window.rs

   1use crate::{
   2    px, size, Action, AnyBox, AnyDrag, AnyView, AppContext, AsyncWindowContext, AvailableSpace,
   3    Bounds, BoxShadow, Context, Corners, DevicePixels, DispatchContext, DisplayId, Edges, Effect,
   4    Entity, EntityId, EventEmitter, FileDropEvent, FocusEvent, FontId, GlobalElementId, GlyphId,
   5    Hsla, ImageData, InputEvent, IsZero, KeyListener, KeyMatch, KeyMatcher, Keystroke, LayoutId,
   6    MainThread, MainThreadOnly, Model, ModelContext, Modifiers, MonochromeSprite, MouseButton,
   7    MouseDownEvent, MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformWindow,
   8    Point, PolychromeSprite, Quad, Render, RenderGlyphParams, RenderImageParams, RenderSvgParams,
   9    ScaledPixels, SceneBuilder, Shadow, SharedString, Size, Style, Subscription, TaffyLayoutEngine,
  10    Task, Underline, UnderlineStyle, UpdateView, View, VisualContext, WeakView, WindowOptions,
  11    SUBPIXEL_VARIANTS,
  12};
  13use anyhow::{anyhow, Result};
  14use collections::HashMap;
  15use derive_more::{Deref, DerefMut};
  16use parking_lot::RwLock;
  17use slotmap::SlotMap;
  18use smallvec::SmallVec;
  19use std::{
  20    any::{Any, TypeId},
  21    borrow::{Borrow, BorrowMut, Cow},
  22    fmt::Debug,
  23    future::Future,
  24    hash::{Hash, Hasher},
  25    marker::PhantomData,
  26    mem,
  27    sync::{
  28        atomic::{AtomicUsize, Ordering::SeqCst},
  29        Arc,
  30    },
  31};
  32use util::ResultExt;
  33
  34/// A global stacking order, which is created by stacking successive z-index values.
  35/// Each z-index will always be interpreted in the context of its parent z-index.
  36#[derive(Deref, DerefMut, Ord, PartialOrd, Eq, PartialEq, Clone, Default)]
  37pub(crate) struct StackingOrder(pub(crate) SmallVec<[u32; 16]>);
  38
  39/// Represents the two different phases when dispatching events.
  40#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
  41pub enum DispatchPhase {
  42    /// After the capture phase comes the bubble phase, in which mouse event listeners are
  43    /// invoked front to back and keyboard event listeners are invoked from the focused element
  44    /// to the root of the element tree. This is the phase you'll most commonly want to use when
  45    /// registering event listeners.
  46    #[default]
  47    Bubble,
  48    /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
  49    /// listeners are invoked from the root of the tree downward toward the focused element. This phase
  50    /// is used for special purposes such as clearing the "pressed" state for click events. If
  51    /// you stop event propagation during this phase, you need to know what you're doing. Handlers
  52    /// outside of the immediate region may rely on detecting non-local events during this phase.
  53    Capture,
  54}
  55
  56type AnyListener = Box<dyn Fn(&dyn Any, DispatchPhase, &mut WindowContext) + Send + 'static>;
  57type AnyKeyListener = Box<
  58    dyn Fn(
  59            &dyn Any,
  60            &[&DispatchContext],
  61            DispatchPhase,
  62            &mut WindowContext,
  63        ) -> Option<Box<dyn Action>>
  64        + Send
  65        + 'static,
  66>;
  67type AnyFocusListener = Box<dyn Fn(&FocusEvent, &mut WindowContext) + Send + 'static>;
  68
  69slotmap::new_key_type! { pub struct FocusId; }
  70
  71/// A handle which can be used to track and manipulate the focused element in a window.
  72pub struct FocusHandle {
  73    pub(crate) id: FocusId,
  74    handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
  75}
  76
  77impl FocusHandle {
  78    pub(crate) fn new(handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>) -> Self {
  79        let id = handles.write().insert(AtomicUsize::new(1));
  80        Self {
  81            id,
  82            handles: handles.clone(),
  83        }
  84    }
  85
  86    pub(crate) fn for_id(
  87        id: FocusId,
  88        handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
  89    ) -> Option<Self> {
  90        let lock = handles.read();
  91        let ref_count = lock.get(id)?;
  92        if ref_count.load(SeqCst) == 0 {
  93            None
  94        } else {
  95            ref_count.fetch_add(1, SeqCst);
  96            Some(Self {
  97                id,
  98                handles: handles.clone(),
  99            })
 100        }
 101    }
 102
 103    /// Obtains whether the element associated with this handle is currently focused.
 104    pub fn is_focused(&self, cx: &WindowContext) -> bool {
 105        cx.window.focus == Some(self.id)
 106    }
 107
 108    /// Obtains whether the element associated with this handle contains the focused
 109    /// element or is itself focused.
 110    pub fn contains_focused(&self, cx: &WindowContext) -> bool {
 111        cx.focused()
 112            .map_or(false, |focused| self.contains(&focused, cx))
 113    }
 114
 115    /// Obtains whether the element associated with this handle is contained within the
 116    /// focused element or is itself focused.
 117    pub fn within_focused(&self, cx: &WindowContext) -> bool {
 118        let focused = cx.focused();
 119        focused.map_or(false, |focused| focused.contains(self, cx))
 120    }
 121
 122    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 123    pub(crate) fn contains(&self, other: &Self, cx: &WindowContext) -> bool {
 124        let mut ancestor = Some(other.id);
 125        while let Some(ancestor_id) = ancestor {
 126            if self.id == ancestor_id {
 127                return true;
 128            } else {
 129                ancestor = cx.window.focus_parents_by_child.get(&ancestor_id).copied();
 130            }
 131        }
 132        false
 133    }
 134}
 135
 136impl Clone for FocusHandle {
 137    fn clone(&self) -> Self {
 138        Self::for_id(self.id, &self.handles).unwrap()
 139    }
 140}
 141
 142impl PartialEq for FocusHandle {
 143    fn eq(&self, other: &Self) -> bool {
 144        self.id == other.id
 145    }
 146}
 147
 148impl Eq for FocusHandle {}
 149
 150impl Drop for FocusHandle {
 151    fn drop(&mut self) {
 152        self.handles
 153            .read()
 154            .get(self.id)
 155            .unwrap()
 156            .fetch_sub(1, SeqCst);
 157    }
 158}
 159
 160// Holds the state for a specific window.
 161pub struct Window {
 162    pub(crate) handle: AnyWindowHandle,
 163    platform_window: MainThreadOnly<Box<dyn PlatformWindow>>,
 164    display_id: DisplayId,
 165    sprite_atlas: Arc<dyn PlatformAtlas>,
 166    rem_size: Pixels,
 167    content_size: Size<Pixels>,
 168    pub(crate) layout_engine: TaffyLayoutEngine,
 169    pub(crate) root_view: Option<AnyView>,
 170    pub(crate) element_id_stack: GlobalElementId,
 171    prev_frame_element_states: HashMap<GlobalElementId, AnyBox>,
 172    element_states: HashMap<GlobalElementId, AnyBox>,
 173    prev_frame_key_matchers: HashMap<GlobalElementId, KeyMatcher>,
 174    key_matchers: HashMap<GlobalElementId, KeyMatcher>,
 175    z_index_stack: StackingOrder,
 176    content_mask_stack: Vec<ContentMask<Pixels>>,
 177    element_offset_stack: Vec<Point<Pixels>>,
 178    mouse_listeners: HashMap<TypeId, Vec<(StackingOrder, AnyListener)>>,
 179    key_dispatch_stack: Vec<KeyDispatchStackFrame>,
 180    freeze_key_dispatch_stack: bool,
 181    focus_stack: Vec<FocusId>,
 182    focus_parents_by_child: HashMap<FocusId, FocusId>,
 183    pub(crate) focus_listeners: Vec<AnyFocusListener>,
 184    pub(crate) focus_handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
 185    default_prevented: bool,
 186    mouse_position: Point<Pixels>,
 187    scale_factor: f32,
 188    pub(crate) scene_builder: SceneBuilder,
 189    pub(crate) dirty: bool,
 190    pub(crate) last_blur: Option<Option<FocusId>>,
 191    pub(crate) focus: Option<FocusId>,
 192}
 193
 194impl Window {
 195    pub(crate) fn new(
 196        handle: AnyWindowHandle,
 197        options: WindowOptions,
 198        cx: &mut MainThread<AppContext>,
 199    ) -> Self {
 200        let platform_window = cx.platform().open_window(handle, options);
 201        let display_id = platform_window.display().id();
 202        let sprite_atlas = platform_window.sprite_atlas();
 203        let mouse_position = platform_window.mouse_position();
 204        let content_size = platform_window.content_size();
 205        let scale_factor = platform_window.scale_factor();
 206        platform_window.on_resize(Box::new({
 207            let mut cx = cx.to_async();
 208            move |content_size, scale_factor| {
 209                handle
 210                    .update(&mut cx, |_, cx| {
 211                        cx.window.scale_factor = scale_factor;
 212                        cx.window.scene_builder = SceneBuilder::new();
 213                        cx.window.content_size = content_size;
 214                        cx.window.display_id = cx
 215                            .window
 216                            .platform_window
 217                            .borrow_on_main_thread()
 218                            .display()
 219                            .id();
 220                        cx.window.dirty = true;
 221                    })
 222                    .log_err();
 223            }
 224        }));
 225
 226        platform_window.on_input({
 227            let mut cx = cx.to_async();
 228            Box::new(move |event| {
 229                handle
 230                    .update(&mut cx, |_, cx| cx.dispatch_event(event))
 231                    .log_err()
 232                    .unwrap_or(true)
 233            })
 234        });
 235
 236        let platform_window = MainThreadOnly::new(Arc::new(platform_window), cx.executor.clone());
 237
 238        Window {
 239            handle,
 240            platform_window,
 241            display_id,
 242            sprite_atlas,
 243            rem_size: px(16.),
 244            content_size,
 245            layout_engine: TaffyLayoutEngine::new(),
 246            root_view: None,
 247            element_id_stack: GlobalElementId::default(),
 248            prev_frame_element_states: HashMap::default(),
 249            element_states: HashMap::default(),
 250            prev_frame_key_matchers: HashMap::default(),
 251            key_matchers: HashMap::default(),
 252            z_index_stack: StackingOrder(SmallVec::new()),
 253            content_mask_stack: Vec::new(),
 254            element_offset_stack: Vec::new(),
 255            mouse_listeners: HashMap::default(),
 256            key_dispatch_stack: Vec::new(),
 257            freeze_key_dispatch_stack: false,
 258            focus_stack: Vec::new(),
 259            focus_parents_by_child: HashMap::default(),
 260            focus_listeners: Vec::new(),
 261            focus_handles: Arc::new(RwLock::new(SlotMap::with_key())),
 262            default_prevented: true,
 263            mouse_position,
 264            scale_factor,
 265            scene_builder: SceneBuilder::new(),
 266            dirty: true,
 267            last_blur: None,
 268            focus: None,
 269        }
 270    }
 271}
 272
 273/// When constructing the element tree, we maintain a stack of key dispatch frames until we
 274/// find the focused element. We interleave key listeners with dispatch contexts so we can use the
 275/// contexts when matching key events against the keymap.
