id();
 213        let sprite_atlas = platform_window.sprite_atlas();
 214        let mouse_position = platform_window.mouse_position();
 215        let content_size = platform_window.content_size();
 216        let scale_factor = platform_window.scale_factor();
 217        let bounds = platform_window.bounds();
 218
 219        platform_window.on_resize(Box::new({
 220            let mut cx = cx.to_async();
 221            move |_, _| {
 222                handle
 223                    .update(&mut cx, |_, cx| cx.window_bounds_changed())
 224                    .log_err();
 225            }
 226        }));
 227        platform_window.on_moved(Box::new({
 228            let mut cx = cx.to_async();
 229            move || {
 230                handle
 231                    .update(&mut cx, |_, cx| cx.window_bounds_changed())
 232                    .log_err();
 233            }
 234        }));
 235        platform_window.on_active_status_change(Box::new({
 236            let mut cx = cx.to_async();
 237            move |active| {
 238                handle
 239                    .update(&mut cx, |_, cx| {
 240                        cx.window.active = active;
 241                        cx.window
 242                            .activation_observers
 243                            .clone()
 244                            .retain(&(), |callback| callback(cx));
 245                    })
 246                    .log_err();
 247            }
 248        }));
 249
 250        platform_window.on_input({
 251            let mut cx = cx.to_async();
 252            Box::new(move |event| {
 253                handle
 254                    .update(&mut cx, |_, cx| cx.dispatch_event(event))
 255                    .log_err()
 256                    .unwrap_or(true)
 257            })
 258        });
 259
 260        Window {
 261            handle,
 262            removed: false,
 263            platform_window,
 264            display_id,
 265            sprite_atlas,
 266            rem_size: px(16.),
 267            content_size,
 268            layout_engine: TaffyLayoutEngine::new(),
 269            root_view: None,
 270            element_id_stack: GlobalElementId::default(),
 271            prev_frame_element_states: HashMap::default(),
 272            element_states: HashMap::default(),
 273            prev_frame_key_matchers: HashMap::default(),
 274            key_matchers: HashMap::default(),
 275            z_index_stack: StackingOrder(SmallVec::new()),
 276            content_mask_stack: Vec::new(),
 277            element_offset_stack: Vec::new(),
 278            mouse_listeners: HashMap::default(),
 279            key_dispatch_stack: Vec::new(),
 280            freeze_key_dispatch_stack: false,
 281            focus_stack: Vec::new(),
 282            focus_parents_by_child: HashMap::default(),
 283            focus_listeners: Vec::new(),
 284            focus_handles: Arc::new(RwLock::new(SlotMap::with_key())),
 285            default_prevented: true,
 286            mouse_position,
 287            requested_cursor_style: None,
 288            scale_factor,
 289            bounds,
 290            bounds_observers: SubscriberSet::new(),
 291            active: false,
 292            activation_observers: SubscriberSet::new(),
 293            scene_builder: SceneBuilder::new(),
 294            dirty: true,
 295            last_blur: None,
 296            focus: None,
 297        }
 298    }
 299}
 300
 301/// When constructing the element tree, we maintain a stack of key dispatch frames until we
 302/// find the focused element. We interleave key listeners with dispatch contexts so we can use the
 303/// contexts when matching key events against the keymap. A key listener can be either an action
 304/// handler or a [KeyDown] / [KeyUp] event listener.
 305enum KeyDispatchStackFrame {
 306    Listener {
 307        event_type: TypeId,
 308        listener: AnyKeyListener,
 309    },
 310    Context(DispatchContext),
 311}
 312
 313/// Indicates which region of the window is visible. Content falling outside of this mask will not be
 314/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
 315/// to leave room to support more complex shapes in the future.
 316#[derive(Clone, Debug, Default, PartialEq, Eq)]
 317#[repr(C)]
 318pub struct ContentMask<P: Clone + Default + Debug> {
 319    pub bounds: Bounds<P>,
 320}
 321
 322impl ContentMask<Pixels> {
 323    /// Scale the content mask's pixel units by the given scaling factor.
 324    pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
 325        ContentMask {
 326            bounds: self.bounds.scale(factor),
 327        }
 328    }
 329
 330    /// Intersect the content mask with the given content mask.
 331    pub fn intersect(&self, other: &Self) -> Self {
 332        let bounds = self.bounds.intersect(&other.bounds);
 333        ContentMask { bounds }
 334    }
 335}
 336
 337/// Provides access to application state in the context of a single window. Derefs
 338/// to an `AppContext`, so you can also pass a `WindowContext` to any method that takes
 339/// an `AppContext` and call any `AppContext` methods.
 340pub struct WindowContext<'a> {
 341    pub(crate) app: &'a mut AppContext,
 342    pub(crate) window: &'a mut Window,
 343}
 344
 345impl<'a> WindowContext<'a> {
 346    pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self {
 347        Self { app, window }
 348    }
 349
 350    /// Obtain a handle to the window that belongs to this context.
 351    pub fn window_handle(&self) -> AnyWindowHandle {
 352        self.window.handle
 353    }
 354
 355    /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
 356    pub fn notify(&mut self) {
 357        self.window.dirty = true;
 358    }
 359
 360    /// Close this window.
 361    pub fn remove_window(&mut self) {
 362        self.window.removed = true;
 363    }
 364
 365    /// Obtain a new `FocusHandle`, which allows you to track and manipulate the keyboard focus
 366    /// for elements rendered within this window.
 367    pub fn focus_handle(&mut self) -> FocusHandle {
 368        FocusHandle::new(&self.window.focus_handles)
 369    }
 370
 371    /// Obtain the currently focused `FocusHandle`. If no elements are focused, returns `None`.
 372    pub fn focused(&self) -> Option<FocusHandle> {
 373        self.window
 374            .focus
 375            .and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles))
 376    }
 377
 378    /// Move focus to the element associated with the given `FocusHandle`.
 379    pub fn focus(&mut self, handle: &FocusHandle) {
 380        if self.window.last_blur.is_none() {
 381            self.window.last_blur = Some(self.window.focus);
 382        }
 383
 384        self.window.focus = Some(handle.id);
 385        self.app.push_effect(Effect::FocusChanged {
 386            window_handle: self.window.handle,
 387            focused: Some(handle.id),
 388        });
 389        self.notify();
 390    }
 391
 392    /// Remove focus from all elements within this context's window.
 393    pub fn blur(&mut self) {
 394        if self.window.last_blur.is_none() {
 395            self.window.last_blur = Some(self.window.focus);
 396        }
 397
 398        self.window.focus = None;
 399        self.app.push_effect(Effect::FocusChanged {
 400            window_handle: self.window.handle,
 401            focused: None,
 402        });
 403        self.notify();
 404    }
 405
 406    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
 407    /// that are currently on the stack to be returned to the app.
 408    pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) {
 409        let handle = self.window.handle;
 410        self.app.defer(move |cx| {
 411            handle.update(cx, |_, cx| f(cx)).ok();
 412        });
 413    }
 414
 415    pub fn subscribe<Emitter, E>(
 416        &mut self,
 417        entity: &E,
 418        mut on_event: impl FnMut(E, &Emitter::Event, &mut WindowContext<'_>) + 'static,
 419    ) -> Subscription
 420    where
 421        Emitter: EventEmitter,
 422        E: Entity<Emitter>,
 423    {
 424        let entity_id = entity.entity_id();
 425        let entity = entity.downgrade();
 426        let window_handle = self.window.handle;
 427        self.app.event_listeners.insert(
 428            entity_id,
 429            Box::new(move |event, cx| {
 430                window_handle
 431                    .update(cx, |_, cx| {
 432                        if let Some(handle) = E::upgrade_from(&entity) {
 433                            let event = event.downcast_ref().expect("invalid event type");
 434                            on_event(handle, event, cx);
 435                            true
 436                        } else {
 437                            false
 438                        }
 439                    })
 440                    .unwrap_or(false)
 441            }),
 442        )
 443    }
 444
 445    /// Create an `AsyncWindowContext`, which has a static lifetime and can be held across
 446    /// await points in async code.
 447    pub fn to_async(&self) -> AsyncWindowContext {
 448        AsyncWindowContext::new(self.app.to_async(), self.window.handle)
 449    }
 450
 451    /// Schedule the given closure to be run directly after the current frame is rendered.
