cloud.rs

   1use ai_onboarding::YoungAccountBanner;
   2use anthropic::AnthropicModelMode;
   3use anyhow::{Context as _, Result, anyhow};
   4use chrono::{DateTime, Utc};
   5use client::{Client, ModelRequestUsage, UserStore, zed_urls};
   6use cloud_llm_client::{
   7    CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CURRENT_PLAN_HEADER_NAME, CompletionBody,
   8    CompletionEvent, CompletionRequestStatus, CountTokensBody, CountTokensResponse,
   9    EXPIRED_LLM_TOKEN_HEADER_NAME, ListModelsResponse, MODEL_REQUESTS_RESOURCE_HEADER_VALUE, Plan,
  10    PlanV1, PlanV2, SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME,
  11    SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME, TOOL_USE_LIMIT_REACHED_HEADER_NAME,
  12    ZED_VERSION_HEADER_NAME,
  13};
  14use futures::{
  15    AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream,
  16};
  17use google_ai::GoogleModelMode;
  18use gpui::{
  19    AnyElement, AnyView, App, AsyncApp, Context, Entity, SemanticVersion, Subscription, Task,
  20};
  21use http_client::http::{HeaderMap, HeaderValue};
  22use http_client::{AsyncBody, HttpClient, Method, Response, StatusCode};
  23use language_model::{
  24    AuthenticateError, LanguageModel, LanguageModelCacheConfiguration,
  25    LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
  26    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  27    LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
  28    LanguageModelToolSchemaFormat, LlmApiToken, ModelRequestLimitReachedError,
  29    PaymentRequiredError, RateLimiter, RefreshLlmTokenListener,
  30};
  31use release_channel::AppVersion;
  32use schemars::JsonSchema;
  33use serde::{Deserialize, Serialize, de::DeserializeOwned};
  34use settings::SettingsStore;
  35pub use settings::ZedDotDevAvailableModel as AvailableModel;
  36pub use settings::ZedDotDevAvailableProvider as AvailableProvider;
  37use smol::io::{AsyncReadExt, BufReader};
  38use std::pin::Pin;
  39use std::str::FromStr as _;
  40use std::sync::Arc;
  41use std::time::Duration;
  42use thiserror::Error;
  43use ui::{TintColor, prelude::*};
  44use util::{ResultExt as _, maybe};
  45
  46use crate::provider::anthropic::{AnthropicEventMapper, count_anthropic_tokens, into_anthropic};
  47use crate::provider::google::{GoogleEventMapper, into_google};
  48use crate::provider::open_ai::{OpenAiEventMapper, count_open_ai_tokens, into_open_ai};
  49
  50const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID;
  51const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME;
  52
  53#[derive(Default, Clone, Debug, PartialEq)]
  54pub struct ZedDotDevSettings {
  55    pub available_models: Vec<AvailableModel>,
  56}
  57#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  58#[serde(tag = "type", rename_all = "lowercase")]
  59pub enum ModelMode {
  60    #[default]
  61    Default,
  62    Thinking {
  63        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  64        budget_tokens: Option<u32>,
  65    },
  66}
  67
  68impl From<ModelMode> for AnthropicModelMode {
  69    fn from(value: ModelMode) -> Self {
  70        match value {
  71            ModelMode::Default => AnthropicModelMode::Default,
  72            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
  73        }
  74    }
  75}
  76
  77pub struct CloudLanguageModelProvider {
  78    client: Arc<Client>,
  79    state: gpui::Entity<State>,
  80    _maintain_client_status: Task<()>,
  81}
  82
  83pub struct State {
  84    client: Arc<Client>,
  85    llm_api_token: LlmApiToken,
  86    user_store: Entity<UserStore>,
  87    status: client::Status,
  88    models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  89    default_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  90    default_fast_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  91    recommended_models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  92    _fetch_models_task: Task<()>,
  93    _settings_subscription: Subscription,
  94    _llm_token_subscription: Subscription,
  95}
  96
  97impl State {
  98    fn new(
  99        client: Arc<Client>,
 100        user_store: Entity<UserStore>,
 101        status: client::Status,
 102        cx: &mut Context<Self>,
 103    ) -> Self {
 104        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
 105        let mut current_user = user_store.read(cx).watch_current_user();
 106        Self {
 107            client: client.clone(),
 108            llm_api_token: LlmApiToken::default(),
 109            user_store,
 110            status,
 111            models: Vec::new(),
 112            default_model: None,
 113            default_fast_model: None,
 114            recommended_models: Vec::new(),
 115            _fetch_models_task: cx.spawn(async move |this, cx| {
 116                maybe!(async move {
 117                    let (client, llm_api_token) = this
 118                        .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?;
 119
 120                    while current_user.borrow().is_none() {
 121                        current_user.next().await;
 122                    }
 123
 124                    let response =
 125                        Self::fetch_models(client.clone(), llm_api_token.clone()).await?;
 126                    this.update(cx, |this, cx| this.update_models(response, cx))?;
 127                    anyhow::Ok(())
 128                })
 129                .await
 130                .context("failed to fetch Zed models")
 131                .log_err();
 132            }),
 133            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 134                cx.notify();
 135            }),
 136            _llm_token_subscription: cx.subscribe(
 137                &refresh_llm_token_listener,
 138                move |this, _listener, _event, cx| {
 139                    let client = this.client.clone();
 140                    let llm_api_token = this.llm_api_token.clone();
 141                    cx.spawn(async move |this, cx| {
 142                        llm_api_token.refresh(&client).await?;
 143                        let response = Self::fetch_models(client, llm_api_token).await?;
 144                        this.update(cx, |this, cx| {
 145                            this.update_models(response, cx);
 146                        })
 147                    })
 148                    .detach_and_log_err(cx);
 149                },
 150            ),
 151        }
 152    }
 153
 154    fn is_signed_out(&self, cx: &App) -> bool {
 155        self.user_store.read(cx).current_user().is_none()
 156    }
 157
 158    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 159        let client = self.client.clone();
 160        cx.spawn(async move |state, cx| {
 161            client.sign_in_with_optional_connect(true, cx).await?;
 162            state.update(cx, |_, cx| cx.notify())
 163        })
 164    }
 165    fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context<Self>) {
 166        let mut models = Vec::new();
 167
 168        for model in response.models {
 169            models.push(Arc::new(model.clone()));
 170
 171            // Right now we represent thinking variants of models as separate models on the client,
 172            // so we need to insert variants for any model that supports thinking.
