cloud.rs

   1use ai_onboarding::YoungAccountBanner;
   2use anthropic::AnthropicModelMode;
   3use anyhow::{Context as _, Result, anyhow};
   4use chrono::{DateTime, Utc};
   5use client::{Client, ModelRequestUsage, UserStore, zed_urls};
   6use cloud_llm_client::{
   7    CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CLIENT_SUPPORTS_X_AI_HEADER_NAME,
   8    CURRENT_PLAN_HEADER_NAME, CompletionBody, CompletionEvent, CompletionRequestStatus,
   9    CountTokensBody, CountTokensResponse, EXPIRED_LLM_TOKEN_HEADER_NAME, ListModelsResponse,
  10    MODEL_REQUESTS_RESOURCE_HEADER_VALUE, Plan, PlanV1, PlanV2,
  11    SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME,
  12    TOOL_USE_LIMIT_REACHED_HEADER_NAME, ZED_VERSION_HEADER_NAME,
  13};
  14use futures::{
  15    AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream,
  16};
  17use google_ai::GoogleModelMode;
  18use gpui::{
  19    AnyElement, AnyView, App, AsyncApp, Context, Entity, SemanticVersion, Subscription, Task,
  20};
  21use http_client::http::{HeaderMap, HeaderValue};
  22use http_client::{AsyncBody, HttpClient, HttpRequestExt, Method, Response, StatusCode};
  23use language_model::{
  24    AuthenticateError, LanguageModel, LanguageModelCacheConfiguration,
  25    LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
  26    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  27    LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
  28    LanguageModelToolSchemaFormat, LlmApiToken, ModelRequestLimitReachedError,
  29    PaymentRequiredError, RateLimiter, RefreshLlmTokenListener,
  30};
  31use release_channel::AppVersion;
  32use schemars::JsonSchema;
  33use serde::{Deserialize, Serialize, de::DeserializeOwned};
  34use settings::SettingsStore;
  35pub use settings::ZedDotDevAvailableModel as AvailableModel;
  36pub use settings::ZedDotDevAvailableProvider as AvailableProvider;
  37use smol::io::{AsyncReadExt, BufReader};
  38use std::pin::Pin;
  39use std::str::FromStr as _;
  40use std::sync::Arc;
  41use std::time::Duration;
  42use thiserror::Error;
  43use ui::{TintColor, prelude::*};
  44use util::{ResultExt as _, maybe};
  45
  46use crate::provider::anthropic::{AnthropicEventMapper, count_anthropic_tokens, into_anthropic};
  47use crate::provider::google::{GoogleEventMapper, into_google};
  48use crate::provider::open_ai::{OpenAiEventMapper, count_open_ai_tokens, into_open_ai};
  49use crate::provider::x_ai::count_xai_tokens;
  50
  51const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID;
  52const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME;
  53
  54#[derive(Default, Clone, Debug, PartialEq)]
  55pub struct ZedDotDevSettings {
  56    pub available_models: Vec<AvailableModel>,
  57}
  58#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  59#[serde(tag = "type", rename_all = "lowercase")]
  60pub enum ModelMode {
  61    #[default]
  62    Default,
  63    Thinking {
  64        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  65        budget_tokens: Option<u32>,
  66    },
  67}
  68
  69impl From<ModelMode> for AnthropicModelMode {
  70    fn from(value: ModelMode) -> Self {
  71        match value {
  72            ModelMode::Default => AnthropicModelMode::Default,
  73            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
  74        }
  75    }
  76}
  77
  78pub struct CloudLanguageModelProvider {
  79    client: Arc<Client>,
  80    state: Entity<State>,
  81    _maintain_client_status: Task<()>,
  82}
  83
  84pub struct State {
  85    client: Arc<Client>,
  86    llm_api_token: LlmApiToken,
  87    user_store: Entity<UserStore>,
  88    status: client::Status,
  89    models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  90    default_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  91    default_fast_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  92    recommended_models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  93    _fetch_models_task: Task<()>,
  94    _settings_subscription: Subscription,
  95    _llm_token_subscription: Subscription,
  96}
  97
  98impl State {
  99    fn new(
 100        client: Arc<Client>,
 101        user_store: Entity<UserStore>,
 102        status: client::Status,
 103        cx: &mut Context<Self>,
 104    ) -> Self {
 105        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
 106        let mut current_user = user_store.read(cx).watch_current_user();
 107        Self {
 108            client: client.clone(),
 109            llm_api_token: LlmApiToken::default(),
 110            user_store,
 111            status,
 112            models: Vec::new(),
 113            default_model: None,
 114            default_fast_model: None,
 115            recommended_models: Vec::new(),
 116            _fetch_models_task: cx.spawn(async move |this, cx| {
