1mod cursor;
   2mod tree_map;
   3
   4use arrayvec::ArrayVec;
   5pub use cursor::{Cursor, FilterCursor, Iter};
   6use futures::{StreamExt, stream};
   7use itertools::Itertools as _;
   8use std::marker::PhantomData;
   9use std::mem;
  10use std::{cmp::Ordering, fmt, iter::FromIterator, sync::Arc};
  11pub use tree_map::{MapSeekTarget, TreeMap, TreeSet};
  12
  13#[cfg(test)]
  14pub const TREE_BASE: usize = 2;
  15#[cfg(not(test))]
  16pub const TREE_BASE: usize = 6;
  17
  18pub trait BackgroundSpawn {
  19    type Task<R>: Future<Output = R> + Send + Sync
  20    where
  21        R: Send + Sync;
  22    fn background_spawn<R>(
  23        &self,
  24        future: impl Future<Output = R> + Send + Sync + 'static,
  25    ) -> Self::Task<R>
  26    where
  27        R: Send + Sync + 'static;
  28}
  29
  30/// An item that can be stored in a [`SumTree`]
  31///
  32/// Must be summarized by a type that implements [`Summary`]
  33pub trait Item: Clone {
  34    type Summary: Summary;
  35
  36    fn summary(&self, cx: <Self::Summary as Summary>::Context<'_>) -> Self::Summary;
  37}
  38
  39/// An [`Item`] whose summary has a specific key that can be used to identify it
  40pub trait KeyedItem: Item {
  41    type Key: for<'a> Dimension<'a, Self::Summary> + Ord;
  42
  43    fn key(&self) -> Self::Key;
  44}
  45
  46/// A type that describes the Sum of all [`Item`]s in a subtree of the [`SumTree`]
  47///
  48/// Each Summary type can have multiple [`Dimension`]s that it measures,
  49/// which can be used to navigate the tree
  50pub trait Summary: Clone {
  51    type Context<'a>: Copy;
  52    fn zero<'a>(cx: Self::Context<'a>) -> Self;
  53    fn add_summary<'a>(&mut self, summary: &Self, cx: Self::Context<'a>);
  54}
  55
  56pub trait ContextLessSummary: Clone {
  57    fn zero() -> Self;
  58    fn add_summary(&mut self, summary: &Self);
  59}
  60
  61impl<T: ContextLessSummary> Summary for T {
  62    type Context<'a> = ();
  63
  64    fn zero<'a>((): ()) -> Self {
  65        T::zero()
  66    }
  67
  68    fn add_summary<'a>(&mut self, summary: &Self, (): ()) {
  69        T::add_summary(self, summary)
  70    }
  71}
  72
  73#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
  74pub struct NoSummary;
  75
  76/// Catch-all implementation for when you need something that implements [`Summary`] without a specific type.
  77/// We implement it on a `NoSummary` instead of re-using `()`, as that avoids blanket impl collisions with `impl<T: Summary> Dimension for T`
  78/// (as we also need unit type to be a fill-in dimension)
  79impl ContextLessSummary for NoSummary {
  80    fn zero() -> Self {
  81        NoSummary
  82    }
  83
  84    fn add_summary(&mut self, _: &Self) {}
  85}
  86
  87/// Each [`Summary`] type can have more than one [`Dimension`] type that it measures.
  88///
  89/// You can use dimensions to seek to a specific location in the [`SumTree`]
  90///
  91/// # Example:
  92/// Zed's rope has a `TextSummary` type that summarizes lines, characters, and bytes.
  93/// Each of these are different dimensions we may want to seek to
  94pub trait Dimension<'a, S: Summary>: Clone {
  95    fn zero(cx: S::Context<'_>) -> Self;
  96
  97    fn add_summary(&mut self, summary: &'a S, cx: S::Context<'_>);
  98    #[must_use]
  99    fn with_added_summary(mut self, summary: &'a S, cx: S::Context<'_>) -> Self {
 100        self.add_summary(summary, cx);
 101        self
 102    }
 103
 104    fn from_summary(summary: &'a S, cx: S::Context<'_>) -> Self {
 105        let mut dimension = Self::zero(cx);
 106        dimension.add_summary(summary, cx);
 107        dimension
 108    }
 109}
 110
 111impl<'a, T: Summary> Dimension<'a, T> for T {
 112    fn zero(cx: T::Context<'_>) -> Self {
 113        Summary::zero(cx)
 114    }
 115
 116    fn add_summary(&mut self, summary: &'a T, cx: T::Context<'_>) {
 117        Summary::add_summary(self, summary, cx);
 118    }
 119}
 120
 121pub trait SeekTarget<'a, S: Summary, D: Dimension<'a, S>> {
 122    fn cmp(&self, cursor_location: &D, cx: S::Context<'_>) -> Ordering;
 123}
 124
 125impl<'a, S: Summary, D: Dimension<'a, S> + Ord> SeekTarget<'a, S, D> for D {
 126    fn cmp(&self, cursor_location: &Self, _: S::Context<'_>) -> Ordering {
 127        Ord::cmp(self, cursor_location)
 128    }
 129}
 130
 131impl<'a, T: Summary> Dimension<'a, T> for () {
 132    fn zero(_: T::Context<'_>) -> Self {}
 133
 134    fn add_summary(&mut self, _: &'a T, _: T::Context<'_>) {}
 135}
 136
 137#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
 138pub struct Dimensions<D1, D2, D3 = ()>(pub D1, pub D2, pub D3);
 139
 140impl<'a, T: Summary, D1: Dimension<'a, T>, D2: Dimension<'a, T>, D3: Dimension<'a, T>>
 141    Dimension<'a, T> for Dimensions<D1, D2, D3>
 142{
 143    fn zero(cx: T::Context<'_>) -> Self {
 144        Dimensions(D1::zero(cx), D2::zero(cx), D3::zero(cx))
 145    }
 146
 147    fn add_summary(&mut self, summary: &'a T, cx: T::Context<'_>) {
 148        self.0.add_summary(summary, cx);
 149        self.1.add_summary(summary, cx);
 150        self.2.add_summary(summary, cx);
 151    }
 152}
 153
 154impl<'a, S, D1, D2, D3> SeekTarget<'a, S, Dimensions<D1, D2, D3>> for D1
 155where
 156    S: Summary,
 157    D1: SeekTarget<'a, S, D1> + Dimension<'a, S>,
 158    D2: Dimension<'a, S>,
 159    D3: Dimension<'a, S>,
 160{
 161    fn cmp(&self, cursor_location: &Dimensions<D1, D2, D3>, cx: S::Context<'_>) -> Ordering {
 162        self.cmp(&cursor_location.0, cx)
 163    }
 164}
 165
 166/// Bias is used to settle ambiguities when determining positions in an ordered sequence.
 167///
 168/// The primary use case is for text, where Bias influences
 169/// which character an offset or anchor is associated with.