 173            if model.supports_thinking {
 174                models.push(Arc::new(cloud_llm_client::LanguageModel {
 175                    id: cloud_llm_client::LanguageModelId(format!("{}-thinking", model.id).into()),
 176                    display_name: format!("{} Thinking", model.display_name),
 177                    ..model
 178                }));
 179            }
 180        }
 181
 182        self.default_model = models
 183            .iter()
 184            .find(|model| {
 185                response
 186                    .default_model
 187                    .as_ref()
 188                    .is_some_and(|default_model_id| &model.id == default_model_id)
 189            })
 190            .cloned();
 191        self.default_fast_model = models
 192            .iter()
 193            .find(|model| {
 194                response
 195                    .default_fast_model
 196                    .as_ref()
 197                    .is_some_and(|default_fast_model_id| &model.id == default_fast_model_id)
 198            })
 199            .cloned();
 200        self.recommended_models = response
 201            .recommended_models
 202            .iter()
 203            .filter_map(|id| models.iter().find(|model| &model.id == id))
 204            .cloned()
 205            .collect();
 206        self.models = models;
 207        cx.notify();
 208    }
 209
 210    async fn fetch_models(
 211        client: Arc<Client>,
 212        llm_api_token: LlmApiToken,
 213    ) -> Result<ListModelsResponse> {
 214        let http_client = &client.http_client();
 215        let token = llm_api_token.acquire(&client).await?;
 216
 217        let request = http_client::Request::builder()
 218            .method(Method::GET)
 219            .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref())
 220            .header("Authorization", format!("Bearer {token}"))
 221            .body(AsyncBody::empty())?;
 222        let mut response = http_client
 223            .send(request)
 224            .await
 225            .context("failed to send list models request")?;
 226
 227        if response.status().is_success() {
 228            let mut body = String::new();
 229            response.body_mut().read_to_string(&mut body).await?;
 230            Ok(serde_json::from_str(&body)?)
 231        } else {
 232            let mut body = String::new();
 233            response.body_mut().read_to_string(&mut body).await?;
 234            anyhow::bail!(
 235                "error listing models.\nStatus: {:?}\nBody: {body}",
 236                response.status(),
 237            );
 238        }
 239    }
 240}
 241
 242impl CloudLanguageModelProvider {
 243    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
 244        let mut status_rx = client.status();
 245        let status = *status_rx.borrow();
 246
 247        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
 248
 249        let state_ref = state.downgrade();
 250        let maintain_client_status = cx.spawn(async move |cx| {
 251            while let Some(status) = status_rx.next().await {
 252                if let Some(this) = state_ref.upgrade() {
 253                    _ = this.update(cx, |this, cx| {
 254                        if this.status != status {
 255                            this.status = status;
 256                            cx.notify();
 257                        }
 258                    });
 259                } else {
 260                    break;
 261                }
 262            }
 263        });
 264
 265        Self {
 266            client,
 267            state,
 268            _maintain_client_status: maintain_client_status,
 269        }
 270    }
 271
 272    fn create_language_model(
 273        &self,
 274        model: Arc<cloud_llm_client::LanguageModel>,
 275        llm_api_token: LlmApiToken,
 276    ) -> Arc<dyn LanguageModel> {
 277        Arc::new(CloudLanguageModel {
 278            id: LanguageModelId(SharedString::from(model.id.0.clone())),
 279            model,
 280            llm_api_token,
 281            client: self.client.clone(),
 282            request_limiter: RateLimiter::new(4),
 283        })
 284    }
 285}
 286
 287impl LanguageModelProviderState for CloudLanguageModelProvider {
 288    type ObservableEntity = State;
 289
 290    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
 291        Some(self.state.clone())
 292    }
 293}
 294
 295impl LanguageModelProvider for CloudLanguageModelProvider {
 296    fn id(&self) -> LanguageModelProviderId {
 297        PROVIDER_ID
 298    }
 299
 300    fn name(&self) -> LanguageModelProviderName {
 301        PROVIDER_NAME
 302    }
 303
 304    fn icon(&self) -> IconName {
 305        IconName::AiZed
 306    }
 307
 308    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 309        let default_model = self.state.read(cx).default_model.clone()?;
 310        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 311        Some(self.create_language_model(default_model, llm_api_token))
 312    }
 313
 314    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 315        let default_fast_model = self.state.read(cx).default_fast_model.clone()?;
 316        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 317        Some(self.create_language_model(default_fast_model, llm_api_token))
 318    }
 319
 320    fn recommended_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 321        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 322        self.state
 323            .read(cx)
 324            .recommended_models
 325            .iter()
 326            .cloned()
 327            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 328            .collect()
 329    }
 330
 331    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 332        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 333        self.state
