1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, Priority, PromptButton,
13 PromptLevel, Quad, Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams,
14 Replay, ResizeEdge, SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y,
15 ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style, SubscriberSet,
16 Subscription, SystemWindowTab, SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task,
17 TextStyle, TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle,
18 WindowAppearance, WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations,
19 WindowOptions, WindowParams, WindowTextSystem, point, prelude::*, px, rems, size,
20 transparent_black,
21};
22use anyhow::{Context as _, Result, anyhow};
23use collections::{FxHashMap, FxHashSet};
24#[cfg(target_os = "macos")]
25use core_video::pixel_buffer::CVPixelBuffer;
26use derive_more::{Deref, DerefMut};
27use futures::FutureExt;
28use futures::channel::oneshot;
29use itertools::FoldWhile::{Continue, Done};
30use itertools::Itertools;
31use parking_lot::RwLock;
32use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
33use refineable::Refineable;
34use slotmap::SlotMap;
35use smallvec::SmallVec;
36use std::{
37 any::{Any, TypeId},
38 borrow::Cow,
39 cell::{Cell, RefCell},
40 cmp,
41 fmt::{Debug, Display},
42 hash::{Hash, Hasher},
43 marker::PhantomData,
44 mem,
45 ops::{DerefMut, Range},
46 rc::Rc,
47 sync::{
48 Arc, Weak,
49 atomic::{AtomicUsize, Ordering::SeqCst},
50 },
51 time::{Duration, Instant},
52};
53use util::post_inc;
54use util::{ResultExt, measure};
55use uuid::Uuid;
56
57mod prompts;
58
59use crate::util::atomic_incr_if_not_zero;
60pub use prompts::*;
61
62pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
63
64/// A 6:5 aspect ratio minimum window size to be used for functional,
65/// additional-to-main-Zed windows, like the settings and rules library windows.
66pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
67 width: Pixels(900.),
68 height: Pixels(750.),
69};
70
71/// Represents the two different phases when dispatching events.
72#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
73pub enum DispatchPhase {
74 /// After the capture phase comes the bubble phase, in which mouse event listeners are
75 /// invoked front to back and keyboard event listeners are invoked from the focused element
76 /// to the root of the element tree. This is the phase you'll most commonly want to use when
77 /// registering event listeners.
78 #[default]
79 Bubble,
80 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
81 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
82 /// is used for special purposes such as clearing the "pressed" state for click events. If
83 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
84 /// outside of the immediate region may rely on detecting non-local events during this phase.
85 Capture,
86}
87
88impl DispatchPhase {
89 /// Returns true if this represents the "bubble" phase.
90 #[inline]
91 pub fn bubble(self) -> bool {
92 self == DispatchPhase::Bubble
93 }
94
95 /// Returns true if this represents the "capture" phase.
96 #[inline]
97 pub fn capture(self) -> bool {
98 self == DispatchPhase::Capture
99 }
100}
101
102struct WindowInvalidatorInner {
103 pub dirty: bool,
104 pub draw_phase: DrawPhase,
105 pub dirty_views: FxHashSet<EntityId>,
106}
107
108#[derive(Clone)]
109pub(crate) struct WindowInvalidator {
110 inner: Rc<RefCell<WindowInvalidatorInner>>,
111}
112
113impl WindowInvalidator {
114 pub fn new() -> Self {
115 WindowInvalidator {
116 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
117 dirty: true,
118 draw_phase: DrawPhase::None,
119 dirty_views: FxHashSet::default(),
120 })),
121 }
122 }
123
124 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
125 let mut inner = self.inner.borrow_mut();
126 inner.dirty_views.insert(entity);
127 if inner.draw_phase == DrawPhase::None {
128 inner.dirty = true;
129 cx.push_effect(Effect::Notify { emitter: entity });
130 true
131 } else {
132 false
133 }
134 }
135
136 pub fn is_dirty(&self) -> bool {
137 self.inner.borrow().dirty
138 }
139
140 pub fn set_dirty(&self, dirty: bool) {
141 self.inner.borrow_mut().dirty = dirty
142 }
143
144 pub fn set_phase(&self, phase: DrawPhase) {
145 self.inner.borrow_mut().draw_phase = phase
146 }
147
148 pub fn take_views(&self) -> FxHashSet<EntityId> {
149 mem::take(&mut self.inner.borrow_mut().dirty_views)
150 }
151
152 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
153 self.inner.borrow_mut().dirty_views = views;
154 }
155
156 pub fn not_drawing(&self) -> bool {
157 self.inner.borrow().draw_phase == DrawPhase::None
158 }
159
160 #[track_caller]
161 pub fn debug_assert_paint(&self) {
162 debug_assert!(
163 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
164 "this method can only be called during paint"
165 );
166 }
167
168 #[track_caller]
169 pub fn debug_assert_prepaint(&self) {
170 debug_assert!(
171 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
172 "this method can only be called during request_layout, or prepaint"
173 );
174 }
175
176 #[track_caller]
177 pub fn debug_assert_paint_or_prepaint(&self) {
178 debug_assert!(
179 matches!(
180 self.inner.borrow().draw_phase,
181 DrawPhase::Paint | DrawPhase::Prepaint
182 ),
183 "this method can only be called during request_layout, prepaint, or paint"
184 );
185 }
186}
187
188type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
189
190pub(crate) type AnyWindowFocusListener =
191 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
192
193pub(crate) struct WindowFocusEvent {
194 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
195 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
196}
197
198impl WindowFocusEvent {
199 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
200 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
201 }
202
203 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
204 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
205 }
206}
207
208/// This is provided when subscribing for `Context::on_focus_out` events.
209pub struct FocusOutEvent {
210 /// A weak focus handle representing what was blurred.
211 pub blurred: WeakFocusHandle,
212}
213
214slotmap::new_key_type! {
215 /// A globally unique identifier for a focusable element.
216 pub struct FocusId;
217}
218
219thread_local! {
220 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
221}
222
223/// Returned when the element arena has been used and so must be cleared before the next draw.
224#[must_use]
225pub struct ArenaClearNeeded;
226
227impl ArenaClearNeeded {
228 /// Clear the element arena.
229 pub fn clear(self) {
230 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
231 element_arena.clear();
232 });
233 }
234}
235
236pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
237pub(crate) struct FocusRef {
238 pub(crate) ref_count: AtomicUsize,
239 pub(crate) tab_index: isize,
240 pub(crate) tab_stop: bool,
241}
242
243impl FocusId {
244 /// Obtains whether the element associated with this handle is currently focused.
245 pub fn is_focused(&self, window: &Window) -> bool {
246 window.focus == Some(*self)
247 }
248
249 /// Obtains whether the element associated with this handle contains the focused
250 /// element or is itself focused.
251 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
252 window
253 .focused(cx)
254 .is_some_and(|focused| self.contains(focused.id, window))
255 }
256
257 /// Obtains whether the element associated with this handle is contained within the
258 /// focused element or is itself focused.
259 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
260 let focused = window.focused(cx);
261 focused.is_some_and(|focused| focused.id.contains(*self, window))
262 }
263
264 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
265 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
266 window
267 .rendered_frame
268 .dispatch_tree
269 .focus_contains(*self, other)
270 }
271}
272
273/// A handle which can be used to track and manipulate the focused element in a window.
274pub struct FocusHandle {
275 pub(crate) id: FocusId,
276 handles: Arc<FocusMap>,
277 /// The index of this element in the tab order.
278 pub tab_index: isize,
279 /// Whether this element can be focused by tab navigation.
280 pub tab_stop: bool,
281}
282
283impl std::fmt::Debug for FocusHandle {
284 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
285 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
286 }
287}
288
289impl FocusHandle {
290 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
291 let id = handles.write().insert(FocusRef {
292 ref_count: AtomicUsize::new(1),
293 tab_index: 0,
294 tab_stop: false,
295 });
296
297 Self {
298 id,
299 tab_index: 0,
300 tab_stop: false,
301 handles: handles.clone(),
302 }
303 }
304
305 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
306 let lock = handles.read();
307 let focus = lock.get(id)?;
308 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
309 return None;
310 }
311 Some(Self {
312 id,
313 tab_index: focus.tab_index,
314 tab_stop: focus.tab_stop,
315 handles: handles.clone(),
316 })
317 }
318
319 /// Sets the tab index of the element associated with this handle.
320 pub fn tab_index(mut self, index: isize) -> Self {
321 self.tab_index = index;
322 if let Some(focus) = self.handles.write().get_mut(self.id) {
323 focus.tab_index = index;
324 }
325 self
326 }
327
328 /// Sets whether the element associated with this handle is a tab stop.
329 ///
330 /// When `false`, the element will not be included in the tab order.
331 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
332 self.tab_stop = tab_stop;
333 if let Some(focus) = self.handles.write().get_mut(self.id) {
334 focus.tab_stop = tab_stop;
335 }
336 self
337 }
338
339 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
340 pub fn downgrade(&self) -> WeakFocusHandle {
341 WeakFocusHandle {
342 id: self.id,
343 handles: Arc::downgrade(&self.handles),
344 }
345 }
346
347 /// Moves the focus to the element associated with this handle.
348 pub fn focus(&self, window: &mut Window, cx: &mut App) {
349 window.focus(self, cx)
350 }
351
352 /// Obtains whether the element associated with this handle is currently focused.
353 pub fn is_focused(&self, window: &Window) -> bool {
354 self.id.is_focused(window)
355 }
356
357 /// Obtains whether the element associated with this handle contains the focused
358 /// element or is itself focused.
359 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
360 self.id.contains_focused(window, cx)
361 }
362
363 /// Obtains whether the element associated with this handle is contained within the
364 /// focused element or is itself focused.
365 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
366 self.id.within_focused(window, cx)
367 }
368
369 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
370 pub fn contains(&self, other: &Self, window: &Window) -> bool {
371 self.id.contains(other.id, window)
372 }
373
374 /// Dispatch an action on the element that rendered this focus handle
375 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
376 if let Some(node_id) = window
377 .rendered_frame
378 .dispatch_tree
379 .focusable_node_id(self.id)
380 {
381 window.dispatch_action_on_node(node_id, action, cx)
382 }
383 }
384}
385
386impl Clone for FocusHandle {
387 fn clone(&self) -> Self {
388 Self::for_id(self.id, &self.handles).unwrap()
389 }
390}
391
392impl PartialEq for FocusHandle {
393 fn eq(&self, other: &Self) -> bool {
394 self.id == other.id
395 }
396}
397
398impl Eq for FocusHandle {}
399
400impl Drop for FocusHandle {
401 fn drop(&mut self) {
402 self.handles
403 .read()
404 .get(self.id)
405 .unwrap()
406 .ref_count
407 .fetch_sub(1, SeqCst);
408 }
409}
410
411/// A weak reference to a focus handle.
412#[derive(Clone, Debug)]
413pub struct WeakFocusHandle {
414 pub(crate) id: FocusId,
415 pub(crate) handles: Weak<FocusMap>,
416}
417
418impl WeakFocusHandle {
419 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
420 pub fn upgrade(&self) -> Option<FocusHandle> {
421 let handles = self.handles.upgrade()?;
422 FocusHandle::for_id(self.id, &handles)
423 }
424}
425
426impl PartialEq for WeakFocusHandle {
427 fn eq(&self, other: &WeakFocusHandle) -> bool {
428 self.id == other.id
429 }
430}
431
432impl Eq for WeakFocusHandle {}
433
434impl PartialEq<FocusHandle> for WeakFocusHandle {
435 fn eq(&self, other: &FocusHandle) -> bool {
436 self.id == other.id
437 }
438}
439
440impl PartialEq<WeakFocusHandle> for FocusHandle {
441 fn eq(&self, other: &WeakFocusHandle) -> bool {
442 self.id == other.id
443 }
444}
445
446/// Focusable allows users of your view to easily
447/// focus it (using window.focus_view(cx, view))
448pub trait Focusable: 'static {
449 /// Returns the focus handle associated with this view.
450 fn focus_handle(&self, cx: &App) -> FocusHandle;
451}
452
453impl<V: Focusable> Focusable for Entity<V> {
454 fn focus_handle(&self, cx: &App) -> FocusHandle {
455 self.read(cx).focus_handle(cx)
456 }
457}
458
459/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
460/// where the lifecycle of the view is handled by another view.
461pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
462
463impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
464
465/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
466pub struct DismissEvent;
467
468type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
469
470pub(crate) type AnyMouseListener =
471 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
472
473#[derive(Clone)]
474pub(crate) struct CursorStyleRequest {
475 pub(crate) hitbox_id: Option<HitboxId>,
476 pub(crate) style: CursorStyle,
477}
478
479#[derive(Default, Eq, PartialEq)]
480pub(crate) struct HitTest {
481 pub(crate) ids: SmallVec<[HitboxId; 8]>,
482 pub(crate) hover_hitbox_count: usize,
483}
484
485/// A type of window control area that corresponds to the platform window.
486#[derive(Clone, Copy, Debug, Eq, PartialEq)]
487pub enum WindowControlArea {
488 /// An area that allows dragging of the platform window.
489 Drag,
490 /// An area that allows closing of the platform window.
491 Close,
492 /// An area that allows maximizing of the platform window.
493 Max,
494 /// An area that allows minimizing of the platform window.
495 Min,
496}
497
498/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
499#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
500pub struct HitboxId(u64);
501
502impl HitboxId {
503 /// Checks if the hitbox with this ID is currently hovered. Except when handling
504 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
505 /// events or paint hover styles.
506 ///
507 /// See [`Hitbox::is_hovered`] for details.
508 pub fn is_hovered(self, window: &Window) -> bool {
509 let hit_test = &window.mouse_hit_test;
510 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
511 if self == *id {
512 return true;
513 }
514 }
515 false
516 }
517
518 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
519 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
520 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
521 /// this distinction.
522 pub fn should_handle_scroll(self, window: &Window) -> bool {
523 window.mouse_hit_test.ids.contains(&self)
524 }
525
526 fn next(mut self) -> HitboxId {
527 HitboxId(self.0.wrapping_add(1))
528 }
529}
530
531/// A rectangular region that potentially blocks hitboxes inserted prior.
532/// See [Window::insert_hitbox] for more details.
533#[derive(Clone, Debug, Deref)]
534pub struct Hitbox {
535 /// A unique identifier for the hitbox.
536 pub id: HitboxId,
537 /// The bounds of the hitbox.
538 #[deref]
539 pub bounds: Bounds<Pixels>,
540 /// The content mask when the hitbox was inserted.
541 pub content_mask: ContentMask<Pixels>,
542 /// Flags that specify hitbox behavior.
543 pub behavior: HitboxBehavior,
544}
545
546impl Hitbox {
547 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
548 /// typically what you want when determining whether to handle mouse events or paint hover
549 /// styles.
550 ///
551 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
552 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
553 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
554 ///
555 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
556 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
557 /// non-interactive while still allowing scrolling. More abstractly, this is because
558 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
559 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
560 /// container.
561 pub fn is_hovered(&self, window: &Window) -> bool {
562 self.id.is_hovered(window)
563 }
564
565 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
566 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
567 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
568 ///
569 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
570 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
571 pub fn should_handle_scroll(&self, window: &Window) -> bool {
572 self.id.should_handle_scroll(window)
573 }
574}
575
576/// How the hitbox affects mouse behavior.
577#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
578pub enum HitboxBehavior {
579 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
580 #[default]
581 Normal,
582
583 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
584 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
585 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
586 /// [`InteractiveElement::occlude`].
587 ///
588 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
589 /// bubble-phase handler for every mouse event type:
590 ///
591 /// ```ignore
592 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
593 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
594 /// cx.stop_propagation();
595 /// }
596 /// })
597 /// ```
598 ///
599 /// This has effects beyond event handling - any use of hitbox checking, such as hover
600 /// styles and tooltips. These other behaviors are the main point of this mechanism. An
601 /// alternative might be to not affect mouse event handling - but this would allow
602 /// inconsistent UI where clicks and moves interact with elements that are not considered to
603 /// be hovered.
604 BlockMouse,
605
606 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
607 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
608 /// interaction except scroll events to be ignored - see the documentation of
609 /// [`Hitbox::is_hovered`] for details. This flag is set by
610 /// [`InteractiveElement::block_mouse_except_scroll`].
611 ///
612 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
613 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
614 ///
615 /// ```ignore
616 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
617 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
618 /// cx.stop_propagation();
619 /// }
620 /// })
621 /// ```
622 ///
623 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
624 /// handled differently than other mouse events. If also blocking these scroll events is
625 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
626 ///
627 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
628 /// hover styles and tooltips. These other behaviors are the main point of this mechanism.
629 /// An alternative might be to not affect mouse event handling - but this would allow
630 /// inconsistent UI where clicks and moves interact with elements that are not considered to
631 /// be hovered.
632 BlockMouseExceptScroll,
633}
634
635/// An identifier for a tooltip.
636#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
637pub struct TooltipId(usize);
638
639impl TooltipId {
640 /// Checks if the tooltip is currently hovered.
641 pub fn is_hovered(&self, window: &Window) -> bool {
642 window
643 .tooltip_bounds
644 .as_ref()
645 .is_some_and(|tooltip_bounds| {
646 tooltip_bounds.id == *self
647 && tooltip_bounds.bounds.contains(&window.mouse_position())
648 })
649 }
650}
651
652pub(crate) struct TooltipBounds {
653 id: TooltipId,
654 bounds: Bounds<Pixels>,
655}
656
657#[derive(Clone)]
658pub(crate) struct TooltipRequest {
659 id: TooltipId,
660 tooltip: AnyTooltip,
661}
662
663pub(crate) struct DeferredDraw {
664 current_view: EntityId,
665 priority: usize,
666 parent_node: DispatchNodeId,
667 element_id_stack: SmallVec<[ElementId; 32]>,
668 text_style_stack: Vec<TextStyleRefinement>,
669 element: Option<AnyElement>,
670 absolute_offset: Point<Pixels>,
671 prepaint_range: Range<PrepaintStateIndex>,
672 paint_range: Range<PaintIndex>,
673}
674
675pub(crate) struct Frame {
676 pub(crate) focus: Option<FocusId>,
677 pub(crate) window_active: bool,
678 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
679 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
680 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
681 pub(crate) dispatch_tree: DispatchTree,
682 pub(crate) scene: Scene,
683 pub(crate) hitboxes: Vec<Hitbox>,
684 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
685 pub(crate) deferred_draws: Vec<DeferredDraw>,
686 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
687 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
688 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
689 #[cfg(any(test, feature = "test-support"))]
690 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
691 #[cfg(any(feature = "inspector", debug_assertions))]
692 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
693 #[cfg(any(feature = "inspector", debug_assertions))]
694 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
695 pub(crate) tab_stops: TabStopMap,
696}
697
698#[derive(Clone, Default)]
699pub(crate) struct PrepaintStateIndex {
700 hitboxes_index: usize,
701 tooltips_index: usize,
702 deferred_draws_index: usize,
703 dispatch_tree_index: usize,
704 accessed_element_states_index: usize,
705 line_layout_index: LineLayoutIndex,
706}
707
708#[derive(Clone, Default)]
709pub(crate) struct PaintIndex {
710 scene_index: usize,
711 mouse_listeners_index: usize,
712 input_handlers_index: usize,
713 cursor_styles_index: usize,
714 accessed_element_states_index: usize,
715 tab_handle_index: usize,
716 line_layout_index: LineLayoutIndex,
717}
718
719impl Frame {
720 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
721 Frame {
722 focus: None,
723 window_active: false,
724 element_states: FxHashMap::default(),
725 accessed_element_states: Vec::new(),
726 mouse_listeners: Vec::new(),
727 dispatch_tree,
728 scene: Scene::default(),
729 hitboxes: Vec::new(),
730 window_control_hitboxes: Vec::new(),
731 deferred_draws: Vec::new(),
732 input_handlers: Vec::new(),
733 tooltip_requests: Vec::new(),
734 cursor_styles: Vec::new(),
735
736 #[cfg(any(test, feature = "test-support"))]
737 debug_bounds: FxHashMap::default(),
738
739 #[cfg(any(feature = "inspector", debug_assertions))]
740 next_inspector_instance_ids: FxHashMap::default(),
741
742 #[cfg(any(feature = "inspector", debug_assertions))]
743 inspector_hitboxes: FxHashMap::default(),
744 tab_stops: TabStopMap::default(),
745 }
746 }
747
748 pub(crate) fn clear(&mut self) {
749 self.element_states.clear();
750 self.accessed_element_states.clear();
751 self.mouse_listeners.clear();
752 self.dispatch_tree.clear();
753 self.scene.clear();
754 self.input_handlers.clear();
755 self.tooltip_requests.clear();
756 self.cursor_styles.clear();
757 self.hitboxes.clear();
758 self.window_control_hitboxes.clear();
759 self.deferred_draws.clear();
760 self.tab_stops.clear();
761 self.focus = None;
762
763 #[cfg(any(feature = "inspector", debug_assertions))]
764 {
765 self.next_inspector_instance_ids.clear();
766 self.inspector_hitboxes.clear();
767 }
768 }
769
770 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
771 self.cursor_styles
772 .iter()
773 .rev()
774 .fold_while(None, |style, request| match request.hitbox_id {
775 None => Done(Some(request.style)),
776 Some(hitbox_id) => Continue(
777 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
778 ),
779 })
780 .into_inner()
781 }
782
783 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
784 let mut set_hover_hitbox_count = false;
785 let mut hit_test = HitTest::default();
786 for hitbox in self.hitboxes.iter().rev() {
787 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
788 if bounds.contains(&position) {
789 hit_test.ids.push(hitbox.id);
790 if !set_hover_hitbox_count
791 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
792 {
793 hit_test.hover_hitbox_count = hit_test.ids.len();
794 set_hover_hitbox_count = true;
795 }
796 if hitbox.behavior == HitboxBehavior::BlockMouse {
797 break;
798 }
799 }
800 }
801 if !set_hover_hitbox_count {
802 hit_test.hover_hitbox_count = hit_test.ids.len();
803 }
804 hit_test
805 }
806
807 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
808 self.focus
809 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
810 .unwrap_or_default()
811 }
812
813 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
814 for element_state_key in &self.accessed_element_states {
815 if let Some((element_state_key, element_state)) =
816 prev_frame.element_states.remove_entry(element_state_key)
817 {
818 self.element_states.insert(element_state_key, element_state);
819 }
820 }
821
822 self.scene.finish();
823 }
824}
825
826#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
827enum InputModality {
828 Mouse,
829 Keyboard,
830}
831
832/// Holds the state for a specific window.