 117                maybe!(async move {
 118                    let (client, llm_api_token) = this
 119                        .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?;
 120
 121                    while current_user.borrow().is_none() {
 122                        current_user.next().await;
 123                    }
 124
 125                    let response =
 126                        Self::fetch_models(client.clone(), llm_api_token.clone()).await?;
 127                    this.update(cx, |this, cx| this.update_models(response, cx))?;
 128                    anyhow::Ok(())
 129                })
 130                .await
 131                .context("failed to fetch Zed models")
 132                .log_err();
 133            }),
 134            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 135                cx.notify();
 136            }),
 137            _llm_token_subscription: cx.subscribe(
 138                &refresh_llm_token_listener,
 139                move |this, _listener, _event, cx| {
 140                    let client = this.client.clone();
 141                    let llm_api_token = this.llm_api_token.clone();
 142                    cx.spawn(async move |this, cx| {
 143                        llm_api_token.refresh(&client).await?;
 144                        let response = Self::fetch_models(client, llm_api_token).await?;
 145                        this.update(cx, |this, cx| {
 146                            this.update_models(response, cx);
 147                        })
 148                    })
 149                    .detach_and_log_err(cx);
 150                },
 151            ),
 152        }
 153    }
 154
 155    fn is_signed_out(&self, cx: &App) -> bool {
 156        self.user_store.read(cx).current_user().is_none()
 157    }
 158
 159    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 160        let client = self.client.clone();
 161        cx.spawn(async move |state, cx| {
 162            client.sign_in_with_optional_connect(true, cx).await?;
 163            state.update(cx, |_, cx| cx.notify())
 164        })
 165    }
 166    fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context<Self>) {
 167        let mut models = Vec::new();
 168
 169        for model in response.models {
 170            models.push(Arc::new(model.clone()));
 171
 172            // Right now we represent thinking variants of models as separate models on the client,
 173            // so we need to insert variants for any model that supports thinking.
 174            if model.supports_thinking {
 175                models.push(Arc::new(cloud_llm_client::LanguageModel {
 176                    id: cloud_llm_client::LanguageModelId(format!("{}-thinking", model.id).into()),
 177                    display_name: format!("{} Thinking", model.display_name),
 178                    ..model
 179                }));
 180            }
 181        }
 182
 183        self.default_model = models
 184            .iter()
 185            .find(|model| {
 186                response
 187                    .default_model
 188                    .as_ref()
 189                    .is_some_and(|default_model_id| &model.id == default_model_id)
 190            })
 191            .cloned();
 192        self.default_fast_model = models
 193            .iter()
 194            .find(|model| {
 195                response
 196                    .default_fast_model
 197                    .as_ref()
 198                    .is_some_and(|default_fast_model_id| &model.id == default_fast_model_id)
 199            })
 200            .cloned();
 201        self.recommended_models = response
 202            .recommended_models
 203            .iter()
 204            .filter_map(|id| models.iter().find(|model| &model.id == id))
 205            .cloned()
 206            .collect();
 207        self.models = models;
 208        cx.notify();
 209    }
 210
 211    async fn fetch_models(
 212        client: Arc<Client>,
 213        llm_api_token: LlmApiToken,
 214    ) -> Result<ListModelsResponse> {
 215        let http_client = &client.http_client();
 216        let token = llm_api_token.acquire(&client).await?;
 217
 218        let request = http_client::Request::builder()
 219            .method(Method::GET)
 220            .header(CLIENT_SUPPORTS_X_AI_HEADER_NAME, "true")
 221            .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref())
 222            .header("Authorization", format!("Bearer {token}"))
 223            .body(AsyncBody::empty())?;
 224        let mut response = http_client
 225            .send(request)
 226            .await
 227            .context("failed to send list models request")?;
 228
 229        if response.status().is_success() {
 230            let mut body = String::new();
 231            response.body_mut().read_to_string(&mut body).await?;