 334            .read(cx)
 335            .models
 336            .iter()
 337            .cloned()
 338            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 339            .collect()
 340    }
 341
 342    fn is_authenticated(&self, cx: &App) -> bool {
 343        let state = self.state.read(cx);
 344        !state.is_signed_out(cx)
 345    }
 346
 347    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 348        Task::ready(Ok(()))
 349    }
 350
 351    fn configuration_view(
 352        &self,
 353        _target_agent: language_model::ConfigurationViewTargetAgent,
 354        _: &mut Window,
 355        cx: &mut App,
 356    ) -> AnyView {
 357        cx.new(|_| ConfigurationView::new(self.state.clone()))
 358            .into()
 359    }
 360
 361    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
 362        Task::ready(Ok(()))
 363    }
 364}
 365
 366pub struct CloudLanguageModel {
 367    id: LanguageModelId,
 368    model: Arc<cloud_llm_client::LanguageModel>,
 369    llm_api_token: LlmApiToken,
 370    client: Arc<Client>,
 371    request_limiter: RateLimiter,
 372}
 373
 374struct PerformLlmCompletionResponse {
 375    response: Response<AsyncBody>,
 376    usage: Option<ModelRequestUsage>,
 377    tool_use_limit_reached: bool,
 378    includes_status_messages: bool,
 379}
 380
 381impl CloudLanguageModel {
 382    async fn perform_llm_completion(
 383        client: Arc<Client>,
 384        llm_api_token: LlmApiToken,
 385        app_version: Option<SemanticVersion>,
 386        body: CompletionBody,
 387    ) -> Result<PerformLlmCompletionResponse> {
 388        let http_client = &client.http_client();
 389
 390        let mut token = llm_api_token.acquire(&client).await?;
 391        let mut refreshed_token = false;
 392
 393        loop {
 394            let request_builder = http_client::Request::builder()
 395                .method(Method::POST)
 396                .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref());
 397            let request_builder = if let Some(app_version) = app_version {
 398                request_builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string())
 399            } else {
 400                request_builder
 401            };
 402
 403            let request = request_builder
 404                .header("Content-Type", "application/json")
 405                .header("Authorization", format!("Bearer {token}"))
 406                .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true")
 407                .body(serde_json::to_string(&body)?.into())?;
 408            let mut response = http_client.send(request).await?;
 409            let status = response.status();
 410            if status.is_success() {
 411                let includes_status_messages = response
 412                    .headers()
 413                    .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME)
 414                    .is_some();
 415
 416                let tool_use_limit_reached = response
 417                    .headers()
 418                    .get(TOOL_USE_LIMIT_REACHED_HEADER_NAME)
 419                    .is_some();
 420
 421                let usage = if includes_status_messages {
 422                    None
 423                } else {
 424                    ModelRequestUsage::from_headers(response.headers()).ok()
 425                };
 426
 427                return Ok(PerformLlmCompletionResponse {
 428                    response,
 429                    usage,
 430                    includes_status_messages,
 431                    tool_use_limit_reached,
 432                });
 433            }
 434
 435            if !refreshed_token
 436                && response
 437                    .headers()
 438                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
 439                    .is_some()
 440            {
 441                token = llm_api_token.refresh(&client).await?;
 442                refreshed_token = true;
 443                continue;
 444            }
 445
 446            if status == StatusCode::FORBIDDEN
 447                && response
 448                    .headers()
 449                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 450                    .is_some()
 451            {
 452                if let Some(MODEL_REQUESTS_RESOURCE_HEADER_VALUE) = response
 453                    .headers()
 454                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 455                    .and_then(|resource| resource.to_str().ok())
 456                    && let Some(plan) = response
 457                        .headers()
 458                        .get(CURRENT_PLAN_HEADER_NAME)
 459                        .and_then(|plan| plan.to_str().ok())
 460                        .and_then(|plan| cloud_llm_client::PlanV1::from_str(plan).ok())
 461                        .map(Plan::V1)
 462                {
 463                    return Err(anyhow!(ModelRequestLimitReachedError { plan }));
 464                }
 465            } else if status == StatusCode::PAYMENT_REQUIRED {
 466                return Err(anyhow!(PaymentRequiredError));
 467            }
 468
 469            let mut body = String::new();
 470            let headers = response.headers().clone();
 471            response.body_mut().read_to_string(&mut body).await?;
 472            return Err(anyhow!(ApiError {
 473                status,
 474                body,
 475                headers
 476            }));
 477        }
 478    }
 479}
 480
 481#[derive(Debug, Error)]
 482#[error("cloud language model request failed with status {status}: {body}")]
 483struct ApiError {
 484    status: StatusCode,
 485    body: String,
 486    headers: HeaderMap<HeaderValue>,
 487}
 488
 489/// Represents error responses from Zed's cloud API.