 452    pub fn on_next_frame(&mut self, callback: impl FnOnce(&mut WindowContext) + 'static) {
 453        let handle = self.window.handle;
 454        let display_id = self.window.display_id;
 455
 456        if !self.frame_consumers.contains_key(&display_id) {
 457            let (tx, mut rx) = mpsc::unbounded::<()>();
 458            self.platform.set_display_link_output_callback(
 459                display_id,
 460                Box::new(move |_current_time, _output_time| _ = tx.unbounded_send(())),
 461            );
 462
 463            let consumer_task = self.app.spawn(|cx| async move {
 464                while rx.next().await.is_some() {
 465                    cx.update(|cx| {
 466                        for callback in cx
 467                            .next_frame_callbacks
 468                            .get_mut(&display_id)
 469                            .unwrap()
 470                            .drain(..)
 471                            .collect::<SmallVec<[_; 32]>>()
 472                        {
 473                            callback(cx);
 474                        }
 475                    })
 476                    .ok();
 477
 478                    // Flush effects, then stop the display link if no new next_frame_callbacks have been added.
 479
 480                    cx.update(|cx| {
 481                        if cx.next_frame_callbacks.is_empty() {
 482                            cx.platform.stop_display_link(display_id);
 483                        }
 484                    })
 485                    .ok();
 486                }
 487            });
 488            self.frame_consumers.insert(display_id, consumer_task);
 489        }
 490
 491        if self.next_frame_callbacks.is_empty() {
 492            self.platform.start_display_link(display_id);
 493        }
 494
 495        self.next_frame_callbacks
 496            .entry(display_id)
 497            .or_default()
 498            .push(Box::new(move |cx: &mut AppContext| {
 499                cx.update_window(handle, |_root_view, cx| callback(cx)).ok();
 500            }));
 501    }
 502
 503    /// Spawn the future returned by the given closure on the application thread pool.
 504    /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
 505    /// use within your future.
 506    pub fn spawn<Fut, R>(&mut self, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
 507    where
 508        R: 'static,
 509        Fut: Future<Output = R> + 'static,
 510    {
 511        self.app
 512            .spawn(|app| f(AsyncWindowContext::new(app, self.window.handle)))
 513    }
 514
 515    /// Update the global of the given type. The given closure is given simultaneous mutable
 516    /// access both to the global and the context.
 517    pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
 518    where
 519        G: 'static,
 520    {
 521        let mut global = self.app.lease_global::<G>();
 522        let result = f(&mut global, self);
 523        self.app.end_global_lease(global);
 524        result
 525    }
 526
 527    /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
 528    /// layout is being requested, along with the layout ids of any children. This method is called during
 529    /// calls to the `Element::layout` trait method and enables any element to participate in layout.
 530    pub fn request_layout(
 531        &mut self,
 532        style: &Style,
 533        children: impl IntoIterator<Item = LayoutId>,
 534    ) -> LayoutId {
 535        self.app.layout_id_buffer.clear();
 536        self.app.layout_id_buffer.extend(children.into_iter());
 537        let rem_size = self.rem_size();
 538
 539        self.window
 540            .layout_engine
 541            .request_layout(style, rem_size, &self.app.layout_id_buffer)
 542    }
 543
 544    /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
 545    /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
 546    /// determine the element's size. One place this is used internally is when measuring text.
 547    ///
 548    /// The given closure is invoked at layout time with the known dimensions and available space and
 549    /// returns a `Size`.
 550    pub fn request_measured_layout<
 551        F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>) -> Size<Pixels> + Send + Sync + 'static,
 552    >(
 553        &mut self,
 554        style: Style,
 555        rem_size: Pixels,
 556        measure: F,
 557    ) -> LayoutId {
 558        self.window
 559            .layout_engine
 560            .request_measured_layout(style, rem_size, measure)
 561    }
 562
 563    pub fn compute_layout(&mut self, layout_id: LayoutId, available_space: Size<AvailableSpace>) {
 564        self.window
 565            .layout_engine
 566            .compute_layout(layout_id, available_space)
 567    }
 568
 569    /// Obtain the bounds computed for the given LayoutId relative to the window. This method should not
 570    /// be invoked until the paint phase begins, and will usually be invoked by GPUI itself automatically
 571    /// in order to pass your element its `Bounds` automatically.
 572    pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
 573        let mut bounds = self
 574            .window
 575            .layout_engine
 576            .layout_bounds(layout_id)
 577            .map(Into::into);
 578        bounds.origin += self.element_offset();
 579        bounds
 580    }
 581
 582    fn window_bounds_changed(&mut self) {
 583        self.window.scale_factor = self.window.platform_window.scale_factor();
 584        self.window.content_size = self.window.platform_window.content_size();
 585        self.window.bounds = self.window.platform_window.bounds();
 586        self.window.display_id = self.window.platform_window.display().id();
 587        self.window.dirty = true;
 588
 589        self.window
 590            .bounds_observers
 591            .clone()
 592            .retain(&(), |callback| callback(self));
 593    }
 594
 595    pub fn window_bounds(&self) -> WindowBounds {
 596        self.window.bounds
 597    }
 598
 599    pub fn is_window_active(&self) -> bool {
 600        self.window.active
 601    }
 602
 603    pub fn zoom_window(&self) {
 604        self.window.platform_window.zoom();
 605    }
 606
 607    pub fn display(&self) -> Option<Rc<dyn PlatformDisplay>> {
 608        self.platform
 609            .displays()
 610            .into_iter()
 611            .find(|display| display.id() == self.window.display_id)
 612    }
 613
 614    /// The scale factor of the display associated with the window. For example, it could
 615    /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
 616    /// be rendered as two pixels on screen.
 617    pub fn scale_factor(&self) -> f32 {
 618        self.window.scale_factor
 619    }
 620
 621    /// The size of an em for the base font of the application. Adjusting this value allows the
 622    /// UI to scale, just like zooming a web page.
 623    pub fn rem_size(&self) -> Pixels {
 624        self.window.rem_size
 625    }
 626
 627    /// Sets the size of an em for the base font of the application. Adjusting this value allows the
 628    /// UI to scale, just like zooming a web page.
 629    pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
 630        self.window.rem_size = rem_size.into();
 631    }
 632
 633    /// The line height associated with the current text style.
 634    pub fn line_height(&self) -> Pixels {
 635        let rem_size = self.rem_size();
 636        let text_style = self.text_style();
 637        text_style
 638            .line_height
 639            .to_pixels(text_style.font_size.into(), rem_size)
 640    }
 641
 642    /// Call to prevent the default action of an event. Currently only used to prevent
 643    /// parent elements from becoming focused on mouse down.
 644    pub fn prevent_default(&mut self) {
 645        self.window.default_prevented = true;
 646    }
 647
 648    /// Obtain whether default has been prevented for the event currently being dispatched.
 649    pub fn default_prevented(&self) -> bool {
 650        self.window.default_prevented
 651    }
 652
 653    /// Register a mouse event listener on the window for the current frame. The type of event
 654    /// is determined by the first parameter of the given listener. When the next frame is rendered
 655    /// the listener will be cleared.
 656    ///
 657    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
 658    /// a specific need to register a global listener.
 659    pub fn on_mouse_event<Event: 'static>(
 660        &mut self,
 661        handler: impl Fn(&Event, DispatchPhase, &mut WindowContext) + 'static,
 662    ) {
 663        let order = self.window.z_index_stack.clone();
 664        self.window
 665            .mouse_listeners
 666            .entry(TypeId::of::<Event>())
 667            .or_default()
 668            .push((
 669                order,
 670                Box::new(move |event: &dyn Any, phase, cx| {
 671                    handler(event.downcast_ref().unwrap(), phase, cx)
 672                }),
 673            ))
 674    }
 675
 676    /// The position of the mouse relative to the window.
 677    pub fn mouse_position(&self) -> Point<Pixels> {
 678        self.window.mouse_position
 679    }
 680
 681    pub fn set_cursor_style(&mut self, style: CursorStyle) {
 682        self.window.requested_cursor_style = Some(style)
 683    }
 684
 685    /// Called during painting to invoke the given closure in a new stacking context. The given
 686    /// z-index is interpreted relative to the previous call to `stack`.