833pub struct Window {
834 pub(crate) handle: AnyWindowHandle,
835 pub(crate) invalidator: WindowInvalidator,
836 pub(crate) removed: bool,
837 pub(crate) platform_window: Box<dyn PlatformWindow>,
838 display_id: Option<DisplayId>,
839 sprite_atlas: Arc<dyn PlatformAtlas>,
840 text_system: Arc<WindowTextSystem>,
841 rem_size: Pixels,
842 /// The stack of override values for the window's rem size.
843 ///
844 /// This is used by `with_rem_size` to allow rendering an element tree with
845 /// a given rem size.
846 rem_size_override_stack: SmallVec<[Pixels; 8]>,
847 pub(crate) viewport_size: Size<Pixels>,
848 layout_engine: Option<TaffyLayoutEngine>,
849 pub(crate) root: Option<AnyView>,
850 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
851 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
852 pub(crate) rendered_entity_stack: Vec<EntityId>,
853 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
854 pub(crate) element_opacity: f32,
855 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
856 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
857 pub(crate) image_cache_stack: Vec<AnyImageCache>,
858 pub(crate) rendered_frame: Frame,
859 pub(crate) next_frame: Frame,
860 next_hitbox_id: HitboxId,
861 pub(crate) next_tooltip_id: TooltipId,
862 pub(crate) tooltip_bounds: Option<TooltipBounds>,
863 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
864 pub(crate) dirty_views: FxHashSet<EntityId>,
865 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
866 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
867 default_prevented: bool,
868 mouse_position: Point<Pixels>,
869 mouse_hit_test: HitTest,
870 modifiers: Modifiers,
871 capslock: Capslock,
872 scale_factor: f32,
873 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
874 appearance: WindowAppearance,
875 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
876 active: Rc<Cell<bool>>,
877 hovered: Rc<Cell<bool>>,
878 pub(crate) needs_present: Rc<Cell<bool>>,
879 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
880 last_input_modality: InputModality,
881 pub(crate) refreshing: bool,
882 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
883 pub(crate) focus: Option<FocusId>,
884 focus_enabled: bool,
885 pending_input: Option<PendingInput>,
886 pending_modifier: ModifierState,
887 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
888 prompt: Option<RenderablePromptHandle>,
889 pub(crate) client_inset: Option<Pixels>,
890 #[cfg(any(feature = "inspector", debug_assertions))]
891 inspector: Option<Entity<Inspector>>,
892}
893
894#[derive(Clone, Debug, Default)]
895struct ModifierState {
896 modifiers: Modifiers,
897 saw_keystroke: bool,
898}
899
900#[derive(Clone, Copy, Debug, Eq, PartialEq)]
901pub(crate) enum DrawPhase {
902 None,
903 Prepaint,
904 Paint,
905 Focus,
906}
907
908#[derive(Default, Debug)]
909struct PendingInput {
910 keystrokes: SmallVec<[Keystroke; 1]>,
911 focus: Option<FocusId>,
912 timer: Option<Task<()>>,
913 needs_timeout: bool,
914}
915
916pub(crate) struct ElementStateBox {
917 pub(crate) inner: Box<dyn Any>,
918 #[cfg(debug_assertions)]
919 pub(crate) type_name: &'static str,
920}
921
922fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> WindowBounds {
923 // TODO, BUG: if you open a window with the currently active window
924 // on the stack, this will erroneously fallback to `None`
925 //
926 // TODO these should be the initial window bounds not considering maximized/fullscreen
927 let active_window_bounds = cx
928 .active_window()
929 .and_then(|w| w.update(cx, |_, window, _| window.window_bounds()).ok());
930
931 const CASCADE_OFFSET: f32 = 25.0;
932
933 let display = display_id
934 .map(|id| cx.find_display(id))
935 .unwrap_or_else(|| cx.primary_display());
936
937 let default_placement = || Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE);
938
939 // Use visible_bounds to exclude taskbar/dock areas
940 let display_bounds = display
941 .as_ref()
942 .map(|d| d.visible_bounds())
943 .unwrap_or_else(default_placement);
944
945 let (
946 Bounds {
947 origin: base_origin,
948 size: base_size,
949 },
950 window_bounds_ctor,
951 ): (_, fn(Bounds<Pixels>) -> WindowBounds) = match active_window_bounds {
952 Some(bounds) => match bounds {
953 WindowBounds::Windowed(bounds) => (bounds, WindowBounds::Windowed),
954 WindowBounds::Maximized(bounds) => (bounds, WindowBounds::Maximized),
955 WindowBounds::Fullscreen(bounds) => (bounds, WindowBounds::Fullscreen),
956 },
957 None => (
958 display
959 .as_ref()
960 .map(|d| d.default_bounds())
961 .unwrap_or_else(default_placement),
962 WindowBounds::Windowed,
963 ),
964 };
965
966 let cascade_offset = point(px(CASCADE_OFFSET), px(CASCADE_OFFSET));
967 let proposed_origin = base_origin + cascade_offset;
968 let proposed_bounds = Bounds::new(proposed_origin, base_size);
969
970 let display_right = display_bounds.origin.x + display_bounds.size.width;
971 let display_bottom = display_bounds.origin.y + display_bounds.size.height;
972 let window_right = proposed_bounds.origin.x + proposed_bounds.size.width;
973 let window_bottom = proposed_bounds.origin.y + proposed_bounds.size.height;
974
975 let fits_horizontally = window_right <= display_right;
976 let fits_vertically = window_bottom <= display_bottom;
977
978 let final_origin = match (fits_horizontally, fits_vertically) {
979 (true, true) => proposed_origin,
980 (false, true) => point(display_bounds.origin.x, base_origin.y),
981 (true, false) => point(base_origin.x, display_bounds.origin.y),
982 (false, false) => display_bounds.origin,
983 };
984 window_bounds_ctor(Bounds::new(final_origin, base_size))
985}
986
987impl Window {
988 pub(crate) fn new(
989 handle: AnyWindowHandle,
990 options: WindowOptions,
991 cx: &mut App,
992 ) -> Result<Self> {
993 let WindowOptions {
994 window_bounds,
995 titlebar,
996 focus,
997 show,
998 kind,
999 is_movable,
1000 is_resizable,
1001 is_minimizable,
1002 display_id,
1003 window_background,
1004 app_id,
1005 window_min_size,
1006 window_decorations,
1007 #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
1008 tabbing_identifier,
1009 } = options;
1010
1011 let window_bounds = window_bounds.unwrap_or_else(|| default_bounds(display_id, cx));
1012 let mut platform_window = cx.platform.open_window(
1013 handle,
1014 WindowParams {
1015 bounds: window_bounds.get_bounds(),
1016 titlebar,
1017 kind,
1018 is_movable,
1019 is_resizable,
1020 is_minimizable,
1021 focus,
1022 show,
1023 display_id,
1024 window_min_size,
1025 #[cfg(target_os = "macos")]
1026 tabbing_identifier,
1027 },
1028 )?;
1029
1030 let tab_bar_visible = platform_window.tab_bar_visible();
1031 SystemWindowTabController::init_visible(cx, tab_bar_visible);
1032 if let Some(tabs) = platform_window.tabbed_windows() {
1033 SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
1034 }
1035
1036 let display_id = platform_window.display().map(|display| display.id());
1037 let sprite_atlas = platform_window.sprite_atlas();
1038 let mouse_position = platform_window.mouse_position();
1039 let modifiers = platform_window.modifiers();
1040 let capslock = platform_window.capslock();
1041 let content_size = platform_window.content_size();
1042 let scale_factor = platform_window.scale_factor();
1043 let appearance = platform_window.appearance();
1044 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
1045 let invalidator = WindowInvalidator::new();
1046 let active = Rc::new(Cell::new(platform_window.is_active()));
1047 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1048 let needs_present = Rc::new(Cell::new(false));
1049 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1050 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
1051
1052 platform_window
1053 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1054 platform_window.set_background_appearance(window_background);
1055
1056 match window_bounds {
1057 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1058 WindowBounds::Maximized(_) => platform_window.zoom(),
1059 WindowBounds::Windowed(_) => {}
1060 }
1061
1062 platform_window.on_close(Box::new({
1063 let window_id = handle.window_id();
1064 let mut cx = cx.to_async();
1065 move || {
1066 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1067 let _ = cx.update(|cx| {
1068 SystemWindowTabController::remove_tab(cx, window_id);
1069 });
1070 }
1071 }));
1072 platform_window.on_request_frame(Box::new({
1073 let mut cx = cx.to_async();
1074 let invalidator = invalidator.clone();
1075 let active = active.clone();
1076 let needs_present = needs_present.clone();
1077 let next_frame_callbacks = next_frame_callbacks.clone();
1078 let last_input_timestamp = last_input_timestamp.clone();
1079 move |request_frame_options| {
1080 let next_frame_callbacks = next_frame_callbacks.take();
1081 if !next_frame_callbacks.is_empty() {
1082 handle
1083 .update(&mut cx, |_, window, cx| {
1084 for callback in next_frame_callbacks {
1085 callback(window, cx);
1086 }
1087 })
1088 .log_err();
1089 }
1090
1091 // Keep presenting the current scene for 1 extra second since the
1092 // last input to prevent the display from underclocking the refresh rate.
1093 let needs_present = request_frame_options.require_presentation
1094 || needs_present.get()
1095 || (active.get()
1096 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1097
1098 if invalidator.is_dirty() || request_frame_options.force_render {
1099 measure("frame duration", || {
1100 handle
1101 .update(&mut cx, |_, window, cx| {
1102 let arena_clear_needed = window.draw(cx);
1103 window.present();
1104 // drop the arena elements after present to reduce latency
1105 arena_clear_needed.clear();
1106 })
1107 .log_err();
1108 })
1109 } else if needs_present {
1110 handle
1111 .update(&mut cx, |_, window, _| window.present())
1112 .log_err();
1113 }
1114
1115 handle
1116 .update(&mut cx, |_, window, _| {
1117 window.complete_frame();
1118 })
1119 .log_err();
1120 }
1121 }));
1122 platform_window.on_resize(Box::new({
1123 let mut cx = cx.to_async();
1124 move |_, _| {
1125 handle
1126 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1127 .log_err();
1128 }
1129 }));
1130 platform_window.on_moved(Box::new({
1131 let mut cx = cx.to_async();
1132 move || {
1133 handle
1134 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1135 .log_err();
1136 }
1137 }));
1138 platform_window.on_appearance_changed(Box::new({
1139 let mut cx = cx.to_async();
1140 move || {
1141 handle
1142 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1143 .log_err();
1144 }
1145 }));
1146 platform_window.on_active_status_change(Box::new({
1147 let mut cx = cx.to_async();
1148 move |active| {
1149 handle
1150 .update(&mut cx, |_, window, cx| {
1151 window.active.set(active);
1152 window.modifiers = window.platform_window.modifiers();
1153 window.capslock = window.platform_window.capslock();
1154 window
1155 .activation_observers
1156 .clone()
1157 .retain(&(), |callback| callback(window, cx));
1158
1159 window.bounds_changed(cx);
1160 window.refresh();
1161
1162 SystemWindowTabController::update_last_active(cx, window.handle.id);
1163 })
1164 .log_err();
1165 }
1166 }));
1167 platform_window.on_hover_status_change(Box::new({
1168 let mut cx = cx.to_async();
1169 move |active| {
1170 handle
1171 .update(&mut cx, |_, window, _| {
1172 window.hovered.set(active);
1173 window.refresh();
1174 })
1175 .log_err();
1176 }
1177 }));
1178 platform_window.on_input({
1179 let mut cx = cx.to_async();
1180 Box::new(move |event| {
1181 handle
1182 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1183 .log_err()
1184 .unwrap_or(DispatchEventResult::default())
1185 })
1186 });
1187 platform_window.on_hit_test_window_control({
1188 let mut cx = cx.to_async();
1189 Box::new(move || {
1190 handle
1191 .update(&mut cx, |_, window, _cx| {
1192 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1193 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1194 return Some(*area);
1195 }
1196 }
1197 None
1198 })
1199 .log_err()
1200 .unwrap_or(None)
1201 })
1202 });
1203 platform_window.on_move_tab_to_new_window({
1204 let mut cx = cx.to_async();
1205 Box::new(move || {
1206 handle
1207 .update(&mut cx, |_, _window, cx| {
1208 SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1209 })
1210 .log_err();
1211 })
1212 });
1213 platform_window.on_merge_all_windows({
1214 let mut cx = cx.to_async();
1215 Box::new(move || {
1216 handle
1217 .update(&mut cx, |_, _window, cx| {
1218 SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1219 })
1220 .log_err();
1221 })
1222 });
1223 platform_window.on_select_next_tab({
1224 let mut cx = cx.to_async();
1225 Box::new(move || {
1226 handle
1227 .update(&mut cx, |_, _window, cx| {
1228 SystemWindowTabController::select_next_tab(cx, handle.window_id());
1229 })
1230 .log_err();
1231 })
1232 });
1233 platform_window.on_select_previous_tab({
1234 let mut cx = cx.to_async();
1235 Box::new(move || {
1236 handle
1237 .update(&mut cx, |_, _window, cx| {
1238 SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1239 })
1240 .log_err();
1241 })
1242 });
1243 platform_window.on_toggle_tab_bar({
1244 let mut cx = cx.to_async();
1245 Box::new(move || {
1246 handle
1247 .update(&mut cx, |_, window, cx| {
1248 let tab_bar_visible = window.platform_window.tab_bar_visible();
1249 SystemWindowTabController::set_visible(cx, tab_bar_visible);
1250 })
1251 .log_err();
1252 })
1253 });
1254
1255 if let Some(app_id) = app_id {
1256 platform_window.set_app_id(&app_id);
1257 }
1258
1259 platform_window.map_window().unwrap();
1260
1261 Ok(Window {
1262 handle,
1263 invalidator,
1264 removed: false,
1265 platform_window,
1266 display_id,
1267 sprite_atlas,
1268 text_system,
1269 rem_size: px(16.),
1270 rem_size_override_stack: SmallVec::new(),
1271 viewport_size: content_size,
1272 layout_engine: Some(TaffyLayoutEngine::new()),
1273 root: None,
1274 element_id_stack: SmallVec::default(),
1275 text_style_stack: Vec::new(),
1276 rendered_entity_stack: Vec::new(),
1277 element_offset_stack: Vec::new(),
1278 content_mask_stack: Vec::new(),
1279 element_opacity: 1.0,
1280 requested_autoscroll: None,
1281 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1282 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1283 next_frame_callbacks,
1284 next_hitbox_id: HitboxId(0),
1285 next_tooltip_id: TooltipId::default(),
1286 tooltip_bounds: None,
1287 dirty_views: FxHashSet::default(),
1288 focus_listeners: SubscriberSet::new(),
1289 focus_lost_listeners: SubscriberSet::new(),
1290 default_prevented: true,
1291 mouse_position,
1292 mouse_hit_test: HitTest::default(),
1293 modifiers,
1294 capslock,
1295 scale_factor,
1296 bounds_observers: SubscriberSet::new(),
1297 appearance,
1298 appearance_observers: SubscriberSet::new(),
1299 active,
1300 hovered,
1301 needs_present,
1302 last_input_timestamp,
1303 last_input_modality: InputModality::Mouse,
1304 refreshing: false,
1305 activation_observers: SubscriberSet::new(),
1306 focus: None,
1307 focus_enabled: true,
1308 pending_input: None,
1309 pending_modifier: ModifierState::default(),
1310 pending_input_observers: SubscriberSet::new(),
1311 prompt: None,
1312 client_inset: None,
1313 image_cache_stack: Vec::new(),
1314 #[cfg(any(feature = "inspector", debug_assertions))]
1315 inspector: None,
1316 })
1317 }
1318
1319 pub(crate) fn new_focus_listener(
1320 &self,
1321 value: AnyWindowFocusListener,
1322 ) -> (Subscription, impl FnOnce() + use<>) {
1323 self.focus_listeners.insert((), value)
1324 }
1325}
1326
1327#[derive(Clone, Debug, Default, PartialEq, Eq)]
1328pub(crate) struct DispatchEventResult {
1329 pub propagate: bool,
1330 pub default_prevented: bool,
1331}
1332
1333/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1334/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1335/// to leave room to support more complex shapes in the future.
1336#[derive(Clone, Debug, Default, PartialEq, Eq)]
1337#[repr(C)]
1338pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1339 /// The bounds
1340 pub bounds: Bounds<P>,
1341}
1342
1343impl ContentMask<Pixels> {
1344 /// Scale the content mask's pixel units by the given scaling factor.
1345 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1346 ContentMask {
1347 bounds: self.bounds.scale(factor),
1348 }
1349 }
1350
1351 /// Intersect the content mask with the given content mask.
1352 pub fn intersect(&self, other: &Self) -> Self {
1353 let bounds = self.bounds.intersect(&other.bounds);
1354 ContentMask { bounds }
1355 }
1356}
1357
1358impl Window {
1359 fn mark_view_dirty(&mut self, view_id: EntityId) {
1360 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1361 // should already be dirty.