 490///
 491/// Example JSON for an upstream HTTP error:
 492/// ```json
 493/// {
 494///   "code": "upstream_http_error",
 495///   "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout",
 496///   "upstream_status": 503
 497/// }
 498/// ```
 499#[derive(Debug, serde::Deserialize)]
 500struct CloudApiError {
 501    code: String,
 502    message: String,
 503    #[serde(default)]
 504    #[serde(deserialize_with = "deserialize_optional_status_code")]
 505    upstream_status: Option<StatusCode>,
 506    #[serde(default)]
 507    retry_after: Option<f64>,
 508}
 509
 510fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result<Option<StatusCode>, D::Error>
 511where
 512    D: serde::Deserializer<'de>,
 513{
 514    let opt: Option<u16> = Option::deserialize(deserializer)?;
 515    Ok(opt.and_then(|code| StatusCode::from_u16(code).ok()))
 516}
 517
 518impl From<ApiError> for LanguageModelCompletionError {
 519    fn from(error: ApiError) -> Self {
 520        if let Ok(cloud_error) = serde_json::from_str::<CloudApiError>(&error.body) {
 521            if cloud_error.code.starts_with("upstream_http_") {
 522                let status = if let Some(status) = cloud_error.upstream_status {
 523                    status
 524                } else if cloud_error.code.ends_with("_error") {
 525                    error.status
 526                } else {
 527                    // If there's a status code in the code string (e.g. "upstream_http_429")
 528                    // then use that; otherwise, see if the JSON contains a status code.
 529                    cloud_error
 530                        .code
 531                        .strip_prefix("upstream_http_")
 532                        .and_then(|code_str| code_str.parse::<u16>().ok())
 533                        .and_then(|code| StatusCode::from_u16(code).ok())
 534                        .unwrap_or(error.status)
 535                };
 536
 537                return LanguageModelCompletionError::UpstreamProviderError {
 538                    message: cloud_error.message,
 539                    status,
 540                    retry_after: cloud_error.retry_after.map(Duration::from_secs_f64),
 541                };
 542            }
 543
 544            return LanguageModelCompletionError::from_http_status(
 545                PROVIDER_NAME,
 546                error.status,
 547                cloud_error.message,
 548                None,
 549            );
 550        }
 551
 552        let retry_after = None;
 553        LanguageModelCompletionError::from_http_status(
 554            PROVIDER_NAME,
 555            error.status,
 556            error.body,
 557            retry_after,
 558        )
 559    }
 560}
 561
 562impl LanguageModel for CloudLanguageModel {
 563    fn id(&self) -> LanguageModelId {
 564        self.id.clone()
 565    }
 566
 567    fn name(&self) -> LanguageModelName {
 568        LanguageModelName::from(self.model.display_name.clone())
 569    }
 570
 571    fn provider_id(&self) -> LanguageModelProviderId {
 572        PROVIDER_ID
 573    }
 574
 575    fn provider_name(&self) -> LanguageModelProviderName {
 576        PROVIDER_NAME
 577    }
 578
 579    fn upstream_provider_id(&self) -> LanguageModelProviderId {
 580        use cloud_llm_client::LanguageModelProvider::*;
 581        match self.model.provider {
 582            Anthropic => language_model::ANTHROPIC_PROVIDER_ID,
 583            OpenAi => language_model::OPEN_AI_PROVIDER_ID,
 584            Google => language_model::GOOGLE_PROVIDER_ID,
 585        }
 586    }
 587
 588    fn upstream_provider_name(&self) -> LanguageModelProviderName {
 589        use cloud_llm_client::LanguageModelProvider::*;
 590        match self.model.provider {
 591            Anthropic => language_model::ANTHROPIC_PROVIDER_NAME,
 592            OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 593            Google => language_model::GOOGLE_PROVIDER_NAME,
 594        }
 595    }
 596
 597    fn supports_tools(&self) -> bool {
 598        self.model.supports_tools
 599    }
 600
 601    fn supports_images(&self) -> bool {
 602        self.model.supports_images
 603    }
 604
 605    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 606        match choice {
 607            LanguageModelToolChoice::Auto
 608            | LanguageModelToolChoice::Any
 609            | LanguageModelToolChoice::None => true,
 610        }
 611    }
 612
 613    fn supports_burn_mode(&self) -> bool {
 614        self.model.supports_max_mode
 615    }
 616
 617    fn telemetry_id(&self) -> String {
 618        format!("zed.dev/{}", self.model.id)
 619    }
 620
 621    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 622        match self.model.provider {
 623            cloud_llm_client::LanguageModelProvider::Anthropic
 624            | cloud_llm_client::LanguageModelProvider::OpenAi => {
 625                LanguageModelToolSchemaFormat::JsonSchema
 626            }
 627            cloud_llm_client::LanguageModelProvider::Google => {
 628                LanguageModelToolSchemaFormat::JsonSchemaSubset
 629            }
 630        }
 631    }
 632
 633    fn max_token_count(&self) -> u64 {
 634        self.model.max_token_count as u64
 635    }
 636
 637    fn max_token_count_in_burn_mode(&self) -> Option<u64> {
 638        self.model
 639            .max_token_count_in_max_mode
 640            .filter(|_| self.model.supports_max_mode)
 641            .map(|max_token_count| max_token_count as u64)
 642    }
 643
 644    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
 645        match &self.model.provider {
 646            cloud_llm_client::LanguageModelProvider::Anthropic => {
 647                Some(LanguageModelCacheConfiguration {
 648                    min_total_token: 2_048,
 649                    should_speculate: true,
 650                    max_cache_anchors: 4,
 651                })
 652            }
 653            cloud_llm_client::LanguageModelProvider::OpenAi
 654            | cloud_llm_client::LanguageModelProvider::Google => None,
 655        }
 656    }
 657
 658    fn count_tokens(
 659        &self,
 660        request: LanguageModelRequest,
 661        cx: &App,
 662    ) -> BoxFuture<'static, Result<u64>> {
 663        match self.model.provider {
 664            cloud_llm_client::LanguageModelProvider::Anthropic => {
 665                count_anthropic_tokens(request, cx)
 666            }
 667            cloud_llm_client::LanguageModelProvider::OpenAi => {
 668                let model = match open_ai::Model::from_id(&self.model.id.0) {
 669                    Ok(model) => model,
 670                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 671                };
 672                count_open_ai_tokens(request, model, cx)
 673            }
 674            cloud_llm_client::LanguageModelProvider::Google => {
 675                let client = self.client.clone();
 676                let llm_api_token = self.llm_api_token.clone();
 677                let model_id = self.model.id.to_string();
 678                let generate_content_request =
 679                    into_google(request, model_id.clone(), GoogleModelMode::Default);
 680                async move {
 681                    let http_client = &client.http_client();
 682                    let token = llm_api_token.acquire(&client).await?;
 683
 684                    let request_body = CountTokensBody {
 685                        provider: cloud_llm_client::LanguageModelProvider::Google,
 686                        model: model_id,
 687                        provider_request: serde_json::to_value(&google_ai::CountTokensRequest {
 688                            generate_content_request,
 689                        })?,
 690                    };
 691                    let request = http_client::Request::builder()
 692                        .method(Method::POST)
 693                        .uri(
 694                            http_client
 695                                .build_zed_llm_url("/count_tokens", &[])?