 276enum KeyDispatchStackFrame {
 277    Listener {
 278        event_type: TypeId,
 279        listener: AnyKeyListener,
 280    },
 281    Context(DispatchContext),
 282}
 283
 284/// Indicates which region of the window is visible. Content falling outside of this mask will not be
 285/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
 286/// to leave room to support more complex shapes in the future.
 287#[derive(Clone, Debug, Default, PartialEq, Eq)]
 288#[repr(C)]
 289pub struct ContentMask<P: Clone + Default + Debug> {
 290    pub bounds: Bounds<P>,
 291}
 292
 293impl ContentMask<Pixels> {
 294    /// Scale the content mask's pixel units by the given scaling factor.
 295    pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
 296        ContentMask {
 297            bounds: self.bounds.scale(factor),
 298        }
 299    }
 300
 301    /// Intersect the content mask with the given content mask.
 302    pub fn intersect(&self, other: &Self) -> Self {
 303        let bounds = self.bounds.intersect(&other.bounds);
 304        ContentMask { bounds }
 305    }
 306}
 307
 308/// Provides access to application state in the context of a single window. Derefs
 309/// to an `AppContext`, so you can also pass a `WindowContext` to any method that takes
 310/// an `AppContext` and call any `AppContext` methods.
 311pub struct WindowContext<'a> {
 312    pub(crate) app: &'a mut AppContext,
 313    pub(crate) window: &'a mut Window,
 314}
 315
 316impl<'a> WindowContext<'a> {
 317    pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self {
 318        Self { app, window }
 319    }
 320
 321    /// Obtain a handle to the window that belongs to this context.
 322    pub fn window_handle(&self) -> AnyWindowHandle {
 323        self.window.handle
 324    }
 325
 326    /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
 327    pub fn notify(&mut self) {
 328        self.window.dirty = true;
 329    }
 330
 331    /// Obtain a new `FocusHandle`, which allows you to track and manipulate the keyboard focus
 332    /// for elements rendered within this window.
 333    pub fn focus_handle(&mut self) -> FocusHandle {
 334        FocusHandle::new(&self.window.focus_handles)
 335    }
 336
 337    /// Obtain the currently focused `FocusHandle`. If no elements are focused, returns `None`.
 338    pub fn focused(&self) -> Option<FocusHandle> {
 339        self.window
 340            .focus
 341            .and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles))
 342    }
 343
 344    /// Move focus to the element associated with the given `FocusHandle`.
 345    pub fn focus(&mut self, handle: &FocusHandle) {
 346        if self.window.last_blur.is_none() {
 347            self.window.last_blur = Some(self.window.focus);
 348        }
 349
 350        self.window.focus = Some(handle.id);
 351        self.app.push_effect(Effect::FocusChanged {
 352            window_handle: self.window.handle,
 353            focused: Some(handle.id),
 354        });
 355        self.notify();
 356    }
 357
 358    /// Remove focus from all elements within this context's window.
 359    pub fn blur(&mut self) {
 360        if self.window.last_blur.is_none() {
 361            self.window.last_blur = Some(self.window.focus);
 362        }
 363
 364        self.window.focus = None;
 365        self.app.push_effect(Effect::FocusChanged {
 366            window_handle: self.window.handle,
 367            focused: None,
 368        });
 369        self.notify();
 370    }
 371
 372    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
 373    /// that are currently on the stack to be returned to the app.
 374    pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static + Send) {
 375        let handle = self.window.handle;
 376        self.app.defer(move |cx| {
 377            handle.update(cx, |_, cx| f(cx)).ok();
 378        });
 379    }
 380
 381    pub fn subscribe<Emitter, E>(
 382        &mut self,
 383        entity: &E,
 384        mut on_event: impl FnMut(E, &Emitter::Event, &mut WindowContext<'_>) + Send + 'static,
 385    ) -> Subscription
 386    where
 387        Emitter: EventEmitter,
 388        E: Entity<Emitter>,
 389    {
 390        let entity_id = entity.entity_id();
 391        let entity = entity.downgrade();
 392        let window_handle = self.window.handle;
 393        self.app.event_listeners.insert(
 394            entity_id,
 395            Box::new(move |event, cx| {
 396                window_handle
 397                    .update(cx, |_, cx| {
 398                        if let Some(handle) = E::upgrade_from(&entity) {
 399                            let event = event.downcast_ref().expect("invalid event type");
 400                            on_event(handle, event, cx);
 401                            true
 402                        } else {
 403                            false
 404                        }
 405                    })
 406                    .unwrap_or(false)
 407            }),
 408        )
 409    }
 410
 411    /// Schedule the given closure to be run on the main thread. It will be invoked with
 412    /// a `MainThread<WindowContext>`, which provides access to platform-specific functionality
 413    /// of the window.
 414    pub fn run_on_main<R>(
 415        &mut self,
 416        f: impl FnOnce(&mut MainThread<WindowContext<'_>>) -> R + Send + 'static,
 417    ) -> Task<Result<R>>
 418    where
 419        R: Send + 'static,
 420    {
 421        if self.executor.is_main_thread() {
 422            Task::ready(Ok(f(unsafe {
 423                mem::transmute::<&mut Self, &mut MainThread<Self>>(self)
 424            })))
 425        } else {
 426            let handle = self.window.handle;
 427            self.app
 428                .run_on_main(move |cx| handle.update(cx, |_, cx| f(cx)))
 429        }
 430    }
 431
 432    /// Create an `AsyncWindowContext`, which has a static lifetime and can be held across
 433    /// await points in async code.
 434    pub fn to_async(&self) -> AsyncWindowContext {
 435        AsyncWindowContext::new(self.app.to_async(), self.window.handle)
 436    }
 437
 438    /// Schedule the given closure to be run directly after the current frame is rendered.
 439    pub fn on_next_frame(&mut self, f: impl FnOnce(&mut WindowContext) + Send + 'static) {
 440        let f = Box::new(f);
 441        let display_id = self.window.display_id;
 442        self.run_on_main(move |cx| {
 443            if let Some(callbacks) = cx.next_frame_callbacks.get_mut(&display_id) {
 444                callbacks.push(f);
 445                // If there was already a callback, it means that we already scheduled a frame.
 446                if callbacks.len() > 1 {
 447                    return;
 448                }
 449            } else {
 450                let mut async_cx = cx.to_async();
 451                cx.next_frame_callbacks.insert(display_id, vec![f]);
 452                cx.platform().set_display_link_output_callback(
 453                    display_id,
 454                    Box::new(move |_current_time, _output_time| {
 455                        let _ = async_cx.update(|_, cx| {
 456                            let callbacks = cx
 457                                .next_frame_callbacks
 458                                .get_mut(&display_id)
 459                                .unwrap()
 460                                .drain(..)
 461                                .collect::<Vec<_>>();
 462                            for callback in callbacks {
 463                                callback(cx);
 464                            }
 465
 466                            cx.run_on_main(move |cx| {
 467                                if cx.next_frame_callbacks.get(&display_id).unwrap().is_empty() {
 468                                    cx.platform().stop_display_link(display_id);
 469                                }
 470                            })
 471                            .detach();
 472                        });
 473                    }),
 474                );
 475            }
 476
 477            cx.platform().start_display_link(display_id);
 478        })
 479        .detach();
 480    }
 481
 482    /// Spawn the future returned by the given closure on the application thread pool.
 483    /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
 484    /// use within your future.