1362 for view_id in self
1363 .rendered_frame
1364 .dispatch_tree
1365 .view_path_reversed(view_id)
1366 {
1367 if !self.dirty_views.insert(view_id) {
1368 break;
1369 }
1370 }
1371 }
1372
1373 /// Registers a callback to be invoked when the window appearance changes.
1374 pub fn observe_window_appearance(
1375 &self,
1376 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1377 ) -> Subscription {
1378 let (subscription, activate) = self.appearance_observers.insert(
1379 (),
1380 Box::new(move |window, cx| {
1381 callback(window, cx);
1382 true
1383 }),
1384 );
1385 activate();
1386 subscription
1387 }
1388
1389 /// Replaces the root entity of the window with a new one.
1390 pub fn replace_root<E>(
1391 &mut self,
1392 cx: &mut App,
1393 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1394 ) -> Entity<E>
1395 where
1396 E: 'static + Render,
1397 {
1398 let view = cx.new(|cx| build_view(self, cx));
1399 self.root = Some(view.clone().into());
1400 self.refresh();
1401 view
1402 }
1403
1404 /// Returns the root entity of the window, if it has one.
1405 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1406 where
1407 E: 'static + Render,
1408 {
1409 self.root
1410 .as_ref()
1411 .map(|view| view.clone().downcast::<E>().ok())
1412 }
1413
1414 /// Obtain a handle to the window that belongs to this context.
1415 pub fn window_handle(&self) -> AnyWindowHandle {
1416 self.handle
1417 }
1418
1419 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1420 pub fn refresh(&mut self) {
1421 if self.invalidator.not_drawing() {
1422 self.refreshing = true;
1423 self.invalidator.set_dirty(true);
1424 }
1425 }
1426
1427 /// Close this window.
1428 pub fn remove_window(&mut self) {
1429 self.removed = true;
1430 }
1431
1432 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1433 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1434 self.focus
1435 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1436 }
1437
1438 /// Move focus to the element associated with the given [`FocusHandle`].
1439 pub fn focus(&mut self, handle: &FocusHandle, cx: &mut App) {
1440 if !self.focus_enabled || self.focus == Some(handle.id) {
1441 return;
1442 }
1443
1444 self.focus = Some(handle.id);
1445 self.clear_pending_keystrokes();
1446
1447 // Avoid re-entrant entity updates by deferring observer notifications to the end of the
1448 // current effect cycle, and only for this window.
1449 let window_handle = self.handle;
1450 cx.defer(move |cx| {
1451 window_handle
1452 .update(cx, |_, window, cx| {
1453 window.pending_input_changed(cx);
1454 })
1455 .ok();
1456 });
1457
1458 self.refresh();
1459 }
1460
1461 /// Remove focus from all elements within this context's window.
1462 pub fn blur(&mut self) {
1463 if !self.focus_enabled {
1464 return;
1465 }
1466
1467 self.focus = None;
1468 self.refresh();
1469 }
1470
1471 /// Blur the window and don't allow anything in it to be focused again.
1472 pub fn disable_focus(&mut self) {
1473 self.blur();
1474 self.focus_enabled = false;
1475 }
1476
1477 /// Move focus to next tab stop.
1478 pub fn focus_next(&mut self, cx: &mut App) {
1479 if !self.focus_enabled {
1480 return;
1481 }
1482
1483 if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1484 self.focus(&handle, cx)
1485 }
1486 }
1487
1488 /// Move focus to previous tab stop.
1489 pub fn focus_prev(&mut self, cx: &mut App) {
1490 if !self.focus_enabled {
1491 return;
1492 }
1493
1494 if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1495 self.focus(&handle, cx)
1496 }
1497 }
1498
1499 /// Accessor for the text system.
1500 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1501 &self.text_system
1502 }
1503
1504 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1505 pub fn text_style(&self) -> TextStyle {
1506 let mut style = TextStyle::default();
1507 for refinement in &self.text_style_stack {
1508 style.refine(refinement);
1509 }
1510 style
1511 }
1512
1513 /// Check if the platform window is maximized.
1514 ///
1515 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1516 pub fn is_maximized(&self) -> bool {
1517 self.platform_window.is_maximized()
1518 }
1519
1520 /// request a certain window decoration (Wayland)
1521 pub fn request_decorations(&self, decorations: WindowDecorations) {
1522 self.platform_window.request_decorations(decorations);
1523 }
1524
1525 /// Start a window resize operation (Wayland)
1526 pub fn start_window_resize(&self, edge: ResizeEdge) {
1527 self.platform_window.start_window_resize(edge);
1528 }
1529
1530 /// Return the `WindowBounds` to indicate that how a window should be opened
1531 /// after it has been closed
1532 pub fn window_bounds(&self) -> WindowBounds {
1533 self.platform_window.window_bounds()
1534 }
1535
1536 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1537 pub fn inner_window_bounds(&self) -> WindowBounds {
1538 self.platform_window.inner_window_bounds()
1539 }
1540
1541 /// Dispatch the given action on the currently focused element.
1542 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1543 let focus_id = self.focused(cx).map(|handle| handle.id);
1544
1545 let window = self.handle;
1546 cx.defer(move |cx| {
1547 window
1548 .update(cx, |_, window, cx| {
1549 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1550 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1551 })
1552 .log_err();
1553 })
1554 }
1555
1556 pub(crate) fn dispatch_keystroke_observers(
1557 &mut self,
1558 event: &dyn Any,
1559 action: Option<Box<dyn Action>>,
1560 context_stack: Vec<KeyContext>,
1561 cx: &mut App,
1562 ) {
1563 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1564 return;
1565 };
1566
1567 cx.keystroke_observers.clone().retain(&(), move |callback| {
1568 (callback)(
1569 &KeystrokeEvent {
1570 keystroke: key_down_event.keystroke.clone(),
1571 action: action.as_ref().map(|action| action.boxed_clone()),
1572 context_stack: context_stack.clone(),
1573 },
1574 self,
1575 cx,
1576 )
1577 });
1578 }
1579
1580 pub(crate) fn dispatch_keystroke_interceptors(
1581 &mut self,
1582 event: &dyn Any,
1583 context_stack: Vec<KeyContext>,
1584 cx: &mut App,
1585 ) {
1586 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1587 return;
1588 };
1589
1590 cx.keystroke_interceptors
1591 .clone()
1592 .retain(&(), move |callback| {
1593 (callback)(
1594 &KeystrokeEvent {
1595 keystroke: key_down_event.keystroke.clone(),
1596 action: None,
1597 context_stack: context_stack.clone(),
1598 },
1599 self,
1600 cx,
1601 )
1602 });
1603 }
1604
1605 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1606 /// that are currently on the stack to be returned to the app.
1607 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1608 let handle = self.handle;
1609 cx.defer(move |cx| {
1610 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1611 });
1612 }
1613
1614 /// Subscribe to events emitted by a entity.
1615 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1616 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1617 pub fn observe<T: 'static>(
1618 &mut self,
1619 observed: &Entity<T>,
1620 cx: &mut App,
1621 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1622 ) -> Subscription {
1623 let entity_id = observed.entity_id();
1624 let observed = observed.downgrade();
1625 let window_handle = self.handle;
1626 cx.new_observer(
1627 entity_id,
1628 Box::new(move |cx| {
1629 window_handle
1630 .update(cx, |_, window, cx| {
1631 if let Some(handle) = observed.upgrade() {
1632 on_notify(handle, window, cx);
1633 true
1634 } else {
1635 false
1636 }
1637 })
1638 .unwrap_or(false)
1639 }),
1640 )
1641 }
1642
1643 /// Subscribe to events emitted by a entity.
1644 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1645 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1646 pub fn subscribe<Emitter, Evt>(
1647 &mut self,
1648 entity: &Entity<Emitter>,
1649 cx: &mut App,
1650 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1651 ) -> Subscription
1652 where
1653 Emitter: EventEmitter<Evt>,
1654 Evt: 'static,
1655 {
1656 let entity_id = entity.entity_id();
1657 let handle = entity.downgrade();
1658 let window_handle = self.handle;
1659 cx.new_subscription(
1660 entity_id,
1661 (
1662 TypeId::of::<Evt>(),
1663 Box::new(move |event, cx| {
1664 window_handle
1665 .update(cx, |_, window, cx| {
1666 if let Some(entity) = handle.upgrade() {
1667 let event = event.downcast_ref().expect("invalid event type");
1668 on_event(entity, event, window, cx);
1669 true
1670 } else {
1671 false
1672 }
1673 })
1674 .unwrap_or(false)
1675 }),
1676 ),
1677 )
1678 }
1679
1680 /// Register a callback to be invoked when the given `Entity` is released.
1681 pub fn observe_release<T>(
1682 &self,
1683 entity: &Entity<T>,
1684 cx: &mut App,
1685 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1686 ) -> Subscription
1687 where
1688 T: 'static,
1689 {
1690 let entity_id = entity.entity_id();
1691 let window_handle = self.handle;
1692 let (subscription, activate) = cx.release_listeners.insert(
1693 entity_id,
1694 Box::new(move |entity, cx| {
1695 let entity = entity.downcast_mut().expect("invalid entity type");
1696 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1697 }),
1698 );
1699 activate();
1700 subscription
1701 }
1702
1703 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1704 /// await points in async code.
1705 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1706 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1707 }
1708
1709 /// Schedule the given closure to be run directly after the current frame is rendered.
1710 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1711 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1712 }
1713
1714 /// Schedule a frame to be drawn on the next animation frame.
1715 ///
1716 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1717 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1718 ///
1719 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1720 pub fn request_animation_frame(&self) {
1721 let entity = self.current_view();
1722 self.on_next_frame(move |_, cx| cx.notify(entity));
1723 }
1724
1725 /// Spawn the future returned by the given closure on the application thread pool.
1726 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1727 /// use within your future.
1728 #[track_caller]
1729 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1730 where
1731 R: 'static,
1732 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1733 {
1734 let handle = self.handle;
1735 cx.spawn(async move |app| {
1736 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1737 f(&mut async_window_cx).await
1738 })
1739 }
1740
1741 /// Spawn the future returned by the given closure on the application thread
1742 /// pool, with the given priority. The closure is provided a handle to the
1743 /// current window and an `AsyncWindowContext` for use within your future.
1744 #[track_caller]
1745 pub fn spawn_with_priority<AsyncFn, R>(
1746 &self,
1747 priority: Priority,
1748 cx: &App,
1749 f: AsyncFn,
1750 ) -> Task<R>
1751 where
1752 R: 'static,
1753 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1754 {
1755 let handle = self.handle;
1756 cx.spawn_with_priority(priority, async move |app| {
1757 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1758 f(&mut async_window_cx).await
1759 })
1760 }
1761
1762 fn bounds_changed(&mut self, cx: &mut App) {
1763 self.scale_factor = self.platform_window.scale_factor();
1764 self.viewport_size = self.platform_window.content_size();
1765 self.display_id = self.platform_window.display().map(|display| display.id());
1766
1767 self.refresh();
1768
1769 self.bounds_observers
1770 .clone()
1771 .retain(&(), |callback| callback(self, cx));
1772 }
1773
1774 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1775 pub fn bounds(&self) -> Bounds<Pixels> {
1776 self.platform_window.bounds()
1777 }
1778
1779 /// Returns the native window ID (CGWindowID on macOS) for window capture.
1780 /// This is used by visual testing infrastructure to capture window screenshots.
1781 /// Returns None on platforms that don't support this or in non-test builds.
1782 #[cfg(any(test, feature = "test-support"))]
1783 pub fn native_window_id(&self) -> Option<u32> {
1784 self.platform_window.native_window_id()
1785 }
1786
1787 /// Renders the current frame's scene to a texture and returns the pixel data as an RGBA image.
1788 /// This does not present the frame to screen - useful for visual testing where we want
1789 /// to capture what would be rendered without displaying it or requiring the window to be visible.
1790 #[cfg(any(test, feature = "test-support"))]
1791 pub fn render_to_image(&self) -> anyhow::Result<image::RgbaImage> {
1792 self.platform_window
1793 .render_to_image(&self.rendered_frame.scene)
1794 }
1795
1796 /// Set the content size of the window.
1797 pub fn resize(&mut self, size: Size<Pixels>) {
1798 self.platform_window.resize(size);
1799 }
1800
1801 /// Returns whether or not the window is currently fullscreen
1802 pub fn is_fullscreen(&self) -> bool {
1803 self.platform_window.is_fullscreen()
1804 }
1805
1806 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1807 self.appearance = self.platform_window.appearance();
1808
1809 self.appearance_observers
1810 .clone()
1811 .retain(&(), |callback| callback(self, cx));
1812 }
1813
1814 /// Returns the appearance of the current window.
1815 pub fn appearance(&self) -> WindowAppearance {
1816 self.appearance
1817 }
1818
1819 /// Returns the size of the drawable area within the window.
1820 pub fn viewport_size(&self) -> Size<Pixels> {
1821 self.viewport_size
1822 }
1823
1824 /// Returns whether this window is focused by the operating system (receiving key events).
1825 pub fn is_window_active(&self) -> bool {
1826 self.active.get()
1827 }
1828
1829 /// Returns whether this window is considered to be the window
1830 /// that currently owns the mouse cursor.
1831 /// On mac, this is equivalent to `is_window_active`.
1832 pub fn is_window_hovered(&self) -> bool {
1833 if cfg!(any(
1834 target_os = "windows",
1835 target_os = "linux",
1836 target_os = "freebsd"
1837 )) {
1838 self.hovered.get()
1839 } else {
1840 self.is_window_active()
1841 }
1842 }
1843
1844 /// Toggle zoom on the window.
1845 pub fn zoom_window(&self) {
1846 self.platform_window.zoom();
1847 }
1848
1849 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1850 pub fn show_window_menu(&self, position: Point<Pixels>) {
1851 self.platform_window.show_window_menu(position)
1852 }
1853
1854 /// Handle window movement for Linux and macOS.
1855 /// Tells the compositor to take control of window movement (Wayland and X11)
1856 ///
1857 /// Events may not be received during a move operation.
1858 pub fn start_window_move(&self) {
1859 self.platform_window.start_window_move()
1860 }
1861
1862 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1863 pub fn set_client_inset(&mut self, inset: Pixels) {
1864 self.client_inset = Some(inset);
1865 self.platform_window.set_client_inset(inset);
1866 }
1867
1868 /// Returns the client_inset value by [`Self::set_client_inset`].
1869 pub fn client_inset(&self) -> Option<Pixels> {
1870 self.client_inset
1871 }
1872
1873 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1874 pub fn window_decorations(&self) -> Decorations {
1875 self.platform_window.window_decorations()
1876 }
1877
1878 /// Returns which window controls are currently visible (Wayland)
1879 pub fn window_controls(&self) -> WindowControls {
1880 self.platform_window.window_controls()
1881 }
1882
1883 /// Updates the window's title at the platform level.
1884 pub fn set_window_title(&mut self, title: &str) {
1885 self.platform_window.set_title(title);
1886 }
1887
1888 /// Sets the application identifier.
1889 pub fn set_app_id(&mut self, app_id: &str) {
1890 self.platform_window.set_app_id(app_id);
1891 }
1892
1893 /// Sets the window background appearance.
1894 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1895 self.platform_window
1896 .set_background_appearance(background_appearance);
1897 }
1898
1899 /// Mark the window as dirty at the platform level.
1900 pub fn set_window_edited(&mut self, edited: bool) {
1901 self.platform_window.set_edited(edited);
1902 }
1903
1904 /// Determine the display on which the window is visible.
1905 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1906 cx.platform
1907 .displays()
1908 .into_iter()
1909 .find(|display| Some(display.id()) == self.display_id)
1910 }
1911
1912 /// Show the platform character palette.
1913 pub fn show_character_palette(&self) {
1914 self.platform_window.show_character_palette();
1915 }
1916
1917 /// The scale factor of the display associated with the window. For example, it could
1918 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1919 /// be rendered as two pixels on screen.
1920 pub fn scale_factor(&self) -> f32 {
1921 self.scale_factor
1922 }
1923
1924 /// The size of an em for the base font of the application. Adjusting this value allows the
1925 /// UI to scale, just like zooming a web page.
1926 pub fn rem_size(&self) -> Pixels {
1927 self.rem_size_override_stack
1928 .last()
1929 .copied()
1930 .unwrap_or(self.rem_size)
1931 }
1932
1933 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1934 /// UI to scale, just like zooming a web page.
1935 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1936 self.rem_size = rem_size.into();
1937 }
1938
1939 /// Acquire a globally unique identifier for the given ElementId.
1940 /// Only valid for the duration of the provided closure.
1941 pub fn with_global_id<R>(
1942 &mut self,
1943 element_id: ElementId,
1944 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1945 ) -> R {
1946 self.element_id_stack.push(element_id);
1947 let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
1948
1949 let result = f(&global_id, self);
1950 self.element_id_stack.pop();
1951 result
1952 }
1953
1954 /// Executes the provided function with the specified rem size.
1955 ///
1956 /// This method must only be called as part of element drawing.
1957 // This function is called in a highly recursive manner in editor
1958 // prepainting, make sure its inlined to reduce the stack burden
1959 #[inline]
1960 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1961 where
1962 F: FnOnce(&mut Self) -> R,
1963 {
1964 self.invalidator.debug_assert_paint_or_prepaint();
1965
1966 if let Some(rem_size) = rem_size {
1967 self.rem_size_override_stack.push(rem_size.into());
1968 let result = f(self);
1969 self.rem_size_override_stack.pop();
1970 result
1971 } else {
1972 f(self)
1973 }
1974 }
1975
1976 /// The line height associated with the current text style.
1977 pub fn line_height(&self) -> Pixels {
1978 self.text_style().line_height_in_pixels(self.rem_size())
1979 }
1980
1981 /// Call to prevent the default action of an event. Currently only used to prevent
1982 /// parent elements from becoming focused on mouse down.
1983 pub fn prevent_default(&mut self) {
1984 self.default_prevented = true;
1985 }
1986
1987 /// Obtain whether default has been prevented for the event currently being dispatched.
1988 pub fn default_prevented(&self) -> bool {
1989 self.default_prevented
1990 }
1991
1992 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1993 pub fn is_action_available(&self, action: &dyn Action, cx: &App) -> bool {
1994 let node_id =
1995 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1996 self.rendered_frame
1997 .dispatch_tree
1998 .is_action_available(action, node_id)
1999 }
2000
2001 /// Determine whether the given action is available along the dispatch path to the given focus_handle.
2002 pub fn is_action_available_in(&self, action: &dyn Action, focus_handle: &FocusHandle) -> bool {
2003 let node_id = self.focus_node_id_in_rendered_frame(Some(focus_handle.id));
2004 self.rendered_frame
2005 .dispatch_tree
2006 .is_action_available(action, node_id)
2007 }
2008
2009 /// The position of the mouse relative to the window.
2010 pub fn mouse_position(&self) -> Point<Pixels> {
2011 self.mouse_position
2012 }
2013
2014 /// The current state of the keyboard's modifiers
2015 pub fn modifiers(&self) -> Modifiers {
2016 self.modifiers
2017 }
2018
2019 /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
2020 /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
2021 pub fn last_input_was_keyboard(&self) -> bool {
2022 self.last_input_modality == InputModality::Keyboard
2023 }
2024
2025 /// The current state of the keyboard's capslock
2026 pub fn capslock(&self) -> Capslock {
2027 self.capslock
2028 }
2029
2030 fn complete_frame(&self) {
2031 self.platform_window.completed_frame();
2032 }
2033
2034 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
2035 /// the contents of the new [`Scene`], use [`Self::present`].