 696                                .as_ref(),
 697                        )
 698                        .header("Content-Type", "application/json")
 699                        .header("Authorization", format!("Bearer {token}"))
 700                        .body(serde_json::to_string(&request_body)?.into())?;
 701                    let mut response = http_client.send(request).await?;
 702                    let status = response.status();
 703                    let headers = response.headers().clone();
 704                    let mut response_body = String::new();
 705                    response
 706                        .body_mut()
 707                        .read_to_string(&mut response_body)
 708                        .await?;
 709
 710                    if status.is_success() {
 711                        let response_body: CountTokensResponse =
 712                            serde_json::from_str(&response_body)?;
 713
 714                        Ok(response_body.tokens as u64)
 715                    } else {
 716                        Err(anyhow!(ApiError {
 717                            status,
 718                            body: response_body,
 719                            headers
 720                        }))
 721                    }
 722                }
 723                .boxed()
 724            }
 725        }
 726    }
 727
 728    fn stream_completion(
 729        &self,
 730        request: LanguageModelRequest,
 731        cx: &AsyncApp,
 732    ) -> BoxFuture<
 733        'static,
 734        Result<
 735            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
 736            LanguageModelCompletionError,
 737        >,
 738    > {
 739        let thread_id = request.thread_id.clone();
 740        let prompt_id = request.prompt_id.clone();
 741        let intent = request.intent;
 742        let mode = request.mode;
 743        let app_version = cx.update(|cx| AppVersion::global(cx)).ok();
 744        let thinking_allowed = request.thinking_allowed;
 745        match self.model.provider {
 746            cloud_llm_client::LanguageModelProvider::Anthropic => {
 747                let request = into_anthropic(
 748                    request,
 749                    self.model.id.to_string(),
 750                    1.0,
 751                    self.model.max_output_tokens as u64,
 752                    if thinking_allowed && self.model.id.0.ends_with("-thinking") {
 753                        AnthropicModelMode::Thinking {
 754                            budget_tokens: Some(4_096),
 755                        }
 756                    } else {
 757                        AnthropicModelMode::Default
 758                    },
 759                );
 760                let client = self.client.clone();
 761                let llm_api_token = self.llm_api_token.clone();
 762                let future = self.request_limiter.stream(async move {
 763                    let PerformLlmCompletionResponse {
 764                        response,
 765                        usage,
 766                        includes_status_messages,
 767                        tool_use_limit_reached,
 768                    } = Self::perform_llm_completion(
 769                        client.clone(),
 770                        llm_api_token,
 771                        app_version,
 772                        CompletionBody {
 773                            thread_id,
 774                            prompt_id,
 775                            intent,
 776                            mode,
 777                            provider: cloud_llm_client::LanguageModelProvider::Anthropic,
 778                            model: request.model.clone(),
 779                            provider_request: serde_json::to_value(&request)
 780                                .map_err(|e| anyhow!(e))?,
 781                        },
 782                    )
 783                    .await
 784                    .map_err(|err| match err.downcast::<ApiError>() {
 785                        Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)),
 786                        Err(err) => anyhow!(err),
 787                    })?;
 788
 789                    let mut mapper = AnthropicEventMapper::new();
 790                    Ok(map_cloud_completion_events(
 791                        Box::pin(
 792                            response_lines(response, includes_status_messages)
 793                                .chain(usage_updated_event(usage))
 794                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 795                        ),
 796                        move |event| mapper.map_event(event),
 797                    ))
 798                });
 799                async move { Ok(future.await?.boxed()) }.boxed()
 800            }
 801            cloud_llm_client::LanguageModelProvider::OpenAi => {
 802                let client = self.client.clone();
 803                let model = match open_ai::Model::from_id(&self.model.id.0) {
 804                    Ok(model) => model,
 805                    Err(err) => return async move { Err(anyhow!(err).into()) }.boxed(),
 806                };
 807                let request = into_open_ai(
 808                    request,
 809                    model.id(),
 810                    model.supports_parallel_tool_calls(),
 811                    model.supports_prompt_cache_key(),
 812                    None,
 813                    None,
 814                );
 815                let llm_api_token = self.llm_api_token.clone();
 816                let future = self.request_limiter.stream(async move {
 817                    let PerformLlmCompletionResponse {
 818                        response,
 819                        usage,
 820                        includes_status_messages,
 821                        tool_use_limit_reached,
 822                    } = Self::perform_llm_completion(
 823                        client.clone(),
 824                        llm_api_token,
 825                        app_version,
 826                        CompletionBody {
 827                            thread_id,
 828                            prompt_id,
 829                            intent,
 830                            mode,
 831                            provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 832                            model: request.model.clone(),
 833                            provider_request: serde_json::to_value(&request)