 170///
 171/// # Examples
 172/// Given the buffer `AˇBCD`:
 173/// - The offset of the cursor is 1
 174/// - [Bias::Left] would attach the cursor to the character `A`
 175/// - [Bias::Right] would attach the cursor to the character `B`
 176///
 177/// Given the buffer `A«BCˇ»D`:
 178/// - The offset of the cursor is 3, and the selection is from 1 to 3
 179/// - The left anchor of the selection has [Bias::Right], attaching it to the character `B`
 180/// - The right anchor of the selection has [Bias::Left], attaching it to the character `C`
 181///
 182/// Given the buffer `{ˇ<...>`, where `<...>` is a folded region:
 183/// - The display offset of the cursor is 1, but the offset in the buffer is determined by the bias
 184/// - [Bias::Left] would attach the cursor to the character `{`, with a buffer offset of 1
 185/// - [Bias::Right] would attach the cursor to the first character of the folded region,
 186///   and the buffer offset would be the offset of the first character of the folded region
 187#[derive(Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Debug, Hash, Default)]
 188pub enum Bias {
 189    /// Attach to the character on the left
 190    #[default]
 191    Left,
 192    /// Attach to the character on the right
 193    Right,
 194}
 195
 196impl Bias {
 197    pub fn invert(self) -> Self {
 198        match self {
 199            Self::Left => Self::Right,
 200            Self::Right => Self::Left,
 201        }
 202    }
 203}
 204
 205/// A B+ tree in which each leaf node contains `Item`s of type `T` and a `Summary`s for each `Item`.
 206/// Each internal node contains a `Summary` of the items in its subtree.
 207///
 208/// The maximum number of items per node is `TREE_BASE * 2`.
 209///
 210/// Any [`Dimension`] supported by the [`Summary`] type can be used to seek to a specific location in the tree.
 211#[derive(Clone)]
 212pub struct SumTree<T: Item>(Arc<Node<T>>);
 213
 214impl<T> fmt::Debug for SumTree<T>
 215where
 216    T: fmt::Debug + Item,
 217    T::Summary: fmt::Debug,
 218{
 219    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 220        f.debug_tuple("SumTree").field(&self.0).finish()
 221    }
 222}
 223
 224impl<T: Item> SumTree<T> {
 225    pub fn new(cx: <T::Summary as Summary>::Context<'_>) -> Self {
 226        SumTree(Arc::new(Node::Leaf {
 227            summary: <T::Summary as Summary>::zero(cx),
 228            items: ArrayVec::new(),
 229            item_summaries: ArrayVec::new(),
 230        }))
 231    }
 232
 233    /// Useful in cases where the item type has a non-trivial context type, but the zero value of the summary type doesn't depend on that context.
 234    pub fn from_summary(summary: T::Summary) -> Self {
 235        SumTree(Arc::new(Node::Leaf {
 236            summary,
 237            items: ArrayVec::new(),
 238            item_summaries: ArrayVec::new(),
 239        }))
 240    }
 241
 242    pub fn from_item(item: T, cx: <T::Summary as Summary>::Context<'_>) -> Self {
 243        let mut tree = Self::new(cx);
 244        tree.push(item, cx);
 245        tree
 246    }
 247
 248    pub fn from_iter<I: IntoIterator<Item = T>>(
 249        iter: I,
 250        cx: <T::Summary as Summary>::Context<'_>,
 251    ) -> Self {
 252        let mut nodes = Vec::new();
 253
 254        let mut iter = iter.into_iter().fuse().peekable();
 255        while iter.peek().is_some() {
 256            let items: ArrayVec<T, { 2 * TREE_BASE }> = iter.by_ref().take(2 * TREE_BASE).collect();
 257            let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
 258                items.iter().map(|item| item.summary(cx)).collect();
 259
 260            let mut summary = item_summaries[0].clone();
 261            for item_summary in &item_summaries[1..] {
 262                <T::Summary as Summary>::add_summary(&mut summary, item_summary, cx);
 263            }
 264
 265            nodes.push(Node::Leaf {
 266                summary,
 267                items,
 268                item_summaries,
 269            });
 270        }
 271
 272        let mut parent_nodes = Vec::new();
 273        let mut height = 0;
 274        while nodes.len() > 1 {
 275            height += 1;
 276            let mut current_parent_node = None;
 277            for child_node in nodes.drain(..) {
 278                let parent_node = current_parent_node.get_or_insert_with(|| Node::Internal {
 279                    summary: <T::Summary as Summary>::zero(cx),
 280                    height,
 281                    child_summaries: ArrayVec::new(),
 282                    child_trees: ArrayVec::new(),
 283                });
 284                let Node::Internal {
 285                    summary,
 286                    child_summaries,
 287                    child_trees,
 288                    ..
 289                } = parent_node
 290                else {
 291                    unreachable!()
 292                };
 293                let child_summary = child_node.summary();
 294                <T::Summary as Summary>::add_summary(summary, child_summary, cx);
 295                child_summaries.push(child_summary.clone());
 296                child_trees.push(Self(Arc::new(child_node)));
 297
 298                if child_trees.len() == 2 * TREE_BASE {
 299                    parent_nodes.extend(current_parent_node.take());
 300                }
 301            }
 302            parent_nodes.extend(current_parent_node.take());
 303            mem::swap(&mut nodes, &mut parent_nodes);
 304        }
 305
 306        if nodes.is_empty() {
 307            Self::new(cx)
 308        } else {
 309            debug_assert_eq!(nodes.len(), 1);
 310            Self(Arc::new(nodes.pop().unwrap()))
 311        }
 312    }
 313
 314    pub async fn from_iter_async<I, S>(iter: I, spawn: S) -> Self
 315    where
 316        T: 'static + Send + Sync,
 317        for<'a> T::Summary: Summary<Context<'a> = ()> + Send + Sync,
 318        S: BackgroundSpawn,
 319        I: IntoIterator<Item = T>,
 320    {
 321        let mut futures = vec![];
 322        let chunks = iter.into_iter().chunks(2 * TREE_BASE);
 323        for chunk in chunks.into_iter() {
 324            let items: ArrayVec<T, { 2 * TREE_BASE }> = chunk.into_iter().collect();
 325            futures.push(async move {
 326                let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
 327                    items.iter().map(|item| item.summary(())).collect();
 328                let mut summary = item_summaries[0].clone();
 329                for item_summary in &item_summaries[1..] {
 330                    <T::Summary as Summary>::add_summary(&mut summary, item_summary, ());
 331                }
 332                SumTree(Arc::new(Node::Leaf {
 333                    summary,
 334                    items,
 335                    item_summaries,
 336                }))
 337            });
 338        }
 339
 340        let mut nodes = futures::stream::iter(futures)
 341            .map(|future| spawn.background_spawn(future))
 342            .buffered(4)
 343            .collect::<Vec<_>>()
 344            .await;
 345
 346        let mut height = 0;
 347        while nodes.len() > 1 {
 348            height += 1;
 349            let current_nodes = mem::take(&mut nodes);
 350            nodes = stream::iter(current_nodes)
 351                .chunks(2 * TREE_BASE)
 352                .map(|chunk| {
 353                    spawn.background_spawn(async move {
 354                        let child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }> =
 355                            chunk.into_iter().collect();
 356                        let child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> = child_trees
 357                            .iter()
 358                            .map(|child_tree| child_tree.summary().clone())
 359                            .collect();
 360                        let mut summary = child_summaries[0].clone();
 361                        for child_summary in &child_summaries[1..] {
 362                            <T::Summary as Summary>::add_summary(&mut summary, child_summary, ());
 363                        }
 364                        SumTree(Arc::new(Node::Internal {
 365                            height,
 366                            summary,
 367                            child_summaries,
 368                            child_trees,
 369                        }))
 370                    })
 371                })
 372                .buffered(4)
 373                .collect::<Vec<_>>()
 374                .await;
 375        }
 376
 377        if nodes.is_empty() {
 378            Self::new(())
 379        } else {
 380            debug_assert_eq!(nodes.len(), 1);
 381            nodes.pop().unwrap()
 382        }
 383    }
 384
 385    #[allow(unused)]
 386    pub fn items<'a>(&'a self, cx: <T::Summary as Summary>::Context<'a>) -> Vec<T> {
 387        let mut items = Vec::new();
 388        let mut cursor = self.cursor::<()>(cx);
 389        cursor.next();
 390        while let Some(item) = cursor.item() {
 391            items.push(item.clone());
 392            cursor.next();
 393        }
 394        items
 395    }
 396
 397    pub fn iter(&self) -> Iter<'_, T> {
 398        Iter::new(self)
 399    }
 400
 401    /// A more efficient version of `Cursor::new()` + `Cursor::seek()` + `Cursor::item()`.