 485    pub fn spawn<Fut, R>(
 486        &mut self,
 487        f: impl FnOnce(AnyWindowHandle, AsyncWindowContext) -> Fut,
 488    ) -> Task<R>
 489    where
 490        R: Send + 'static,
 491        Fut: Future<Output = R> + Send + 'static,
 492    {
 493        let window = self.window.handle;
 494        self.app.spawn(move |app| {
 495            let cx = AsyncWindowContext::new(app, window);
 496            f(window, cx)
 497        })
 498    }
 499
 500    /// Update the global of the given type. The given closure is given simultaneous mutable
 501    /// access both to the global and the context.
 502    pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
 503    where
 504        G: 'static,
 505    {
 506        let mut global = self.app.lease_global::<G>();
 507        let result = f(&mut global, self);
 508        self.app.end_global_lease(global);
 509        result
 510    }
 511
 512    /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
 513    /// layout is being requested, along with the layout ids of any children. This method is called during
 514    /// calls to the `Element::layout` trait method and enables any element to participate in layout.
 515    pub fn request_layout(
 516        &mut self,
 517        style: &Style,
 518        children: impl IntoIterator<Item = LayoutId>,
 519    ) -> LayoutId {
 520        self.app.layout_id_buffer.clear();
 521        self.app.layout_id_buffer.extend(children.into_iter());
 522        let rem_size = self.rem_size();
 523
 524        self.window
 525            .layout_engine
 526            .request_layout(style, rem_size, &self.app.layout_id_buffer)
 527    }
 528
 529    /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
 530    /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
 531    /// determine the element's size. One place this is used internally is when measuring text.
 532    ///
 533    /// The given closure is invoked at layout time with the known dimensions and available space and
 534    /// returns a `Size`.
 535    pub fn request_measured_layout<
 536        F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>) -> Size<Pixels> + Send + Sync + 'static,
 537    >(
 538        &mut self,
 539        style: Style,
 540        rem_size: Pixels,
 541        measure: F,
 542    ) -> LayoutId {
 543        self.window
 544            .layout_engine
 545            .request_measured_layout(style, rem_size, measure)
 546    }
 547
 548    /// Obtain the bounds computed for the given LayoutId relative to the window. This method should not
 549    /// be invoked until the paint phase begins, and will usually be invoked by GPUI itself automatically
 550    /// in order to pass your element its `Bounds` automatically.
 551    pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
 552        let mut bounds = self
 553            .window
 554            .layout_engine
 555            .layout_bounds(layout_id)
 556            .map(Into::into);
 557        bounds.origin += self.element_offset();
 558        bounds
 559    }
 560
 561    /// The scale factor of the display associated with the window. For example, it could
 562    /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
 563    /// be rendered as two pixels on screen.
 564    pub fn scale_factor(&self) -> f32 {
 565        self.window.scale_factor
 566    }
 567
 568    /// The size of an em for the base font of the application. Adjusting this value allows the
 569    /// UI to scale, just like zooming a web page.
 570    pub fn rem_size(&self) -> Pixels {
 571        self.window.rem_size
 572    }
 573
 574    /// Sets the size of an em for the base font of the application. Adjusting this value allows the
 575    /// UI to scale, just like zooming a web page.
 576    pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
 577        self.window.rem_size = rem_size.into();
 578    }
 579
 580    /// The line height associated with the current text style.
 581    pub fn line_height(&self) -> Pixels {
 582        let rem_size = self.rem_size();
 583        let text_style = self.text_style();
 584        text_style
 585            .line_height
 586            .to_pixels(text_style.font_size.into(), rem_size)
 587    }
 588
 589    /// Call to prevent the default action of an event. Currently only used to prevent
 590    /// parent elements from becoming focused on mouse down.
 591    pub fn prevent_default(&mut self) {
 592        self.window.default_prevented = true;
 593    }
 594
 595    /// Obtain whether default has been prevented for the event currently being dispatched.
 596    pub fn default_prevented(&self) -> bool {
 597        self.window.default_prevented
 598    }
 599
 600    /// Register a mouse event listener on the window for the current frame. The type of event
 601    /// is determined by the first parameter of the given listener. When the next frame is rendered
 602    /// the listener will be cleared.
 603    ///
 604    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
 605    /// a specific need to register a global listener.
 606    pub fn on_mouse_event<Event: 'static>(
 607        &mut self,
 608        handler: impl Fn(&Event, DispatchPhase, &mut WindowContext) + Send + 'static,
 609    ) {
 610        let order = self.window.z_index_stack.clone();
 611        self.window
 612            .mouse_listeners
 613            .entry(TypeId::of::<Event>())
 614            .or_default()
 615            .push((
 616                order,
 617                Box::new(move |event: &dyn Any, phase, cx| {
 618                    handler(event.downcast_ref().unwrap(), phase, cx)
 619                }),
 620            ))
 621    }
 622
 623    /// The position of the mouse relative to the window.
 624    pub fn mouse_position(&self) -> Point<Pixels> {
 625        self.window.mouse_position
 626    }
 627
 628    /// Called during painting to invoke the given closure in a new stacking context. The given
 629    /// z-index is interpreted relative to the previous call to `stack`.
 630    pub fn stack<R>(&mut self, z_index: u32, f: impl FnOnce(&mut Self) -> R) -> R {
 631        self.window.z_index_stack.push(z_index);
 632        let result = f(self);
 633        self.window.z_index_stack.pop();
 634        result
 635    }
 636
 637    /// Paint one or more drop shadows into the scene for the current frame at the current z-index.
 638    pub fn paint_shadows(
 639        &mut self,
 640        bounds: Bounds<Pixels>,
 641        corner_radii: Corners<Pixels>,
 642        shadows: &[BoxShadow],
 643    ) {
 644        let scale_factor = self.scale_factor();
 645        let content_mask = self.content_mask();
 646        let window = &mut *self.window;
 647        for shadow in shadows {
 648            let mut shadow_bounds = bounds;
 649            shadow_bounds.origin += shadow.offset;
 650            shadow_bounds.dilate(shadow.spread_radius);
 651            window.scene_builder.insert(
 652                &window.z_index_stack,
 653                Shadow {
 654                    order: 0,
 655                    bounds: shadow_bounds.scale(scale_factor),
 656                    content_mask: content_mask.scale(scale_factor),
 657                    corner_radii: corner_radii.scale(scale_factor),
 658                    color: shadow.color,
 659                    blur_radius: shadow.blur_radius.scale(scale_factor),
 660                },
 661            );
 662        }
 663    }
 664
 665    /// Paint one or more quads into the scene for the current frame at the current stacking context.
 666    /// Quads are colored rectangular regions with an optional background, border, and corner radius.
 667    pub fn paint_quad(
 668        &mut self,
 669        bounds: Bounds<Pixels>,
 670        corner_radii: Corners<Pixels>,
 671        background: impl Into<Hsla>,
 672        border_widths: Edges<Pixels>,
 673        border_color: impl Into<Hsla>,
 674    ) {
 675        let scale_factor = self.scale_factor();
 676        let content_mask = self.content_mask();
 677
 678        let window = &mut *self.window;
 679        window.scene_builder.insert(
 680            &window.z_index_stack,
 681            Quad {
 682                order: 0,
 683                bounds: bounds.scale(scale_factor),
 684                content_mask: content_mask.scale(scale_factor),
 685                background: background.into(),
 686                border_color: border_color.into(),
 687                corner_radii: corner_radii.scale(scale_factor),
 688                border_widths: border_widths.scale(scale_factor),
 689            },
 690        );
 691    }
 692
 693    /// Paint the given `Path` into the scene for the current frame at the current z-index.
 694    pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Hsla>) {
 695        let scale_factor = self.scale_factor();
 696        let content_mask = self.content_mask();
 697        path.content_mask = content_mask;
 698        path.color = color.into();
 699        let window = &mut *self.window;
 700        window
 701            .scene_builder
 702            .insert(&window.z_index_stack, path.scale(scale_factor));
 703    }
 704
 705    /// Paint an underline into the scene for the current frame at the current z-index.
 706    pub fn paint_underline(
 707        &mut self,
 708        origin: Point<Pixels>,
 709        width: Pixels,
 710        style: &UnderlineStyle,
 711    ) -> Result<()> {
 712        let scale_factor = self.scale_factor();
 713        let height = if style.wavy {
 714            style.thickness * 3.
 715        } else {
 716            style.thickness
 717        };
 718        let bounds = Bounds {
 719            origin,
 720            size: size(width, height),
 721        };
 722        let content_mask = self.content_mask();
 723        let window = &mut *self.window;
 724        window.scene_builder.insert(
 725            &window.z_index_stack,
 726            Underline {
 727                order: 0,
 728                bounds: bounds.scale(scale_factor),
 729                content_mask: content_mask.scale(scale_factor),
 730                thickness: style.thickness.scale(scale_factor),
 731                color: style.color.unwrap_or_default(),
 732                wavy: style.wavy,
 733            },
 734        );
 735        Ok(())
 736    }
 737
 738    /// Paint a monochrome (non-emoji) glyph into the scene for the current frame at the current z-index.