 834                                .map_err(|e| anyhow!(e))?,
 835                        },
 836                    )
 837                    .await?;
 838
 839                    let mut mapper = OpenAiEventMapper::new();
 840                    Ok(map_cloud_completion_events(
 841                        Box::pin(
 842                            response_lines(response, includes_status_messages)
 843                                .chain(usage_updated_event(usage))
 844                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 845                        ),
 846                        move |event| mapper.map_event(event),
 847                    ))
 848                });
 849                async move { Ok(future.await?.boxed()) }.boxed()
 850            }
 851            cloud_llm_client::LanguageModelProvider::Google => {
 852                let client = self.client.clone();
 853                let request =
 854                    into_google(request, self.model.id.to_string(), GoogleModelMode::Default);
 855                let llm_api_token = self.llm_api_token.clone();
 856                let future = self.request_limiter.stream(async move {
 857                    let PerformLlmCompletionResponse {
 858                        response,
 859                        usage,
 860                        includes_status_messages,
 861                        tool_use_limit_reached,
 862                    } = Self::perform_llm_completion(
 863                        client.clone(),
 864                        llm_api_token,
 865                        app_version,
 866                        CompletionBody {
 867                            thread_id,
 868                            prompt_id,
 869                            intent,
 870                            mode,
 871                            provider: cloud_llm_client::LanguageModelProvider::Google,
 872                            model: request.model.model_id.clone(),
 873                            provider_request: serde_json::to_value(&request)
 874                                .map_err(|e| anyhow!(e))?,
 875                        },
 876                    )
 877                    .await?;
 878
 879                    let mut mapper = GoogleEventMapper::new();
 880                    Ok(map_cloud_completion_events(
 881                        Box::pin(
 882                            response_lines(response, includes_status_messages)
 883                                .chain(usage_updated_event(usage))
 884                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 885                        ),
 886                        move |event| mapper.map_event(event),
 887                    ))
 888                });
 889                async move { Ok(future.await?.boxed()) }.boxed()
 890            }
 891        }
 892    }
 893}
 894
 895fn map_cloud_completion_events<T, F>(
 896    stream: Pin<Box<dyn Stream<Item = Result<CompletionEvent<T>>> + Send>>,
 897    mut map_callback: F,
 898) -> BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 899where
 900    T: DeserializeOwned + 'static,
 901    F: FnMut(T) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 902        + Send
 903        + 'static,
 904{
 905    stream
 906        .flat_map(move |event| {
 907            futures::stream::iter(match event {
 908                Err(error) => {
 909                    vec![Err(LanguageModelCompletionError::from(error))]
 910                }
 911                Ok(CompletionEvent::Status(event)) => {
 912                    vec![Ok(LanguageModelCompletionEvent::StatusUpdate(event))]
 913                }
 914                Ok(CompletionEvent::Event(event)) => map_callback(event),
 915            })
 916        })
 917        .boxed()
 918}
 919
 920fn usage_updated_event<T>(
 921    usage: Option<ModelRequestUsage>,
 922) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 923    futures::stream::iter(usage.map(|usage| {
 924        Ok(CompletionEvent::Status(
 925            CompletionRequestStatus::UsageUpdated {
 926                amount: usage.amount as usize,
 927                limit: usage.limit,
 928            },
 929        ))
 930    }))
 931}
 932
 933fn tool_use_limit_reached_event<T>(
 934    tool_use_limit_reached: bool,
 935) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 936    futures::stream::iter(tool_use_limit_reached.then(|| {
 937        Ok(CompletionEvent::Status(
 938            CompletionRequestStatus::ToolUseLimitReached,
 939        ))
 940    }))
 941}
 942
 943fn response_lines<T: DeserializeOwned>(
 944    response: Response<AsyncBody>,
 945    includes_status_messages: bool,
 946) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 947    futures::stream::try_unfold(
 948        (String::new(), BufReader::new(response.into_body())),
 949        move |(mut line, mut body)| async move {
 950            match body.read_line(&mut line).await {
 951                Ok(0) => Ok(None),
 952                Ok(_) => {
 953                    let event = if includes_status_messages {
 954                        serde_json::from_str::<CompletionEvent<T>>(&line)?
 955                    } else {
 956                        CompletionEvent::Event(serde_json::from_str::<T>(&line)?)
 957                    };
 958
 959                    line.clear();
 960                    Ok(Some((event, (line, body))))
 961                }
 962                Err(e) => Err(e.into()),
 963            }
 964        },
 965    )
 966}
 967
 968#[derive(IntoElement, RegisterComponent)]
 969struct ZedAiConfiguration {
 970    is_connected: bool,
 971    plan: Option<Plan>,
 972    subscription_period: Option<(DateTime<Utc>, DateTime<Utc>)>,
 973    eligible_for_trial: bool,
 974    account_too_young: bool,
 975    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
 976}
 977
 978impl RenderOnce for ZedAiConfiguration {
 979    fn render(self, _window: &mut Window, _cx: &mut App) -> impl IntoElement {
 980        let young_account_banner = YoungAccountBanner;
 981
 982        let is_pro = self.plan.is_some_and(|plan| {
 983            matches!(plan, Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro))
 984        });
 985        let subscription_text = match (self.plan, self.subscription_period) {
 986            (Some(Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro)), Some(_)) => {
 987                "You have access to Zed's hosted models through your Pro subscription."