2036 #[profiling::function]
2037 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
2038 self.invalidate_entities();
2039 cx.entities.clear_accessed();
2040 debug_assert!(self.rendered_entity_stack.is_empty());
2041 self.invalidator.set_dirty(false);
2042 self.requested_autoscroll = None;
2043
2044 // Restore the previously-used input handler.
2045 if let Some(input_handler) = self.platform_window.take_input_handler() {
2046 self.rendered_frame.input_handlers.push(Some(input_handler));
2047 }
2048 if !cx.mode.skip_drawing() {
2049 self.draw_roots(cx);
2050 }
2051 self.dirty_views.clear();
2052 self.next_frame.window_active = self.active.get();
2053
2054 // Register requested input handler with the platform window.
2055 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
2056 self.platform_window
2057 .set_input_handler(input_handler.unwrap());
2058 }
2059
2060 self.layout_engine.as_mut().unwrap().clear();
2061 self.text_system().finish_frame();
2062 self.next_frame.finish(&mut self.rendered_frame);
2063
2064 self.invalidator.set_phase(DrawPhase::Focus);
2065 let previous_focus_path = self.rendered_frame.focus_path();
2066 let previous_window_active = self.rendered_frame.window_active;
2067 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
2068 self.next_frame.clear();
2069 let current_focus_path = self.rendered_frame.focus_path();
2070 let current_window_active = self.rendered_frame.window_active;
2071
2072 if previous_focus_path != current_focus_path
2073 || previous_window_active != current_window_active
2074 {
2075 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
2076 self.focus_lost_listeners
2077 .clone()
2078 .retain(&(), |listener| listener(self, cx));
2079 }
2080
2081 let event = WindowFocusEvent {
2082 previous_focus_path: if previous_window_active {
2083 previous_focus_path
2084 } else {
2085 Default::default()
2086 },
2087 current_focus_path: if current_window_active {
2088 current_focus_path
2089 } else {
2090 Default::default()
2091 },
2092 };
2093 self.focus_listeners
2094 .clone()
2095 .retain(&(), |listener| listener(&event, self, cx));
2096 }
2097
2098 debug_assert!(self.rendered_entity_stack.is_empty());
2099 self.record_entities_accessed(cx);
2100 self.reset_cursor_style(cx);
2101 self.refreshing = false;
2102 self.invalidator.set_phase(DrawPhase::None);
2103 self.needs_present.set(true);
2104
2105 ArenaClearNeeded
2106 }
2107
2108 fn record_entities_accessed(&mut self, cx: &mut App) {
2109 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2110 let mut entities = mem::take(entities_ref.deref_mut());
2111 drop(entities_ref);
2112 let handle = self.handle;
2113 cx.record_entities_accessed(
2114 handle,
2115 // Try moving window invalidator into the Window
2116 self.invalidator.clone(),
2117 &entities,
2118 );
2119 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2120 mem::swap(&mut entities, entities_ref.deref_mut());
2121 }
2122
2123 fn invalidate_entities(&mut self) {
2124 let mut views = self.invalidator.take_views();
2125 for entity in views.drain() {
2126 self.mark_view_dirty(entity);
2127 }
2128 self.invalidator.replace_views(views);
2129 }
2130
2131 #[profiling::function]
2132 fn present(&self) {
2133 self.platform_window.draw(&self.rendered_frame.scene);
2134 self.needs_present.set(false);
2135 profiling::finish_frame!();
2136 }
2137
2138 fn draw_roots(&mut self, cx: &mut App) {
2139 self.invalidator.set_phase(DrawPhase::Prepaint);
2140 self.tooltip_bounds.take();
2141
2142 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2143 let root_size = {
2144 #[cfg(any(feature = "inspector", debug_assertions))]
2145 {
2146 if self.inspector.is_some() {
2147 let mut size = self.viewport_size;
2148 size.width = (size.width - _inspector_width).max(px(0.0));
2149 size
2150 } else {
2151 self.viewport_size
2152 }
2153 }
2154 #[cfg(not(any(feature = "inspector", debug_assertions)))]
2155 {
2156 self.viewport_size
2157 }
2158 };
2159
2160 // Layout all root elements.
2161 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2162 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2163
2164 #[cfg(any(feature = "inspector", debug_assertions))]
2165 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2166
2167 let mut sorted_deferred_draws =
2168 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2169 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2170 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2171
2172 let mut prompt_element = None;
2173 let mut active_drag_element = None;
2174 let mut tooltip_element = None;
2175 if let Some(prompt) = self.prompt.take() {
2176 let mut element = prompt.view.any_view().into_any();
2177 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2178 prompt_element = Some(element);
2179 self.prompt = Some(prompt);
2180 } else if let Some(active_drag) = cx.active_drag.take() {
2181 let mut element = active_drag.view.clone().into_any();
2182 let offset = self.mouse_position() - active_drag.cursor_offset;
2183 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2184 active_drag_element = Some(element);
2185 cx.active_drag = Some(active_drag);
2186 } else {
2187 tooltip_element = self.prepaint_tooltip(cx);
2188 }
2189
2190 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2191
2192 // Now actually paint the elements.
2193 self.invalidator.set_phase(DrawPhase::Paint);
2194 root_element.paint(self, cx);
2195
2196 #[cfg(any(feature = "inspector", debug_assertions))]
2197 self.paint_inspector(inspector_element, cx);
2198
2199 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2200
2201 if let Some(mut prompt_element) = prompt_element {
2202 prompt_element.paint(self, cx);
2203 } else if let Some(mut drag_element) = active_drag_element {
2204 drag_element.paint(self, cx);
2205 } else if let Some(mut tooltip_element) = tooltip_element {
2206 tooltip_element.paint(self, cx);
2207 }
2208
2209 #[cfg(any(feature = "inspector", debug_assertions))]
2210 self.paint_inspector_hitbox(cx);
2211 }
2212
2213 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2214 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2215 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2216 let Some(Some(tooltip_request)) = self
2217 .next_frame
2218 .tooltip_requests
2219 .get(tooltip_request_index)
2220 .cloned()
2221 else {
2222 log::error!("Unexpectedly absent TooltipRequest");
2223 continue;
2224 };
2225 let mut element = tooltip_request.tooltip.view.clone().into_any();
2226 let mouse_position = tooltip_request.tooltip.mouse_position;
2227 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2228
2229 let mut tooltip_bounds =
2230 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2231 let window_bounds = Bounds {
2232 origin: Point::default(),
2233 size: self.viewport_size(),
2234 };
2235
2236 if tooltip_bounds.right() > window_bounds.right() {
2237 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2238 if new_x >= Pixels::ZERO {
2239 tooltip_bounds.origin.x = new_x;
2240 } else {
2241 tooltip_bounds.origin.x = cmp::max(
2242 Pixels::ZERO,
2243 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2244 );
2245 }
2246 }
2247
2248 if tooltip_bounds.bottom() > window_bounds.bottom() {
2249 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2250 if new_y >= Pixels::ZERO {
2251 tooltip_bounds.origin.y = new_y;
2252 } else {
2253 tooltip_bounds.origin.y = cmp::max(
2254 Pixels::ZERO,
2255 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2256 );
2257 }
2258 }
2259
2260 // It's possible for an element to have an active tooltip while not being painted (e.g.
2261 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2262 // case, instead update the tooltip's visibility here.
2263 let is_visible =
2264 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2265 if !is_visible {
2266 continue;
2267 }
2268
2269 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2270 element.prepaint(window, cx)
2271 });
2272
2273 self.tooltip_bounds = Some(TooltipBounds {
2274 id: tooltip_request.id,
2275 bounds: tooltip_bounds,
2276 });
2277 return Some(element);
2278 }
2279 None
2280 }
2281
2282 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2283 assert_eq!(self.element_id_stack.len(), 0);
2284
2285 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2286 for deferred_draw_ix in deferred_draw_indices {
2287 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2288 self.element_id_stack
2289 .clone_from(&deferred_draw.element_id_stack);
2290 self.text_style_stack
2291 .clone_from(&deferred_draw.text_style_stack);
2292 self.next_frame
2293 .dispatch_tree
2294 .set_active_node(deferred_draw.parent_node);
2295
2296 let prepaint_start = self.prepaint_index();
2297 if let Some(element) = deferred_draw.element.as_mut() {
2298 self.with_rendered_view(deferred_draw.current_view, |window| {
2299 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2300 element.prepaint(window, cx)
2301 });
2302 })
2303 } else {
2304 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2305 }
2306 let prepaint_end = self.prepaint_index();
2307 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2308 }
2309 assert_eq!(
2310 self.next_frame.deferred_draws.len(),
2311 0,
2312 "cannot call defer_draw during deferred drawing"
2313 );
2314 self.next_frame.deferred_draws = deferred_draws;
2315 self.element_id_stack.clear();
2316 self.text_style_stack.clear();
2317 }
2318
2319 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2320 assert_eq!(self.element_id_stack.len(), 0);
2321
2322 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2323 for deferred_draw_ix in deferred_draw_indices {
2324 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2325 self.element_id_stack
2326 .clone_from(&deferred_draw.element_id_stack);
2327 self.next_frame
2328 .dispatch_tree
2329 .set_active_node(deferred_draw.parent_node);
2330
2331 let paint_start = self.paint_index();
2332 if let Some(element) = deferred_draw.element.as_mut() {
2333 self.with_rendered_view(deferred_draw.current_view, |window| {
2334 element.paint(window, cx);
2335 })
2336 } else {
2337 self.reuse_paint(deferred_draw.paint_range.clone());
2338 }
2339 let paint_end = self.paint_index();
2340 deferred_draw.paint_range = paint_start..paint_end;
2341 }
2342 self.next_frame.deferred_draws = deferred_draws;
2343 self.element_id_stack.clear();
2344 }
2345
2346 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2347 PrepaintStateIndex {
2348 hitboxes_index: self.next_frame.hitboxes.len(),
2349 tooltips_index: self.next_frame.tooltip_requests.len(),
2350 deferred_draws_index: self.next_frame.deferred_draws.len(),
2351 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2352 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2353 line_layout_index: self.text_system.layout_index(),
2354 }
2355 }
2356
2357 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2358 self.next_frame.hitboxes.extend(
2359 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2360 .iter()
2361 .cloned(),
2362 );
2363 self.next_frame.tooltip_requests.extend(
2364 self.rendered_frame.tooltip_requests
2365 [range.start.tooltips_index..range.end.tooltips_index]
2366 .iter_mut()
2367 .map(|request| request.take()),
2368 );
2369 self.next_frame.accessed_element_states.extend(
2370 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2371 ..range.end.accessed_element_states_index]
2372 .iter()
2373 .map(|(id, type_id)| (id.clone(), *type_id)),
2374 );
2375 self.text_system
2376 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2377
2378 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2379 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2380 &mut self.rendered_frame.dispatch_tree,
2381 self.focus,
2382 );
2383
2384 if reused_subtree.contains_focus() {
2385 self.next_frame.focus = self.focus;
2386 }
2387
2388 self.next_frame.deferred_draws.extend(
2389 self.rendered_frame.deferred_draws
2390 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2391 .iter()
2392 .map(|deferred_draw| DeferredDraw {
2393 current_view: deferred_draw.current_view,
2394 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2395 element_id_stack: deferred_draw.element_id_stack.clone(),
2396 text_style_stack: deferred_draw.text_style_stack.clone(),
2397 priority: deferred_draw.priority,
2398 element: None,
2399 absolute_offset: deferred_draw.absolute_offset,
2400 prepaint_range: deferred_draw.prepaint_range.clone(),
2401 paint_range: deferred_draw.paint_range.clone(),
2402 }),
2403 );
2404 }
2405
2406 pub(crate) fn paint_index(&self) -> PaintIndex {
2407 PaintIndex {
2408 scene_index: self.next_frame.scene.len(),
2409 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2410 input_handlers_index: self.next_frame.input_handlers.len(),
2411 cursor_styles_index: self.next_frame.cursor_styles.len(),
2412 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2413 tab_handle_index: self.next_frame.tab_stops.paint_index(),
2414 line_layout_index: self.text_system.layout_index(),
2415 }
2416 }
2417
2418 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2419 self.next_frame.cursor_styles.extend(
2420 self.rendered_frame.cursor_styles
2421 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2422 .iter()
2423 .cloned(),
2424 );
2425 self.next_frame.input_handlers.extend(
2426 self.rendered_frame.input_handlers
2427 [range.start.input_handlers_index..range.end.input_handlers_index]
2428 .iter_mut()
2429 .map(|handler| handler.take()),
2430 );
2431 self.next_frame.mouse_listeners.extend(
2432 self.rendered_frame.mouse_listeners
2433 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2434 .iter_mut()
2435 .map(|listener| listener.take()),
2436 );
2437 self.next_frame.accessed_element_states.extend(
2438 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2439 ..range.end.accessed_element_states_index]
2440 .iter()
2441 .map(|(id, type_id)| (id.clone(), *type_id)),
2442 );
2443 self.next_frame.tab_stops.replay(
2444 &self.rendered_frame.tab_stops.insertion_history
2445 [range.start.tab_handle_index..range.end.tab_handle_index],
2446 );
2447
2448 self.text_system
2449 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2450 self.next_frame.scene.replay(
2451 range.start.scene_index..range.end.scene_index,
2452 &self.rendered_frame.scene,
2453 );
2454 }
2455
2456 /// Push a text style onto the stack, and call a function with that style active.
2457 /// Use [`Window::text_style`] to get the current, combined text style. This method
2458 /// should only be called as part of element drawing.
2459 // This function is called in a highly recursive manner in editor
2460 // prepainting, make sure its inlined to reduce the stack burden
2461 #[inline]
2462 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2463 where
2464 F: FnOnce(&mut Self) -> R,
2465 {
2466 self.invalidator.debug_assert_paint_or_prepaint();
2467 if let Some(style) = style {
2468 self.text_style_stack.push(style);
2469 let result = f(self);
2470 self.text_style_stack.pop();
2471 result
2472 } else {
2473 f(self)
2474 }
2475 }
2476
2477 /// Updates the cursor style at the platform level. This method should only be called
2478 /// during the paint phase of element drawing.
2479 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2480 self.invalidator.debug_assert_paint();
2481 self.next_frame.cursor_styles.push(CursorStyleRequest {
2482 hitbox_id: Some(hitbox.id),
2483 style,
2484 });
2485 }
2486
2487 /// Updates the cursor style for the entire window at the platform level. A cursor
2488 /// style using this method will have precedence over any cursor style set using
2489 /// `set_cursor_style`. This method should only be called during the paint
2490 /// phase of element drawing.
2491 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2492 self.invalidator.debug_assert_paint();
2493 self.next_frame.cursor_styles.push(CursorStyleRequest {
2494 hitbox_id: None,
2495 style,
2496 })
2497 }
2498
2499 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2500 /// during the paint phase of element drawing.
2501 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2502 self.invalidator.debug_assert_prepaint();
2503 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2504 self.next_frame
2505 .tooltip_requests
2506 .push(Some(TooltipRequest { id, tooltip }));
2507 id
2508 }
2509
2510 /// Invoke the given function with the given content mask after intersecting it
2511 /// with the current mask. This method should only be called during element drawing.
2512 // This function is called in a highly recursive manner in editor
2513 // prepainting, make sure its inlined to reduce the stack burden
2514 #[inline]
2515 pub fn with_content_mask<R>(
2516 &mut self,
2517 mask: Option<ContentMask<Pixels>>,
2518 f: impl FnOnce(&mut Self) -> R,
2519 ) -> R {
2520 self.invalidator.debug_assert_paint_or_prepaint();
2521 if let Some(mask) = mask {
2522 let mask = mask.intersect(&self.content_mask());
2523 self.content_mask_stack.push(mask);
2524 let result = f(self);
2525 self.content_mask_stack.pop();
2526 result
2527 } else {
2528 f(self)
2529 }
2530 }
2531
2532 /// Updates the global element offset relative to the current offset. This is used to implement
2533 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2534 pub fn with_element_offset<R>(
2535 &mut self,
2536 offset: Point<Pixels>,
2537 f: impl FnOnce(&mut Self) -> R,
2538 ) -> R {
2539 self.invalidator.debug_assert_prepaint();
2540
2541 if offset.is_zero() {
2542 return f(self);
2543 };
2544
2545 let abs_offset = self.element_offset() + offset;
2546 self.with_absolute_element_offset(abs_offset, f)
2547 }
2548
2549 /// Updates the global element offset based on the given offset. This is used to implement
2550 /// drag handles and other manual painting of elements. This method should only be called during
2551 /// the prepaint phase of element drawing.
2552 pub fn with_absolute_element_offset<R>(
2553 &mut self,
2554 offset: Point<Pixels>,
2555 f: impl FnOnce(&mut Self) -> R,
2556 ) -> R {
2557 self.invalidator.debug_assert_prepaint();
2558 self.element_offset_stack.push(offset);
2559 let result = f(self);
2560 self.element_offset_stack.pop();
2561 result
2562 }
2563
2564 pub(crate) fn with_element_opacity<R>(
2565 &mut self,
2566 opacity: Option<f32>,
2567 f: impl FnOnce(&mut Self) -> R,
2568 ) -> R {
2569 self.invalidator.debug_assert_paint_or_prepaint();
2570
2571 let Some(opacity) = opacity else {
2572 return f(self);
2573 };
2574
2575 let previous_opacity = self.element_opacity;
2576 self.element_opacity = previous_opacity * opacity;
2577 let result = f(self);
2578 self.element_opacity = previous_opacity;
2579 result
2580 }
2581
2582 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2583 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2584 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2585 /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2586 /// called during the prepaint phase of element drawing.
2587 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2588 self.invalidator.debug_assert_prepaint();
2589 let index = self.prepaint_index();
2590 let result = f(self);
2591 if result.is_err() {
2592 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2593 self.next_frame
2594 .tooltip_requests
2595 .truncate(index.tooltips_index);
2596 self.next_frame
2597 .deferred_draws
2598 .truncate(index.deferred_draws_index);
2599 self.next_frame
2600 .dispatch_tree
2601 .truncate(index.dispatch_tree_index);
2602 self.next_frame
2603 .accessed_element_states
2604 .truncate(index.accessed_element_states_index);
2605 self.text_system.truncate_layouts(index.line_layout_index);
2606 }
2607 result
2608 }
2609
2610 /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2611 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2612 /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2613 /// that supports this method being called on the elements it contains. This method should only be
2614 /// called during the prepaint phase of element drawing.
2615 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2616 self.invalidator.debug_assert_prepaint();
2617 self.requested_autoscroll = Some(bounds);
2618 }
2619
2620 /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2621 /// described in [`Self::request_autoscroll`].
2622 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2623 self.invalidator.debug_assert_prepaint();
2624 self.requested_autoscroll.take()
2625 }
2626
2627 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2628 /// Your view will be re-drawn once the asset has finished loading.
2629 ///
2630 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2631 /// time.
2632 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2633 let (task, is_first) = cx.fetch_asset::<A>(source);
2634 task.clone().now_or_never().or_else(|| {
2635 if is_first {
2636 let entity_id = self.current_view();
2637 self.spawn(cx, {
2638 let task = task.clone();
2639 async move |cx| {
2640 task.await;
2641
2642 cx.on_next_frame(move |_, cx| {
2643 cx.notify(entity_id);
2644 });
2645 }
2646 })
2647 .detach();
2648 }
2649
2650 None
2651 })
2652 }
2653
2654 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2655 /// Your view will not be re-drawn once the asset has finished loading.
2656 ///
2657 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2658 /// time.
2659 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2660 let (task, _) = cx.fetch_asset::<A>(source);
2661 task.now_or_never()
2662 }
2663 /// Obtain the current element offset. This method should only be called during the
2664 /// prepaint phase of element drawing.