 739    pub fn paint_glyph(
 740        &mut self,
 741        origin: Point<Pixels>,
 742        font_id: FontId,
 743        glyph_id: GlyphId,
 744        font_size: Pixels,
 745        color: Hsla,
 746    ) -> Result<()> {
 747        let scale_factor = self.scale_factor();
 748        let glyph_origin = origin.scale(scale_factor);
 749        let subpixel_variant = Point {
 750            x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
 751            y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
 752        };
 753        let params = RenderGlyphParams {
 754            font_id,
 755            glyph_id,
 756            font_size,
 757            subpixel_variant,
 758            scale_factor,
 759            is_emoji: false,
 760        };
 761
 762        let raster_bounds = self.text_system().raster_bounds(&params)?;
 763        if !raster_bounds.is_zero() {
 764            let tile =
 765                self.window
 766                    .sprite_atlas
 767                    .get_or_insert_with(&params.clone().into(), &mut || {
 768                        let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
 769                        Ok((size, Cow::Owned(bytes)))
 770                    })?;
 771            let bounds = Bounds {
 772                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
 773                size: tile.bounds.size.map(Into::into),
 774            };
 775            let content_mask = self.content_mask().scale(scale_factor);
 776            let window = &mut *self.window;
 777            window.scene_builder.insert(
 778                &window.z_index_stack,
 779                MonochromeSprite {
 780                    order: 0,
 781                    bounds,
 782                    content_mask,
 783                    color,
 784                    tile,
 785                },
 786            );
 787        }
 788        Ok(())
 789    }
 790
 791    /// Paint an emoji glyph into the scene for the current frame at the current z-index.
 792    pub fn paint_emoji(
 793        &mut self,
 794        origin: Point<Pixels>,
 795        font_id: FontId,
 796        glyph_id: GlyphId,
 797        font_size: Pixels,
 798    ) -> Result<()> {
 799        let scale_factor = self.scale_factor();
 800        let glyph_origin = origin.scale(scale_factor);
 801        let params = RenderGlyphParams {
 802            font_id,
 803            glyph_id,
 804            font_size,
 805            // We don't render emojis with subpixel variants.
 806            subpixel_variant: Default::default(),
 807            scale_factor,
 808            is_emoji: true,
 809        };
 810
 811        let raster_bounds = self.text_system().raster_bounds(&params)?;
 812        if !raster_bounds.is_zero() {
 813            let tile =
 814                self.window
 815                    .sprite_atlas
 816                    .get_or_insert_with(&params.clone().into(), &mut || {
 817                        let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
 818                        Ok((size, Cow::Owned(bytes)))
 819                    })?;
 820            let bounds = Bounds {
 821                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
 822                size: tile.bounds.size.map(Into::into),
 823            };
 824            let content_mask = self.content_mask().scale(scale_factor);
 825            let window = &mut *self.window;
 826
 827            window.scene_builder.insert(
 828                &window.z_index_stack,
 829                PolychromeSprite {
 830                    order: 0,
 831                    bounds,
 832                    corner_radii: Default::default(),
 833                    content_mask,
 834                    tile,
 835                    grayscale: false,
 836                },
 837            );
 838        }
 839        Ok(())
 840    }
 841
 842    /// Paint a monochrome SVG into the scene for the current frame at the current stacking context.
 843    pub fn paint_svg(
 844        &mut self,
 845        bounds: Bounds<Pixels>,
 846        path: SharedString,
 847        color: Hsla,
 848    ) -> Result<()> {
 849        let scale_factor = self.scale_factor();
 850        let bounds = bounds.scale(scale_factor);
 851        // Render the SVG at twice the size to get a higher quality result.
 852        let params = RenderSvgParams {
 853            path,
 854            size: bounds
 855                .size
 856                .map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
 857        };
 858
 859        let tile =
 860            self.window
 861                .sprite_atlas
 862                .get_or_insert_with(&params.clone().into(), &mut || {
 863                    let bytes = self.svg_renderer.render(&params)?;
 864                    Ok((params.size, Cow::Owned(bytes)))
 865                })?;
 866        let content_mask = self.content_mask().scale(scale_factor);
 867
 868        let window = &mut *self.window;
 869        window.scene_builder.insert(
 870            &window.z_index_stack,
 871            MonochromeSprite {
 872                order: 0,
 873                bounds,
 874                content_mask,
 875                color,
 876                tile,
 877            },
 878        );
 879
 880        Ok(())
 881    }
 882
 883    /// Paint an image into the scene for the current frame at the current z-index.
 884    pub fn paint_image(
 885        &mut self,
 886        bounds: Bounds<Pixels>,
 887        corner_radii: Corners<Pixels>,
 888        data: Arc<ImageData>,
 889        grayscale: bool,
 890    ) -> Result<()> {
 891        let scale_factor = self.scale_factor();
 892        let bounds = bounds.scale(scale_factor);
 893        let params = RenderImageParams { image_id: data.id };
 894
 895        let tile = self
 896            .window
 897            .sprite_atlas
 898            .get_or_insert_with(&params.clone().into(), &mut || {
 899                Ok((data.size(), Cow::Borrowed(data.as_bytes())))
 900            })?;
 901        let content_mask = self.content_mask().scale(scale_factor);
 902        let corner_radii = corner_radii.scale(scale_factor);
 903
 904        let window = &mut *self.window;
 905        window.scene_builder.insert(
 906            &window.z_index_stack,
 907            PolychromeSprite {
 908                order: 0,
 909                bounds,
 910                content_mask,
 911                corner_radii,
 912                tile,
 913                grayscale,
 914            },
 915        );
 916        Ok(())
 917    }
 918
 919    /// Draw pixels to the display for this window based on the contents of its scene.
 920    pub(crate) fn draw(&mut self) {
 921        let root_view = self.window.root_view.take().unwrap();
 922
 923        self.start_frame();
 924
 925        self.stack(0, |cx| {
 926            let available_space = cx.window.content_size.map(Into::into);
 927            root_view.draw(available_space, cx);
 928        });
 929
 930        if let Some(active_drag) = self.app.active_drag.take() {
 931            self.stack(1, |cx| {
 932                let offset = cx.mouse_position() - active_drag.cursor_offset;
 933                cx.with_element_offset(Some(offset), |cx| {
 934                    let available_space =
 935                        size(AvailableSpace::MinContent, AvailableSpace::MinContent);
 936                    active_drag.view.draw(available_space, cx);
 937                    cx.active_drag = Some(active_drag);
 938                });
 939            });
 940        }
 941
 942        self.window.root_view = Some(root_view);
 943        let scene = self.window.scene_builder.build();
 944
 945        self.run_on_main(|cx| {
 946            cx.window
 947                .platform_window
 948                .borrow_on_main_thread()
 949                .draw(scene);
 950            cx.window.dirty = false;
 951        })
 952        .detach();
 953    }
 954
 955    fn start_frame(&mut self) {
 956        self.text_system().start_frame();
 957
 958        let window = &mut *self.window;
 959
 960        // Move the current frame element states to the previous frame.
 961        // The new empty element states map will be populated for any element states we
 962        // reference during the upcoming frame.
 963        mem::swap(
 964            &mut window.element_states,
 965            &mut window.prev_frame_element_states,
 966        );
 967        window.element_states.clear();
 968
 969        // Make the current key matchers the previous, and then clear the current.
 970        // An empty key matcher map will be created for every identified element in the
 971        // upcoming frame.
 972        mem::swap(
 973            &mut window.key_matchers,
 974            &mut window.prev_frame_key_matchers,
 975        );
 976        window.key_matchers.clear();
 977
 978        // Clear mouse event listeners, because elements add new element listeners
 979        // when the upcoming frame is painted.
 980        window.mouse_listeners.values_mut().for_each(Vec::clear);
 981
 982        // Clear focus state, because we determine what is focused when the new elements
 983        // in the upcoming frame are initialized.
 984        window.focus_listeners.clear();
 985        window.key_dispatch_stack.clear();
 986        window.focus_parents_by_child.clear();
 987        window.freeze_key_dispatch_stack = false;
 988    }
 989
 990    /// Dispatch a mouse or keyboard event on the window.
 991    fn dispatch_event(&mut self, event: InputEvent) -> bool {
 992        let event = match event {
 993            // Track the mouse position with our own state, since accessing the platform
 994            // API for the mouse position can only occur on the main thread.
 995            InputEvent::MouseMove(mouse_move) => {
 996                self.window.mouse_position = mouse_move.position;
 997                InputEvent::MouseMove(mouse_move)
 998            }
 999            // Translate dragging and dropping of external files from the operating system
1000            // to internal drag and drop events.
1001            InputEvent::FileDrop(file_drop) => match file_drop {
1002                FileDropEvent::Entered { position, files } => {
1003                    self.window.mouse_position = position;
1004                    if self.active_drag.is_none() {
1005                        self.active_drag = Some(AnyDrag {
1006                            view: self.build_view(|_| files).into(),
1007                            cursor_offset: position,
1008                        });
1009                    }
1010                    InputEvent::MouseDown(MouseDownEvent {
1011                        position,
1012                        button: MouseButton::Left,
1013                        click_count: 1,
1014                        modifiers: Modifiers::default(),
1015                    })
1016                }
1017                FileDropEvent::Pending { position } => {
1018                    self.window.mouse_position = position;
1019                    InputEvent::MouseMove(MouseMoveEvent {
1020                        position,
1021                        pressed_button: Some(MouseButton::Left),
1022                        modifiers: Modifiers::default(),
1023                    })
1024                }
1025                FileDropEvent::Submit { position } => {
1026                    self.window.mouse_position = position;
1027                    InputEvent::MouseUp(MouseUpEvent {
1028                        button: MouseButton::Left,
1029                        position,
1030                        modifiers: Modifiers::default(),
1031                        click_count: 1,
1032                    })
1033                }
1034                FileDropEvent::Exited => InputEvent::MouseUp(MouseUpEvent {
1035                    button: MouseButton::Left,
1036                    position: Point::default(),
1037                    modifiers: Modifiers::default(),
1038                    click_count: 1,
1039                }),
1040            },
1041            _ => event,
1042        };
1043
1044        if let Some(any_mouse_event) = event.mouse_event() {
1045            // Handlers may set this to false by calling `stop_propagation`
1046            self.app.propagate_event = true;
1047            self.window.default_prevented = false;
1048
1049            if let Some(mut handlers) = self
1050                .window
1051                .mouse_listeners
1052                .remove(&any_mouse_event.type_id())
1053            {
1054                // Because handlers may add other handlers, we sort every time.