 988            }
 989            (Some(Plan::V1(PlanV1::ZedProTrial) | Plan::V2(PlanV2::ZedProTrial)), Some(_)) => {
 990                "You have access to Zed's hosted models through your Pro trial."
 991            }
 992            (Some(Plan::V1(PlanV1::ZedFree) | Plan::V2(PlanV2::ZedFree)), Some(_)) => {
 993                "You have basic access to Zed's hosted models through the Free plan."
 994            }
 995            _ => {
 996                if self.eligible_for_trial {
 997                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
 998                } else {
 999                    "Subscribe for access to Zed's hosted models."
1000                }
1001            }
1002        };
1003
1004        let manage_subscription_buttons = if is_pro {
1005            Button::new("manage_settings", "Manage Subscription")
1006                .full_width()
1007                .style(ButtonStyle::Tinted(TintColor::Accent))
1008                .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx)))
1009                .into_any_element()
1010        } else if self.plan.is_none() || self.eligible_for_trial {
1011            Button::new("start_trial", "Start 14-day Free Pro Trial")
1012                .full_width()
1013                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1014                .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx)))
1015                .into_any_element()
1016        } else {
1017            Button::new("upgrade", "Upgrade to Pro")
1018                .full_width()
1019                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1020                .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx)))
1021                .into_any_element()
1022        };
1023
1024        if !self.is_connected {
1025            return v_flex()
1026                .gap_2()
1027                .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models."))
1028                .child(
1029                    Button::new("sign_in", "Sign In to use Zed AI")
1030                        .icon_color(Color::Muted)
1031                        .icon(IconName::Github)
1032                        .icon_size(IconSize::Small)
1033                        .icon_position(IconPosition::Start)
1034                        .full_width()
1035                        .on_click({
1036                            let callback = self.sign_in_callback.clone();
1037                            move |_, window, cx| (callback)(window, cx)
1038                        }),
1039                );
1040        }
1041
1042        v_flex().gap_2().w_full().map(|this| {
1043            if self.account_too_young {
1044                this.child(young_account_banner).child(
1045                    Button::new("upgrade", "Upgrade to Pro")
1046                        .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1047                        .full_width()
1048                        .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))),
1049                )
1050            } else {
1051                this.text_sm()
1052                    .child(subscription_text)
1053                    .child(manage_subscription_buttons)
1054            }
1055        })
1056    }
1057}
1058
1059struct ConfigurationView {
1060    state: Entity<State>,
1061    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1062}
1063
1064impl ConfigurationView {
1065    fn new(state: Entity<State>) -> Self {
1066        let sign_in_callback = Arc::new({
1067            let state = state.clone();
1068            move |_window: &mut Window, cx: &mut App| {
1069                state.update(cx, |state, cx| {
1070                    state.authenticate(cx).detach_and_log_err(cx);
1071                });
1072            }
1073        });
1074
1075        Self {
1076            state,
1077            sign_in_callback,
1078        }
1079    }
1080}
1081
1082impl Render for ConfigurationView {
1083    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1084        let state = self.state.read(cx);
1085        let user_store = state.user_store.read(cx);
1086
1087        ZedAiConfiguration {
1088            is_connected: !state.is_signed_out(cx),
1089            plan: user_store.plan(),
1090            subscription_period: user_store.subscription_period(),
1091            eligible_for_trial: user_store.trial_started_at().is_none(),
1092            account_too_young: user_store.account_too_young(),
1093            sign_in_callback: self.sign_in_callback.clone(),
1094        }
1095    }
1096}
1097
1098impl Component for ZedAiConfiguration {
1099    fn name() -> &'static str {
1100        "AI Configuration Content"
1101    }
1102
1103    fn sort_name() -> &'static str {
1104        "AI Configuration Content"
1105    }
1106
1107    fn scope() -> ComponentScope {
1108        ComponentScope::Onboarding
1109    }
1110
1111    fn preview(_window: &mut Window, _cx: &mut App) -> Option<AnyElement> {
1112        fn configuration(
1113            is_connected: bool,
1114            plan: Option<Plan>,
1115            eligible_for_trial: bool,
1116            account_too_young: bool,
1117        ) -> AnyElement {
1118            ZedAiConfiguration {
1119                is_connected,
1120                plan,
1121                subscription_period: plan
1122                    .is_some()
1123                    .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))),
1124                eligible_for_trial,
1125                account_too_young,
1126                sign_in_callback: Arc::new(|_, _| {}),
1127            }
1128            .into_any_element()
1129        }
1130
1131        Some(
1132            v_flex()
1133                .p_4()
1134                .gap_4()
1135                .children(vec![
1136                    single_example("Not connected", configuration(false, None, false, false)),
1137                    single_example(
1138                        "Accept Terms of Service",
1139                        configuration(true, None, true, false),
1140                    ),
1141                    single_example(
1142                        "No Plan - Not eligible for trial",
1143                        configuration(true, None, false, false),
1144                    ),
1145                    single_example(
1146                        "No Plan - Eligible for trial",
1147                        configuration(true, None, true, false),
1148                    ),
1149                    single_example(
1150                        "Free Plan",