 402    ///
 403    /// Only returns the item that exactly has the target match.
 404    pub fn find_exact<'a, 'slf, D, Target>(
 405        &'slf self,
 406        cx: <T::Summary as Summary>::Context<'a>,
 407        target: &Target,
 408        bias: Bias,
 409    ) -> (D, D, Option<&'slf T>)
 410    where
 411        D: Dimension<'slf, T::Summary>,
 412        Target: SeekTarget<'slf, T::Summary, D>,
 413    {
 414        let tree_end = D::zero(cx).with_added_summary(self.summary(), cx);
 415        let comparison = target.cmp(&tree_end, cx);
 416        if comparison == Ordering::Greater || (comparison == Ordering::Equal && bias == Bias::Right)
 417        {
 418            return (tree_end.clone(), tree_end, None);
 419        }
 420
 421        let mut pos = D::zero(cx);
 422        return match Self::find_recurse::<_, _, true>(cx, target, bias, &mut pos, self) {
 423            Some((item, end)) => (pos, end, Some(item)),
 424            None => (pos.clone(), pos, None),
 425        };
 426    }
 427
 428    /// A more efficient version of `Cursor::new()` + `Cursor::seek()` + `Cursor::item()`
 429    pub fn find<'a, 'slf, D, Target>(
 430        &'slf self,
 431        cx: <T::Summary as Summary>::Context<'a>,
 432        target: &Target,
 433        bias: Bias,
 434    ) -> (D, D, Option<&'slf T>)
 435    where
 436        D: Dimension<'slf, T::Summary>,
 437        Target: SeekTarget<'slf, T::Summary, D>,
 438    {
 439        let tree_end = D::zero(cx).with_added_summary(self.summary(), cx);
 440        let comparison = target.cmp(&tree_end, cx);
 441        if comparison == Ordering::Greater || (comparison == Ordering::Equal && bias == Bias::Right)
 442        {
 443            return (tree_end.clone(), tree_end, None);
 444        }
 445
 446        let mut pos = D::zero(cx);
 447        return match Self::find_recurse::<_, _, false>(cx, target, bias, &mut pos, self) {
 448            Some((item, end)) => (pos, end, Some(item)),
 449            None => (pos.clone(), pos, None),
 450        };
 451    }
 452
 453    fn find_recurse<'tree, 'a, D, Target, const EXACT: bool>(
 454        cx: <T::Summary as Summary>::Context<'a>,
 455        target: &Target,
 456        bias: Bias,
 457        position: &mut D,
 458        this: &'tree SumTree<T>,
 459    ) -> Option<(&'tree T, D)>
 460    where
 461        D: Dimension<'tree, T::Summary>,
 462        Target: SeekTarget<'tree, T::Summary, D>,
 463    {
 464        match &*this.0 {
 465            Node::Internal {
 466                child_summaries,
 467                child_trees,
 468                ..
 469            } => {
 470                for (child_tree, child_summary) in child_trees.iter().zip(child_summaries) {
 471                    let child_end = position.clone().with_added_summary(child_summary, cx);
 472
 473                    let comparison = target.cmp(&child_end, cx);
 474                    let target_in_child = comparison == Ordering::Less
 475                        || (comparison == Ordering::Equal && bias == Bias::Left);
 476                    if target_in_child {
 477                        return Self::find_recurse::<D, Target, EXACT>(
 478                            cx, target, bias, position, child_tree,
 479                        );
 480                    }
 481                    *position = child_end;
 482                }
 483            }
 484            Node::Leaf {
 485                items,
 486                item_summaries,
 487                ..
 488            } => {
 489                for (item, item_summary) in items.iter().zip(item_summaries) {
 490                    let mut child_end = position.clone();
 491                    child_end.add_summary(item_summary, cx);
 492
 493                    let comparison = target.cmp(&child_end, cx);
 494                    let entry_found = if EXACT {
 495                        comparison == Ordering::Equal
 496                    } else {
 497                        comparison == Ordering::Less
 498                            || (comparison == Ordering::Equal && bias == Bias::Left)
 499                    };
 500                    if entry_found {
 501                        return Some((item, child_end));
 502                    }
 503
 504                    *position = child_end;
 505                }
 506            }
 507        }
 508        None
 509    }
 510
 511    pub fn cursor<'a, 'b, D>(
 512        &'a self,
 513        cx: <T::Summary as Summary>::Context<'b>,
 514    ) -> Cursor<'a, 'b, T, D>
 515    where
 516        D: Dimension<'a, T::Summary>,
 517    {
 518        Cursor::new(self, cx)
 519    }
 520
 521    /// Note: If the summary type requires a non `()` context, then the filter cursor
 522    /// that is returned cannot be used with Rust's iterators.
 523    pub fn filter<'a, 'b, F, U>(
 524        &'a self,
 525        cx: <T::Summary as Summary>::Context<'b>,
 526        filter_node: F,
 527    ) -> FilterCursor<'a, 'b, F, T, U>
 528    where
 529        F: FnMut(&T::Summary) -> bool,
 530        U: Dimension<'a, T::Summary>,
 531    {
 532        FilterCursor::new(self, cx, filter_node)
 533    }
 534
 535    #[allow(dead_code)]
 536    pub fn first(&self) -> Option<&T> {
 537        self.leftmost_leaf().0.items().first()
 538    }
 539
 540    pub fn last(&self) -> Option<&T> {
 541        self.rightmost_leaf().0.items().last()
 542    }
 543
 544    pub fn update_last(
 545        &mut self,
 546        f: impl FnOnce(&mut T),
 547        cx: <T::Summary as Summary>::Context<'_>,
 548    ) {
 549        self.update_last_recursive(f, cx);
 550    }
 551
 552    fn update_last_recursive(
 553        &mut self,
 554        f: impl FnOnce(&mut T),
 555        cx: <T::Summary as Summary>::Context<'_>,
 556    ) -> Option<T::Summary> {
 557        match Arc::make_mut(&mut self.0) {
 558            Node::Internal {
 559                summary,
 560                child_summaries,
 561                child_trees,
 562                ..