 232            Ok(serde_json::from_str(&body)?)
 233        } else {
 234            let mut body = String::new();
 235            response.body_mut().read_to_string(&mut body).await?;
 236            anyhow::bail!(
 237                "error listing models.\nStatus: {:?}\nBody: {body}",
 238                response.status(),
 239            );
 240        }
 241    }
 242}
 243
 244impl CloudLanguageModelProvider {
 245    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
 246        let mut status_rx = client.status();
 247        let status = *status_rx.borrow();
 248
 249        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
 250
 251        let state_ref = state.downgrade();
 252        let maintain_client_status = cx.spawn(async move |cx| {
 253            while let Some(status) = status_rx.next().await {
 254                if let Some(this) = state_ref.upgrade() {
 255                    _ = this.update(cx, |this, cx| {
 256                        if this.status != status {
 257                            this.status = status;
 258                            cx.notify();
 259                        }
 260                    });
 261                } else {
 262                    break;
 263                }
 264            }
 265        });
 266
 267        Self {
 268            client,
 269            state,
 270            _maintain_client_status: maintain_client_status,
 271        }
 272    }
 273
 274    fn create_language_model(
 275        &self,
 276        model: Arc<cloud_llm_client::LanguageModel>,
 277        llm_api_token: LlmApiToken,
 278    ) -> Arc<dyn LanguageModel> {
 279        Arc::new(CloudLanguageModel {
 280            id: LanguageModelId(SharedString::from(model.id.0.clone())),
 281            model,
 282            llm_api_token,
 283            client: self.client.clone(),
 284            request_limiter: RateLimiter::new(4),
 285        })
 286    }
 287}
 288
 289impl LanguageModelProviderState for CloudLanguageModelProvider {
 290    type ObservableEntity = State;
 291
 292    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
 293        Some(self.state.clone())
 294    }
 295}
 296
 297impl LanguageModelProvider for CloudLanguageModelProvider {
 298    fn id(&self) -> LanguageModelProviderId {
 299        PROVIDER_ID
 300    }
 301
 302    fn name(&self) -> LanguageModelProviderName {
 303        PROVIDER_NAME
 304    }
 305
 306    fn icon(&self) -> IconName {
 307        IconName::AiZed
 308    }
 309
 310    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 311        let default_model = self.state.read(cx).default_model.clone()?;
 312        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 313        Some(self.create_language_model(default_model, llm_api_token))
 314    }
 315
 316    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 317        let default_fast_model = self.state.read(cx).default_fast_model.clone()?;
 318        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 319        Some(self.create_language_model(default_fast_model, llm_api_token))
 320    }
 321
 322    fn recommended_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 323        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 324        self.state
 325            .read(cx)
 326            .recommended_models
 327            .iter()
 328            .cloned()
 329            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 330            .collect()
 331    }
 332
 333    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 334        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 335        self.state
 336            .read(cx)
 337            .models
 338            .iter()
 339            .cloned()
 340            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 341            .collect()
 342    }
 343
 344    fn is_authenticated(&self, cx: &App) -> bool {
 345        let state = self.state.read(cx);
 346        !state.is_signed_out(cx)
 347    }
 348
 349    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 350        Task::ready(Ok(()))
 351    }
 352
 353    fn configuration_view(
 354        &self,
 355        _target_agent: language_model::ConfigurationViewTargetAgent,
 356        _: &mut Window,
 357        cx: &mut App,
 358    ) -> AnyView {
 359        cx.new(|_| ConfigurationView::new(self.state.clone()))
 360            .into()
 361    }
 362
 363    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
 364        Task::ready(Ok(()))
 365    }
 366}
 367
 368pub struct CloudLanguageModel {
 369    id: LanguageModelId,
 370    model: Arc<cloud_llm_client::LanguageModel>,
 371    llm_api_token: LlmApiToken,
 372    client: Arc<Client>,
 373    request_limiter: RateLimiter,
 374}
 375
 376struct PerformLlmCompletionResponse {
 377    response: Response<AsyncBody>,
 378    usage: Option<ModelRequestUsage>,
 379    tool_use_limit_reached: bool,
 380    includes_status_messages: bool,
 381}
 382
 383impl CloudLanguageModel {
 384    async fn perform_llm_completion(
 385        client: Arc<Client>,
 386        llm_api_token: LlmApiToken,
 387        app_version: Option<SemanticVersion>,
 388        body: CompletionBody,
 389    ) -> Result<PerformLlmCompletionResponse> {
 390        let http_client = &client.http_client();
 391
 392        let mut token = llm_api_token.acquire(&client).await?;
 393        let mut refreshed_token = false;
 394
 395        loop {
 396            let request = http_client::Request::builder()
 397                .method(Method::POST)
 398                .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref())
 399                .when_some(app_version, |builder, app_version| {
 400                    builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string())
 401                })
 402                .header("Content-Type", "application/json")