2665 pub fn element_offset(&self) -> Point<Pixels> {
2666 self.invalidator.debug_assert_prepaint();
2667 self.element_offset_stack
2668 .last()
2669 .copied()
2670 .unwrap_or_default()
2671 }
2672
2673 /// Obtain the current element opacity. This method should only be called during the
2674 /// prepaint phase of element drawing.
2675 #[inline]
2676 pub(crate) fn element_opacity(&self) -> f32 {
2677 self.invalidator.debug_assert_paint_or_prepaint();
2678 self.element_opacity
2679 }
2680
2681 /// Obtain the current content mask. This method should only be called during element drawing.
2682 pub fn content_mask(&self) -> ContentMask<Pixels> {
2683 self.invalidator.debug_assert_paint_or_prepaint();
2684 self.content_mask_stack
2685 .last()
2686 .cloned()
2687 .unwrap_or_else(|| ContentMask {
2688 bounds: Bounds {
2689 origin: Point::default(),
2690 size: self.viewport_size,
2691 },
2692 })
2693 }
2694
2695 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2696 /// This can be used within a custom element to distinguish multiple sets of child elements.
2697 pub fn with_element_namespace<R>(
2698 &mut self,
2699 element_id: impl Into<ElementId>,
2700 f: impl FnOnce(&mut Self) -> R,
2701 ) -> R {
2702 self.element_id_stack.push(element_id.into());
2703 let result = f(self);
2704 self.element_id_stack.pop();
2705 result
2706 }
2707
2708 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2709 pub fn use_keyed_state<S: 'static>(
2710 &mut self,
2711 key: impl Into<ElementId>,
2712 cx: &mut App,
2713 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2714 ) -> Entity<S> {
2715 let current_view = self.current_view();
2716 self.with_global_id(key.into(), |global_id, window| {
2717 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2718 if let Some(state) = state {
2719 (state.clone(), state)
2720 } else {
2721 let new_state = cx.new(|cx| init(window, cx));
2722 cx.observe(&new_state, move |_, cx| {
2723 cx.notify(current_view);
2724 })
2725 .detach();
2726 (new_state.clone(), new_state)
2727 }
2728 })
2729 })
2730 }
2731
2732 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2733 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2734 self.with_global_id(id.into(), |_, window| f(window))
2735 }
2736
2737 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2738 ///
2739 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2740 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2741 /// you can provide a custom ElementID using the `use_keyed_state` method.
2742 #[track_caller]
2743 pub fn use_state<S: 'static>(
2744 &mut self,
2745 cx: &mut App,
2746 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2747 ) -> Entity<S> {
2748 self.use_keyed_state(
2749 ElementId::CodeLocation(*core::panic::Location::caller()),
2750 cx,
2751 init,
2752 )
2753 }
2754
2755 /// Updates or initializes state for an element with the given id that lives across multiple
2756 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2757 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2758 /// when drawing the next frame. This method should only be called as part of element drawing.
2759 pub fn with_element_state<S, R>(
2760 &mut self,
2761 global_id: &GlobalElementId,
2762 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2763 ) -> R
2764 where
2765 S: 'static,
2766 {
2767 self.invalidator.debug_assert_paint_or_prepaint();
2768
2769 let key = (global_id.clone(), TypeId::of::<S>());
2770 self.next_frame.accessed_element_states.push(key.clone());
2771
2772 if let Some(any) = self
2773 .next_frame
2774 .element_states
2775 .remove(&key)
2776 .or_else(|| self.rendered_frame.element_states.remove(&key))
2777 {
2778 let ElementStateBox {
2779 inner,
2780 #[cfg(debug_assertions)]
2781 type_name,
2782 } = any;
2783 // Using the extra inner option to avoid needing to reallocate a new box.
2784 let mut state_box = inner
2785 .downcast::<Option<S>>()
2786 .map_err(|_| {
2787 #[cfg(debug_assertions)]
2788 {
2789 anyhow::anyhow!(
2790 "invalid element state type for id, requested {:?}, actual: {:?}",
2791 std::any::type_name::<S>(),
2792 type_name
2793 )
2794 }
2795
2796 #[cfg(not(debug_assertions))]
2797 {
2798 anyhow::anyhow!(
2799 "invalid element state type for id, requested {:?}",
2800 std::any::type_name::<S>(),
2801 )
2802 }
2803 })
2804 .unwrap();
2805
2806 let state = state_box.take().expect(
2807 "reentrant call to with_element_state for the same state type and element id",
2808 );
2809 let (result, state) = f(Some(state), self);
2810 state_box.replace(state);
2811 self.next_frame.element_states.insert(
2812 key,
2813 ElementStateBox {
2814 inner: state_box,
2815 #[cfg(debug_assertions)]
2816 type_name,
2817 },
2818 );
2819 result
2820 } else {
2821 let (result, state) = f(None, self);
2822 self.next_frame.element_states.insert(
2823 key,
2824 ElementStateBox {
2825 inner: Box::new(Some(state)),
2826 #[cfg(debug_assertions)]
2827 type_name: std::any::type_name::<S>(),
2828 },
2829 );
2830 result
2831 }
2832 }
2833
2834 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2835 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2836 /// when the element is guaranteed to have an id.
2837 ///
2838 /// The first option means 'no ID provided'
2839 /// The second option means 'not yet initialized'
2840 pub fn with_optional_element_state<S, R>(
2841 &mut self,
2842 global_id: Option<&GlobalElementId>,
2843 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2844 ) -> R
2845 where
2846 S: 'static,
2847 {
2848 self.invalidator.debug_assert_paint_or_prepaint();
2849
2850 if let Some(global_id) = global_id {
2851 self.with_element_state(global_id, |state, cx| {
2852 let (result, state) = f(Some(state), cx);
2853 let state =
2854 state.expect("you must return some state when you pass some element id");
2855 (result, state)
2856 })
2857 } else {
2858 let (result, state) = f(None, self);
2859 debug_assert!(
2860 state.is_none(),
2861 "you must not return an element state when passing None for the global id"
2862 );
2863 result
2864 }
2865 }
2866
2867 /// Executes the given closure within the context of a tab group.
2868 #[inline]
2869 pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2870 if let Some(index) = index {
2871 self.next_frame.tab_stops.begin_group(index);
2872 let result = f(self);
2873 self.next_frame.tab_stops.end_group();
2874 result
2875 } else {
2876 f(self)
2877 }
2878 }
2879
2880 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2881 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2882 /// with higher values being drawn on top.
2883 ///
2884 /// This method should only be called as part of the prepaint phase of element drawing.
2885 pub fn defer_draw(
2886 &mut self,
2887 element: AnyElement,
2888 absolute_offset: Point<Pixels>,
2889 priority: usize,
2890 ) {
2891 self.invalidator.debug_assert_prepaint();
2892 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2893 self.next_frame.deferred_draws.push(DeferredDraw {
2894 current_view: self.current_view(),
2895 parent_node,
2896 element_id_stack: self.element_id_stack.clone(),
2897 text_style_stack: self.text_style_stack.clone(),
2898 priority,
2899 element: Some(element),
2900 absolute_offset,
2901 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2902 paint_range: PaintIndex::default()..PaintIndex::default(),
2903 });
2904 }
2905
2906 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2907 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2908 /// for performance reasons.
2909 ///
2910 /// This method should only be called as part of the paint phase of element drawing.
2911 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2912 self.invalidator.debug_assert_paint();
2913
2914 let scale_factor = self.scale_factor();
2915 let content_mask = self.content_mask();
2916 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2917 if !clipped_bounds.is_empty() {
2918 self.next_frame
2919 .scene
2920 .push_layer(clipped_bounds.scale(scale_factor));
2921 }
2922
2923 let result = f(self);
2924
2925 if !clipped_bounds.is_empty() {
2926 self.next_frame.scene.pop_layer();
2927 }
2928
2929 result
2930 }
2931
2932 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2933 ///
2934 /// This method should only be called as part of the paint phase of element drawing.
2935 pub fn paint_shadows(
2936 &mut self,
2937 bounds: Bounds<Pixels>,
2938 corner_radii: Corners<Pixels>,
2939 shadows: &[BoxShadow],
2940 ) {
2941 self.invalidator.debug_assert_paint();
2942
2943 let scale_factor = self.scale_factor();
2944 let content_mask = self.content_mask();
2945 let opacity = self.element_opacity();
2946 for shadow in shadows {
2947 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2948 self.next_frame.scene.insert_primitive(Shadow {
2949 order: 0,
2950 blur_radius: shadow.blur_radius.scale(scale_factor),
2951 bounds: shadow_bounds.scale(scale_factor),
2952 content_mask: content_mask.scale(scale_factor),
2953 corner_radii: corner_radii.scale(scale_factor),
2954 color: shadow.color.opacity(opacity),
2955 });
2956 }
2957 }
2958
2959 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2960 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2961 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2962 ///
2963 /// This method should only be called as part of the paint phase of element drawing.
2964 ///
2965 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2966 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2967 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2968 pub fn paint_quad(&mut self, quad: PaintQuad) {
2969 self.invalidator.debug_assert_paint();
2970
2971 let scale_factor = self.scale_factor();
2972 let content_mask = self.content_mask();
2973 let opacity = self.element_opacity();
2974 self.next_frame.scene.insert_primitive(Quad {
2975 order: 0,
2976 bounds: quad.bounds.scale(scale_factor),
2977 content_mask: content_mask.scale(scale_factor),
2978 background: quad.background.opacity(opacity),
2979 border_color: quad.border_color.opacity(opacity),
2980 corner_radii: quad.corner_radii.scale(scale_factor),
2981 border_widths: quad.border_widths.scale(scale_factor),
2982 border_style: quad.border_style,
2983 });
2984 }
2985
2986 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2987 ///
2988 /// This method should only be called as part of the paint phase of element drawing.
2989 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2990 self.invalidator.debug_assert_paint();
2991
2992 let scale_factor = self.scale_factor();
2993 let content_mask = self.content_mask();
2994 let opacity = self.element_opacity();
2995 path.content_mask = content_mask;
2996 let color: Background = color.into();
2997 path.color = color.opacity(opacity);
2998 self.next_frame
2999 .scene
3000 .insert_primitive(path.scale(scale_factor));
3001 }
3002
3003 /// Paint an underline into the scene for the next frame at the current z-index.
3004 ///
3005 /// This method should only be called as part of the paint phase of element drawing.
3006 pub fn paint_underline(
3007 &mut self,
3008 origin: Point<Pixels>,
3009 width: Pixels,
3010 style: &UnderlineStyle,
3011 ) {
3012 self.invalidator.debug_assert_paint();
3013
3014 let scale_factor = self.scale_factor();
3015 let height = if style.wavy {
3016 style.thickness * 3.
3017 } else {
3018 style.thickness
3019 };
3020 let bounds = Bounds {
3021 origin,
3022 size: size(width, height),
3023 };
3024 let content_mask = self.content_mask();
3025 let element_opacity = self.element_opacity();
3026
3027 self.next_frame.scene.insert_primitive(Underline {
3028 order: 0,
3029 pad: 0,
3030 bounds: bounds.scale(scale_factor),
3031 content_mask: content_mask.scale(scale_factor),
3032 color: style.color.unwrap_or_default().opacity(element_opacity),
3033 thickness: style.thickness.scale(scale_factor),
3034 wavy: if style.wavy { 1 } else { 0 },
3035 });
3036 }
3037
3038 /// Paint a strikethrough into the scene for the next frame at the current z-index.
3039 ///
3040 /// This method should only be called as part of the paint phase of element drawing.
3041 pub fn paint_strikethrough(
3042 &mut self,
3043 origin: Point<Pixels>,
3044 width: Pixels,
3045 style: &StrikethroughStyle,
3046 ) {
3047 self.invalidator.debug_assert_paint();
3048
3049 let scale_factor = self.scale_factor();
3050 let height = style.thickness;
3051 let bounds = Bounds {
3052 origin,
3053 size: size(width, height),
3054 };
3055 let content_mask = self.content_mask();
3056 let opacity = self.element_opacity();
3057
3058 self.next_frame.scene.insert_primitive(Underline {
3059 order: 0,
3060 pad: 0,
3061 bounds: bounds.scale(scale_factor),
3062 content_mask: content_mask.scale(scale_factor),
3063 thickness: style.thickness.scale(scale_factor),
3064 color: style.color.unwrap_or_default().opacity(opacity),
3065 wavy: 0,
3066 });
3067 }
3068
3069 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
3070 ///
3071 /// The y component of the origin is the baseline of the glyph.
3072 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3073 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3074 /// This method is only useful if you need to paint a single glyph that has already been shaped.
3075 ///
3076 /// This method should only be called as part of the paint phase of element drawing.
3077 pub fn paint_glyph(
3078 &mut self,
3079 origin: Point<Pixels>,
3080 font_id: FontId,
3081 glyph_id: GlyphId,
3082 font_size: Pixels,
3083 color: Hsla,
3084 ) -> Result<()> {
3085 self.invalidator.debug_assert_paint();
3086
3087 let element_opacity = self.element_opacity();
3088 let scale_factor = self.scale_factor();
3089 let glyph_origin = origin.scale(scale_factor);
3090
3091 let subpixel_variant = Point {
3092 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
3093 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
3094 };
3095 let params = RenderGlyphParams {
3096 font_id,
3097 glyph_id,
3098 font_size,
3099 subpixel_variant,
3100 scale_factor,
3101 is_emoji: false,
3102 };
3103
3104 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3105 if !raster_bounds.is_zero() {
3106 let tile = self
3107 .sprite_atlas
3108 .get_or_insert_with(¶ms.clone().into(), &mut || {
3109 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3110 Ok(Some((size, Cow::Owned(bytes))))
3111 })?
3112 .expect("Callback above only errors or returns Some");
3113 let bounds = Bounds {
3114 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3115 size: tile.bounds.size.map(Into::into),
3116 };
3117 let content_mask = self.content_mask().scale(scale_factor);
3118 self.next_frame.scene.insert_primitive(MonochromeSprite {
3119 order: 0,
3120 pad: 0,
3121 bounds,
3122 content_mask,
3123 color: color.opacity(element_opacity),
3124 tile,
3125 transformation: TransformationMatrix::unit(),
3126 });
3127 }
3128 Ok(())
3129 }
3130
3131 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3132 ///
3133 /// The y component of the origin is the baseline of the glyph.
3134 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3135 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3136 /// This method is only useful if you need to paint a single emoji that has already been shaped.
3137 ///
3138 /// This method should only be called as part of the paint phase of element drawing.
3139 pub fn paint_emoji(
3140 &mut self,
3141 origin: Point<Pixels>,
3142 font_id: FontId,
3143 glyph_id: GlyphId,
3144 font_size: Pixels,
3145 ) -> Result<()> {
3146 self.invalidator.debug_assert_paint();
3147
3148 let scale_factor = self.scale_factor();
3149 let glyph_origin = origin.scale(scale_factor);
3150 let params = RenderGlyphParams {
3151 font_id,
3152 glyph_id,
3153 font_size,
3154 // We don't render emojis with subpixel variants.
3155 subpixel_variant: Default::default(),
3156 scale_factor,
3157 is_emoji: true,
3158 };
3159
3160 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3161 if !raster_bounds.is_zero() {
3162 let tile = self
3163 .sprite_atlas
3164 .get_or_insert_with(¶ms.clone().into(), &mut || {
3165 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3166 Ok(Some((size, Cow::Owned(bytes))))
3167 })?
3168 .expect("Callback above only errors or returns Some");
3169
3170 let bounds = Bounds {
3171 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3172 size: tile.bounds.size.map(Into::into),
3173 };
3174 let content_mask = self.content_mask().scale(scale_factor);
3175 let opacity = self.element_opacity();
3176
3177 self.next_frame.scene.insert_primitive(PolychromeSprite {
3178 order: 0,
3179 pad: 0,
3180 grayscale: false,
3181 bounds,
3182 corner_radii: Default::default(),
3183 content_mask,
3184 tile,
3185 opacity,
3186 });
3187 }
3188 Ok(())
3189 }
3190
3191 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3192 ///
3193 /// This method should only be called as part of the paint phase of element drawing.
3194 pub fn paint_svg(
3195 &mut self,
3196 bounds: Bounds<Pixels>,
3197 path: SharedString,
3198 mut data: Option<&[u8]>,
3199 transformation: TransformationMatrix,
3200 color: Hsla,
3201 cx: &App,
3202 ) -> Result<()> {
3203 self.invalidator.debug_assert_paint();
3204
3205 let element_opacity = self.element_opacity();
3206 let scale_factor = self.scale_factor();
3207
3208 let bounds = bounds.scale(scale_factor);
3209 let params = RenderSvgParams {
3210 path,
3211 size: bounds.size.map(|pixels| {
3212 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3213 }),
3214 };
3215
3216 let Some(tile) =
3217 self.sprite_atlas
3218 .get_or_insert_with(¶ms.clone().into(), &mut || {
3219 let Some((size, bytes)) = cx.svg_renderer.render_alpha_mask(¶ms, data)?
3220 else {
3221 return Ok(None);
3222 };
3223 Ok(Some((size, Cow::Owned(bytes))))
3224 })?
3225 else {
3226 return Ok(());
3227 };
3228 let content_mask = self.content_mask().scale(scale_factor);
3229 let svg_bounds = Bounds {
3230 origin: bounds.center()
3231 - Point::new(
3232 ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3233 ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3234 ),
3235 size: tile
3236 .bounds
3237 .size
3238 .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3239 };
3240
3241 self.next_frame.scene.insert_primitive(MonochromeSprite {
3242 order: 0,
3243 pad: 0,
3244 bounds: svg_bounds
3245 .map_origin(|origin| origin.round())
3246 .map_size(|size| size.ceil()),
3247 content_mask,
3248 color: color.opacity(element_opacity),
3249 tile,
3250 transformation,
3251 });
3252
3253 Ok(())
3254 }
3255
3256 /// Paint an image into the scene for the next frame at the current z-index.
3257 /// This method will panic if the frame_index is not valid
3258 ///
3259 /// This method should only be called as part of the paint phase of element drawing.
3260 pub fn paint_image(
3261 &mut self,
3262 bounds: Bounds<Pixels>,
3263 corner_radii: Corners<Pixels>,
3264 data: Arc<RenderImage>,
3265 frame_index: usize,
3266 grayscale: bool,
3267 ) -> Result<()> {
3268 self.invalidator.debug_assert_paint();
3269
3270 let scale_factor = self.scale_factor();
3271 let bounds = bounds.scale(scale_factor);
3272 let params = RenderImageParams {
3273 image_id: data.id,
3274 frame_index,
3275 };
3276
3277 let tile = self
3278 .sprite_atlas
3279 .get_or_insert_with(¶ms.into(), &mut || {
3280 Ok(Some((
3281 data.size(frame_index),
3282 Cow::Borrowed(
3283 data.as_bytes(frame_index)
3284 .expect("It's the caller's job to pass a valid frame index"),
3285 ),
3286 )))
3287 })?
3288 .expect("Callback above only returns Some");
3289 let content_mask = self.content_mask().scale(scale_factor);
3290 let corner_radii = corner_radii.scale(scale_factor);
3291 let opacity = self.element_opacity();
3292
3293 self.next_frame.scene.insert_primitive(PolychromeSprite {
3294 order: 0,
3295 pad: 0,
3296 grayscale,
3297 bounds: bounds
3298 .map_origin(|origin| origin.floor())
3299 .map_size(|size| size.ceil()),
3300 content_mask,
3301 corner_radii,
3302 tile,
3303 opacity,
3304 });
3305 Ok(())
3306 }
3307
3308 /// Paint a surface into the scene for the next frame at the current z-index.
3309 ///
3310 /// This method should only be called as part of the paint phase of element drawing.