 563            } => {
 564                let last_summary = child_summaries.last_mut().unwrap();
 565                let last_child = child_trees.last_mut().unwrap();
 566                *last_summary = last_child.update_last_recursive(f, cx).unwrap();
 567                *summary = sum(child_summaries.iter(), cx);
 568                Some(summary.clone())
 569            }
 570            Node::Leaf {
 571                summary,
 572                items,
 573                item_summaries,
 574            } => {
 575                if let Some((item, item_summary)) = items.last_mut().zip(item_summaries.last_mut())
 576                {
 577                    (f)(item);
 578                    *item_summary = item.summary(cx);
 579                    *summary = sum(item_summaries.iter(), cx);
 580                    Some(summary.clone())
 581                } else {
 582                    None
 583                }
 584            }
 585        }
 586    }
 587
 588    pub fn extent<'a, D: Dimension<'a, T::Summary>>(
 589        &'a self,
 590        cx: <T::Summary as Summary>::Context<'_>,
 591    ) -> D {
 592        let mut extent = D::zero(cx);
 593        match self.0.as_ref() {
 594            Node::Internal { summary, .. } | Node::Leaf { summary, .. } => {
 595                extent.add_summary(summary, cx);
 596            }
 597        }
 598        extent
 599    }
 600
 601    pub fn summary(&self) -> &T::Summary {
 602        match self.0.as_ref() {
 603            Node::Internal { summary, .. } => summary,
 604            Node::Leaf { summary, .. } => summary,
 605        }
 606    }
 607
 608    pub fn is_empty(&self) -> bool {
 609        match self.0.as_ref() {
 610            Node::Internal { .. } => false,
 611            Node::Leaf { items, .. } => items.is_empty(),
 612        }
 613    }
 614
 615    pub fn extend<I>(&mut self, iter: I, cx: <T::Summary as Summary>::Context<'_>)
 616    where
 617        I: IntoIterator<Item = T>,
 618    {
 619        self.append(Self::from_iter(iter, cx), cx);
 620    }
 621
 622    pub async fn async_extend<S, I>(&mut self, iter: I, spawn: S)
 623    where
 624        S: BackgroundSpawn,
 625        I: IntoIterator<Item = T> + 'static,
 626        T: 'static + Send + Sync,
 627        for<'b> T::Summary: Summary<Context<'b> = ()> + Send + Sync,
 628    {
 629        let other = Self::from_iter_async(iter, spawn);
 630        self.append(other.await, ());
 631    }
 632
 633    pub fn push(&mut self, item: T, cx: <T::Summary as Summary>::Context<'_>) {
 634        let summary = item.summary(cx);
 635        self.append(
 636            SumTree(Arc::new(Node::Leaf {
 637                summary: summary.clone(),
 638                items: ArrayVec::from_iter(Some(item)),
 639                item_summaries: ArrayVec::from_iter(Some(summary)),
 640            })),
 641            cx,
 642        );
 643    }
 644
 645    pub fn append(&mut self, other: Self, cx: <T::Summary as Summary>::Context<'_>) {
 646        if self.is_empty() {
 647            *self = other;
 648        } else if !other.0.is_leaf() || !other.0.items().is_empty() {
 649            if self.0.height() < other.0.height() {
 650                for tree in other.0.child_trees() {
 651                    self.append(tree.clone(), cx);
 652                }
 653            } else if let Some(split_tree) = self.push_tree_recursive(other, cx) {
 654                *self = Self::from_child_trees(self.clone(), split_tree, cx);
 655            }
 656        }
 657    }
 658
 659    fn push_tree_recursive(
 660        &mut self,
 661        other: SumTree<T>,
 662        cx: <T::Summary as Summary>::Context<'_>,
 663    ) -> Option<SumTree<T>> {
 664        match Arc::make_mut(&mut self.0) {
 665            Node::Internal {
 666                height,
 667                summary,
 668                child_summaries,
 669                child_trees,
 670                ..
 671            } => {
 672                let other_node = other.0.clone();
 673                <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
 674
 675                let height_delta = *height - other_node.height();
 676                let mut summaries_to_append = ArrayVec::<T::Summary, { 2 * TREE_BASE }>::new();
 677                let mut trees_to_append = ArrayVec::<SumTree<T>, { 2 * TREE_BASE }>::new();
 678                if height_delta == 0 {
 679                    summaries_to_append.extend(other_node.child_summaries().iter().cloned());
 680                    trees_to_append.extend(other_node.child_trees().iter().cloned());
 681                } else if height_delta == 1 && !other_node.is_underflowing() {
 682                    summaries_to_append.push(other_node.summary().clone());
 683                    trees_to_append.push(other)
 684                } else {
 685                    let tree_to_append = child_trees
 686                        .last_mut()
 687                        .unwrap()
 688                        .push_tree_recursive(other, cx);
 689                    *child_summaries.last_mut().unwrap() =
 690                        child_trees.last().unwrap().0.summary().clone();
 691
 692                    if let Some(split_tree) = tree_to_append {
 693                        summaries_to_append.push(split_tree.0.summary().clone());
 694                        trees_to_append.push(split_tree);
 695                    }
 696                }
 697
 698                let child_count = child_trees.len() + trees_to_append.len();
 699                if child_count > 2 * TREE_BASE {
 700                    let left_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
 701                    let right_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
 702                    let left_trees;
 703                    let right_trees;
 704
 705                    let midpoint = (child_count + child_count % 2) / 2;
 706                    {
 707                        let mut all_summaries = child_summaries
 708                            .iter()
 709                            .chain(summaries_to_append.iter())
 710                            .cloned();
 711                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
 712                        right_summaries = all_summaries.collect();
 713                        let mut all_trees =
 714                            child_trees.iter().chain(trees_to_append.iter()).cloned();
 715                        left_trees = all_trees.by_ref().take(midpoint).collect();
 716                        right_trees = all_trees.collect();
 717                    }
 718                    *summary = sum(left_summaries.iter(), cx);
 719                    *child_summaries = left_summaries;
 720                    *child_trees = left_trees;
 721
 722                    Some(SumTree(Arc::new(Node::Internal {
 723                        height: *height,
 724                        summary: sum(right_summaries.iter(), cx),
 725                        child_summaries: right_summaries,
 726                        child_trees: right_trees,
 727                    })))
 728                } else {
 729                    child_summaries.extend(summaries_to_append);
 730                    child_trees.extend(trees_to_append);
 731                    None
 732                }
 733            }
 734            Node::Leaf {
 735                summary,
 736                items,
 737                item_summaries,
 738            } => {
 739                let other_node = other.0;
 740
 741                let child_count = items.len() + other_node.items().len();
 742                if child_count > 2 * TREE_BASE {
 743                    let left_items;
 744                    let right_items;
 745                    let left_summaries;
 746                    let right_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>;
 747
 748                    let midpoint = (child_count + child_count % 2) / 2;
 749                    {
 750                        let mut all_items = items.iter().chain(other_node.items().iter()).cloned();
 751                        left_items = all_items.by_ref().take(midpoint).collect();
 752                        right_items = all_items.collect();
 753
 754                        let mut all_summaries = item_summaries
 755                            .iter()
 756                            .chain(other_node.child_summaries())
 757                            .cloned();
 758                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
 759                        right_summaries = all_summaries.collect();
 760                    }
 761                    *items = left_items;
 762                    *item_summaries = left_summaries;
 763                    *summary = sum(item_summaries.iter(), cx);
 764                    Some(SumTree(Arc::new(Node::Leaf {
 765                        items: right_items,
 766                        summary: sum(right_summaries.iter(), cx),
 767                        item_summaries: right_summaries,
 768                    })))
 769                } else {
 770                    <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
 771                    items.extend(other_node.items().iter().cloned());
 772                    item_summaries.extend(other_node.child_summaries().iter().cloned());
 773                    None
 774                }
 775            }
 776        }
 777    }
 778
 779    fn from_child_trees(
 780        left: SumTree<T>,
 781        right: SumTree<T>,
 782        cx: <T::Summary as Summary>::Context<'_>,
 783    ) -> Self {
 784        let height = left.0.height() + 1;
 785        let mut child_summaries = ArrayVec::new();
 786        child_summaries.push(left.0.summary().clone());
 787        child_summaries.push(right.0.summary().clone());
 788        let mut child_trees = ArrayVec::new();
 789        child_trees.push(left);
 790        child_trees.push(right);
 791        SumTree(Arc::new(Node::Internal {
 792            height,
 793            summary: sum(child_summaries.iter(), cx),
 794            child_summaries,
 795            child_trees,
 796        }))
 797    }
 798
 799    fn leftmost_leaf(&self) -> &Self {
 800        match *self.0 {
 801            Node::Leaf { .. } => self,
 802            Node::Internal {
 803                ref child_trees, ..