 687    pub fn stack<R>(&mut self, z_index: u32, f: impl FnOnce(&mut Self) -> R) -> R {
 688        self.window.z_index_stack.push(z_index);
 689        let result = f(self);
 690        self.window.z_index_stack.pop();
 691        result
 692    }
 693
 694    /// Paint one or more drop shadows into the scene for the current frame at the current z-index.
 695    pub fn paint_shadows(
 696        &mut self,
 697        bounds: Bounds<Pixels>,
 698        corner_radii: Corners<Pixels>,
 699        shadows: &[BoxShadow],
 700    ) {
 701        let scale_factor = self.scale_factor();
 702        let content_mask = self.content_mask();
 703        let window = &mut *self.window;
 704        for shadow in shadows {
 705            let mut shadow_bounds = bounds;
 706            shadow_bounds.origin += shadow.offset;
 707            shadow_bounds.dilate(shadow.spread_radius);
 708            window.scene_builder.insert(
 709                &window.z_index_stack,
 710                Shadow {
 711                    order: 0,
 712                    bounds: shadow_bounds.scale(scale_factor),
 713                    content_mask: content_mask.scale(scale_factor),
 714                    corner_radii: corner_radii.scale(scale_factor),
 715                    color: shadow.color,
 716                    blur_radius: shadow.blur_radius.scale(scale_factor),
 717                },
 718            );
 719        }
 720    }
 721
 722    /// Paint one or more quads into the scene for the current frame at the current stacking context.
 723    /// Quads are colored rectangular regions with an optional background, border, and corner radius.
 724    pub fn paint_quad(
 725        &mut self,
 726        bounds: Bounds<Pixels>,
 727        corner_radii: Corners<Pixels>,
 728        background: impl Into<Hsla>,
 729        border_widths: Edges<Pixels>,
 730        border_color: impl Into<Hsla>,
 731    ) {
 732        let scale_factor = self.scale_factor();
 733        let content_mask = self.content_mask();
 734
 735        let window = &mut *self.window;
 736        window.scene_builder.insert(
 737            &window.z_index_stack,
 738            Quad {
 739                order: 0,
 740                bounds: bounds.scale(scale_factor),
 741                content_mask: content_mask.scale(scale_factor),
 742                background: background.into(),
 743                border_color: border_color.into(),
 744                corner_radii: corner_radii.scale(scale_factor),
 745                border_widths: border_widths.scale(scale_factor),
 746            },
 747        );
 748    }
 749
 750    /// Paint the given `Path` into the scene for the current frame at the current z-index.
 751    pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Hsla>) {
 752        let scale_factor = self.scale_factor();
 753        let content_mask = self.content_mask();
 754        path.content_mask = content_mask;
 755        path.color = color.into();
 756        let window = &mut *self.window;
 757        window
 758            .scene_builder
 759            .insert(&window.z_index_stack, path.scale(scale_factor));
 760    }
 761
 762    /// Paint an underline into the scene for the current frame at the current z-index.
 763    pub fn paint_underline(
 764        &mut self,
 765        origin: Point<Pixels>,
 766        width: Pixels,
 767        style: &UnderlineStyle,
 768    ) -> Result<()> {
 769        let scale_factor = self.scale_factor();
 770        let height = if style.wavy {
 771            style.thickness * 3.
 772        } else {
 773            style.thickness
 774        };
 775        let bounds = Bounds {
 776            origin,
 777            size: size(width, height),
 778        };
 779        let content_mask = self.content_mask();
 780        let window = &mut *self.window;
 781        window.scene_builder.insert(
 782            &window.z_index_stack,
 783            Underline {
 784                order: 0,
 785                bounds: bounds.scale(scale_factor),
 786                content_mask: content_mask.scale(scale_factor),
 787                thickness: style.thickness.scale(scale_factor),
 788                color: style.color.unwrap_or_default(),
 789                wavy: style.wavy,
 790            },
 791        );
 792        Ok(())
 793    }
 794
 795    /// Paint a monochrome (non-emoji) glyph into the scene for the current frame at the current z-index.
 796    /// The y component of the origin is the baseline of the glyph.
 797    pub fn paint_glyph(
 798        &mut self,
 799        origin: Point<Pixels>,
 800        font_id: FontId,
 801        glyph_id: GlyphId,
 802        font_size: Pixels,
 803        color: Hsla,
 804    ) -> Result<()> {
 805        let scale_factor = self.scale_factor();
 806        let glyph_origin = origin.scale(scale_factor);
 807        let subpixel_variant = Point {
 808            x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
 809            y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
 810        };
 811        let params = RenderGlyphParams {
 812            font_id,
 813            glyph_id,
 814            font_size,
 815            subpixel_variant,
 816            scale_factor,
 817            is_emoji: false,
 818        };
 819
 820        let raster_bounds = self.text_system().raster_bounds(&params)?;
 821        if !raster_bounds.is_zero() {
 822            let tile =
 823                self.window
 824                    .sprite_atlas
 825                    .get_or_insert_with(&params.clone().into(), &mut || {
 826                        let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
 827                        Ok((size, Cow::Owned(bytes)))
 828                    })?;
 829            let bounds = Bounds {
 830                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
 831                size: tile.bounds.size.map(Into::into),
 832            };
 833            let content_mask = self.content_mask().scale(scale_factor);
 834            let window = &mut *self.window;
 835            window.scene_builder.insert(
 836                &window.z_index_stack,
 837                MonochromeSprite {
 838                    order: 0,
 839                    bounds,
 840                    content_mask,
 841                    color,
 842                    tile,
 843                },
 844            );
 845        }
 846        Ok(())
 847    }
 848
 849    /// Paint an emoji glyph into the scene for the current frame at the current z-index.
 850    /// The y component of the origin is the baseline of the glyph.
 851    pub fn paint_emoji(
 852        &mut self,
 853        origin: Point<Pixels>,
 854        font_id: FontId,
 855        glyph_id: GlyphId,
 856        font_size: Pixels,
 857    ) -> Result<()> {
 858        let scale_factor = self.scale_factor();
 859        let glyph_origin = origin.scale(scale_factor);
 860        let params = RenderGlyphParams {
 861            font_id,
 862            glyph_id,
 863            font_size,
 864            // We don't render emojis with subpixel variants.
 865            subpixel_variant: Default::default(),
 866            scale_factor,
 867            is_emoji: true,
 868        };
 869
 870        let raster_bounds = self.text_system().raster_bounds(&params)?;
 871        if !raster_bounds.is_zero() {
 872            let tile =
 873                self.window
 874                    .sprite_atlas
 875                    .get_or_insert_with(&params.clone().into(), &mut || {
 876                        let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
 877                        Ok((size, Cow::Owned(bytes)))
 878                    })?;
 879            let bounds = Bounds {
 880                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
 881                size: tile.bounds.size.map(Into::into),
 882            };
 883            let content_mask = self.content_mask().scale(scale_factor);
 884            let window = &mut *self.window;
 885
 886            window.scene_builder.insert(
 887                &window.z_index_stack,
 888                PolychromeSprite {
 889                    order: 0,
 890                    bounds,
 891                    corner_radii: Default::default(),
 892                    content_mask,
 893                    tile,
 894                    grayscale: false,
 895                },
 896            );
 897        }
 898        Ok(())
 899    }
 900
 901    /// Paint a monochrome SVG into the scene for the current frame at the current stacking context.
 902    pub fn paint_svg(
 903        &mut self,
 904        bounds: Bounds<Pixels>,
 905        path: SharedString,
 906        color: Hsla,
 907    ) -> Result<()> {
 908        let scale_factor = self.scale_factor();
 909        let bounds = bounds.scale(scale_factor);
 910        // Render the SVG at twice the size to get a higher quality result.
 911        let params = RenderSvgParams {
 912            path,
 913            size: bounds
 914                .size
 915                .map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
 916        };
 917
 918        let tile =
 919            self.window
 920                .sprite_atlas
 921                .get_or_insert_with(&params.clone().into(), &mut || {
 922                    let bytes = self.svg_renderer.render(&params)?;
 923                    Ok((params.size, Cow::Owned(bytes)))
 924                })?;
 925        let content_mask = self.content_mask().scale(scale_factor);
 926
 927        let window = &mut *self.window;
 928        window.scene_builder.insert(
 929            &window.z_index_stack,
 930            MonochromeSprite {
 931                order: 0,
 932                bounds,
 933                content_mask,
 934                color,
 935                tile,
 936            },
 937        );
 938
 939        Ok(())
 940    }
 941
 942    /// Paint an image into the scene for the current frame at the current z-index.