1055                handlers.sort_by(|(a, _), (b, _)| a.cmp(b));
1056
1057                // Capture phase, events bubble from back to front. Handlers for this phase are used for
1058                // special purposes, such as detecting events outside of a given Bounds.
1059                for (_, handler) in &handlers {
1060                    handler(any_mouse_event, DispatchPhase::Capture, self);
1061                    if !self.app.propagate_event {
1062                        break;
1063                    }
1064                }
1065
1066                // Bubble phase, where most normal handlers do their work.
1067                if self.app.propagate_event {
1068                    for (_, handler) in handlers.iter().rev() {
1069                        handler(any_mouse_event, DispatchPhase::Bubble, self);
1070                        if !self.app.propagate_event {
1071                            break;
1072                        }
1073                    }
1074                }
1075
1076                if self.app.propagate_event
1077                    && any_mouse_event.downcast_ref::<MouseUpEvent>().is_some()
1078                {
1079                    self.active_drag = None;
1080                }
1081
1082                // Just in case any handlers added new handlers, which is weird, but possible.
1083                handlers.extend(
1084                    self.window
1085                        .mouse_listeners
1086                        .get_mut(&any_mouse_event.type_id())
1087                        .into_iter()
1088                        .flat_map(|handlers| handlers.drain(..)),
1089                );
1090                self.window
1091                    .mouse_listeners
1092                    .insert(any_mouse_event.type_id(), handlers);
1093            }
1094        } else if let Some(any_key_event) = event.keyboard_event() {
1095            let key_dispatch_stack = mem::take(&mut self.window.key_dispatch_stack);
1096            let key_event_type = any_key_event.type_id();
1097            let mut context_stack = SmallVec::<[&DispatchContext; 16]>::new();
1098
1099            for (ix, frame) in key_dispatch_stack.iter().enumerate() {
1100                match frame {
1101                    KeyDispatchStackFrame::Listener {
1102                        event_type,
1103                        listener,
1104                    } => {
1105                        if key_event_type == *event_type {
1106                            if let Some(action) = listener(
1107                                any_key_event,
1108                                &context_stack,
1109                                DispatchPhase::Capture,
1110                                self,
1111                            ) {
1112                                self.dispatch_action(action, &key_dispatch_stack[..ix]);
1113                            }
1114                            if !self.app.propagate_event {
1115                                break;
1116                            }
1117                        }
1118                    }
1119                    KeyDispatchStackFrame::Context(context) => {
1120                        context_stack.push(&context);
1121                    }
1122                }
1123            }
1124
1125            if self.app.propagate_event {
1126                for (ix, frame) in key_dispatch_stack.iter().enumerate().rev() {
1127                    match frame {
1128                        KeyDispatchStackFrame::Listener {
1129                            event_type,
1130                            listener,
1131                        } => {
1132                            if key_event_type == *event_type {
1133                                if let Some(action) = listener(
1134                                    any_key_event,
1135                                    &context_stack,
1136                                    DispatchPhase::Bubble,
1137                                    self,
1138                                ) {
1139                                    self.dispatch_action(action, &key_dispatch_stack[..ix]);
1140                                }
1141
1142                                if !self.app.propagate_event {
1143                                    break;
1144                                }
1145                            }
1146                        }
1147                        KeyDispatchStackFrame::Context(_) => {
1148                            context_stack.pop();
1149                        }
1150                    }
1151                }
1152            }
1153
1154            drop(context_stack);
1155            self.window.key_dispatch_stack = key_dispatch_stack;
1156        }
1157
1158        true
1159    }
1160
1161    /// Attempt to map a keystroke to an action based on the keymap.
1162    pub fn match_keystroke(
1163        &mut self,
1164        element_id: &GlobalElementId,
1165        keystroke: &Keystroke,
1166        context_stack: &[&DispatchContext],
1167    ) -> KeyMatch {
1168        let key_match = self
1169            .window
1170            .key_matchers
1171            .get_mut(element_id)
1172            .unwrap()
1173            .match_keystroke(keystroke, context_stack);
1174
1175        if key_match.is_some() {
1176            for matcher in self.window.key_matchers.values_mut() {
1177                matcher.clear_pending();
1178            }
1179        }
1180
1181        key_match
1182    }
1183
1184    /// Register the given handler to be invoked whenever the global of the given type
1185    /// is updated.
1186    pub fn observe_global<G: 'static>(
1187        &mut self,
1188        f: impl Fn(&mut WindowContext<'_>) + Send + 'static,
1189    ) -> Subscription {
1190        let window_handle = self.window.handle;
1191        self.global_observers.insert(
1192            TypeId::of::<G>(),
1193            Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()),
1194        )
1195    }
1196
1197    fn dispatch_action(
1198        &mut self,
1199        action: Box<dyn Action>,
1200        dispatch_stack: &[KeyDispatchStackFrame],
1201    ) {
1202        let action_type = action.as_any().type_id();
1203
1204        if let Some(mut global_listeners) = self.app.global_action_listeners.remove(&action_type) {
1205            for listener in &global_listeners {
1206                listener(action.as_ref(), DispatchPhase::Capture, self);
1207                if !self.app.propagate_event {
1208                    break;
1209                }
1210            }
1211            global_listeners.extend(
1212                self.global_action_listeners
1213                    .remove(&action_type)
1214                    .unwrap_or_default(),
1215            );
1216            self.global_action_listeners
1217                .insert(action_type, global_listeners);
1218        }
1219
1220        if self.app.propagate_event {
1221            for stack_frame in dispatch_stack {
1222                if let KeyDispatchStackFrame::Listener {
1223                    event_type,
1224                    listener,
1225                } = stack_frame
1226                {
1227                    if action_type == *event_type {
1228                        listener(action.as_any(), &[], DispatchPhase::Capture, self);
1229                        if !self.app.propagate_event {
1230                            break;
1231                        }
1232                    }
1233                }
1234            }
1235        }
1236
1237        if self.app.propagate_event {
1238            for stack_frame in dispatch_stack.iter().rev() {
1239                if let KeyDispatchStackFrame::Listener {
1240                    event_type,
1241                    listener,
1242                } = stack_frame
1243                {
1244                    if action_type == *event_type {
1245                        listener(action.as_any(), &[], DispatchPhase::Bubble, self);
1246                        if !self.app.propagate_event {
1247                            break;
1248                        }
1249                    }
1250                }
1251            }
1252        }
1253
1254        if self.app.propagate_event {
1255            if let Some(mut global_listeners) =
1256                self.app.global_action_listeners.remove(&action_type)
1257            {
1258                for listener in global_listeners.iter().rev() {
1259                    listener(action.as_ref(), DispatchPhase::Bubble, self);
1260                    if !self.app.propagate_event {
1261                        break;
1262                    }
1263                }
1264                global_listeners.extend(
1265                    self.global_action_listeners
1266                        .remove(&action_type)
1267                        .unwrap_or_default(),
1268                );
1269                self.global_action_listeners
1270                    .insert(action_type, global_listeners);
1271            }
1272        }
1273    }
1274}
1275
1276impl Context for WindowContext<'_> {
1277    type WindowContext<'a> = WindowContext<'a>;
1278    type ModelContext<'a, T> = ModelContext<'a, T>;
1279    type Result<T> = T;
1280
1281    fn build_model<T>(
1282        &mut self,
1283        build_model: impl FnOnce(&mut Self::ModelContext<'_, T>) -> T,
1284    ) -> Model<T>
1285    where
1286        T: 'static + Send,
1287    {
1288        let slot = self.app.entities.reserve();
1289        let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade()));
1290        self.entities.insert(slot, model)
1291    }
1292
1293    fn update_model<T: 'static, R>(
1294        &mut self,
1295        model: &Model<T>,
1296        update: impl FnOnce(&mut T, &mut Self::ModelContext<'_, T>) -> R,
1297    ) -> R {
1298        let mut entity = self.entities.lease(model);
1299        let result = update(
1300            &mut *entity,
1301            &mut ModelContext::new(&mut *self.app, model.downgrade()),
1302        );
1303        self.entities.end_lease(entity);
1304        result
1305    }
1306
1307    fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
1308    where
1309        F: FnOnce(AnyView, &mut Self::WindowContext<'_>) -> T,
1310    {
1311        if window == self.window.handle {
1312            let root_view = self.window.root_view.clone().unwrap();
1313            Ok(update(root_view, self))
1314        } else {
1315            window.update(self.app, update)
1316        }
1317    }
1318}
1319
1320impl VisualContext for WindowContext<'_> {
1321    type ViewContext<'a, V: 'static> = ViewContext<'a, V>;
1322
1323    fn build_view<V>(
1324        &mut self,
1325        build_view_state: impl FnOnce(&mut Self::ViewContext<'_, V>) -> V,
1326    ) -> Self::Result<View<V>>
1327    where
1328        V: 'static + Send,
1329    {
1330        let slot = self.app.entities.reserve();
1331        let view = View {
1332            model: slot.clone(),
1333        };
1334        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1335        let entity = build_view_state(&mut cx);
1336        self.entities.insert(slot, entity);
1337        view
1338    }
1339
1340    /// Update the given view. Prefer calling `View::update` instead, which calls this method.