 804            } => child_trees.first().unwrap().leftmost_leaf(),
 805        }
 806    }
 807
 808    fn rightmost_leaf(&self) -> &Self {
 809        match *self.0 {
 810            Node::Leaf { .. } => self,
 811            Node::Internal {
 812                ref child_trees, ..
 813            } => child_trees.last().unwrap().rightmost_leaf(),
 814        }
 815    }
 816}
 817
 818impl<T: Item + PartialEq> PartialEq for SumTree<T> {
 819    fn eq(&self, other: &Self) -> bool {
 820        self.iter().eq(other.iter())
 821    }
 822}
 823
 824impl<T: Item + Eq> Eq for SumTree<T> {}
 825
 826impl<T: KeyedItem> SumTree<T> {
 827    pub fn insert_or_replace<'a, 'b>(
 828        &'a mut self,
 829        item: T,
 830        cx: <T::Summary as Summary>::Context<'b>,
 831    ) -> Option<T> {
 832        let mut replaced = None;
 833        {
 834            let mut cursor = self.cursor::<T::Key>(cx);
 835            let mut new_tree = cursor.slice(&item.key(), Bias::Left);
 836            if let Some(cursor_item) = cursor.item()
 837                && cursor_item.key() == item.key()
 838            {
 839                replaced = Some(cursor_item.clone());
 840                cursor.next();
 841            }
 842            new_tree.push(item, cx);
 843            new_tree.append(cursor.suffix(), cx);
 844            drop(cursor);
 845            *self = new_tree
 846        };
 847        replaced
 848    }
 849
 850    pub fn remove(&mut self, key: &T::Key, cx: <T::Summary as Summary>::Context<'_>) -> Option<T> {
 851        let mut removed = None;
 852        *self = {
 853            let mut cursor = self.cursor::<T::Key>(cx);
 854            let mut new_tree = cursor.slice(key, Bias::Left);
 855            if let Some(item) = cursor.item()
 856                && item.key() == *key
 857            {
 858                removed = Some(item.clone());
 859                cursor.next();
 860            }
 861            new_tree.append(cursor.suffix(), cx);
 862            new_tree
 863        };
 864        removed
 865    }
 866
 867    pub fn edit(
 868        &mut self,
 869        mut edits: Vec<Edit<T>>,
 870        cx: <T::Summary as Summary>::Context<'_>,
 871    ) -> Vec<T> {
 872        if edits.is_empty() {
 873            return Vec::new();
 874        }
 875
 876        let mut removed = Vec::new();
 877        edits.sort_unstable_by_key(|item| item.key());
 878
 879        *self = {
 880            let mut cursor = self.cursor::<T::Key>(cx);
 881            let mut new_tree = SumTree::new(cx);
 882            let mut buffered_items = Vec::new();
 883
 884            cursor.seek(&T::Key::zero(cx), Bias::Left);
 885            for edit in edits {
 886                let new_key = edit.key();
 887                let mut old_item = cursor.item();
 888
 889                if old_item
 890                    .as_ref()
 891                    .is_some_and(|old_item| old_item.key() < new_key)
 892                {
 893                    new_tree.extend(buffered_items.drain(..), cx);
 894                    let slice = cursor.slice(&new_key, Bias::Left);
 895                    new_tree.append(slice, cx);
 896                    old_item = cursor.item();
 897                }
 898
 899                if let Some(old_item) = old_item
 900                    && old_item.key() == new_key
 901                {
 902                    removed.push(old_item.clone());
 903                    cursor.next();
 904                }
 905
 906                match edit {
 907                    Edit::Insert(item) => {
 908                        buffered_items.push(item);
 909                    }
 910                    Edit::Remove(_) => {}
 911                }
 912            }
 913
 914            new_tree.extend(buffered_items, cx);
 915            new_tree.append(cursor.suffix(), cx);
 916            new_tree
 917        };
 918
 919        removed
 920    }
 921
 922    pub fn get<'a>(
 923        &'a self,
 924        key: &T::Key,
 925        cx: <T::Summary as Summary>::Context<'a>,
 926    ) -> Option<&'a T> {
 927        if let (_, _, Some(item)) = self.find_exact::<T::Key, _>(cx, key, Bias::Left) {
 928            Some(item)
 929        } else {
 930            None
 931        }
 932    }
 933}
 934
 935impl<T, S> Default for SumTree<T>
 936where
 937    T: Item<Summary = S>,
 938    S: for<'a> Summary<Context<'a> = ()>,
 939{
 940    fn default() -> Self {
 941        Self::new(())
 942    }
 943}
 944
 945#[derive(Clone)]
 946pub enum Node<T: Item> {
 947    Internal {
 948        height: u8,
 949        summary: T::Summary,
 950        child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
 951        child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }>,
 952    },
 953    Leaf {
 954        summary: T::Summary,
 955        items: ArrayVec<T, { 2 * TREE_BASE }>,
 956        item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
 957    },
 958}
 959
 960impl<T> fmt::Debug for Node<T>
 961where
 962    T: Item + fmt::Debug,
 963    T::Summary: fmt::Debug,
 964{
 965    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 966        match self {
 967            Node::Internal {
 968                height,
 969                summary,
 970                child_summaries,
 971                child_trees,
 972            } => f
 973                .debug_struct("Internal")
 974                .field("height", height)
 975                .field("summary", summary)
 976                .field("child_summaries", child_summaries)
 977                .field("child_trees", child_trees)
 978                .finish(),
 979            Node::Leaf {
 980                summary,
 981                items,
 982                item_summaries,
 983            } => f
 984                .debug_struct("Leaf")
 985                .field("summary", summary)
 986                .field("items", items)
 987                .field("item_summaries", item_summaries)
 988                .finish(),
 989        }
 990    }
 991}
 992
 993impl<T: Item> Node<T> {
 994    fn is_leaf(&self) -> bool {
 995        matches!(self, Node::Leaf { .. })
 996    }
 997
 998    fn height(&self) -> u8 {
 999        match self {
1000            Node::Internal { height, .. } => *height,
1001            Node::Leaf { .. } => 0,
1002        }
1003    }
1004
1005    fn summary(&self) -> &T::Summary {
1006        match self {
1007            Node::Internal { summary, .. } => summary,
1008            Node::Leaf { summary, .. } => summary,
1009        }
1010    }
1011
1012    fn child_summaries(&self) -> &[T::Summary] {
1013        match self {
1014            Node::Internal {
1015                child_summaries, ..