 943    pub fn paint_image(
 944        &mut self,
 945        bounds: Bounds<Pixels>,
 946        corner_radii: Corners<Pixels>,
 947        data: Arc<ImageData>,
 948        grayscale: bool,
 949    ) -> Result<()> {
 950        let scale_factor = self.scale_factor();
 951        let bounds = bounds.scale(scale_factor);
 952        let params = RenderImageParams { image_id: data.id };
 953
 954        let tile = self
 955            .window
 956            .sprite_atlas
 957            .get_or_insert_with(&params.clone().into(), &mut || {
 958                Ok((data.size(), Cow::Borrowed(data.as_bytes())))
 959            })?;
 960        let content_mask = self.content_mask().scale(scale_factor);
 961        let corner_radii = corner_radii.scale(scale_factor);
 962
 963        let window = &mut *self.window;
 964        window.scene_builder.insert(
 965            &window.z_index_stack,
 966            PolychromeSprite {
 967                order: 0,
 968                bounds,
 969                content_mask,
 970                corner_radii,
 971                tile,
 972                grayscale,
 973            },
 974        );
 975        Ok(())
 976    }
 977
 978    /// Draw pixels to the display for this window based on the contents of its scene.
 979    pub(crate) fn draw(&mut self) {
 980        let root_view = self.window.root_view.take().unwrap();
 981
 982        self.start_frame();
 983
 984        self.stack(0, |cx| {
 985            let available_space = cx.window.content_size.map(Into::into);
 986            root_view.draw(available_space, cx);
 987        });
 988
 989        if let Some(active_drag) = self.app.active_drag.take() {
 990            self.stack(1, |cx| {
 991                let offset = cx.mouse_position() - active_drag.cursor_offset;
 992                cx.with_element_offset(Some(offset), |cx| {
 993                    let available_space =
 994                        size(AvailableSpace::MinContent, AvailableSpace::MinContent);
 995                    active_drag.view.draw(available_space, cx);
 996                    cx.active_drag = Some(active_drag);
 997                });
 998            });
 999        } else if let Some(active_tooltip) = self.app.active_tooltip.take() {
1000            self.stack(1, |cx| {
1001                cx.with_element_offset(Some(active_tooltip.cursor_offset), |cx| {
1002                    let available_space =
1003                        size(AvailableSpace::MinContent, AvailableSpace::MinContent);
1004                    active_tooltip.view.draw(available_space, cx);
1005                });
1006            });
1007        }
1008
1009        self.window.root_view = Some(root_view);
1010        let scene = self.window.scene_builder.build();
1011
1012        self.window.platform_window.draw(scene);
1013        let cursor_style = self
1014            .window
1015            .requested_cursor_style
1016            .take()
1017            .unwrap_or(CursorStyle::Arrow);
1018        self.platform.set_cursor_style(cursor_style);
1019
1020        self.window.dirty = false;
1021    }
1022
1023    fn start_frame(&mut self) {
1024        self.text_system().start_frame();
1025
1026        let window = &mut *self.window;
1027
1028        // Move the current frame element states to the previous frame.
1029        // The new empty element states map will be populated for any element states we
1030        // reference during the upcoming frame.
1031        mem::swap(
1032            &mut window.element_states,
1033            &mut window.prev_frame_element_states,
1034        );
1035        window.element_states.clear();
1036
1037        // Make the current key matchers the previous, and then clear the current.
1038        // An empty key matcher map will be created for every identified element in the
1039        // upcoming frame.
1040        mem::swap(
1041            &mut window.key_matchers,
1042            &mut window.prev_frame_key_matchers,
1043        );
1044        window.key_matchers.clear();
1045
1046        // Clear mouse event listeners, because elements add new element listeners
1047        // when the upcoming frame is painted.
1048        window.mouse_listeners.values_mut().for_each(Vec::clear);
1049
1050        // Clear focus state, because we determine what is focused when the new elements
1051        // in the upcoming frame are initialized.
1052        window.focus_listeners.clear();
1053        window.key_dispatch_stack.clear();
1054        window.focus_parents_by_child.clear();
1055        window.freeze_key_dispatch_stack = false;
1056    }
1057
1058    /// Dispatch a mouse or keyboard event on the window.
1059    pub fn dispatch_event(&mut self, event: InputEvent) -> bool {
1060        // Handlers may set this to false by calling `stop_propagation`
1061        self.app.propagate_event = true;
1062        self.window.default_prevented = false;
1063
1064        let event = match event {
1065            // Track the mouse position with our own state, since accessing the platform
1066            // API for the mouse position can only occur on the main thread.
1067            InputEvent::MouseMove(mouse_move) => {
1068                self.window.mouse_position = mouse_move.position;
1069                InputEvent::MouseMove(mouse_move)
1070            }
1071            // Translate dragging and dropping of external files from the operating system
1072            // to internal drag and drop events.
1073            InputEvent::FileDrop(file_drop) => match file_drop {
1074                FileDropEvent::Entered { position, files } => {
1075                    self.window.mouse_position = position;
1076                    if self.active_drag.is_none() {
1077                        self.active_drag = Some(AnyDrag {
1078                            view: self.build_view(|_| files).into(),
1079                            cursor_offset: position,
1080                        });
1081                    }
1082                    InputEvent::MouseDown(MouseDownEvent {
1083                        position,
1084                        button: MouseButton::Left,
1085                        click_count: 1,
1086                        modifiers: Modifiers::default(),
1087                    })
1088                }
1089                FileDropEvent::Pending { position } => {
1090                    self.window.mouse_position = position;
1091                    InputEvent::MouseMove(MouseMoveEvent {
1092                        position,
1093                        pressed_button: Some(MouseButton::Left),
1094                        modifiers: Modifiers::default(),
1095                    })
1096                }
1097                FileDropEvent::Submit { position } => {
1098                    self.window.mouse_position = position;
1099                    InputEvent::MouseUp(MouseUpEvent {
1100                        button: MouseButton::Left,
1101                        position,
1102                        modifiers: Modifiers::default(),
1103                        click_count: 1,
1104                    })
1105                }
1106                FileDropEvent::Exited => InputEvent::MouseUp(MouseUpEvent {
1107                    button: MouseButton::Left,
1108                    position: Point::default(),
1109                    modifiers: Modifiers::default(),
1110                    click_count: 1,
1111                }),
1112            },
1113            _ => event,
1114        };
1115
1116        if let Some(any_mouse_event) = event.mouse_event() {
1117            if let Some(mut handlers) = self
1118                .window
1119                .mouse_listeners
1120                .remove(&any_mouse_event.type_id())
1121            {
1122                // Because handlers may add other handlers, we sort every time.
1123                handlers.sort_by(|(a, _), (b, _)| a.cmp(b));
1124
1125                // Capture phase, events bubble from back to front. Handlers for this phase are used for
1126                // special purposes, such as detecting events outside of a given Bounds.
1127                for (_, handler) in &handlers {
1128                    handler(any_mouse_event, DispatchPhase::Capture, self);
1129                    if !self.app.propagate_event {
1130                        break;
1131                    }
1132                }
1133
1134                // Bubble phase, where most normal handlers do their work.
1135                if self.app.propagate_event {
1136                    for (_, handler) in handlers.iter().rev() {
1137                        handler(any_mouse_event, DispatchPhase::Bubble, self);
1138                        if !self.app.propagate_event {
1139                            break;
1140                        }
1141                    }
1142                }
1143
1144                if self.app.propagate_event
1145                    && any_mouse_event.downcast_ref::<MouseUpEvent>().is_some()
1146                {
1147                    self.active_drag = None;
1148                }
1149
1150                // Just in case any handlers added new handlers, which is weird, but possible.