1341    fn update_view<T: 'static, R>(
1342        &mut self,
1343        view: &View<T>,
1344        update: impl FnOnce(&mut T, &mut Self::ViewContext<'_, T>) -> R,
1345    ) -> Self::Result<R> {
1346        let mut lease = self.app.entities.lease(&view.model);
1347        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1348        let result = update(&mut *lease, &mut cx);
1349        cx.app.entities.end_lease(lease);
1350        result
1351    }
1352
1353    fn replace_root_view<V>(
1354        &mut self,
1355        build_view: impl FnOnce(&mut Self::ViewContext<'_, V>) -> V,
1356    ) -> Self::Result<View<V>>
1357    where
1358        V: 'static + Send + Render,
1359    {
1360        let slot = self.app.entities.reserve();
1361        let view = View {
1362            model: slot.clone(),
1363        };
1364        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1365        let entity = build_view(&mut cx);
1366        self.entities.insert(slot, entity);
1367        self.window.root_view = Some(view.clone().into());
1368        view
1369    }
1370}
1371
1372impl UpdateView for WindowContext<'_> {
1373    type ViewContext<'a, V: 'static> = ViewContext<'a, V>;
1374
1375    fn update_view<V: 'static, R>(
1376        &mut self,
1377        view: &View<V>,
1378        update: impl FnOnce(&mut V, &mut Self::ViewContext<'_, V>) -> R,
1379    ) -> R {
1380        VisualContext::update_view(self, view, update)
1381    }
1382}
1383
1384impl<'a> std::ops::Deref for WindowContext<'a> {
1385    type Target = AppContext;
1386
1387    fn deref(&self) -> &Self::Target {
1388        &self.app
1389    }
1390}
1391
1392impl<'a> std::ops::DerefMut for WindowContext<'a> {
1393    fn deref_mut(&mut self) -> &mut Self::Target {
1394        &mut self.app
1395    }
1396}
1397
1398impl<'a> Borrow<AppContext> for WindowContext<'a> {
1399    fn borrow(&self) -> &AppContext {
1400        &self.app
1401    }
1402}
1403
1404impl<'a> BorrowMut<AppContext> for WindowContext<'a> {
1405    fn borrow_mut(&mut self) -> &mut AppContext {
1406        &mut self.app
1407    }
1408}
1409
1410pub trait BorrowWindow: BorrowMut<Window> + BorrowMut<AppContext> {
1411    fn app_mut(&mut self) -> &mut AppContext {
1412        self.borrow_mut()
1413    }
1414
1415    fn window(&self) -> &Window {
1416        self.borrow()
1417    }
1418
1419    fn window_mut(&mut self) -> &mut Window {
1420        self.borrow_mut()
1421    }
1422
1423    /// Pushes the given element id onto the global stack and invokes the given closure
1424    /// with a `GlobalElementId`, which disambiguates the given id in the context of its ancestor
1425    /// ids. Because elements are discarded and recreated on each frame, the `GlobalElementId` is
1426    /// used to associate state with identified elements across separate frames.
1427    fn with_element_id<R>(
1428        &mut self,
1429        id: impl Into<ElementId>,
1430        f: impl FnOnce(GlobalElementId, &mut Self) -> R,
1431    ) -> R {
1432        let keymap = self.app_mut().keymap.clone();
1433        let window = self.window_mut();
1434        window.element_id_stack.push(id.into());
1435        let global_id = window.element_id_stack.clone();
1436
1437        if window.key_matchers.get(&global_id).is_none() {
1438            window.key_matchers.insert(
1439                global_id.clone(),
1440                window
1441                    .prev_frame_key_matchers
1442                    .remove(&global_id)
1443                    .unwrap_or_else(|| KeyMatcher::new(keymap)),
1444            );
1445        }
1446
1447        let result = f(global_id, self);
1448        let window: &mut Window = self.borrow_mut();
1449        window.element_id_stack.pop();
1450        result
1451    }
1452
1453    /// Invoke the given function with the given content mask after intersecting it
1454    /// with the current mask.
1455    fn with_content_mask<R>(
1456        &mut self,
1457        mask: ContentMask<Pixels>,
1458        f: impl FnOnce(&mut Self) -> R,
1459    ) -> R {
1460        let mask = mask.intersect(&self.content_mask());
1461        self.window_mut().content_mask_stack.push(mask);
1462        let result = f(self);
1463        self.window_mut().content_mask_stack.pop();
1464        result
1465    }
1466
1467    /// Update the global element offset based on the given offset. This is used to implement
1468    /// scrolling and position drag handles.
1469    fn with_element_offset<R>(
1470        &mut self,
1471        offset: Option<Point<Pixels>>,
1472        f: impl FnOnce(&mut Self) -> R,
1473    ) -> R {
1474        let Some(offset) = offset else {
1475            return f(self);
1476        };
1477
1478        let offset = self.element_offset() + offset;
1479        self.window_mut().element_offset_stack.push(offset);
1480        let result = f(self);
1481        self.window_mut().element_offset_stack.pop();
1482        result
1483    }
1484
1485    /// Obtain the current element offset.
1486    fn element_offset(&self) -> Point<Pixels> {
1487        self.window()
1488            .element_offset_stack
1489            .last()
1490            .copied()
1491            .unwrap_or_default()
1492    }
1493
1494    /// Update or intialize state for an element with the given id that lives across multiple
1495    /// frames. If an element with this id existed in the previous frame, its state will be passed
1496    /// to the given closure. The state returned by the closure will be stored so it can be referenced
1497    /// when drawing the next frame.
1498    fn with_element_state<S, R>(
1499        &mut self,
1500        id: ElementId,
1501        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
1502    ) -> R
1503    where
1504        S: 'static + Send,
1505    {
1506        self.with_element_id(id, |global_id, cx| {
1507            if let Some(any) = cx
1508                .window_mut()
1509                .element_states
1510                .remove(&global_id)
1511                .or_else(|| cx.window_mut().prev_frame_element_states.remove(&global_id))
1512            {
1513                // Using the extra inner option to avoid needing to reallocate a new box.
1514                let mut state_box = any
1515                    .downcast::<Option<S>>()
1516                    .expect("invalid element state type for id");
1517                let state = state_box
1518                    .take()
1519                    .expect("element state is already on the stack");
1520                let (result, state) = f(Some(state), cx);
1521                state_box.replace(state);
1522                cx.window_mut().element_states.insert(global_id, state_box);
1523                result
1524            } else {
1525                let (result, state) = f(None, cx);
1526                cx.window_mut()
1527                    .element_states
1528                    .insert(global_id, Box::new(Some(state)));
1529                result
1530            }
1531        })
1532    }
1533
1534    /// Like `with_element_state`, but for situations where the element_id is optional. If the
1535    /// id is `None`, no state will be retrieved or stored.
1536    fn with_optional_element_state<S, R>(
1537        &mut self,
1538        element_id: Option<ElementId>,
1539        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
1540    ) -> R
1541    where
1542        S: 'static + Send,
1543    {
1544        if let Some(element_id) = element_id {
1545            self.with_element_state(element_id, f)
1546        } else {
1547            f(None, self).0
1548        }
1549    }
1550
1551    /// Obtain the current content mask.
1552    fn content_mask(&self) -> ContentMask<Pixels> {
1553        self.window()
1554            .content_mask_stack
1555            .last()
1556            .cloned()
1557            .unwrap_or_else(|| ContentMask {
1558                bounds: Bounds {
1559                    origin: Point::default(),
1560                    size: self.window().content_size,
1561                },
1562            })
1563    }
1564
1565    /// The size of an em for the base font of the application. Adjusting this value allows the
1566    /// UI to scale, just like zooming a web page.