1016            } => child_summaries.as_slice(),
1017            Node::Leaf { item_summaries, .. } => item_summaries.as_slice(),
1018        }
1019    }
1020
1021    fn child_trees(&self) -> &ArrayVec<SumTree<T>, { 2 * TREE_BASE }> {
1022        match self {
1023            Node::Internal { child_trees, .. } => child_trees,
1024            Node::Leaf { .. } => panic!("Leaf nodes have no child trees"),
1025        }
1026    }
1027
1028    fn items(&self) -> &ArrayVec<T, { 2 * TREE_BASE }> {
1029        match self {
1030            Node::Leaf { items, .. } => items,
1031            Node::Internal { .. } => panic!("Internal nodes have no items"),
1032        }
1033    }
1034
1035    fn is_underflowing(&self) -> bool {
1036        match self {
1037            Node::Internal { child_trees, .. } => child_trees.len() < TREE_BASE,
1038            Node::Leaf { items, .. } => items.len() < TREE_BASE,
1039        }
1040    }
1041}
1042
1043#[derive(Debug)]
1044pub enum Edit<T: KeyedItem> {
1045    Insert(T),
1046    Remove(T::Key),
1047}
1048
1049impl<T: KeyedItem> Edit<T> {
1050    fn key(&self) -> T::Key {
1051        match self {
1052            Edit::Insert(item) => item.key(),
1053            Edit::Remove(key) => key.clone(),
1054        }
1055    }
1056}
1057
1058fn sum<'a, T, I>(iter: I, cx: T::Context<'_>) -> T
1059where
1060    T: 'a + Summary,
1061    I: Iterator<Item = &'a T>,
1062{
1063    let mut sum = T::zero(cx);
1064    for value in iter {
1065        sum.add_summary(value, cx);
1066    }
1067    sum
1068}
1069
1070#[cfg(test)]
1071mod tests {
1072    use super::*;
1073    use rand::{distr::StandardUniform, prelude::*};
1074    use std::cmp;
1075
1076    #[ctor::ctor]
1077    fn init_logger() {
1078        zlog::init_test();
1079    }
1080
1081    #[test]
1082    fn test_extend_and_push_tree() {
1083        let mut tree1 = SumTree::default();
1084        tree1.extend(0..20, ());
1085
1086        let mut tree2 = SumTree::default();
1087        tree2.extend(50..100, ());
1088
1089        tree1.append(tree2, ());
1090        assert_eq!(tree1.items(()), (0..20).chain(50..100).collect::<Vec<u8>>());
1091    }
1092
1093    #[test]
1094    fn test_random() {
1095        struct NoSpawn;
1096        impl BackgroundSpawn for NoSpawn {
1097            type Task<R>
1098                = std::pin::Pin<Box<dyn Future<Output = R> + Sync + Send>>
1099            where
1100                R: Send + Sync;
1101            fn background_spawn<R>(
1102                &self,
1103                future: impl Future<Output = R> + Send + Sync + 'static,
1104            ) -> Self::Task<R>
1105            where
1106                R: Send + Sync + 'static,
1107            {
1108                Box::pin(future)
1109            }
1110        }
1111
1112        let mut starting_seed = 0;
1113        if let Ok(value) = std::env::var("SEED") {
1114            starting_seed = value.parse().expect("invalid SEED variable");
1115        }
1116        let mut num_iterations = 100;
1117        if let Ok(value) = std::env::var("ITERATIONS") {
1118            num_iterations = value.parse().expect("invalid ITERATIONS variable");
1119        }
1120        let num_operations = std::env::var("OPERATIONS")
1121            .map_or(5, |o| o.parse().expect("invalid OPERATIONS variable"));
1122
1123        for seed in starting_seed..(starting_seed + num_iterations) {
1124            eprintln!("seed = {}", seed);
1125            let mut rng = StdRng::seed_from_u64(seed);
1126
1127            let rng = &mut rng;
1128            let mut tree = SumTree::<u8>::default();
1129            let count = rng.random_range(0..10);
1130            if rng.random() {
1131                tree.extend(rng.sample_iter(StandardUniform).take(count), ());
1132            } else {
1133                let items = rng
1134                    .sample_iter(StandardUniform)
1135                    .take(count)
1136                    .collect::<Vec<_>>();
1137                pollster::block_on(tree.async_extend(items, NoSpawn));
1138            }
1139
1140            for _ in 0..num_operations {
1141                let splice_end = rng.random_range(0..tree.extent::<Count>(()).0 + 1);
1142                let splice_start = rng.random_range(0..splice_end + 1);
1143                let count = rng.random_range(0..10);
1144                let tree_end = tree.extent::<Count>(());
1145                let new_items = rng
1146                    .sample_iter(StandardUniform)
1147                    .take(count)
1148                    .collect::<Vec<u8>>();
1149
1150                let mut reference_items = tree.items(());
1151                reference_items.splice(splice_start..splice_end, new_items.clone());
1152
1153                tree = {
1154                    let mut cursor = tree.cursor::<Count>(());
1155                    let mut new_tree = cursor.slice(&Count(splice_start), Bias::Right);
1156                    if rng.random() {
1157                        new_tree.extend(new_items, ());
1158                    } else {
1159                        pollster::block_on(new_tree.async_extend(new_items, NoSpawn));
1160                    }
1161                    cursor.seek(&Count(splice_end), Bias::Right);
1162                    new_tree.append(cursor.slice(&tree_end, Bias::Right), ());
1163                    new_tree
1164                };
1165
1166                assert_eq!(tree.items(()), reference_items);
1167                assert_eq!(
1168                    tree.iter().collect::<Vec<_>>(),
1169                    tree.cursor::<()>(()).collect::<Vec<_>>()
1170                );
1171
1172                log::info!("tree items: {:?}", tree.items(()));
1173
1174                let mut filter_cursor =
1175                    tree.filter::<_, Count>((), |summary| summary.contains_even);
1176                let expected_filtered_items = tree
1177                    .items(())
1178                    .into_iter()
1179                    .enumerate()
1180                    .filter(|(_, item)| (item & 1) == 0)
1181                    .collect::<Vec<_>>();
1182
1183                let mut item_ix = if rng.random() {
1184                    filter_cursor.next();
1185                    0
1186                } else {
1187                    filter_cursor.prev();
1188                    expected_filtered_items.len().saturating_sub(1)
1189                };
1190                while item_ix < expected_filtered_items.len() {
1191                    log::info!("filter_cursor, item_ix: {}", item_ix);
1192                    let actual_item = filter_cursor.item().unwrap();
1193                    let (reference_index, reference_item) = expected_filtered_items[item_ix];
1194                    assert_eq!(actual_item, &reference_item);
1195                    assert_eq!(filter_cursor.start().0, reference_index);
1196                    log::info!("next");
1197                    filter_cursor.next();
1198                    item_ix += 1;
1199
1200                    while item_ix > 0 && rng.random_bool(0.2) {
1201                        log::info!("prev");
1202                        filter_cursor.prev();
1203                        item_ix -= 1;
1204
1205                        if item_ix == 0 && rng.random_bool(0.2) {
1206                            filter_cursor.prev();
1207                            assert_eq!(filter_cursor.item(), None);