1151                handlers.extend(
1152                    self.window
1153                        .mouse_listeners
1154                        .get_mut(&any_mouse_event.type_id())
1155                        .into_iter()
1156                        .flat_map(|handlers| handlers.drain(..)),
1157                );
1158                self.window
1159                    .mouse_listeners
1160                    .insert(any_mouse_event.type_id(), handlers);
1161            }
1162        } else if let Some(any_key_event) = event.keyboard_event() {
1163            let key_dispatch_stack = mem::take(&mut self.window.key_dispatch_stack);
1164            let key_event_type = any_key_event.type_id();
1165            let mut context_stack = SmallVec::<[&DispatchContext; 16]>::new();
1166
1167            for (ix, frame) in key_dispatch_stack.iter().enumerate() {
1168                match frame {
1169                    KeyDispatchStackFrame::Listener {
1170                        event_type,
1171                        listener,
1172                    } => {
1173                        if key_event_type == *event_type {
1174                            if let Some(action) = listener(
1175                                any_key_event,
1176                                &context_stack,
1177                                DispatchPhase::Capture,
1178                                self,
1179                            ) {
1180                                self.dispatch_action(action, &key_dispatch_stack[..ix]);
1181                            }
1182                            if !self.app.propagate_event {
1183                                break;
1184                            }
1185                        }
1186                    }
1187                    KeyDispatchStackFrame::Context(context) => {
1188                        context_stack.push(&context);
1189                    }
1190                }
1191            }
1192
1193            if self.app.propagate_event {
1194                for (ix, frame) in key_dispatch_stack.iter().enumerate().rev() {
1195                    match frame {
1196                        KeyDispatchStackFrame::Listener {
1197                            event_type,
1198                            listener,
1199                        } => {
1200                            if key_event_type == *event_type {
1201                                if let Some(action) = listener(
1202                                    any_key_event,
1203                                    &context_stack,
1204                                    DispatchPhase::Bubble,
1205                                    self,
1206                                ) {
1207                                    self.dispatch_action(action, &key_dispatch_stack[..ix]);
1208                                }
1209
1210                                if !self.app.propagate_event {
1211                                    break;
1212                                }
1213                            }
1214                        }
1215                        KeyDispatchStackFrame::Context(_) => {
1216                            context_stack.pop();
1217                        }
1218                    }
1219                }
1220            }
1221
1222            drop(context_stack);
1223            self.window.key_dispatch_stack = key_dispatch_stack;
1224        }
1225
1226        true
1227    }
1228
1229    /// Attempt to map a keystroke to an action based on the keymap.
1230    pub fn match_keystroke(
1231        &mut self,
1232        element_id: &GlobalElementId,
1233        keystroke: &Keystroke,
1234        context_stack: &[&DispatchContext],
1235    ) -> KeyMatch {
1236        let key_match = self
1237            .window
1238            .key_matchers
1239            .get_mut(element_id)
1240            .unwrap()
1241            .match_keystroke(keystroke, context_stack);
1242
1243        if key_match.is_some() {
1244            for matcher in self.window.key_matchers.values_mut() {
1245                matcher.clear_pending();
1246            }
1247        }
1248
1249        key_match
1250    }
1251
1252    /// Register the given handler to be invoked whenever the global of the given type
1253    /// is updated.
1254    pub fn observe_global<G: 'static>(
1255        &mut self,
1256        f: impl Fn(&mut WindowContext<'_>) + 'static,
1257    ) -> Subscription {
1258        let window_handle = self.window.handle;
1259        self.global_observers.insert(
1260            TypeId::of::<G>(),
1261            Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()),
1262        )
1263    }
1264
1265    pub fn activate_window(&self) {
1266        self.window.platform_window.activate();
1267    }
1268
1269    pub fn prompt(
1270        &self,
1271        level: PromptLevel,
1272        msg: &str,
1273        answers: &[&str],
1274    ) -> oneshot::Receiver<usize> {
1275        self.window.platform_window.prompt(level, msg, answers)
1276    }
1277
1278    fn dispatch_action(
1279        &mut self,
1280        action: Box<dyn Action>,
1281        dispatch_stack: &[KeyDispatchStackFrame],
1282    ) {
1283        let action_type = action.as_any().type_id();
1284
1285        if let Some(mut global_listeners) = self.app.global_action_listeners.remove(&action_type) {
1286            for listener in &global_listeners {
1287                listener(action.as_ref(), DispatchPhase::Capture, self);
1288                if !self.app.propagate_event {
1289                    break;
1290                }
1291            }
1292            global_listeners.extend(
1293                self.global_action_listeners
1294                    .remove(&action_type)
1295                    .unwrap_or_default(),
1296            );
1297            self.global_action_listeners
1298                .insert(action_type, global_listeners);
1299        }
1300
1301        if self.app.propagate_event {
1302            for stack_frame in dispatch_stack {
1303                if let KeyDispatchStackFrame::Listener {
1304                    event_type,
1305                    listener,
1306                } = stack_frame
1307                {
1308                    if action_type == *event_type {
1309                        listener(action.as_any(), &[], DispatchPhase::Capture, self);
1310                        if !self.app.propagate_event {
1311                            break;
1312                        }
1313                    }
1314                }
1315            }
1316        }
1317
1318        if self.app.propagate_event {
1319            for stack_frame in dispatch_stack.iter().rev() {
1320                if let KeyDispatchStackFrame::Listener {
1321                    event_type,
1322                    listener,
1323                } = stack_frame
1324                {
1325                    if action_type == *event_type {
1326                        self.app.propagate_event = false;
1327                        listener(action.as_any(), &[], DispatchPhase::Bubble, self);
1328                        if !self.app.propagate_event {
1329                            break;
1330                        }
1331                    }
1332                }
1333            }
1334        }
1335
1336        if self.app.propagate_event {
1337            if let Some(mut global_listeners) =
1338                self.app.global_action_listeners.remove(&action_type)
1339            {
1340                for listener in global_listeners.iter().rev() {
1341                    self.app.propagate_event = false;
1342                    listener(action.as_ref(), DispatchPhase::Bubble, self);
1343                    if !self.app.propagate_event {
1344                        break;
1345                    }
1346                }
1347                global_listeners.extend(
1348                    self.global_action_listeners
1349                        .remove(&action_type)
1350                        .unwrap_or_default(),
1351                );
1352                self.global_action_listeners
1353                    .insert(action_type, global_listeners);
1354            }
1355        }
1356    }
1357}
1358
1359impl Context for WindowContext<'_> {
1360    type Result<T> = T;
1361
1362    fn build_model<T>(
1363        &mut self,
1364        build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
1365    ) -> Model<T>
1366    where
1367        T: 'static,
1368    {
1369        let slot = self.app.entities.reserve();
1370        let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade()));
1371        self.entities.insert(slot, model)
1372    }
1373
1374    fn update_model<T: 'static, R>(
1375        &mut self,
1376        model: &Model<T>,
1377        update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
1378    ) -> R {
1379        let mut entity = self.entities.lease(model);
1380        let result = update(
1381            &mut *entity,
1382            &mut ModelContext::new(&mut *self.app, model.downgrade()),
1383        );
1384        self.entities.end_lease(entity);
1385        result
1386    }
1387
1388    fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
1389    where
1390        F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
1391    {
1392        if window == self.window.handle {
1393            let root_view = self.window.root_view.clone().unwrap();
1394            Ok(update(root_view, self))
1395        } else {
1396            window.update(self.app, update)
1397        }
1398    }
1399}
1400
1401impl VisualContext for WindowContext<'_> {
1402    fn build_view<V>(
1403        &mut self,
1404        build_view_state: impl FnOnce(&mut ViewContext<'_, V>) -> V,
1405    ) -> Self::Result<View<V>>
1406    where
1407        V: 'static,
1408    {
1409        let slot = self.app.entities.reserve();
1410        let view = View {
1411            model: slot.clone(),
1412        };
1413        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1414        let entity = build_view_state(&mut cx);
1415        self.entities.insert(slot, entity);
1416        view
1417    }
1418
1419    /// Update the given view. Prefer calling `View::update` instead, which calls this method.