1567    fn rem_size(&self) -> Pixels {
1568        self.window().rem_size
1569    }
1570}
1571
1572impl Borrow<Window> for WindowContext<'_> {
1573    fn borrow(&self) -> &Window {
1574        &self.window
1575    }
1576}
1577
1578impl BorrowMut<Window> for WindowContext<'_> {
1579    fn borrow_mut(&mut self) -> &mut Window {
1580        &mut self.window
1581    }
1582}
1583
1584impl<T> BorrowWindow for T where T: BorrowMut<AppContext> + BorrowMut<Window> {}
1585
1586pub struct ViewContext<'a, V> {
1587    window_cx: WindowContext<'a>,
1588    view: &'a View<V>,
1589}
1590
1591impl<V> Borrow<AppContext> for ViewContext<'_, V> {
1592    fn borrow(&self) -> &AppContext {
1593        &*self.window_cx.app
1594    }
1595}
1596
1597impl<V> BorrowMut<AppContext> for ViewContext<'_, V> {
1598    fn borrow_mut(&mut self) -> &mut AppContext {
1599        &mut *self.window_cx.app
1600    }
1601}
1602
1603impl<V> Borrow<Window> for ViewContext<'_, V> {
1604    fn borrow(&self) -> &Window {
1605        &*self.window_cx.window
1606    }
1607}
1608
1609impl<V> BorrowMut<Window> for ViewContext<'_, V> {
1610    fn borrow_mut(&mut self) -> &mut Window {
1611        &mut *self.window_cx.window
1612    }
1613}
1614
1615impl<'a, V: 'static> ViewContext<'a, V> {
1616    pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View<V>) -> Self {
1617        Self {
1618            window_cx: WindowContext::new(app, window),
1619            view,
1620        }
1621    }
1622
1623    pub fn view(&self) -> View<V> {
1624        self.view.clone()
1625    }
1626
1627    pub fn model(&self) -> Model<V> {
1628        self.view.model.clone()
1629    }
1630
1631    pub fn stack<R>(&mut self, order: u32, f: impl FnOnce(&mut Self) -> R) -> R {
1632        self.window.z_index_stack.push(order);
1633        let result = f(self);
1634        self.window.z_index_stack.pop();
1635        result
1636    }
1637
1638    pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + Send + 'static)
1639    where
1640        V: Any + Send,
1641    {
1642        let view = self.view();
1643        self.window_cx.on_next_frame(move |cx| view.update(cx, f));
1644    }
1645
1646    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1647    /// that are currently on the stack to be returned to the app.
1648    pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static + Send) {
1649        let view = self.view().downgrade();
1650        self.window_cx.defer(move |cx| {
1651            view.update(cx, f).ok();
1652        });
1653    }
1654
1655    pub fn observe<V2, E>(
1656        &mut self,
1657        entity: &E,
1658        mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + Send + 'static,
1659    ) -> Subscription
1660    where
1661        V2: 'static,
1662        V: 'static + Send,
1663        E: Entity<V2>,
1664    {
1665        let view = self.view().downgrade();
1666        let entity_id = entity.entity_id();
1667        let entity = entity.downgrade();
1668        let window_handle = self.window.handle;
1669        self.app.observers.insert(
1670            entity_id,
1671            Box::new(move |cx| {
1672                window_handle
1673                    .update(cx, |_, cx| {
1674                        if let Some(handle) = E::upgrade_from(&entity) {
1675                            view.update(cx, |this, cx| on_notify(this, handle, cx))
1676                                .is_ok()
1677                        } else {
1678                            false
1679                        }
1680                    })
1681                    .unwrap_or(false)
1682            }),
1683        )
1684    }
1685
1686    pub fn subscribe<V2, E>(
1687        &mut self,
1688        entity: &E,
1689        mut on_event: impl FnMut(&mut V, E, &V2::Event, &mut ViewContext<'_, V>) + Send + 'static,
1690    ) -> Subscription
1691    where
1692        V2: EventEmitter,
1693        E: Entity<V2>,
1694    {
1695        let view = self.view().downgrade();
1696        let entity_id = entity.entity_id();
1697        let handle = entity.downgrade();
1698        let window_handle = self.window.handle;
1699        self.app.event_listeners.insert(
1700            entity_id,
1701            Box::new(move |event, cx| {
1702                window_handle
1703                    .update(cx, |_, cx| {
1704                        if let Some(handle) = E::upgrade_from(&handle) {
1705                            let event = event.downcast_ref().expect("invalid event type");
1706                            view.update(cx, |this, cx| on_event(this, handle, event, cx))
1707                                .is_ok()
1708                        } else {
1709                            false
1710                        }
1711                    })
1712                    .unwrap_or(false)
1713            }),
1714        )
1715    }
1716
1717    pub fn on_release(
1718        &mut self,
1719        on_release: impl FnOnce(&mut V, &mut WindowContext) + Send + 'static,
1720    ) -> Subscription {
1721        let window_handle = self.window.handle;
1722        self.app.release_listeners.insert(
1723            self.view.model.entity_id,
1724            Box::new(move |this, cx| {
1725                let this = this.downcast_mut().expect("invalid entity type");
1726                // todo!("are we okay with silently swallowing the error?")
1727                let _ = window_handle.update(cx, |_, cx| on_release(this, cx));
1728            }),
1729        )
1730    }
1731
1732    pub fn observe_release<V2, E>(
1733        &mut self,
1734        entity: &E,
1735        mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + Send + 'static,
1736    ) -> Subscription
1737    where
1738        V: Any + Send,
1739        V2: 'static,
1740        E: Entity<V2>,
1741    {
1742        let view = self.view().downgrade();
1743        let entity_id = entity.entity_id();
1744        let window_handle = self.window.handle;
1745        self.app.release_listeners.insert(
1746            entity_id,
1747            Box::new(move |entity, cx| {
1748                let entity = entity.downcast_mut().expect("invalid entity type");
1749                let _ = window_handle.update(cx, |_, cx| {
1750                    view.update(cx, |this, cx| on_release(this, entity, cx))
1751                });
1752            }),
1753        )
1754    }
1755
1756    pub fn notify(&mut self) {
1757        self.window_cx.notify();
1758        self.window_cx.app.push_effect(Effect::Notify {
1759            emitter: self.view.model.entity_id,
1760        });
1761    }
1762
1763    pub fn on_focus_changed(
1764        &mut self,
1765        listener: impl Fn(&mut V, &FocusEvent, &mut ViewContext<V>) + Send + 'static,
1766    ) {
1767        let handle = self.view().downgrade();
1768        self.window.focus_listeners.push(Box::new(move |event, cx| {
1769            handle
1770                .update(cx, |view, cx| listener(view, event, cx))
1771                .log_err();
1772        }));
1773    }
1774
1775    pub fn with_key_listeners<R>(
1776        &mut self,
1777        key_listeners: impl IntoIterator<Item = (TypeId, KeyListener<V>)>,
1778        f: impl FnOnce(&mut Self) -> R,
1779    ) -> R {
1780        let old_stack_len = self.window.key_dispatch_stack.len();
1781        if !self.window.freeze_key_dispatch_stack {
1782            for (event_type, listener) in key_listeners {
1783                let handle = self.view().downgrade();
1784                let listener = Box::new(
1785                    move |event: &dyn Any,
1786                          context_stack: &[&DispatchContext],
1787                          phase: DispatchPhase,
1788                          cx: &mut WindowContext<'_>| {
1789                        handle
1790                            .update(cx, |view, cx| {
1791                                listener(view, event, context_stack, phase, cx)
1792                            })
1793                            .log_err()
1794                            .flatten()
1795                    },
1796                );
1797                self.window
1798                    .key_dispatch_stack
1799                    .push(KeyDispatchStackFrame::Listener {
1800                        event_type,
1801                        listener,
1802                    });
1803            }
1804        }
1805
1806        let result = f(self);
1807
1808        if !self.window.freeze_key_dispatch_stack {
1809            self.window.key_dispatch_stack.truncate(old_stack_len);
1810        }
1811
1812        result
1813    }
1814
1815    pub fn with_key_dispatch_context<R>(
1816        &mut self,
1817        context: DispatchContext,
1818        f: impl FnOnce(&mut Self) -> R,
1819    ) -> R {
1820        if context.is_empty() {
1821            return f(self);
1822        }
1823
1824        if !self.window.freeze_key_dispatch_stack {
1825            self.window
1826                .key_dispatch_stack
1827                .push(KeyDispatchStackFrame::Context(context));
1828        }
1829
1830        let result = f(self);
1831
1832        if !self.window.freeze_key_dispatch_stack {
1833            self.window.key_dispatch_stack.pop();
1834        }
1835
1836        result
1837    }
1838
1839    pub fn with_focus<R>(
1840        &mut self,
1841        focus_handle: FocusHandle,
1842        f: impl FnOnce(&mut Self) -> R,
1843    ) -> R {
1844        if let Some(parent_focus_id) = self.window.focus_stack.last().copied() {
1845            self.window
1846                .focus_parents_by_child
1847                .insert(focus_handle.id, parent_focus_id);
1848        }
1849        self.window.focus_stack.push(focus_handle.id);
1850