1208                            assert_eq!(filter_cursor.start().0, 0);
1209                            filter_cursor.next();
1210                        }
1211                    }
1212                }
1213                assert_eq!(filter_cursor.item(), None);
1214
1215                let mut before_start = false;
1216                let mut cursor = tree.cursor::<Count>(());
1217                let start_pos = rng.random_range(0..=reference_items.len());
1218                cursor.seek(&Count(start_pos), Bias::Right);
1219                let mut pos = rng.random_range(start_pos..=reference_items.len());
1220                cursor.seek_forward(&Count(pos), Bias::Right);
1221
1222                for i in 0..10 {
1223                    assert_eq!(cursor.start().0, pos);
1224
1225                    if pos > 0 {
1226                        assert_eq!(cursor.prev_item().unwrap(), &reference_items[pos - 1]);
1227                    } else {
1228                        assert_eq!(cursor.prev_item(), None);
1229                    }
1230
1231                    if pos < reference_items.len() && !before_start {
1232                        assert_eq!(cursor.item().unwrap(), &reference_items[pos]);
1233                    } else {
1234                        assert_eq!(cursor.item(), None);
1235                    }
1236
1237                    if before_start {
1238                        assert_eq!(cursor.next_item(), reference_items.first());
1239                    } else if pos + 1 < reference_items.len() {
1240                        assert_eq!(cursor.next_item().unwrap(), &reference_items[pos + 1]);
1241                    } else {
1242                        assert_eq!(cursor.next_item(), None);
1243                    }
1244
1245                    if i < 5 {
1246                        cursor.next();
1247                        if pos < reference_items.len() {
1248                            pos += 1;
1249                            before_start = false;
1250                        }
1251                    } else {
1252                        cursor.prev();
1253                        if pos == 0 {
1254                            before_start = true;
1255                        }
1256                        pos = pos.saturating_sub(1);
1257                    }
1258                }
1259            }
1260
1261            for _ in 0..10 {
1262                let end = rng.random_range(0..tree.extent::<Count>(()).0 + 1);
1263                let start = rng.random_range(0..end + 1);
1264                let start_bias = if rng.random() {
1265                    Bias::Left
1266                } else {
1267                    Bias::Right
1268                };
1269                let end_bias = if rng.random() {
1270                    Bias::Left
1271                } else {
1272                    Bias::Right
1273                };
1274
1275                let mut cursor = tree.cursor::<Count>(());
1276                cursor.seek(&Count(start), start_bias);
1277                let slice = cursor.slice(&Count(end), end_bias);
1278
1279                cursor.seek(&Count(start), start_bias);
1280                let summary = cursor.summary::<_, Sum>(&Count(end), end_bias);
1281
1282                assert_eq!(summary.0, slice.summary().sum);
1283            }
1284        }
1285    }
1286
1287    #[test]
1288    fn test_cursor() {
1289        // Empty tree
1290        let tree = SumTree::<u8>::default();
1291        let mut cursor = tree.cursor::<IntegersSummary>(());
1292        assert_eq!(
1293            cursor.slice(&Count(0), Bias::Right).items(()),
1294            Vec::<u8>::new()
1295        );
1296        assert_eq!(cursor.item(), None);
1297        assert_eq!(cursor.prev_item(), None);
1298        assert_eq!(cursor.next_item(), None);
1299        assert_eq!(cursor.start().sum, 0);
1300        cursor.prev();
1301        assert_eq!(cursor.item(), None);
1302        assert_eq!(cursor.prev_item(), None);
1303        assert_eq!(cursor.next_item(), None);
1304        assert_eq!(cursor.start().sum, 0);
1305        cursor.next();
1306        assert_eq!(cursor.item(), None);
1307        assert_eq!(cursor.prev_item(), None);
1308        assert_eq!(cursor.next_item(), None);
1309        assert_eq!(cursor.start().sum, 0);
1310
1311        // Single-element tree
1312        let mut tree = SumTree::<u8>::default();
1313        tree.extend(vec![1], ());
1314        let mut cursor = tree.cursor::<IntegersSummary>(());
1315        assert_eq!(
1316            cursor.slice(&Count(0), Bias::Right).items(()),
1317            Vec::<u8>::new()
1318        );
1319        assert_eq!(cursor.item(), Some(&1));
1320        assert_eq!(cursor.prev_item(), None);
1321        assert_eq!(cursor.next_item(), None);
1322        assert_eq!(cursor.start().sum, 0);
1323
1324        cursor.next();
1325        assert_eq!(cursor.item(), None);
1326        assert_eq!(cursor.prev_item(), Some(&1));
1327        assert_eq!(cursor.next_item(), None);
1328        assert_eq!(cursor.start().sum, 1);
1329
1330        cursor.prev();
1331        assert_eq!(cursor.item(), Some(&1));
1332        assert_eq!(cursor.prev_item(), None);
1333        assert_eq!(cursor.next_item(), None);
1334        assert_eq!(cursor.start().sum, 0);
1335
1336        let mut cursor = tree.cursor::<IntegersSummary>(());
1337        assert_eq!(cursor.slice(&Count(1), Bias::Right).items(()), [1]);
1338        assert_eq!(cursor.item(), None);
1339        assert_eq!(cursor.prev_item(), Some(&1));
1340        assert_eq!(cursor.next_item(), None);
1341        assert_eq!(cursor.start().sum, 1);
1342
1343        cursor.seek(&Count(0), Bias::Right);
1344        assert_eq!(
1345            cursor
1346                .slice(&tree.extent::<Count>(()), Bias::Right)
1347                .items(()),
1348            [1]
1349        );
1350        assert_eq!(cursor.item(), None);
1351        assert_eq!(cursor.prev_item(), Some(&1));
1352        assert_eq!(cursor.next_item(), None);
1353        assert_eq!(cursor.start().sum, 1);
1354
1355        // Multiple-element tree
1356        let mut tree = SumTree::default();
1357        tree.extend(vec![1, 2, 3, 4, 5, 6], ());
1358        let mut cursor = tree.cursor::<IntegersSummary>(());
1359
1360        assert_eq!(cursor.slice(&Count(2), Bias::Right).items(()), [1, 2]);
1361        assert_eq!(cursor.item(), Some(&3));
1362        assert_eq!(cursor.prev_item(), Some(&2));
1363        assert_eq!(cursor.next_item(), Some(&4));
1364        assert_eq!(cursor.start().sum, 3);
1365
1366        cursor.next();
1367        assert_eq!(cursor.item(), Some(&4));
1368        assert_eq!(cursor.prev_item(), Some(&3));
1369        assert_eq!(cursor.next_item(), Some(&5));
1370        assert_eq!(cursor.start().sum, 6);
1371
1372        cursor.next();
1373        assert_eq!(cursor.item(), Some(&5));
1374        assert_eq!(cursor.prev_item(), Some(&4));
1375        assert_eq!(cursor.next_item(), Some(&6));
1376        assert_eq!(cursor.start().sum, 10);
1377
1378        cursor.next();
1379        assert_eq!(cursor.item(), Some(&6));
1380        assert_eq!(cursor.prev_item(), Some(&5));
1381        assert_eq!(cursor.next_item(), None);
1382        assert_eq!(cursor.start().sum, 15);
1383
1384        cursor.next();
1385        cursor.next();
1386        assert_eq!(cursor.item(), None);
1387        assert_eq!(cursor.prev_item(), Some(&6));
1388        assert_eq!(cursor.next_item(), None);