1420    fn update_view<T: 'static, R>(
1421        &mut self,
1422        view: &View<T>,
1423        update: impl FnOnce(&mut T, &mut ViewContext<'_, T>) -> R,
1424    ) -> Self::Result<R> {
1425        let mut lease = self.app.entities.lease(&view.model);
1426        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1427        let result = update(&mut *lease, &mut cx);
1428        cx.app.entities.end_lease(lease);
1429        result
1430    }
1431
1432    fn replace_root_view<V>(
1433        &mut self,
1434        build_view: impl FnOnce(&mut ViewContext<'_, V>) -> V,
1435    ) -> Self::Result<View<V>>
1436    where
1437        V: Render,
1438    {
1439        let slot = self.app.entities.reserve();
1440        let view = View {
1441            model: slot.clone(),
1442        };
1443        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1444        let entity = build_view(&mut cx);
1445        self.entities.insert(slot, entity);
1446        self.window.root_view = Some(view.clone().into());
1447        view
1448    }
1449}
1450
1451impl<'a> std::ops::Deref for WindowContext<'a> {
1452    type Target = AppContext;
1453
1454    fn deref(&self) -> &Self::Target {
1455        &self.app
1456    }
1457}
1458
1459impl<'a> std::ops::DerefMut for WindowContext<'a> {
1460    fn deref_mut(&mut self) -> &mut Self::Target {
1461        &mut self.app
1462    }
1463}
1464
1465impl<'a> Borrow<AppContext> for WindowContext<'a> {
1466    fn borrow(&self) -> &AppContext {
1467        &self.app
1468    }
1469}
1470
1471impl<'a> BorrowMut<AppContext> for WindowContext<'a> {
1472    fn borrow_mut(&mut self) -> &mut AppContext {
1473        &mut self.app
1474    }
1475}
1476
1477pub trait BorrowWindow: BorrowMut<Window> + BorrowMut<AppContext> {
1478    fn app_mut(&mut self) -> &mut AppContext {
1479        self.borrow_mut()
1480    }
1481
1482    fn window(&self) -> &Window {
1483        self.borrow()
1484    }
1485
1486    fn window_mut(&mut self) -> &mut Window {
1487        self.borrow_mut()
1488    }
1489
1490    /// Pushes the given element id onto the global stack and invokes the given closure
1491    /// with a `GlobalElementId`, which disambiguates the given id in the context of its ancestor
1492    /// ids. Because elements are discarded and recreated on each frame, the `GlobalElementId` is
1493    /// used to associate state with identified elements across separate frames.
1494    fn with_element_id<R>(
1495        &mut self,
1496        id: impl Into<ElementId>,
1497        f: impl FnOnce(GlobalElementId, &mut Self) -> R,
1498    ) -> R {
1499        let keymap = self.app_mut().keymap.clone();
1500        let window = self.window_mut();
1501        window.element_id_stack.push(id.into());
1502        let global_id = window.element_id_stack.clone();
1503
1504        if window.key_matchers.get(&global_id).is_none() {
1505            window.key_matchers.insert(
1506                global_id.clone(),
1507                window
1508                    .prev_frame_key_matchers
1509                    .remove(&global_id)
1510                    .unwrap_or_else(|| KeyMatcher::new(keymap)),
1511            );
1512        }
1513
1514        let result = f(global_id, self);
1515        let window: &mut Window = self.borrow_mut();
1516        window.element_id_stack.pop();
1517        result
1518    }
1519
1520    /// Invoke the given function with the given content mask after intersecting it
1521    /// with the current mask.
1522    fn with_content_mask<R>(
1523        &mut self,
1524        mask: ContentMask<Pixels>,
1525        f: impl FnOnce(&mut Self) -> R,
1526    ) -> R {
1527        let mask = mask.intersect(&self.content_mask());
1528        self.window_mut().content_mask_stack.push(mask);
1529        let result = f(self);
1530        self.window_mut().content_mask_stack.pop();
1531        result
1532    }
1533
1534    /// Update the global element offset based on the given offset. This is used to implement
1535    /// scrolling and position drag handles.
1536    fn with_element_offset<R>(
1537        &mut self,
1538        offset: Option<Point<Pixels>>,
1539        f: impl FnOnce(&mut Self) -> R,
1540    ) -> R {
1541        let Some(offset) = offset else {
1542            return f(self);
1543        };
1544
1545        let offset = self.element_offset() + offset;
1546        self.window_mut().element_offset_stack.push(offset);
1547        let result = f(self);
1548        self.window_mut().element_offset_stack.pop();
1549        result
1550    }
1551
1552    /// Obtain the current element offset.
1553    fn element_offset(&self) -> Point<Pixels> {
1554        self.window()
1555            .element_offset_stack
1556            .last()
1557            .copied()
1558            .unwrap_or_default()
1559    }
1560
1561    /// Update or intialize state for an element with the given id that lives across multiple
1562    /// frames. If an element with this id existed in the previous frame, its state will be passed
1563    /// to the given closure. The state returned by the closure will be stored so it can be referenced
1564    /// when drawing the next frame.
1565    fn with_element_state<S, R>(
1566        &mut self,
1567        id: ElementId,
1568        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
1569    ) -> R
1570    where
1571        S: 'static,
1572    {
1573        self.with_element_id(id, |global_id, cx| {
1574            if let Some(any) = cx
1575                .window_mut()
1576                .element_states
1577                .remove(&global_id)
1578                .or_else(|| cx.window_mut().prev_frame_element_states.remove(&global_id))
1579            {
1580                // Using the extra inner option to avoid needing to reallocate a new box.
1581                let mut state_box = any
1582                    .downcast::<Option<S>>()
1583                    .expect("invalid element state type for id");
1584                let state = state_box
1585                    .take()
1586                    .expect("element state is already on the stack");
1587                let (result, state) = f(Some(state), cx);
1588                state_box.replace(state);
1589                cx.window_mut().element_states.insert(global_id, state_box);
1590                result
1591            } else {
1592                let (result, state) = f(None, cx);
1593                cx.window_mut()
1594                    .element_states
1595                    .insert(global_id, Box::new(Some(state)));
1596                result
1597            }
1598        })
1599    }
1600
1601    /// Like `with_element_state`, but for situations where the element_id is optional. If the
1602    /// id is `None`, no state will be retrieved or stored.
1603    fn with_optional_element_state<S, R>(
1604        &mut self,
1605        element_id: Option<ElementId>,
1606        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
1607    ) -> R
1608    where
1609        S: 'static,
1610    {
1611        if let Some(element_id) = element_id {
1612            self.with_element_state(element_id, f)
1613        } else {
1614            f(None, self).0
1615        }
1616    }
1617
1618    /// Obtain the current content mask.
1619    fn content_mask(&self) -> ContentMask<Pixels> {
1620        self.window()
1621            .content_mask_stack
1622            .last()
1623            .cloned()
1624            .unwrap_or_else(|| ContentMask {
1625                bounds: Bounds {
1626                    origin: Point::default(),
1627                    size: self.window().content_size,
1628                },
1629            })
1630    }
1631
1632    /// The size of an em for the base font of the application. Adjusting this value allows the
1633    /// UI to scale, just like zooming a web page.
1634    fn rem_size(&self) -> Pixels {
1635        self.window().rem_size
1636    }
1637}
1638
1639impl Borrow<Window> for WindowContext<'_> {
1640    fn borrow(&self) -> &Window {
1641        &self.window
1642    }
1643}
1644
1645impl BorrowMut<Window> for WindowContext<'_> {
1646    fn borrow_mut(&mut self) -> &mut Window {
1647        &mut self.window
1648    }
1649}
1650
1651impl<T> BorrowWindow for T where T: BorrowMut<AppContext> + BorrowMut<Window> {}
1652
1653pub struct ViewContext<'a, V> {
1654    window_cx: WindowContext<'a>,
1655    view: &'a View<V>,
1656}
1657
1658impl<V> Borrow<AppContext> for ViewContext<'_, V> {
1659    fn borrow(&self) -> &AppContext {
1660        &*self.window_cx.app
1661    }
1662}
1663
1664impl<V> BorrowMut<AppContext> for ViewContext<'_, V> {
1665    fn borrow_mut(&mut self) -> &mut AppContext {
1666        &mut *self.window_cx.app
1667    }
1668}
1669
1670impl<V> Borrow<Window> for ViewContext<'_, V> {
1671    fn borrow(&self) -> &Window {
1672        &*self.window_cx.window
1673    }
1674}
1675
1676impl<V> BorrowMut<Window> for ViewContext<'_, V> {
1677    fn borrow_mut(&mut self) -> &mut Window {
1678        &mut *self.window_cx.window
1679    }
1680}
1681
1682impl<'a, V: 'static> ViewContext<'a, V> {
1683    pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View<V>) -> Self {
1684        Self {
1685            window_cx: WindowContext::new(app, window),
1686            view,
1687        }
1688    }
1689
1690    // todo!("change this to return a reference");
1691    pub fn view(&self) -> View<V> {
1692        self.view.clone()
1693    }
1694
1695    pub fn model(&self) -> Model<V> {
1696        self.view.model.clone()
1697    }
1698
1699    /// Access the underlying window context.