1151                        configuration(true, Some(Plan::V1(PlanV1::ZedFree)), true, false),
1152                    ),
1153                    single_example(
1154                        "Zed Pro Trial Plan",
1155                        configuration(true, Some(Plan::V1(PlanV1::ZedProTrial)), true, false),
1156                    ),
1157                    single_example(
1158                        "Zed Pro Plan",
1159                        configuration(true, Some(Plan::V1(PlanV1::ZedPro)), true, false),
1160                    ),
1161                ])
1162                .into_any_element(),
1163        )
1164    }
1165}
1166
1167#[cfg(test)]
1168mod tests {
1169    use super::*;
1170    use http_client::http::{HeaderMap, StatusCode};
1171    use language_model::LanguageModelCompletionError;
1172
1173    #[test]
1174    fn test_api_error_conversion_with_upstream_http_error() {
1175        // upstream_http_error with 503 status should become ServerOverloaded
1176        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#;
1177
1178        let api_error = ApiError {
1179            status: StatusCode::INTERNAL_SERVER_ERROR,
1180            body: error_body.to_string(),
1181            headers: HeaderMap::new(),
1182        };
1183
1184        let completion_error: LanguageModelCompletionError = api_error.into();
1185
1186        match completion_error {
1187            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1188                assert_eq!(
1189                    message,
1190                    "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout"
1191                );
1192            }
1193            _ => panic!(
1194                "Expected UpstreamProviderError for upstream 503, got: {:?}",
1195                completion_error
1196            ),
1197        }
1198
1199        // upstream_http_error with 500 status should become ApiInternalServerError
1200        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#;
1201
1202        let api_error = ApiError {
1203            status: StatusCode::INTERNAL_SERVER_ERROR,
1204            body: error_body.to_string(),
1205            headers: HeaderMap::new(),
1206        };
1207
1208        let completion_error: LanguageModelCompletionError = api_error.into();
1209
1210        match completion_error {
1211            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1212                assert_eq!(
1213                    message,
1214                    "Received an error from the OpenAI API: internal server error"
1215                );
1216            }
1217            _ => panic!(
1218                "Expected UpstreamProviderError for upstream 500, got: {:?}",
1219                completion_error
1220            ),
1221        }
1222
1223        // upstream_http_error with 429 status should become RateLimitExceeded
1224        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#;
1225
1226        let api_error = ApiError {
1227            status: StatusCode::INTERNAL_SERVER_ERROR,
1228            body: error_body.to_string(),
1229            headers: HeaderMap::new(),
1230        };
1231
1232        let completion_error: LanguageModelCompletionError = api_error.into();
1233
1234        match completion_error {
1235            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1236                assert_eq!(
1237                    message,
1238                    "Received an error from the Google API: rate limit exceeded"
1239                );
1240            }
1241            _ => panic!(
1242                "Expected UpstreamProviderError for upstream 429, got: {:?}",
1243                completion_error
1244            ),
1245        }
1246
1247        // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed
1248        let error_body = "Regular internal server error";
1249
1250        let api_error = ApiError {
1251            status: StatusCode::INTERNAL_SERVER_ERROR,
1252            body: error_body.to_string(),
1253            headers: HeaderMap::new(),
1254        };
1255
1256        let completion_error: LanguageModelCompletionError = api_error.into();
1257
1258        match completion_error {
1259            LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
1260                assert_eq!(provider, PROVIDER_NAME);
1261                assert_eq!(message, "Regular internal server error");
1262            }
1263            _ => panic!(
1264                "Expected ApiInternalServerError for regular 500, got: {:?}",
1265                completion_error
1266            ),
1267        }
1268
1269        // upstream_http_429 format should be converted to UpstreamProviderError
1270        let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#;
1271
1272        let api_error = ApiError {
1273            status: StatusCode::INTERNAL_SERVER_ERROR,
1274            body: error_body.to_string(),
1275            headers: HeaderMap::new(),
1276        };
1277
1278        let completion_error: LanguageModelCompletionError = api_error.into();
1279
1280        match completion_error {
1281            LanguageModelCompletionError::UpstreamProviderError {
1282                message,
1283                status,
1284                retry_after,
1285            } => {
1286                assert_eq!(message, "Upstream Anthropic rate limit exceeded.");
1287                assert_eq!(status, StatusCode::TOO_MANY_REQUESTS);
1288                assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5)));
1289            }
1290            _ => panic!(
1291                "Expected UpstreamProviderError for upstream_http_429, got: {:?}",
1292                completion_error
1293            ),
1294        }
1295
1296        // Invalid JSON in error body should fall back to regular error handling
1297        let error_body = "Not JSON at all";
1298
1299        let api_error = ApiError {
1300            status: StatusCode::INTERNAL_SERVER_ERROR,
1301            body: error_body.to_string(),
1302            headers: HeaderMap::new(),
1303        };
1304
1305        let completion_error: LanguageModelCompletionError = api_error.into();
1306
1307        match completion_error {
1308            LanguageModelCompletionError::ApiInternalServerError { provider, .. } => {
1309                assert_eq!(provider, PROVIDER_NAME);
1310            }
1311            _ => panic!(
1312                "Expected ApiInternalServerError for invalid JSON, got: {:?}",
1313                completion_error
1314            ),
1315        }
1316    }
1317}