3311 #[cfg(target_os = "macos")]
3312 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3313 use crate::PaintSurface;
3314
3315 self.invalidator.debug_assert_paint();
3316
3317 let scale_factor = self.scale_factor();
3318 let bounds = bounds.scale(scale_factor);
3319 let content_mask = self.content_mask().scale(scale_factor);
3320 self.next_frame.scene.insert_primitive(PaintSurface {
3321 order: 0,
3322 bounds,
3323 content_mask,
3324 image_buffer,
3325 });
3326 }
3327
3328 /// Removes an image from the sprite atlas.
3329 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3330 for frame_index in 0..data.frame_count() {
3331 let params = RenderImageParams {
3332 image_id: data.id,
3333 frame_index,
3334 };
3335
3336 self.sprite_atlas.remove(¶ms.clone().into());
3337 }
3338
3339 Ok(())
3340 }
3341
3342 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3343 /// layout is being requested, along with the layout ids of any children. This method is called during
3344 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3345 ///
3346 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3347 #[must_use]
3348 pub fn request_layout(
3349 &mut self,
3350 style: Style,
3351 children: impl IntoIterator<Item = LayoutId>,
3352 cx: &mut App,
3353 ) -> LayoutId {
3354 self.invalidator.debug_assert_prepaint();
3355
3356 cx.layout_id_buffer.clear();
3357 cx.layout_id_buffer.extend(children);
3358 let rem_size = self.rem_size();
3359 let scale_factor = self.scale_factor();
3360
3361 self.layout_engine.as_mut().unwrap().request_layout(
3362 style,
3363 rem_size,
3364 scale_factor,
3365 &cx.layout_id_buffer,
3366 )
3367 }
3368
3369 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3370 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3371 /// determine the element's size. One place this is used internally is when measuring text.
3372 ///
3373 /// The given closure is invoked at layout time with the known dimensions and available space and
3374 /// returns a `Size`.
3375 ///
3376 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3377 pub fn request_measured_layout<F>(&mut self, style: Style, measure: F) -> LayoutId
3378 where
3379 F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3380 + 'static,
3381 {
3382 self.invalidator.debug_assert_prepaint();
3383
3384 let rem_size = self.rem_size();
3385 let scale_factor = self.scale_factor();
3386 self.layout_engine
3387 .as_mut()
3388 .unwrap()
3389 .request_measured_layout(style, rem_size, scale_factor, measure)
3390 }
3391
3392 /// Compute the layout for the given id within the given available space.
3393 /// This method is called for its side effect, typically by the framework prior to painting.
3394 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3395 ///
3396 /// This method should only be called as part of the prepaint phase of element drawing.
3397 pub fn compute_layout(
3398 &mut self,
3399 layout_id: LayoutId,
3400 available_space: Size<AvailableSpace>,
3401 cx: &mut App,
3402 ) {
3403 self.invalidator.debug_assert_prepaint();
3404
3405 let mut layout_engine = self.layout_engine.take().unwrap();
3406 layout_engine.compute_layout(layout_id, available_space, self, cx);
3407 self.layout_engine = Some(layout_engine);
3408 }
3409
3410 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3411 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3412 ///
3413 /// This method should only be called as part of element drawing.
3414 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3415 self.invalidator.debug_assert_prepaint();
3416
3417 let scale_factor = self.scale_factor();
3418 let mut bounds = self
3419 .layout_engine
3420 .as_mut()
3421 .unwrap()
3422 .layout_bounds(layout_id, scale_factor)
3423 .map(Into::into);
3424 bounds.origin += self.element_offset();
3425 bounds
3426 }
3427
3428 /// This method should be called during `prepaint`. You can use
3429 /// the returned [Hitbox] during `paint` or in an event handler
3430 /// to determine whether the inserted hitbox was the topmost.
3431 ///
3432 /// This method should only be called as part of the prepaint phase of element drawing.
3433 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3434 self.invalidator.debug_assert_prepaint();
3435
3436 let content_mask = self.content_mask();
3437 let mut id = self.next_hitbox_id;
3438 self.next_hitbox_id = self.next_hitbox_id.next();
3439 let hitbox = Hitbox {
3440 id,
3441 bounds,
3442 content_mask,
3443 behavior,
3444 };
3445 self.next_frame.hitboxes.push(hitbox.clone());
3446 hitbox
3447 }
3448
3449 /// Set a hitbox which will act as a control area of the platform window.
3450 ///
3451 /// This method should only be called as part of the paint phase of element drawing.
3452 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3453 self.invalidator.debug_assert_paint();
3454 self.next_frame.window_control_hitboxes.push((area, hitbox));
3455 }
3456
3457 /// Sets the key context for the current element. This context will be used to translate
3458 /// keybindings into actions.
3459 ///
3460 /// This method should only be called as part of the paint phase of element drawing.
3461 pub fn set_key_context(&mut self, context: KeyContext) {
3462 self.invalidator.debug_assert_paint();
3463 self.next_frame.dispatch_tree.set_key_context(context);
3464 }
3465
3466 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3467 /// and keyboard event dispatch for the element.
3468 ///
3469 /// This method should only be called as part of the prepaint phase of element drawing.
3470 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3471 self.invalidator.debug_assert_prepaint();
3472 if focus_handle.is_focused(self) {
3473 self.next_frame.focus = Some(focus_handle.id);
3474 }
3475 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3476 }
3477
3478 /// Sets the view id for the current element, which will be used to manage view caching.
3479 ///
3480 /// This method should only be called as part of element prepaint. We plan on removing this
3481 /// method eventually when we solve some issues that require us to construct editor elements
3482 /// directly instead of always using editors via views.
3483 pub fn set_view_id(&mut self, view_id: EntityId) {
3484 self.invalidator.debug_assert_prepaint();
3485 self.next_frame.dispatch_tree.set_view_id(view_id);
3486 }
3487
3488 /// Get the entity ID for the currently rendering view
3489 pub fn current_view(&self) -> EntityId {
3490 self.invalidator.debug_assert_paint_or_prepaint();
3491 self.rendered_entity_stack.last().copied().unwrap()
3492 }
3493
3494 pub(crate) fn with_rendered_view<R>(
3495 &mut self,
3496 id: EntityId,
3497 f: impl FnOnce(&mut Self) -> R,
3498 ) -> R {
3499 self.rendered_entity_stack.push(id);
3500 let result = f(self);
3501 self.rendered_entity_stack.pop();
3502 result
3503 }
3504
3505 /// Executes the provided function with the specified image cache.
3506 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3507 where
3508 F: FnOnce(&mut Self) -> R,
3509 {
3510 if let Some(image_cache) = image_cache {
3511 self.image_cache_stack.push(image_cache);
3512 let result = f(self);
3513 self.image_cache_stack.pop();
3514 result
3515 } else {
3516 f(self)
3517 }
3518 }
3519
3520 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3521 /// platform to receive textual input with proper integration with concerns such
3522 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3523 /// rendered.
3524 ///
3525 /// This method should only be called as part of the paint phase of element drawing.
3526 ///
3527 /// [element_input_handler]: crate::ElementInputHandler
3528 pub fn handle_input(
3529 &mut self,
3530 focus_handle: &FocusHandle,
3531 input_handler: impl InputHandler,
3532 cx: &App,
3533 ) {
3534 self.invalidator.debug_assert_paint();
3535
3536 if focus_handle.is_focused(self) {
3537 let cx = self.to_async(cx);
3538 self.next_frame
3539 .input_handlers
3540 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3541 }
3542 }
3543
3544 /// Register a mouse event listener on the window for the next frame. The type of event
3545 /// is determined by the first parameter of the given listener. When the next frame is rendered
3546 /// the listener will be cleared.
3547 ///
3548 /// This method should only be called as part of the paint phase of element drawing.
3549 pub fn on_mouse_event<Event: MouseEvent>(
3550 &mut self,
3551 mut listener: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3552 ) {
3553 self.invalidator.debug_assert_paint();
3554
3555 self.next_frame.mouse_listeners.push(Some(Box::new(
3556 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3557 if let Some(event) = event.downcast_ref() {
3558 listener(event, phase, window, cx)
3559 }
3560 },
3561 )));
3562 }
3563
3564 /// Register a key event listener on this node for the next frame. The type of event
3565 /// is determined by the first parameter of the given listener. When the next frame is rendered
3566 /// the listener will be cleared.
3567 ///
3568 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3569 /// a specific need to register a listener yourself.
3570 ///
3571 /// This method should only be called as part of the paint phase of element drawing.
3572 pub fn on_key_event<Event: KeyEvent>(
3573 &mut self,
3574 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3575 ) {
3576 self.invalidator.debug_assert_paint();
3577
3578 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3579 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3580 if let Some(event) = event.downcast_ref::<Event>() {
3581 listener(event, phase, window, cx)
3582 }
3583 },
3584 ));
3585 }
3586
3587 /// Register a modifiers changed event listener on the window for the next frame.
3588 ///
3589 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3590 /// a specific need to register a global listener.
3591 ///
3592 /// This method should only be called as part of the paint phase of element drawing.
3593 pub fn on_modifiers_changed(
3594 &mut self,
3595 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3596 ) {
3597 self.invalidator.debug_assert_paint();
3598
3599 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3600 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3601 listener(event, window, cx)
3602 },
3603 ));
3604 }
3605
3606 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3607 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3608 /// Returns a subscription and persists until the subscription is dropped.
3609 pub fn on_focus_in(
3610 &mut self,
3611 handle: &FocusHandle,
3612 cx: &mut App,
3613 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3614 ) -> Subscription {
3615 let focus_id = handle.id;
3616 let (subscription, activate) =
3617 self.new_focus_listener(Box::new(move |event, window, cx| {
3618 if event.is_focus_in(focus_id) {
3619 listener(window, cx);
3620 }
3621 true
3622 }));
3623 cx.defer(move |_| activate());
3624 subscription
3625 }
3626
3627 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3628 /// Returns a subscription and persists until the subscription is dropped.
3629 pub fn on_focus_out(
3630 &mut self,
3631 handle: &FocusHandle,
3632 cx: &mut App,
3633 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3634 ) -> Subscription {
3635 let focus_id = handle.id;
3636 let (subscription, activate) =
3637 self.new_focus_listener(Box::new(move |event, window, cx| {
3638 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3639 && event.is_focus_out(focus_id)
3640 {
3641 let event = FocusOutEvent {
3642 blurred: WeakFocusHandle {
3643 id: blurred_id,
3644 handles: Arc::downgrade(&cx.focus_handles),
3645 },
3646 };
3647 listener(event, window, cx)
3648 }
3649 true
3650 }));
3651 cx.defer(move |_| activate());
3652 subscription
3653 }
3654
3655 fn reset_cursor_style(&self, cx: &mut App) {
3656 // Set the cursor only if we're the active window.
3657 if self.is_window_hovered() {
3658 let style = self
3659 .rendered_frame
3660 .cursor_style(self)
3661 .unwrap_or(CursorStyle::Arrow);
3662 cx.platform.set_cursor_style(style);
3663 }
3664 }
3665
3666 /// Dispatch a given keystroke as though the user had typed it.
3667 /// You can create a keystroke with Keystroke::parse("").
3668 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3669 let keystroke = keystroke.with_simulated_ime();
3670 let result = self.dispatch_event(
3671 PlatformInput::KeyDown(KeyDownEvent {
3672 keystroke: keystroke.clone(),
3673 is_held: false,
3674 prefer_character_input: false,
3675 }),
3676 cx,
3677 );
3678 if !result.propagate {
3679 return true;
3680 }
3681
3682 if let Some(input) = keystroke.key_char
3683 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3684 {
3685 input_handler.dispatch_input(&input, self, cx);
3686 self.platform_window.set_input_handler(input_handler);
3687 return true;
3688 }
3689
3690 false
3691 }
3692
3693 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3694 /// binding for the action (last binding added to the keymap).
3695 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3696 self.highest_precedence_binding_for_action(action)
3697 .map(|binding| {
3698 binding
3699 .keystrokes()
3700 .iter()
3701 .map(ToString::to_string)
3702 .collect::<Vec<_>>()
3703 .join(" ")
3704 })
3705 .unwrap_or_else(|| action.name().to_string())
3706 }
3707
3708 /// Dispatch a mouse or keyboard event on the window.
3709 #[profiling::function]
3710 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3711 self.last_input_timestamp.set(Instant::now());
3712
3713 // Track whether this input was keyboard-based for focus-visible styling
3714 self.last_input_modality = match &event {
3715 PlatformInput::KeyDown(_) | PlatformInput::ModifiersChanged(_) => {
3716 InputModality::Keyboard
3717 }
3718 PlatformInput::MouseDown(e) if e.is_focusing() => InputModality::Mouse,
3719 _ => self.last_input_modality,
3720 };
3721
3722 // Handlers may set this to false by calling `stop_propagation`.
3723 cx.propagate_event = true;
3724 // Handlers may set this to true by calling `prevent_default`.
3725 self.default_prevented = false;
3726
3727 let event = match event {
3728 // Track the mouse position with our own state, since accessing the platform
3729 // API for the mouse position can only occur on the main thread.
3730 PlatformInput::MouseMove(mouse_move) => {
3731 self.mouse_position = mouse_move.position;
3732 self.modifiers = mouse_move.modifiers;
3733 PlatformInput::MouseMove(mouse_move)
3734 }
3735 PlatformInput::MouseDown(mouse_down) => {
3736 self.mouse_position = mouse_down.position;
3737 self.modifiers = mouse_down.modifiers;
3738 PlatformInput::MouseDown(mouse_down)
3739 }
3740 PlatformInput::MouseUp(mouse_up) => {
3741 self.mouse_position = mouse_up.position;
3742 self.modifiers = mouse_up.modifiers;
3743 PlatformInput::MouseUp(mouse_up)
3744 }
3745 PlatformInput::MousePressure(mouse_pressure) => {
3746 PlatformInput::MousePressure(mouse_pressure)
3747 }
3748 PlatformInput::MouseExited(mouse_exited) => {
3749 self.modifiers = mouse_exited.modifiers;
3750 PlatformInput::MouseExited(mouse_exited)
3751 }
3752 PlatformInput::ModifiersChanged(modifiers_changed) => {
3753 self.modifiers = modifiers_changed.modifiers;
3754 self.capslock = modifiers_changed.capslock;
3755 PlatformInput::ModifiersChanged(modifiers_changed)
3756 }
3757 PlatformInput::ScrollWheel(scroll_wheel) => {
3758 self.mouse_position = scroll_wheel.position;
3759 self.modifiers = scroll_wheel.modifiers;
3760 PlatformInput::ScrollWheel(scroll_wheel)
3761 }
3762 // Translate dragging and dropping of external files from the operating system
3763 // to internal drag and drop events.
3764 PlatformInput::FileDrop(file_drop) => match file_drop {
3765 FileDropEvent::Entered { position, paths } => {
3766 self.mouse_position = position;
3767 if cx.active_drag.is_none() {
3768 cx.active_drag = Some(AnyDrag {
3769 value: Arc::new(paths.clone()),
3770 view: cx.new(|_| paths).into(),
3771 cursor_offset: position,
3772 cursor_style: None,
3773 });
3774 }
3775 PlatformInput::MouseMove(MouseMoveEvent {
3776 position,
3777 pressed_button: Some(MouseButton::Left),
3778 modifiers: Modifiers::default(),
3779 })
3780 }
3781 FileDropEvent::Pending { position } => {
3782 self.mouse_position = position;
3783 PlatformInput::MouseMove(MouseMoveEvent {
3784 position,
3785 pressed_button: Some(MouseButton::Left),
3786 modifiers: Modifiers::default(),
3787 })
3788 }
3789 FileDropEvent::Submit { position } => {
3790 cx.activate(true);
3791 self.mouse_position = position;
3792 PlatformInput::MouseUp(MouseUpEvent {
3793 button: MouseButton::Left,
3794 position,
3795 modifiers: Modifiers::default(),
3796 click_count: 1,
3797 })
3798 }
3799 FileDropEvent::Exited => {
3800 cx.active_drag.take();
3801 PlatformInput::FileDrop(FileDropEvent::Exited)
3802 }
3803 },
3804 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3805 };
3806
3807 if let Some(any_mouse_event) = event.mouse_event() {
3808 self.dispatch_mouse_event(any_mouse_event, cx);
3809 } else if let Some(any_key_event) = event.keyboard_event() {
3810 self.dispatch_key_event(any_key_event, cx);
3811 }
3812
3813 DispatchEventResult {
3814 propagate: cx.propagate_event,
3815 default_prevented: self.default_prevented,
3816 }
3817 }
3818
3819 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3820 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3821 if hit_test != self.mouse_hit_test {
3822 self.mouse_hit_test = hit_test;
3823 self.reset_cursor_style(cx);
3824 }
3825
3826 #[cfg(any(feature = "inspector", debug_assertions))]
3827 if self.is_inspector_picking(cx) {
3828 self.handle_inspector_mouse_event(event, cx);
3829 // When inspector is picking, all other mouse handling is skipped.
3830 return;
3831 }
3832
3833 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3834
3835 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3836 // special purposes, such as detecting events outside of a given Bounds.
3837 for listener in &mut mouse_listeners {
3838 let listener = listener.as_mut().unwrap();
3839 listener(event, DispatchPhase::Capture, self, cx);
3840 if !cx.propagate_event {
3841 break;
3842 }
3843 }
3844
3845 // Bubble phase, where most normal handlers do their work.
3846 if cx.propagate_event {
3847 for listener in mouse_listeners.iter_mut().rev() {
3848 let listener = listener.as_mut().unwrap();
3849 listener(event, DispatchPhase::Bubble, self, cx);
3850 if !cx.propagate_event {
3851 break;
3852 }
3853 }
3854 }
3855
3856 self.rendered_frame.mouse_listeners = mouse_listeners;
3857
3858 if cx.has_active_drag() {
3859 if event.is::<MouseMoveEvent>() {
3860 // If this was a mouse move event, redraw the window so that the
3861 // active drag can follow the mouse cursor.
3862 self.refresh();
3863 } else if event.is::<MouseUpEvent>() {
3864 // If this was a mouse up event, cancel the active drag and redraw
3865 // the window.