1700    pub fn window_context(&mut self) -> &mut WindowContext<'a> {
1701        &mut self.window_cx
1702    }
1703
1704    pub fn with_z_index<R>(&mut self, z_index: u32, f: impl FnOnce(&mut Self) -> R) -> R {
1705        self.window.z_index_stack.push(z_index);
1706        let result = f(self);
1707        self.window.z_index_stack.pop();
1708        result
1709    }
1710
1711    pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static)
1712    where
1713        V: 'static,
1714    {
1715        let view = self.view();
1716        self.window_cx.on_next_frame(move |cx| view.update(cx, f));
1717    }
1718
1719    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1720    /// that are currently on the stack to be returned to the app.
1721    pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static) {
1722        let view = self.view().downgrade();
1723        self.window_cx.defer(move |cx| {
1724            view.update(cx, f).ok();
1725        });
1726    }
1727
1728    pub fn observe<V2, E>(
1729        &mut self,
1730        entity: &E,
1731        mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + 'static,
1732    ) -> Subscription
1733    where
1734        V2: 'static,
1735        V: 'static,
1736        E: Entity<V2>,
1737    {
1738        let view = self.view().downgrade();
1739        let entity_id = entity.entity_id();
1740        let entity = entity.downgrade();
1741        let window_handle = self.window.handle;
1742        self.app.observers.insert(
1743            entity_id,
1744            Box::new(move |cx| {
1745                window_handle
1746                    .update(cx, |_, cx| {
1747                        if let Some(handle) = E::upgrade_from(&entity) {
1748                            view.update(cx, |this, cx| on_notify(this, handle, cx))
1749                                .is_ok()
1750                        } else {
1751                            false
1752                        }
1753                    })
1754                    .unwrap_or(false)
1755            }),
1756        )
1757    }
1758
1759    pub fn subscribe<V2, E>(
1760        &mut self,
1761        entity: &E,
1762        mut on_event: impl FnMut(&mut V, E, &V2::Event, &mut ViewContext<'_, V>) + 'static,
1763    ) -> Subscription
1764    where
1765        V2: EventEmitter,
1766        E: Entity<V2>,
1767    {
1768        let view = self.view().downgrade();
1769        let entity_id = entity.entity_id();
1770        let handle = entity.downgrade();
1771        let window_handle = self.window.handle;
1772        self.app.event_listeners.insert(
1773            entity_id,
1774            Box::new(move |event, cx| {
1775                window_handle
1776                    .update(cx, |_, cx| {
1777                        if let Some(handle) = E::upgrade_from(&handle) {
1778                            let event = event.downcast_ref().expect("invalid event type");
1779                            view.update(cx, |this, cx| on_event(this, handle, event, cx))
1780                                .is_ok()
1781                        } else {
1782                            false
1783                        }
1784                    })
1785                    .unwrap_or(false)
1786            }),
1787        )
1788    }
1789
1790    pub fn on_release(
1791        &mut self,
1792        on_release: impl FnOnce(&mut V, &mut WindowContext) + 'static,
1793    ) -> Subscription {
1794        let window_handle = self.window.handle;
1795        self.app.release_listeners.insert(
1796            self.view.model.entity_id,
1797            Box::new(move |this, cx| {
1798                let this = this.downcast_mut().expect("invalid entity type");
1799                let _ = window_handle.update(cx, |_, cx| on_release(this, cx));
1800            }),
1801        )
1802    }
1803
1804    pub fn observe_release<V2, E>(
1805        &mut self,
1806        entity: &E,
1807        mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + 'static,
1808    ) -> Subscription
1809    where
1810        V: 'static,
1811        V2: 'static,
1812        E: Entity<V2>,
1813    {
1814        let view = self.view().downgrade();
1815        let entity_id = entity.entity_id();
1816        let window_handle = self.window.handle;
1817        self.app.release_listeners.insert(
1818            entity_id,
1819            Box::new(move |entity, cx| {
1820                let entity = entity.downcast_mut().expect("invalid entity type");
1821                let _ = window_handle.update(cx, |_, cx| {
1822                    view.update(cx, |this, cx| on_release(this, entity, cx))
1823                });
1824            }),
1825        )
1826    }
1827
1828    pub fn notify(&mut self) {
1829        self.window_cx.notify();
1830        self.window_cx.app.push_effect(Effect::Notify {
1831            emitter: self.view.model.entity_id,
1832        });
1833    }
1834
1835    pub fn observe_window_bounds(
1836        &mut self,
1837        mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
1838    ) -> Subscription {
1839        let view = self.view.downgrade();
1840        self.window.bounds_observers.insert(
1841            (),
1842            Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
1843        )
1844    }
1845
1846    pub fn observe_window_activation(
1847        &mut self,
1848        mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
1849    ) -> Subscription {
1850        let view = self.view.downgrade();
1851        self.window.activation_observers.insert(
1852            (),
1853            Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
1854        )
1855    }
1856
1857    pub fn on_focus_changed(
1858        &mut self,
1859        listener: impl Fn(&mut V, &FocusEvent, &mut ViewContext<V>) + 'static,
1860    ) {
1861        let handle = self.view().downgrade();
1862        self.window.focus_listeners.push(Box::new(move |event, cx| {
1863            handle
1864                .update(cx, |view, cx| listener(view, event, cx))
1865                .log_err();
1866        }));
1867    }
1868
1869    pub fn with_key_listeners<R>(
1870        &mut self,
1871        key_listeners: impl IntoIterator<Item = (TypeId, KeyListener<V>)>,
1872        f: impl FnOnce(&mut Self) -> R,
1873    ) -> R {
1874        let old_stack_len = self.window.key_dispatch_stack.len();
1875        if !self.window.freeze_key_dispatch_stack {
1876            for (event_type, listener) in key_listeners {
1877                let handle = self.view().downgrade();
1878                let listener = Box::new(
1879                    move |event: &dyn Any,
1880                          context_stack: &[&DispatchContext],
1881                          phase: DispatchPhase,
1882                          cx: &mut WindowContext<'_>| {
1883                        handle
1884                            .update(cx, |view, cx| {
1885                                listener(view, event, context_stack, phase, cx)
1886                            })
1887                            .log_err()
1888                            .flatten()
1889                    },
1890                );
1891                self.window
1892                    .key_dispatch_stack
1893                    .push(KeyDispatchStackFrame::Listener {
1894                        event_type,
1895                        listener,
1896                    });
1897            }
1898        }
1899
1900        let result = f(self);
1901
1902        if !self.window.freeze_key_dispatch_stack {
1903            self.window.key_dispatch_stack.truncate(old_stack_len);
1904        }
1905
1906        result
1907    }
1908
1909    pub fn with_key_dispatch_context<R>(
1910        &mut self,
1911        context: DispatchContext,
1912        f: impl FnOnce(&mut Self) -> R,
1913    ) -> R {
1914        if context.is_empty() {
1915            return f(self);
1916        }
1917
1918        if !self.window.freeze_key_dispatch_stack {
1919            self.window
1920                .key_dispatch_stack
1921                .push(KeyDispatchStackFrame::Context(context));
1922        }
1923
1924        let result = f(self);
1925
1926        if !self.window.freeze_key_dispatch_stack {
1927            self.window.key_dispatch_stack.pop();
1928        }
1929
1930        result
1931    }
1932
1933    pub fn with_focus<R>(
1934        &mut self,
1935        focus_handle: FocusHandle,
1936        f: impl FnOnce(&mut Self) -> R,
1937    ) -> R {
1938        if let Some(parent_focus_id) = self.window.focus_stack.last().copied() {
1939            self.window