1389        assert_eq!(cursor.start().sum, 21);
1390
1391        cursor.prev();
1392        assert_eq!(cursor.item(), Some(&6));
1393        assert_eq!(cursor.prev_item(), Some(&5));
1394        assert_eq!(cursor.next_item(), None);
1395        assert_eq!(cursor.start().sum, 15);
1396
1397        cursor.prev();
1398        assert_eq!(cursor.item(), Some(&5));
1399        assert_eq!(cursor.prev_item(), Some(&4));
1400        assert_eq!(cursor.next_item(), Some(&6));
1401        assert_eq!(cursor.start().sum, 10);
1402
1403        cursor.prev();
1404        assert_eq!(cursor.item(), Some(&4));
1405        assert_eq!(cursor.prev_item(), Some(&3));
1406        assert_eq!(cursor.next_item(), Some(&5));
1407        assert_eq!(cursor.start().sum, 6);
1408
1409        cursor.prev();
1410        assert_eq!(cursor.item(), Some(&3));
1411        assert_eq!(cursor.prev_item(), Some(&2));
1412        assert_eq!(cursor.next_item(), Some(&4));
1413        assert_eq!(cursor.start().sum, 3);
1414
1415        cursor.prev();
1416        assert_eq!(cursor.item(), Some(&2));
1417        assert_eq!(cursor.prev_item(), Some(&1));
1418        assert_eq!(cursor.next_item(), Some(&3));
1419        assert_eq!(cursor.start().sum, 1);
1420
1421        cursor.prev();
1422        assert_eq!(cursor.item(), Some(&1));
1423        assert_eq!(cursor.prev_item(), None);
1424        assert_eq!(cursor.next_item(), Some(&2));
1425        assert_eq!(cursor.start().sum, 0);
1426
1427        cursor.prev();
1428        assert_eq!(cursor.item(), None);
1429        assert_eq!(cursor.prev_item(), None);
1430        assert_eq!(cursor.next_item(), Some(&1));
1431        assert_eq!(cursor.start().sum, 0);
1432
1433        cursor.next();
1434        assert_eq!(cursor.item(), Some(&1));
1435        assert_eq!(cursor.prev_item(), None);
1436        assert_eq!(cursor.next_item(), Some(&2));
1437        assert_eq!(cursor.start().sum, 0);
1438
1439        let mut cursor = tree.cursor::<IntegersSummary>(());
1440        assert_eq!(
1441            cursor
1442                .slice(&tree.extent::<Count>(()), Bias::Right)
1443                .items(()),
1444            tree.items(())
1445        );
1446        assert_eq!(cursor.item(), None);
1447        assert_eq!(cursor.prev_item(), Some(&6));
1448        assert_eq!(cursor.next_item(), None);
1449        assert_eq!(cursor.start().sum, 21);
1450
1451        cursor.seek(&Count(3), Bias::Right);
1452        assert_eq!(
1453            cursor
1454                .slice(&tree.extent::<Count>(()), Bias::Right)
1455                .items(()),
1456            [4, 5, 6]
1457        );
1458        assert_eq!(cursor.item(), None);
1459        assert_eq!(cursor.prev_item(), Some(&6));
1460        assert_eq!(cursor.next_item(), None);
1461        assert_eq!(cursor.start().sum, 21);
1462
1463        // Seeking can bias left or right
1464        cursor.seek(&Count(1), Bias::Left);
1465        assert_eq!(cursor.item(), Some(&1));
1466        cursor.seek(&Count(1), Bias::Right);
1467        assert_eq!(cursor.item(), Some(&2));
1468
1469        // Slicing without resetting starts from where the cursor is parked at.
1470        cursor.seek(&Count(1), Bias::Right);
1471        assert_eq!(cursor.slice(&Count(3), Bias::Right).items(()), vec![2, 3]);
1472        assert_eq!(cursor.slice(&Count(6), Bias::Left).items(()), vec![4, 5]);
1473        assert_eq!(cursor.slice(&Count(6), Bias::Right).items(()), vec![6]);
1474    }
1475
1476    #[test]
1477    fn test_edit() {
1478        let mut tree = SumTree::<u8>::default();
1479
1480        let removed = tree.edit(vec![Edit::Insert(1), Edit::Insert(2), Edit::Insert(0)], ());
1481        assert_eq!(tree.items(()), vec![0, 1, 2]);
1482        assert_eq!(removed, Vec::<u8>::new());
1483        assert_eq!(tree.get(&0, ()), Some(&0));
1484        assert_eq!(tree.get(&1, ()), Some(&1));
1485        assert_eq!(tree.get(&2, ()), Some(&2));
1486        assert_eq!(tree.get(&4, ()), None);
1487
1488        let removed = tree.edit(vec![Edit::Insert(2), Edit::Insert(4), Edit::Remove(0)], ());
1489        assert_eq!(tree.items(()), vec![1, 2, 4]);
1490        assert_eq!(removed, vec![0, 2]);
1491        assert_eq!(tree.get(&0, ()), None);
1492        assert_eq!(tree.get(&1, ()), Some(&1));
1493        assert_eq!(tree.get(&2, ()), Some(&2));
1494        assert_eq!(tree.get(&4, ()), Some(&4));
1495    }
1496
1497    #[test]
1498    fn test_from_iter() {
1499        assert_eq!(
1500            SumTree::from_iter(0..100, ()).items(()),
1501            (0..100).collect::<Vec<_>>()
1502        );
1503
1504        // Ensure `from_iter` works correctly when the given iterator restarts
1505        // after calling `next` if `None` was already returned.
1506        let mut ix = 0;
1507        let iterator = std::iter::from_fn(|| {
1508            ix = (ix + 1) % 2;
1509            if ix == 1 { Some(1) } else { None }
1510        });
1511        assert_eq!(SumTree::from_iter(iterator, ()).items(()), vec![1]);
1512    }
1513
1514    #[derive(Clone, Default, Debug)]
1515    pub struct IntegersSummary {
1516        count: usize,
1517        sum: usize,
1518        contains_even: bool,
1519        max: u8,
1520    }
1521
1522    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1523    struct Count(usize);
1524
1525    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1526    struct Sum(usize);
1527
1528    impl Item for u8 {
1529        type Summary = IntegersSummary;
1530
1531        fn summary(&self, _cx: ()) -> Self::Summary {
1532            IntegersSummary {
1533                count: 1,
1534                sum: *self as usize,
1535                contains_even: (*self & 1) == 0,
1536                max: *self,
1537            }
1538        }
1539    }
1540
1541    impl KeyedItem for u8 {
1542        type Key = u8;
1543
1544        fn key(&self) -> Self::Key {
1545            *self
1546        }
1547    }
1548
1549    impl ContextLessSummary for IntegersSummary {
1550        fn zero() -> Self {
1551            Default::default()
1552        }
1553
1554        fn add_summary(&mut self, other: &Self) {
1555            self.count += other.count;
1556            self.sum += other.sum;
1557            self.contains_even |= other.contains_even;
1558            self.max = cmp::max(self.max, other.max);
1559        }
1560    }
1561
1562    impl Dimension<'_, IntegersSummary> for u8 {
1563        fn zero(_cx: ()) -> Self {
1564            Default::default()
1565        }
1566
1567        fn add_summary(&mut self, summary: &IntegersSummary, _: ()) {
1568            *self = summary.max;
1569        }
1570    }
1571
1572    impl Dimension<'_, IntegersSummary> for Count {
1573        fn zero(_cx: ()) -> Self {
1574            Default::default()
1575        }
1576
1577        fn add_summary(&mut self, summary: &IntegersSummary, _: ()) {
1578            self.0 += summary.count;
1579        }
1580    }
1581
1582    impl SeekTarget<'_, IntegersSummary, IntegersSummary> for Count {
1583        fn cmp(&self, cursor_location: &IntegersSummary, _: ()) -> Ordering {
1584            self.0.cmp(&cursor_location.count)
1585        }
1586    }
1587
1588    impl Dimension<'_, IntegersSummary> for Sum {
1589        fn zero(_cx: ()) -> Self {
1590            Default::default()
1591        }
1592
1593        fn add_summary(&mut self, summary: &IntegersSummary, _: ()) {
1594            self.0 += summary.sum;
1595        }
1596    }
1597}