3866 cx.active_drag = None;
3867 self.refresh();
3868 }
3869 }
3870 }
3871
3872 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3873 if self.invalidator.is_dirty() {
3874 self.draw(cx).clear();
3875 }
3876
3877 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3878 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3879
3880 let mut keystroke: Option<Keystroke> = None;
3881
3882 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3883 if event.modifiers.number_of_modifiers() == 0
3884 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3885 && !self.pending_modifier.saw_keystroke
3886 {
3887 let key = match self.pending_modifier.modifiers {
3888 modifiers if modifiers.shift => Some("shift"),
3889 modifiers if modifiers.control => Some("control"),
3890 modifiers if modifiers.alt => Some("alt"),
3891 modifiers if modifiers.platform => Some("platform"),
3892 modifiers if modifiers.function => Some("function"),
3893 _ => None,
3894 };
3895 if let Some(key) = key {
3896 keystroke = Some(Keystroke {
3897 key: key.to_string(),
3898 key_char: None,
3899 modifiers: Modifiers::default(),
3900 });
3901 }
3902 }
3903
3904 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3905 && event.modifiers.number_of_modifiers() == 1
3906 {
3907 self.pending_modifier.saw_keystroke = false
3908 }
3909 self.pending_modifier.modifiers = event.modifiers
3910 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3911 self.pending_modifier.saw_keystroke = true;
3912 keystroke = Some(key_down_event.keystroke.clone());
3913 }
3914
3915 let Some(keystroke) = keystroke else {
3916 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3917 return;
3918 };
3919
3920 cx.propagate_event = true;
3921 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3922 if !cx.propagate_event {
3923 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3924 return;
3925 }
3926
3927 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3928 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3929 currently_pending = PendingInput::default();
3930 }
3931
3932 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3933 currently_pending.keystrokes,
3934 keystroke,
3935 &dispatch_path,
3936 );
3937
3938 if !match_result.to_replay.is_empty() {
3939 self.replay_pending_input(match_result.to_replay, cx);
3940 cx.propagate_event = true;
3941 }
3942
3943 if !match_result.pending.is_empty() {
3944 currently_pending.timer.take();
3945 currently_pending.keystrokes = match_result.pending;
3946 currently_pending.focus = self.focus;
3947
3948 let text_input_requires_timeout = event
3949 .downcast_ref::<KeyDownEvent>()
3950 .filter(|key_down| key_down.keystroke.key_char.is_some())
3951 .and_then(|_| self.platform_window.take_input_handler())
3952 .map_or(false, |mut input_handler| {
3953 let accepts = input_handler.accepts_text_input(self, cx);
3954 self.platform_window.set_input_handler(input_handler);
3955 accepts
3956 });
3957
3958 currently_pending.needs_timeout |=
3959 match_result.pending_has_binding || text_input_requires_timeout;
3960
3961 if currently_pending.needs_timeout {
3962 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3963 cx.background_executor.timer(Duration::from_secs(1)).await;
3964 cx.update(move |window, cx| {
3965 let Some(currently_pending) = window
3966 .pending_input
3967 .take()
3968 .filter(|pending| pending.focus == window.focus)
3969 else {
3970 return;
3971 };
3972
3973 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3974 let dispatch_path =
3975 window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3976
3977 let to_replay = window
3978 .rendered_frame
3979 .dispatch_tree
3980 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3981
3982 window.pending_input_changed(cx);
3983 window.replay_pending_input(to_replay, cx)
3984 })
3985 .log_err();
3986 }));
3987 } else {
3988 currently_pending.timer = None;
3989 }
3990 self.pending_input = Some(currently_pending);
3991 self.pending_input_changed(cx);
3992 cx.propagate_event = false;
3993 return;
3994 }
3995
3996 let skip_bindings = event
3997 .downcast_ref::<KeyDownEvent>()
3998 .filter(|key_down_event| key_down_event.prefer_character_input)
3999 .map(|_| {
4000 self.platform_window
4001 .take_input_handler()
4002 .map_or(false, |mut input_handler| {
4003 let accepts = input_handler.accepts_text_input(self, cx);
4004 self.platform_window.set_input_handler(input_handler);
4005 // If modifiers are not excessive (e.g. AltGr), and the input handler is accepting text input,
4006 // we prefer the text input over bindings.
4007 accepts
4008 })
4009 })
4010 .unwrap_or(false);
4011
4012 if !skip_bindings {
4013 for binding in match_result.bindings {
4014 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4015 if !cx.propagate_event {
4016 self.dispatch_keystroke_observers(
4017 event,
4018 Some(binding.action),
4019 match_result.context_stack,
4020 cx,
4021 );
4022 self.pending_input_changed(cx);
4023 return;
4024 }
4025 }
4026 }
4027
4028 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
4029 self.pending_input_changed(cx);
4030 }
4031
4032 fn finish_dispatch_key_event(
4033 &mut self,
4034 event: &dyn Any,
4035 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
4036 context_stack: Vec<KeyContext>,
4037 cx: &mut App,
4038 ) {
4039 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
4040 if !cx.propagate_event {
4041 return;
4042 }
4043
4044 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
4045 if !cx.propagate_event {
4046 return;
4047 }
4048
4049 self.dispatch_keystroke_observers(event, None, context_stack, cx);
4050 }
4051
4052 pub(crate) fn pending_input_changed(&mut self, cx: &mut App) {
4053 self.pending_input_observers
4054 .clone()
4055 .retain(&(), |callback| callback(self, cx));
4056 }
4057
4058 fn dispatch_key_down_up_event(
4059 &mut self,
4060 event: &dyn Any,
4061 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4062 cx: &mut App,
4063 ) {
4064 // Capture phase
4065 for node_id in dispatch_path {
4066 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4067
4068 for key_listener in node.key_listeners.clone() {
4069 key_listener(event, DispatchPhase::Capture, self, cx);
4070 if !cx.propagate_event {
4071 return;
4072 }
4073 }
4074 }
4075
4076 // Bubble phase
4077 for node_id in dispatch_path.iter().rev() {
4078 // Handle low level key events
4079 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4080 for key_listener in node.key_listeners.clone() {
4081 key_listener(event, DispatchPhase::Bubble, self, cx);
4082 if !cx.propagate_event {
4083 return;
4084 }
4085 }
4086 }
4087 }
4088
4089 fn dispatch_modifiers_changed_event(
4090 &mut self,
4091 event: &dyn Any,
4092 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4093 cx: &mut App,
4094 ) {
4095 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
4096 return;
4097 };
4098 for node_id in dispatch_path.iter().rev() {
4099 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4100 for listener in node.modifiers_changed_listeners.clone() {
4101 listener(event, self, cx);
4102 if !cx.propagate_event {
4103 return;
4104 }
4105 }
4106 }
4107 }
4108
4109 /// Determine whether a potential multi-stroke key binding is in progress on this window.
4110 pub fn has_pending_keystrokes(&self) -> bool {
4111 self.pending_input.is_some()
4112 }
4113
4114 pub(crate) fn clear_pending_keystrokes(&mut self) {
4115 self.pending_input.take();
4116 }
4117
4118 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
4119 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
4120 self.pending_input
4121 .as_ref()
4122 .map(|pending_input| pending_input.keystrokes.as_slice())
4123 }
4124
4125 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
4126 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4127 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4128
4129 'replay: for replay in replays {
4130 let event = KeyDownEvent {
4131 keystroke: replay.keystroke.clone(),
4132 is_held: false,
4133 prefer_character_input: true,
4134 };
4135
4136 cx.propagate_event = true;
4137 for binding in replay.bindings {
4138 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4139 if !cx.propagate_event {
4140 self.dispatch_keystroke_observers(
4141 &event,
4142 Some(binding.action),
4143 Vec::default(),
4144 cx,
4145 );
4146 continue 'replay;
4147 }
4148 }
4149
4150 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
4151 if !cx.propagate_event {
4152 continue 'replay;
4153 }
4154 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
4155 && let Some(mut input_handler) = self.platform_window.take_input_handler()
4156 {
4157 input_handler.dispatch_input(&input, self, cx);
4158 self.platform_window.set_input_handler(input_handler)
4159 }
4160 }
4161 }
4162
4163 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4164 focus_id
4165 .and_then(|focus_id| {
4166 self.rendered_frame
4167 .dispatch_tree
4168 .focusable_node_id(focus_id)
4169 })
4170 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4171 }
4172
4173 fn dispatch_action_on_node(
4174 &mut self,
4175 node_id: DispatchNodeId,
4176 action: &dyn Action,
4177 cx: &mut App,
4178 ) {
4179 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4180
4181 // Capture phase for global actions.
4182 cx.propagate_event = true;
4183 if let Some(mut global_listeners) = cx
4184 .global_action_listeners
4185 .remove(&action.as_any().type_id())
4186 {
4187 for listener in &global_listeners {
4188 listener(action.as_any(), DispatchPhase::Capture, cx);
4189 if !cx.propagate_event {
4190 break;
4191 }
4192 }
4193
4194 global_listeners.extend(
4195 cx.global_action_listeners
4196 .remove(&action.as_any().type_id())
4197 .unwrap_or_default(),
4198 );
4199
4200 cx.global_action_listeners
4201 .insert(action.as_any().type_id(), global_listeners);
4202 }
4203
4204 if !cx.propagate_event {
4205 return;
4206 }
4207
4208 // Capture phase for window actions.
4209 for node_id in &dispatch_path {
4210 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4211 for DispatchActionListener {
4212 action_type,
4213 listener,
4214 } in node.action_listeners.clone()
4215 {
4216 let any_action = action.as_any();
4217 if action_type == any_action.type_id() {
4218 listener(any_action, DispatchPhase::Capture, self, cx);
4219
4220 if !cx.propagate_event {
4221 return;
4222 }
4223 }
4224 }
4225 }
4226
4227 // Bubble phase for window actions.
4228 for node_id in dispatch_path.iter().rev() {
4229 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4230 for DispatchActionListener {
4231 action_type,
4232 listener,
4233 } in node.action_listeners.clone()
4234 {
4235 let any_action = action.as_any();
4236 if action_type == any_action.type_id() {
4237 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4238 listener(any_action, DispatchPhase::Bubble, self, cx);
4239
4240 if !cx.propagate_event {
4241 return;
4242 }
4243 }
4244 }
4245 }
4246
4247 // Bubble phase for global actions.
4248 if let Some(mut global_listeners) = cx
4249 .global_action_listeners
4250 .remove(&action.as_any().type_id())
4251 {
4252 for listener in global_listeners.iter().rev() {
4253 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4254
4255 listener(action.as_any(), DispatchPhase::Bubble, cx);
4256 if !cx.propagate_event {
4257 break;
4258 }
4259 }
4260
4261 global_listeners.extend(
4262 cx.global_action_listeners
4263 .remove(&action.as_any().type_id())
4264 .unwrap_or_default(),
4265 );
4266
4267 cx.global_action_listeners
4268 .insert(action.as_any().type_id(), global_listeners);
4269 }
4270 }
4271
4272 /// Register the given handler to be invoked whenever the global of the given type
4273 /// is updated.
4274 pub fn observe_global<G: Global>(
4275 &mut self,
4276 cx: &mut App,
4277 f: impl Fn(&mut Window, &mut App) + 'static,
4278 ) -> Subscription {
4279 let window_handle = self.handle;
4280 let (subscription, activate) = cx.global_observers.insert(
4281 TypeId::of::<G>(),
4282 Box::new(move |cx| {
4283 window_handle
4284 .update(cx, |_, window, cx| f(window, cx))
4285 .is_ok()
4286 }),
4287 );
4288 cx.defer(move |_| activate());
4289 subscription
4290 }
4291
4292 /// Focus the current window and bring it to the foreground at the platform level.
4293 pub fn activate_window(&self) {
4294 self.platform_window.activate();
4295 }
4296
4297 /// Minimize the current window at the platform level.
4298 pub fn minimize_window(&self) {
4299 self.platform_window.minimize();
4300 }
4301
4302 /// Toggle full screen status on the current window at the platform level.
4303 pub fn toggle_fullscreen(&self) {
4304 self.platform_window.toggle_fullscreen();
4305 }
4306
4307 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4308 pub fn invalidate_character_coordinates(&self) {
4309 self.on_next_frame(|window, cx| {
4310 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4311 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4312 window.platform_window.update_ime_position(bounds);
4313 }
4314 window.platform_window.set_input_handler(input_handler);
4315 }
4316 });
4317 }
4318
4319 /// Present a platform dialog.
4320 /// The provided message will be presented, along with buttons for each answer.
4321 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4322 pub fn prompt<T>(
4323 &mut self,
4324 level: PromptLevel,
4325 message: &str,
4326 detail: Option<&str>,
4327 answers: &[T],
4328 cx: &mut App,
4329 ) -> oneshot::Receiver<usize>
4330 where
4331 T: Clone + Into<PromptButton>,
4332 {
4333 let prompt_builder = cx.prompt_builder.take();
4334 let Some(prompt_builder) = prompt_builder else {
4335 unreachable!("Re-entrant window prompting is not supported by GPUI");
4336 };
4337
4338 let answers = answers
4339 .iter()
4340 .map(|answer| answer.clone().into())
4341 .collect::<Vec<_>>();
4342
4343 let receiver = match &prompt_builder {
4344 PromptBuilder::Default => self
4345 .platform_window
4346 .prompt(level, message, detail, &answers)
4347 .unwrap_or_else(|| {
4348 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4349 }),
4350 PromptBuilder::Custom(_) => {
4351 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4352 }
4353 };
4354
4355 cx.prompt_builder = Some(prompt_builder);
4356
4357 receiver
4358 }
4359
4360 fn build_custom_prompt(
4361 &mut self,
4362 prompt_builder: &PromptBuilder,
4363 level: PromptLevel,
4364 message: &str,
4365 detail: Option<&str>,
4366 answers: &[PromptButton],
4367 cx: &mut App,
4368 ) -> oneshot::Receiver<usize> {
4369 let (sender, receiver) = oneshot::channel();
4370 let handle = PromptHandle::new(sender);
4371 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4372 self.prompt = Some(handle);
4373 receiver
4374 }
4375
4376 /// Returns the current context stack.
4377 pub fn context_stack(&self) -> Vec<KeyContext> {
4378 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4379 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4380 dispatch_tree
4381 .dispatch_path(node_id)
4382 .iter()
4383 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4384 .collect()
4385 }
4386
4387 /// Returns all available actions for the focused element.
4388 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4389 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4390 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4391 for action_type in cx.global_action_listeners.keys() {
4392 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4393 let action = cx.actions.build_action_type(action_type).ok();
4394 if let Some(action) = action {
4395 actions.insert(ix, action);
4396 }
4397 }
4398 }
4399 actions
4400 }
4401
4402 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4403 /// returned in the order they were added. For display, the last binding should take precedence.
4404 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4405 self.rendered_frame
4406 .dispatch_tree
4407 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4408 }
4409
4410 /// Returns the highest precedence key binding that invokes an action on the currently focused
4411 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4412 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4413 self.rendered_frame
4414 .dispatch_tree
4415 .highest_precedence_binding_for_action(
4416 action,
4417 &self.rendered_frame.dispatch_tree.context_stack,
4418 )
4419 }
4420
4421 /// Returns the key bindings for an action in a context.
4422 pub fn bindings_for_action_in_context(
4423 &self,
4424 action: &dyn Action,
4425 context: KeyContext,
4426 ) -> Vec<KeyBinding> {
4427 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4428 dispatch_tree.bindings_for_action(action, &[context])
4429 }
4430
4431 /// Returns the highest precedence key binding for an action in a context. This is more
4432 /// efficient than getting the last result of `bindings_for_action_in_context`.
4433 pub fn highest_precedence_binding_for_action_in_context(
4434 &self,
4435 action: &dyn Action,
4436 context: KeyContext,
4437 ) -> Option<KeyBinding> {
4438 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4439 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4440 }
4441
4442 /// Returns any bindings that would invoke an action on the given focus handle if it were
4443 /// focused. Bindings are returned in the order they were added. For display, the last binding
4444 /// should take precedence.
4445 pub fn bindings_for_action_in(
4446 &self,
4447 action: &dyn Action,
4448 focus_handle: &FocusHandle,
4449 ) -> Vec<KeyBinding> {
4450 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4451 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4452 return vec![];
4453 };
4454 dispatch_tree.bindings_for_action(action, &context_stack)
4455 }
4456
4457 /// Returns the highest precedence key binding that would invoke an action on the given focus
4458 /// handle if it were focused. This is more efficient than getting the last result of
4459 /// `bindings_for_action_in`.
4460 pub fn highest_precedence_binding_for_action_in(
4461 &self,
4462 action: &dyn Action,
4463 focus_handle: &FocusHandle,
4464 ) -> Option<KeyBinding> {
4465 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4466 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4467 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4468 }
4469
4470 /// Find the bindings that can follow the current input sequence for the current context stack.
4471 pub fn possible_bindings_for_input(&self, input: &[Keystroke]) -> Vec<KeyBinding> {
4472 self.rendered_frame
4473 .dispatch_tree
4474 .possible_next_bindings_for_input(input, &self.context_stack())
4475 }
4476
4477 fn context_stack_for_focus_handle(
4478 &self,
4479 focus_handle: &FocusHandle,
4480 ) -> Option<Vec<KeyContext>> {
4481 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4482 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4483 let context_stack: Vec<_> = dispatch_tree
4484 .dispatch_path(node_id)
4485 .into_iter()
4486 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4487 .collect();
4488 Some(context_stack)
4489 }
4490
4491 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4492 pub fn listener_for<T: 'static, E>(
4493 &self,
4494 view: &Entity<T>,
4495 f: impl Fn(&mut T, &E, &mut Window, &mut Context<T>) + 'static,
4496 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4497 let view = view.downgrade();
4498 move |e: &E, window: &mut Window, cx: &mut App| {
4499 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4500 }
4501 }
4502
4503 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4504 pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4505 &self,
4506 entity: &Entity<E>,
4507 f: Callback,
4508 ) -> impl Fn(&mut Window, &mut App) + 'static {
4509 let entity = entity.downgrade();
4510 move |window: &mut Window, cx: &mut App| {
4511 entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4512 }
4513 }
4514
4515 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4516 /// If the callback returns false, the window won't be closed.
4517 pub fn on_window_should_close(
4518 &self,
4519 cx: &App,
4520 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4521 ) {
4522 let mut cx = self.to_async(cx);
4523 self.platform_window.on_should_close(Box::new(move || {
4524 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4525 }))
4526 }
4527
4528 /// Register an action listener on this node for the next frame. The type of action
4529 /// is determined by the first parameter of the given listener. When the next frame is rendered
4530 /// the listener will be cleared.
4531 ///
4532 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4533 /// a specific need to register a listener yourself.
4534 ///
4535 /// This method should only be called as part of the paint phase of element drawing.
4536 pub fn on_action(
4537 &mut self,
4538 action_type: TypeId,
4539 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4540 ) {
4541 self.invalidator.debug_assert_paint();
4542
4543 self.next_frame
4544 .dispatch_tree
4545 .on_action(action_type, Rc::new(listener));
4546 }
4547
4548 /// Register a capturing action listener on this node for the next frame if the condition is true.
4549 /// The type of action is determined by the first parameter of the given listener. When the next
4550 /// frame is rendered the listener will be cleared.
4551 ///
4552 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4553 /// a specific need to register a listener yourself.
4554 ///
4555 /// This method should only be called as part of the paint phase of element drawing.
4556 pub fn on_action_when(
4557 &mut self,
4558 condition: bool,
4559 action_type: TypeId,
4560 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4561 ) {
4562 self.invalidator.debug_assert_paint();
4563
4564 if condition {
4565 self.next_frame
4566 .dispatch_tree
4567 .on_action(action_type, Rc::new(listener));
4568 }
4569 }
4570
4571 /// Read information about the GPU backing this window.
4572 /// Currently returns None on Mac and Windows.
4573 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4574 self.platform_window.gpu_specs()
4575 }
4576
4577 /// Perform titlebar double-click action.
4578 /// This is macOS specific.
4579 pub fn titlebar_double_click(&self) {
4580 self.platform_window.titlebar_double_click();
4581 }
4582
4583 /// Gets the window's title at the platform level.
4584 /// This is macOS specific.
4585 pub fn window_title(&self) -> String {
4586 self.platform_window.get_title()
4587 }
4588
4589 /// Returns a list of all tabbed windows and their titles.
4590 /// This is macOS specific.
4591 pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4592 self.platform_window.tabbed_windows()
4593 }
4594
4595 /// Returns the tab bar visibility.
4596 /// This is macOS specific.
4597 pub fn tab_bar_visible(&self) -> bool {
4598 self.platform_window.tab_bar_visible()
4599 }
4600
4601 /// Merges all open windows into a single tabbed window.
4602 /// This is macOS specific.
4603 pub fn merge_all_windows(&self) {
4604 self.platform_window.merge_all_windows()
4605 }
4606
4607 /// Moves the tab to a new containing window.
4608 /// This is macOS specific.
4609 pub fn move_tab_to_new_window(&self) {
4610 self.platform_window.move_tab_to_new_window()
4611 }
4612
4613 /// Shows or hides the window tab overview.
4614 /// This is macOS specific.
4615 pub fn toggle_window_tab_overview(&self) {
4616 self.platform_window.toggle_window_tab_overview()
4617 }
4618
4619 /// Sets the tabbing identifier for the window.
4620 /// This is macOS specific.
4621 pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4622 self.platform_window
4623 .set_tabbing_identifier(tabbing_identifier)
4624 }
4625
4626 /// Toggles the inspector mode on this window.