1940                .focus_parents_by_child
1941                .insert(focus_handle.id, parent_focus_id);
1942        }
1943        self.window.focus_stack.push(focus_handle.id);
1944
1945        if Some(focus_handle.id) == self.window.focus {
1946            self.window.freeze_key_dispatch_stack = true;
1947        }
1948
1949        let result = f(self);
1950
1951        self.window.focus_stack.pop();
1952        result
1953    }
1954
1955    pub fn spawn<Fut, R>(
1956        &mut self,
1957        f: impl FnOnce(WeakView<V>, AsyncWindowContext) -> Fut,
1958    ) -> Task<R>
1959    where
1960        R: 'static,
1961        Fut: Future<Output = R> + 'static,
1962    {
1963        let view = self.view().downgrade();
1964        self.window_cx.spawn(|cx| f(view, cx))
1965    }
1966
1967    pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
1968    where
1969        G: 'static,
1970    {
1971        let mut global = self.app.lease_global::<G>();
1972        let result = f(&mut global, self);
1973        self.app.end_global_lease(global);
1974        result
1975    }
1976
1977    pub fn observe_global<G: 'static>(
1978        &mut self,
1979        f: impl Fn(&mut V, &mut ViewContext<'_, V>) + 'static,
1980    ) -> Subscription {
1981        let window_handle = self.window.handle;
1982        let view = self.view().downgrade();
1983        self.global_observers.insert(
1984            TypeId::of::<G>(),
1985            Box::new(move |cx| {
1986                window_handle
1987                    .update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok())
1988                    .unwrap_or(false)
1989            }),
1990        )
1991    }
1992
1993    pub fn on_mouse_event<Event: 'static>(
1994        &mut self,
1995        handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
1996    ) {
1997        let handle = self.view();
1998        self.window_cx.on_mouse_event(move |event, phase, cx| {
1999            handle.update(cx, |view, cx| {
2000                handler(view, event, phase, cx);
2001            })
2002        });
2003    }
2004}
2005
2006impl<V> ViewContext<'_, V>
2007where
2008    V: EventEmitter,
2009    V::Event: 'static,
2010{
2011    pub fn emit(&mut self, event: V::Event) {
2012        let emitter = self.view.model.entity_id;
2013        self.app.push_effect(Effect::Emit {
2014            emitter,
2015            event: Box::new(event),
2016        });
2017    }
2018}
2019
2020impl<V> Context for ViewContext<'_, V> {
2021    type Result<U> = U;
2022
2023    fn build_model<T: 'static>(
2024        &mut self,
2025        build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
2026    ) -> Model<T> {
2027        self.window_cx.build_model(build_model)
2028    }
2029
2030    fn update_model<T: 'static, R>(
2031        &mut self,
2032        model: &Model<T>,
2033        update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
2034    ) -> R {
2035        self.window_cx.update_model(model, update)
2036    }
2037
2038    fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
2039    where
2040        F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
2041    {
2042        self.window_cx.update_window(window, update)
2043    }
2044}
2045
2046impl<V: 'static> VisualContext for ViewContext<'_, V> {
2047    fn build_view<W: 'static>(
2048        &mut self,
2049        build_view_state: impl FnOnce(&mut ViewContext<'_, W>) -> W,
2050    ) -> Self::Result<View<W>> {
2051        self.window_cx.build_view(build_view_state)
2052    }
2053
2054    fn update_view<V2: 'static, R>(
2055        &mut self,
2056        view: &View<V2>,
2057        update: impl FnOnce(&mut V2, &mut ViewContext<'_, V2>) -> R,
2058    ) -> Self::Result<R> {
2059        self.window_cx.update_view(view, update)
2060    }
2061
2062    fn replace_root_view<W>(
2063        &mut self,
2064        build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
2065    ) -> Self::Result<View<W>>
2066    where
2067        W: Render,
2068    {
2069        self.window_cx.replace_root_view(build_view)
2070    }
2071}
2072
2073impl<'a, V> std::ops::Deref for ViewContext<'a, V> {
2074    type Target = WindowContext<'a>;
2075
2076    fn deref(&self) -> &Self::Target {
2077        &self.window_cx
2078    }
2079}
2080
2081impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> {
2082    fn deref_mut(&mut self) -> &mut Self::Target {
2083        &mut self.window_cx
2084    }
2085}
2086
2087// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
2088slotmap::new_key_type! { pub struct WindowId; }
2089
2090impl WindowId {
2091    pub fn as_u64(&self) -> u64 {
2092        self.0.as_ffi()
2093    }
2094}
2095
2096#[derive(Deref, DerefMut)]
2097pub struct WindowHandle<V> {
2098    #[deref]
2099    #[deref_mut]
2100    pub(crate) any_handle: AnyWindowHandle,
2101    state_type: PhantomData<V>,
2102}
2103
2104impl<V: 'static + Render> WindowHandle<V> {
2105    pub fn new(id: WindowId) -> Self {
2106        WindowHandle {
2107            any_handle: AnyWindowHandle {
2108                id,
2109                state_type: TypeId::of::<V>(),
2110            },
2111            state_type: PhantomData,
2112        }
2113    }
2114
2115    pub fn update<C, R>(
2116        self,
2117        cx: &mut C,
2118        update: impl FnOnce(&mut V, &mut ViewContext<'_, V>) -> R,
2119    ) -> Result<R>
2120    where
2121        C: Context,
2122    {
2123        cx.update_window(self.any_handle, |root_view, cx| {
2124            let view = root_view
2125                .downcast::<V>()
2126                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
2127            Ok(cx.update_view(&view, update))
2128        })?
2129    }
2130}
2131
2132impl<V> Copy for WindowHandle<V> {}
2133
2134impl<V> Clone for WindowHandle<V> {
2135    fn clone(&self) -> Self {
2136        WindowHandle {
2137            any_handle: self.any_handle,
2138            state_type: PhantomData,
2139        }
2140    }
2141}
2142
2143impl<V> PartialEq for WindowHandle<V> {
2144    fn eq(&self, other: &Self) -> bool {
2145        self.any_handle == other.any_handle
2146    }
2147}
2148
2149impl<V> Eq for WindowHandle<V> {}
2150
2151impl<V> Hash for WindowHandle<V> {
2152    fn hash<H: Hasher>(&self, state: &mut H) {
2153        self.any_handle.hash(state);
2154    }
2155}
2156
2157impl<V: 'static> Into<AnyWindowHandle> for WindowHandle<V> {
2158    fn into(self) -> AnyWindowHandle {
2159        self.any_handle
2160    }
2161}
2162
2163#[derive(Copy, Clone, PartialEq, Eq, Hash)]
2164pub struct AnyWindowHandle {
2165    pub(crate) id: WindowId,
2166    state_type: TypeId,
2167}
2168
2169impl AnyWindowHandle {
2170    pub fn window_id(&self) -> WindowId {
2171        self.id
2172    }
2173
2174    pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
2175        if TypeId::of::<T>() == self.state_type {
2176            Some(WindowHandle {
2177                any_handle: *self,
2178                state_type: PhantomData,
2179            })
2180        } else {
2181            None
2182        }
2183    }
2184
2185    pub fn update<C, R>(
2186        self,
2187        cx: &mut C,
2188        update: impl FnOnce(AnyView, &mut WindowContext<'_>) -> R,
2189    ) -> Result<R>
2190    where
2191        C: Context,
2192    {
2193        cx.update_window(self, update)
2194    }
2195}
2196
2197#[cfg(any(test, feature = "test-support"))]
2198impl From<SmallVec<[u32; 16]>> for StackingOrder {
2199    fn from(small_vec: SmallVec<[u32; 16]>) -> Self {
2200        StackingOrder(small_vec)
2201    }
2202}
2203
2204#[derive(Clone, Debug, Eq, PartialEq, Hash)]
2205pub enum ElementId {
2206    View(EntityId),
2207    Number(usize),
2208    Name(SharedString),
2209    FocusHandle(FocusId),
2210}
2211
2212impl From<EntityId> for ElementId {
2213    fn from(id: EntityId) -> Self {
2214        ElementId::View(id)
2215    }
2216}
2217
2218impl From<usize> for ElementId {
2219    fn from(id: usize) -> Self {
2220        ElementId::Number(id)
2221    }
2222}
2223
2224impl From<i32> for ElementId {
2225    fn from(id: i32) -> Self {
2226        Self::Number(id as usize)
2227    }
2228}
2229
2230impl From<SharedString> for ElementId {
2231    fn from(name: SharedString) -> Self {
2232        ElementId::Name(name)
2233    }
2234}
2235
2236impl From<&'static str> for ElementId {
2237    fn from(name: &'static str) -> Self {
2238        ElementId::Name(name.into())
2239    }
2240}
2241
2242impl<'a> From<&'a FocusHandle> for ElementId {
2243    fn from(handle: &'a FocusHandle) -> Self {
2244        ElementId::FocusHandle(handle.id)
2245    }
2246}