1851        if Some(focus_handle.id) == self.window.focus {
1852            self.window.freeze_key_dispatch_stack = true;
1853        }
1854
1855        let result = f(self);
1856
1857        self.window.focus_stack.pop();
1858        result
1859    }
1860
1861    pub fn run_on_main<R>(
1862        &mut self,
1863        view: &mut V,
1864        f: impl FnOnce(&mut V, &mut MainThread<ViewContext<'_, V>>) -> R + Send + 'static,
1865    ) -> Task<Result<R>>
1866    where
1867        R: Send + 'static,
1868    {
1869        if self.executor.is_main_thread() {
1870            let cx = unsafe { mem::transmute::<&mut Self, &mut MainThread<Self>>(self) };
1871            Task::ready(Ok(f(view, cx)))
1872        } else {
1873            let view = self.view();
1874            self.window_cx.run_on_main(move |cx| view.update(cx, f))
1875        }
1876    }
1877
1878    pub fn spawn<Fut, R>(
1879        &mut self,
1880        f: impl FnOnce(WeakView<V>, AsyncWindowContext) -> Fut,
1881    ) -> Task<R>
1882    where
1883        R: Send + 'static,
1884        Fut: Future<Output = R> + Send + 'static,
1885    {
1886        let view = self.view().downgrade();
1887        self.window_cx.spawn(move |_, cx| f(view, cx))
1888    }
1889
1890    pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
1891    where
1892        G: 'static + Send,
1893    {
1894        let mut global = self.app.lease_global::<G>();
1895        let result = f(&mut global, self);
1896        self.app.end_global_lease(global);
1897        result
1898    }
1899
1900    pub fn observe_global<G: 'static>(
1901        &mut self,
1902        f: impl Fn(&mut V, &mut ViewContext<'_, V>) + Send + 'static,
1903    ) -> Subscription {
1904        let window_handle = self.window.handle;
1905        let view = self.view().downgrade();
1906        self.global_observers.insert(
1907            TypeId::of::<G>(),
1908            Box::new(move |cx| {
1909                window_handle
1910                    .update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok())
1911                    .unwrap_or(false)
1912            }),
1913        )
1914    }
1915
1916    pub fn on_mouse_event<Event: 'static>(
1917        &mut self,
1918        handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + Send + 'static,
1919    ) {
1920        let handle = self.view();
1921        self.window_cx.on_mouse_event(move |event, phase, cx| {
1922            handle.update(cx, |view, cx| {
1923                handler(view, event, phase, cx);
1924            })
1925        });
1926    }
1927}
1928
1929impl<V> ViewContext<'_, V>
1930where
1931    V: EventEmitter,
1932    V::Event: 'static + Send,
1933{
1934    pub fn emit(&mut self, event: V::Event) {
1935        let emitter = self.view.model.entity_id;
1936        self.app.push_effect(Effect::Emit {
1937            emitter,
1938            event: Box::new(event),
1939        });
1940    }
1941}
1942
1943impl<V: 'static> MainThread<ViewContext<'_, V>> {
1944    fn platform_window(&self) -> &dyn PlatformWindow {
1945        self.window.platform_window.borrow_on_main_thread().as_ref()
1946    }
1947
1948    pub fn activate_window(&self) {
1949        self.platform_window().activate();
1950    }
1951}
1952
1953impl<V> Context for ViewContext<'_, V> {
1954    type WindowContext<'a> = WindowContext<'a>;
1955    type ModelContext<'b, U> = ModelContext<'b, U>;
1956    type Result<U> = U;
1957
1958    fn build_model<T>(
1959        &mut self,
1960        build_model: impl FnOnce(&mut Self::ModelContext<'_, T>) -> T,
1961    ) -> Model<T>
1962    where
1963        T: 'static + Send,
1964    {
1965        self.window_cx.build_model(build_model)
1966    }
1967
1968    fn update_model<T: 'static, R>(
1969        &mut self,
1970        model: &Model<T>,
1971        update: impl FnOnce(&mut T, &mut Self::ModelContext<'_, T>) -> R,
1972    ) -> R {
1973        self.window_cx.update_model(model, update)
1974    }
1975
1976    fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
1977    where
1978        F: FnOnce(AnyView, &mut Self::WindowContext<'_>) -> T,
1979    {
1980        self.window_cx.update_window(window, update)
1981    }
1982}
1983
1984impl<V: 'static> VisualContext for ViewContext<'_, V> {
1985    type ViewContext<'a, W: 'static> = ViewContext<'a, W>;
1986
1987    fn build_view<W: 'static + Send>(
1988        &mut self,
1989        build_view: impl FnOnce(&mut Self::ViewContext<'_, W>) -> W,
1990    ) -> Self::Result<View<W>> {
1991        self.window_cx.build_view(build_view)
1992    }
1993
1994    fn update_view<V2: 'static, R>(
1995        &mut self,
1996        view: &View<V2>,
1997        update: impl FnOnce(&mut V2, &mut Self::ViewContext<'_, V2>) -> R,
1998    ) -> Self::Result<R> {
1999        VisualContext::update_view(&mut self.window_cx, view, update)
2000    }
2001
2002    fn replace_root_view<W>(
2003        &mut self,
2004        build_view: impl FnOnce(&mut Self::ViewContext<'_, W>) -> W,
2005    ) -> Self::Result<View<W>>
2006    where
2007        W: 'static + Send + Render,
2008    {
2009        self.window_cx.replace_root_view(build_view)
2010    }
2011}
2012
2013impl<'a, V> std::ops::Deref for ViewContext<'a, V> {
2014    type Target = WindowContext<'a>;
2015
2016    fn deref(&self) -> &Self::Target {
2017        &self.window_cx
2018    }
2019}
2020
2021impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> {
2022    fn deref_mut(&mut self) -> &mut Self::Target {
2023        &mut self.window_cx
2024    }
2025}
2026
2027// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
2028slotmap::new_key_type! { pub struct WindowId; }
2029
2030impl WindowId {
2031    pub fn as_u64(&self) -> u64 {
2032        self.0.as_ffi()
2033    }
2034}
2035
2036#[derive(Deref, DerefMut)]
2037pub struct WindowHandle<V> {
2038    #[deref]
2039    #[deref_mut]
2040    pub(crate) any_handle: AnyWindowHandle,
2041    state_type: PhantomData<V>,
2042}
2043
2044impl<V: 'static + Render> WindowHandle<V> {
2045    pub fn new(id: WindowId) -> Self {
2046        WindowHandle {
2047            any_handle: AnyWindowHandle {
2048                id,
2049                state_type: TypeId::of::<V>(),
2050            },
2051            state_type: PhantomData,
2052        }
2053    }
2054
2055    pub fn update<C, R>(
2056        &self,
2057        cx: &mut C,
2058        update: impl FnOnce(&mut V, &mut <C::WindowContext<'_> as UpdateView>::ViewContext<'_, V>) -> R,
2059    ) -> Result<R>
2060    where
2061        C: Context,
2062    {
2063        cx.update_window(self.any_handle, |root_view, cx| {
2064            let view = root_view
2065                .downcast::<V>()
2066                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
2067
2068            Ok(cx.update_view(&view, update))
2069        })?
2070    }
2071}
2072
2073impl<V> Copy for WindowHandle<V> {}
2074
2075impl<V> Clone for WindowHandle<V> {
2076    fn clone(&self) -> Self {
2077        WindowHandle {
2078            any_handle: self.any_handle,
2079            state_type: PhantomData,
2080        }
2081    }
2082}
2083
2084impl<V> PartialEq for WindowHandle<V> {
2085    fn eq(&self, other: &Self) -> bool {
2086        self.any_handle == other.any_handle
2087    }
2088}
2089
2090impl<V> Eq for WindowHandle<V> {}
2091
2092impl<V> Hash for WindowHandle<V> {
2093    fn hash<H: Hasher>(&self, state: &mut H) {
2094        self.any_handle.hash(state);
2095    }
2096}
2097
2098impl<V: 'static> Into<AnyWindowHandle> for WindowHandle<V> {
2099    fn into(self) -> AnyWindowHandle {
2100        self.any_handle
2101    }
2102}
2103
2104#[derive(Copy, Clone, PartialEq, Eq, Hash)]
2105pub struct AnyWindowHandle {
2106    pub(crate) id: WindowId,
2107    state_type: TypeId,
2108}
2109
2110impl AnyWindowHandle {
2111    pub fn window_id(&self) -> WindowId {
2112        self.id
2113    }
2114
2115    pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
2116        if TypeId::of::<T>() == self.state_type {
2117            Some(WindowHandle {
2118                any_handle: *self,
2119                state_type: PhantomData,
2120            })
2121        } else {
2122            None
2123        }
2124    }
2125
2126    pub fn update<C, R>(
2127        &self,
2128        cx: &mut C,
2129        update: impl FnOnce(AnyView, &mut C::WindowContext<'_>) -> R,
2130    ) -> Result<R>
2131    where
2132        C: Context,
2133    {
2134        cx.update_window(*self, update)
2135    }
2136}
2137
2138#[cfg(any(test, feature = "test-support"))]
2139impl From<SmallVec<[u32; 16]>> for StackingOrder {
2140    fn from(small_vec: SmallVec<[u32; 16]>) -> Self {
2141        StackingOrder(small_vec)
2142    }
2143}
2144
2145#[derive(Clone, Debug, Eq, PartialEq, Hash)]
2146pub enum ElementId {
2147    View(EntityId),
2148    Number(usize),
2149    Name(SharedString),
2150    FocusHandle(FocusId),
2151}
2152
2153impl From<EntityId> for ElementId {
2154    fn from(id: EntityId) -> Self {
2155        ElementId::View(id)
2156    }
2157}
2158
2159impl From<usize> for ElementId {
2160    fn from(id: usize) -> Self {
2161        ElementId::Number(id)
2162    }
2163}
2164
2165impl From<i32> for ElementId {
2166    fn from(id: i32) -> Self {
2167        Self::Number(id as usize)
2168    }
2169}
2170
2171impl From<SharedString> for ElementId {
2172    fn from(name: SharedString) -> Self {
2173        ElementId::Name(name)
2174    }
2175}
2176
2177impl From<&'static str> for ElementId {
2178    fn from(name: &'static str) -> Self {
2179        ElementId::Name(name.into())
2180    }
2181}
2182
2183impl<'a> From<&'a FocusHandle> for ElementId {
2184    fn from(handle: &'a FocusHandle) -> Self {
2185        ElementId::FocusHandle(handle.id)
2186    }
2187}