4627 #[cfg(any(feature = "inspector", debug_assertions))]
4628 pub fn toggle_inspector(&mut self, cx: &mut App) {
4629 self.inspector = match self.inspector {
4630 None => Some(cx.new(|_| Inspector::new())),
4631 Some(_) => None,
4632 };
4633 self.refresh();
4634 }
4635
4636 /// Returns true if the window is in inspector mode.
4637 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4638 #[cfg(any(feature = "inspector", debug_assertions))]
4639 {
4640 if let Some(inspector) = &self.inspector {
4641 return inspector.read(_cx).is_picking();
4642 }
4643 }
4644 false
4645 }
4646
4647 /// Executes the provided function with mutable access to an inspector state.
4648 #[cfg(any(feature = "inspector", debug_assertions))]
4649 pub fn with_inspector_state<T: 'static, R>(
4650 &mut self,
4651 _inspector_id: Option<&crate::InspectorElementId>,
4652 cx: &mut App,
4653 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4654 ) -> R {
4655 if let Some(inspector_id) = _inspector_id
4656 && let Some(inspector) = &self.inspector
4657 {
4658 let inspector = inspector.clone();
4659 let active_element_id = inspector.read(cx).active_element_id();
4660 if Some(inspector_id) == active_element_id {
4661 return inspector.update(cx, |inspector, _cx| {
4662 inspector.with_active_element_state(self, f)
4663 });
4664 }
4665 }
4666 f(&mut None, self)
4667 }
4668
4669 #[cfg(any(feature = "inspector", debug_assertions))]
4670 pub(crate) fn build_inspector_element_id(
4671 &mut self,
4672 path: crate::InspectorElementPath,
4673 ) -> crate::InspectorElementId {
4674 self.invalidator.debug_assert_paint_or_prepaint();
4675 let path = Rc::new(path);
4676 let next_instance_id = self
4677 .next_frame
4678 .next_inspector_instance_ids
4679 .entry(path.clone())
4680 .or_insert(0);
4681 let instance_id = *next_instance_id;
4682 *next_instance_id += 1;
4683 crate::InspectorElementId { path, instance_id }
4684 }
4685
4686 #[cfg(any(feature = "inspector", debug_assertions))]
4687 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4688 if let Some(inspector) = self.inspector.take() {
4689 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4690 inspector_element.prepaint_as_root(
4691 point(self.viewport_size.width - inspector_width, px(0.0)),
4692 size(inspector_width, self.viewport_size.height).into(),
4693 self,
4694 cx,
4695 );
4696 self.inspector = Some(inspector);
4697 Some(inspector_element)
4698 } else {
4699 None
4700 }
4701 }
4702
4703 #[cfg(any(feature = "inspector", debug_assertions))]
4704 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4705 if let Some(mut inspector_element) = inspector_element {
4706 inspector_element.paint(self, cx);
4707 };
4708 }
4709
4710 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4711 /// inspect UI elements by clicking on them.
4712 #[cfg(any(feature = "inspector", debug_assertions))]
4713 pub fn insert_inspector_hitbox(
4714 &mut self,
4715 hitbox_id: HitboxId,
4716 inspector_id: Option<&crate::InspectorElementId>,
4717 cx: &App,
4718 ) {
4719 self.invalidator.debug_assert_paint_or_prepaint();
4720 if !self.is_inspector_picking(cx) {
4721 return;
4722 }
4723 if let Some(inspector_id) = inspector_id {
4724 self.next_frame
4725 .inspector_hitboxes
4726 .insert(hitbox_id, inspector_id.clone());
4727 }
4728 }
4729
4730 #[cfg(any(feature = "inspector", debug_assertions))]
4731 fn paint_inspector_hitbox(&mut self, cx: &App) {
4732 if let Some(inspector) = self.inspector.as_ref() {
4733 let inspector = inspector.read(cx);
4734 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4735 && let Some(hitbox) = self
4736 .next_frame
4737 .hitboxes
4738 .iter()
4739 .find(|hitbox| hitbox.id == hitbox_id)
4740 {
4741 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4742 }
4743 }
4744 }
4745
4746 #[cfg(any(feature = "inspector", debug_assertions))]
4747 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4748 let Some(inspector) = self.inspector.clone() else {
4749 return;
4750 };
4751 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4752 inspector.update(cx, |inspector, _cx| {
4753 if let Some((_, inspector_id)) =
4754 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4755 {
4756 inspector.hover(inspector_id, self);
4757 }
4758 });
4759 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4760 inspector.update(cx, |inspector, _cx| {
4761 if let Some((_, inspector_id)) =
4762 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4763 {
4764 inspector.select(inspector_id, self);
4765 }
4766 });
4767 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4768 // This should be kept in sync with SCROLL_LINES in x11 platform.
4769 const SCROLL_LINES: f32 = 3.0;
4770 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4771 let delta_y = event
4772 .delta
4773 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4774 .y;
4775 if let Some(inspector) = self.inspector.clone() {
4776 inspector.update(cx, |inspector, _cx| {
4777 if let Some(depth) = inspector.pick_depth.as_mut() {
4778 *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4779 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4780 if *depth < 0.0 {
4781 *depth = 0.0;
4782 } else if *depth > max_depth {
4783 *depth = max_depth;
4784 }
4785 if let Some((_, inspector_id)) =
4786 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4787 {
4788 inspector.set_active_element_id(inspector_id, self);
4789 }
4790 }
4791 });
4792 }
4793 }
4794 }
4795
4796 #[cfg(any(feature = "inspector", debug_assertions))]
4797 fn hovered_inspector_hitbox(
4798 &self,
4799 inspector: &Inspector,
4800 frame: &Frame,
4801 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4802 if let Some(pick_depth) = inspector.pick_depth {
4803 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4804 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4805 let skip_count = (depth as usize).min(max_skipped);
4806 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4807 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4808 return Some((*hitbox_id, inspector_id.clone()));
4809 }
4810 }
4811 }
4812 None
4813 }
4814
4815 /// For testing: set the current modifier keys state.
4816 /// This does not generate any events.
4817 #[cfg(any(test, feature = "test-support"))]
4818 pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4819 self.modifiers = modifiers;
4820 }
4821}
4822
4823// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4824slotmap::new_key_type! {
4825 /// A unique identifier for a window.
4826 pub struct WindowId;
4827}
4828
4829impl WindowId {
4830 /// Converts this window ID to a `u64`.
4831 pub fn as_u64(&self) -> u64 {
4832 self.0.as_ffi()
4833 }
4834}
4835
4836impl From<u64> for WindowId {
4837 fn from(value: u64) -> Self {
4838 WindowId(slotmap::KeyData::from_ffi(value))
4839 }
4840}
4841
4842/// A handle to a window with a specific root view type.
4843/// Note that this does not keep the window alive on its own.
4844#[derive(Deref, DerefMut)]
4845pub struct WindowHandle<V> {
4846 #[deref]
4847 #[deref_mut]
4848 pub(crate) any_handle: AnyWindowHandle,
4849 state_type: PhantomData<fn(V) -> V>,
4850}
4851
4852impl<V> Debug for WindowHandle<V> {
4853 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4854 f.debug_struct("WindowHandle")
4855 .field("any_handle", &self.any_handle.id.as_u64())
4856 .finish()
4857 }
4858}
4859
4860impl<V: 'static + Render> WindowHandle<V> {
4861 /// Creates a new handle from a window ID.
4862 /// This does not check if the root type of the window is `V`.
4863 pub fn new(id: WindowId) -> Self {
4864 WindowHandle {
4865 any_handle: AnyWindowHandle {
4866 id,
4867 state_type: TypeId::of::<V>(),
4868 },
4869 state_type: PhantomData,
4870 }
4871 }
4872
4873 /// Get the root view out of this window.
4874 ///
4875 /// This will fail if the window is closed or if the root view's type does not match `V`.
4876 #[cfg(any(test, feature = "test-support"))]
4877 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4878 where
4879 C: AppContext,
4880 {
4881 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4882 root_view
4883 .downcast::<V>()
4884 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4885 }))
4886 }
4887
4888 /// Updates the root view of this window.
4889 ///
4890 /// This will fail if the window has been closed or if the root view's type does not match
4891 pub fn update<C, R>(
4892 &self,
4893 cx: &mut C,
4894 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4895 ) -> Result<R>
4896 where
4897 C: AppContext,
4898 {
4899 cx.update_window(self.any_handle, |root_view, window, cx| {
4900 let view = root_view
4901 .downcast::<V>()
4902 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4903
4904 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4905 })?
4906 }
4907
4908 /// Read the root view out of this window.
4909 ///
4910 /// This will fail if the window is closed or if the root view's type does not match `V`.
4911 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4912 let x = cx
4913 .windows
4914 .get(self.id)
4915 .and_then(|window| {
4916 window
4917 .as_deref()
4918 .and_then(|window| window.root.clone())
4919 .map(|root_view| root_view.downcast::<V>())
4920 })
4921 .context("window not found")?
4922 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4923
4924 Ok(x.read(cx))
4925 }
4926
4927 /// Read the root view out of this window, with a callback
4928 ///
4929 /// This will fail if the window is closed or if the root view's type does not match `V`.
4930 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4931 where
4932 C: AppContext,
4933 {
4934 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4935 }
4936
4937 /// Read the root view pointer off of this window.
4938 ///
4939 /// This will fail if the window is closed or if the root view's type does not match `V`.
4940 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4941 where
4942 C: AppContext,
4943 {
4944 cx.read_window(self, |root_view, _cx| root_view)
4945 }
4946
4947 /// Check if this window is 'active'.
4948 ///
4949 /// Will return `None` if the window is closed or currently
4950 /// borrowed.
4951 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4952 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4953 .ok()
4954 }
4955}
4956
4957impl<V> Copy for WindowHandle<V> {}
4958
4959impl<V> Clone for WindowHandle<V> {
4960 fn clone(&self) -> Self {
4961 *self
4962 }
4963}
4964
4965impl<V> PartialEq for WindowHandle<V> {
4966 fn eq(&self, other: &Self) -> bool {
4967 self.any_handle == other.any_handle
4968 }
4969}
4970
4971impl<V> Eq for WindowHandle<V> {}
4972
4973impl<V> Hash for WindowHandle<V> {
4974 fn hash<H: Hasher>(&self, state: &mut H) {
4975 self.any_handle.hash(state);
4976 }
4977}
4978
4979impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4980 fn from(val: WindowHandle<V>) -> Self {
4981 val.any_handle
4982 }
4983}
4984
4985/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4986#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
4987pub struct AnyWindowHandle {
4988 pub(crate) id: WindowId,
4989 state_type: TypeId,
4990}
4991
4992impl AnyWindowHandle {
4993 /// Get the ID of this window.
4994 pub fn window_id(&self) -> WindowId {
4995 self.id
4996 }
4997
4998 /// Attempt to convert this handle to a window handle with a specific root view type.
4999 /// If the types do not match, this will return `None`.
5000 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
5001 if TypeId::of::<T>() == self.state_type {
5002 Some(WindowHandle {
5003 any_handle: *self,
5004 state_type: PhantomData,
5005 })
5006 } else {
5007 None
5008 }
5009 }
5010
5011 /// Updates the state of the root view of this window.
5012 ///
5013 /// This will fail if the window has been closed.
5014 pub fn update<C, R>(
5015 self,
5016 cx: &mut C,
5017 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
5018 ) -> Result<R>
5019 where
5020 C: AppContext,
5021 {
5022 cx.update_window(self, update)
5023 }
5024
5025 /// Read the state of the root view of this window.
5026 ///
5027 /// This will fail if the window has been closed.
5028 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
5029 where
5030 C: AppContext,
5031 T: 'static,
5032 {
5033 let view = self
5034 .downcast::<T>()
5035 .context("the type of the window's root view has changed")?;
5036
5037 cx.read_window(&view, read)
5038 }
5039}
5040
5041impl HasWindowHandle for Window {
5042 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
5043 self.platform_window.window_handle()
5044 }
5045}
5046
5047impl HasDisplayHandle for Window {
5048 fn display_handle(
5049 &self,
5050 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
5051 self.platform_window.display_handle()
5052 }
5053}
5054
5055/// An identifier for an [`Element`].
5056///
5057/// Can be constructed with a string, a number, or both, as well
5058/// as other internal representations.
5059#[derive(Clone, Debug, Eq, PartialEq, Hash)]
5060pub enum ElementId {
5061 /// The ID of a View element
5062 View(EntityId),
5063 /// An integer ID.
5064 Integer(u64),
5065 /// A string based ID.
5066 Name(SharedString),
5067 /// A UUID.
5068 Uuid(Uuid),
5069 /// An ID that's equated with a focus handle.
5070 FocusHandle(FocusId),
5071 /// A combination of a name and an integer.
5072 NamedInteger(SharedString, u64),
5073 /// A path.
5074 Path(Arc<std::path::Path>),
5075 /// A code location.
5076 CodeLocation(core::panic::Location<'static>),
5077 /// A labeled child of an element.
5078 NamedChild(Arc<ElementId>, SharedString),
5079}
5080
5081impl ElementId {
5082 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
5083 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
5084 Self::NamedInteger(name.into(), integer as u64)
5085 }
5086}
5087
5088impl Display for ElementId {
5089 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
5090 match self {
5091 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
5092 ElementId::Integer(ix) => write!(f, "{}", ix)?,
5093 ElementId::Name(name) => write!(f, "{}", name)?,
5094 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
5095 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
5096 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
5097 ElementId::Path(path) => write!(f, "{}", path.display())?,
5098 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
5099 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
5100 }
5101
5102 Ok(())
5103 }
5104}
5105
5106impl TryInto<SharedString> for ElementId {
5107 type Error = anyhow::Error;
5108
5109 fn try_into(self) -> anyhow::Result<SharedString> {
5110 if let ElementId::Name(name) = self {
5111 Ok(name)
5112 } else {
5113 anyhow::bail!("element id is not string")
5114 }
5115 }
5116}
5117
5118impl From<usize> for ElementId {
5119 fn from(id: usize) -> Self {
5120 ElementId::Integer(id as u64)
5121 }
5122}
5123
5124impl From<i32> for ElementId {
5125 fn from(id: i32) -> Self {
5126 Self::Integer(id as u64)
5127 }
5128}
5129
5130impl From<SharedString> for ElementId {
5131 fn from(name: SharedString) -> Self {
5132 ElementId::Name(name)
5133 }
5134}
5135
5136impl From<String> for ElementId {
5137 fn from(name: String) -> Self {
5138 ElementId::Name(name.into())
5139 }
5140}
5141
5142impl From<Arc<str>> for ElementId {
5143 fn from(name: Arc<str>) -> Self {
5144 ElementId::Name(name.into())
5145 }
5146}
5147
5148impl From<Arc<std::path::Path>> for ElementId {
5149 fn from(path: Arc<std::path::Path>) -> Self {
5150 ElementId::Path(path)
5151 }
5152}
5153
5154impl From<&'static str> for ElementId {
5155 fn from(name: &'static str) -> Self {
5156 ElementId::Name(name.into())
5157 }
5158}
5159
5160impl<'a> From<&'a FocusHandle> for ElementId {
5161 fn from(handle: &'a FocusHandle) -> Self {
5162 ElementId::FocusHandle(handle.id)
5163 }
5164}
5165
5166impl From<(&'static str, EntityId)> for ElementId {
5167 fn from((name, id): (&'static str, EntityId)) -> Self {
5168 ElementId::NamedInteger(name.into(), id.as_u64())
5169 }
5170}
5171
5172impl From<(&'static str, usize)> for ElementId {
5173 fn from((name, id): (&'static str, usize)) -> Self {
5174 ElementId::NamedInteger(name.into(), id as u64)
5175 }
5176}
5177
5178impl From<(SharedString, usize)> for ElementId {
5179 fn from((name, id): (SharedString, usize)) -> Self {
5180 ElementId::NamedInteger(name, id as u64)
5181 }
5182}
5183
5184impl From<(&'static str, u64)> for ElementId {
5185 fn from((name, id): (&'static str, u64)) -> Self {
5186 ElementId::NamedInteger(name.into(), id)
5187 }
5188}
5189
5190impl From<Uuid> for ElementId {
5191 fn from(value: Uuid) -> Self {
5192 Self::Uuid(value)
5193 }
5194}
5195
5196impl From<(&'static str, u32)> for ElementId {
5197 fn from((name, id): (&'static str, u32)) -> Self {
5198 ElementId::NamedInteger(name.into(), id.into())
5199 }
5200}
5201
5202impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5203 fn from((id, name): (ElementId, T)) -> Self {
5204 ElementId::NamedChild(Arc::new(id), name.into())
5205 }
5206}
5207
5208impl From<&'static core::panic::Location<'static>> for ElementId {
5209 fn from(location: &'static core::panic::Location<'static>) -> Self {
5210 ElementId::CodeLocation(*location)
5211 }
5212}
5213
5214/// A rectangle to be rendered in the window at the given position and size.
5215/// Passed as an argument [`Window::paint_quad`].
5216#[derive(Clone)]
5217pub struct PaintQuad {
5218 /// The bounds of the quad within the window.
5219 pub bounds: Bounds<Pixels>,
5220 /// The radii of the quad's corners.
5221 pub corner_radii: Corners<Pixels>,
5222 /// The background color of the quad.
5223 pub background: Background,
5224 /// The widths of the quad's borders.
5225 pub border_widths: Edges<Pixels>,
5226 /// The color of the quad's borders.
5227 pub border_color: Hsla,
5228 /// The style of the quad's borders.
5229 pub border_style: BorderStyle,
5230}
5231
5232impl PaintQuad {
5233 /// Sets the corner radii of the quad.
5234 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5235 PaintQuad {
5236 corner_radii: corner_radii.into(),
5237 ..self
5238 }
5239 }
5240
5241 /// Sets the border widths of the quad.
5242 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5243 PaintQuad {
5244 border_widths: border_widths.into(),
5245 ..self
5246 }
5247 }
5248
5249 /// Sets the border color of the quad.
5250 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5251 PaintQuad {
5252 border_color: border_color.into(),
5253 ..self
5254 }
5255 }
5256
5257 /// Sets the background color of the quad.
5258 pub fn background(self, background: impl Into<Background>) -> Self {
5259 PaintQuad {
5260 background: background.into(),
5261 ..self
5262 }
5263 }
5264}
5265
5266/// Creates a quad with the given parameters.
5267pub fn quad(
5268 bounds: Bounds<Pixels>,
5269 corner_radii: impl Into<Corners<Pixels>>,
5270 background: impl Into<Background>,
5271 border_widths: impl Into<Edges<Pixels>>,
5272 border_color: impl Into<Hsla>,
5273 border_style: BorderStyle,
5274) -> PaintQuad {
5275 PaintQuad {
5276 bounds,
5277 corner_radii: corner_radii.into(),
5278 background: background.into(),
5279 border_widths: border_widths.into(),
5280 border_color: border_color.into(),
5281 border_style,
5282 }
5283}
5284
5285/// Creates a filled quad with the given bounds and background color.
5286pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5287 PaintQuad {
5288 bounds: bounds.into(),
5289 corner_radii: (0.).into(),
5290 background: background.into(),
5291 border_widths: (0.).into(),
5292 border_color: transparent_black(),
5293 border_style: BorderStyle::default(),
5294 }
5295}
5296
5297/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5298pub fn outline(
5299 bounds: impl Into<Bounds<Pixels>>,
5300 border_color: impl Into<Hsla>,
5301 border_style: BorderStyle,
5302) -> PaintQuad {
5303 PaintQuad {
5304 bounds: bounds.into(),
5305 corner_radii: (0.).into(),
5306 background: transparent_black().into(),
5307 border_widths: (1.).into(),
5308 border_color: border_color.into(),
5309 border_style,
5310 }
5311}