 403                .header("Authorization", format!("Bearer {token}"))
 404                .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true")
 405                .body(serde_json::to_string(&body)?.into())?;
 406
 407            let mut response = http_client.send(request).await?;
 408            let status = response.status();
 409            if status.is_success() {
 410                let includes_status_messages = response
 411                    .headers()
 412                    .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME)
 413                    .is_some();
 414
 415                let tool_use_limit_reached = response
 416                    .headers()
 417                    .get(TOOL_USE_LIMIT_REACHED_HEADER_NAME)
 418                    .is_some();
 419
 420                let usage = if includes_status_messages {
 421                    None
 422                } else {
 423                    ModelRequestUsage::from_headers(response.headers()).ok()
 424                };
 425
 426                return Ok(PerformLlmCompletionResponse {
 427                    response,
 428                    usage,
 429                    includes_status_messages,
 430                    tool_use_limit_reached,
 431                });
 432            }
 433
 434            if !refreshed_token
 435                && response
 436                    .headers()
 437                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
 438                    .is_some()
 439            {
 440                token = llm_api_token.refresh(&client).await?;
 441                refreshed_token = true;
 442                continue;
 443            }
 444
 445            if status == StatusCode::FORBIDDEN
 446                && response
 447                    .headers()
 448                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 449                    .is_some()
 450            {
 451                if let Some(MODEL_REQUESTS_RESOURCE_HEADER_VALUE) = response
 452                    .headers()
 453                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 454                    .and_then(|resource| resource.to_str().ok())
 455                    && let Some(plan) = response
 456                        .headers()
 457                        .get(CURRENT_PLAN_HEADER_NAME)
 458                        .and_then(|plan| plan.to_str().ok())
 459                        .and_then(|plan| cloud_llm_client::PlanV1::from_str(plan).ok())
 460                        .map(Plan::V1)
 461                {
 462                    return Err(anyhow!(ModelRequestLimitReachedError { plan }));
 463                }
 464            } else if status == StatusCode::PAYMENT_REQUIRED {
 465                return Err(anyhow!(PaymentRequiredError));
 466            }
 467
 468            let mut body = String::new();
 469            let headers = response.headers().clone();
 470            response.body_mut().read_to_string(&mut body).await?;
 471            return Err(anyhow!(ApiError {
 472                status,
 473                body,
 474                headers
 475            }));
 476        }
 477    }
 478}
 479
 480#[derive(Debug, Error)]
 481#[error("cloud language model request failed with status {status}: {body}")]
 482struct ApiError {
 483    status: StatusCode,
 484    body: String,
 485    headers: HeaderMap<HeaderValue>,
 486}
 487
 488/// Represents error responses from Zed's cloud API.
 489///
 490/// Example JSON for an upstream HTTP error:
 491/// ```json
 492/// {
 493///   "code": "upstream_http_error",
 494///   "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout",
 495///   "upstream_status": 503
 496/// }
 497/// ```
 498#[derive(Debug, serde::Deserialize)]
 499struct CloudApiError {
 500    code: String,
 501    message: String,
 502    #[serde(default)]
 503    #[serde(deserialize_with = "deserialize_optional_status_code")]
 504    upstream_status: Option<StatusCode>,
 505    #[serde(default)]
 506    retry_after: Option<f64>,
 507}
 508
 509fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result<Option<StatusCode>, D::Error>
 510where
 511    D: serde::Deserializer<'de>,
 512{
 513    let opt: Option<u16> = Option::deserialize(deserializer)?;
 514    Ok(opt.and_then(|code| StatusCode::from_u16(code).ok()))
 515}
 516
 517impl From<ApiError> for LanguageModelCompletionError {
 518    fn from(error: ApiError) -> Self {
 519        if let Ok(cloud_error) = serde_json::from_str::<CloudApiError>(&error.body) {
 520            if cloud_error.code.starts_with("upstream_http_") {
 521                let status = if let Some(status) = cloud_error.upstream_status {
 522                    status
 523                } else if cloud_error.code.ends_with("_error") {
 524                    error.status
 525                } else {
 526                    // If there's a status code in the code string (e.g. "upstream_http_429")
 527                    // then use that; otherwise, see if the JSON contains a status code.
 528                    cloud_error
 529                        .code
 530                        .strip_prefix("upstream_http_")
 531                        .and_then(|code_str| code_str.parse::<u16>().ok())
 532                        .and_then(|code| StatusCode::from_u16(code).ok())
 533                        .unwrap_or(error.status)
 534                };
 535
 536                return LanguageModelCompletionError::UpstreamProviderError {
 537                    message: cloud_error.message,
 538                    status,
 539                    retry_after: cloud_error.retry_after.map(Duration::from_secs_f64),
 540                };
 541            }
 542
 543            return LanguageModelCompletionError::from_http_status(
 544                PROVIDER_NAME,
 545                error.status,
 546                cloud_error.message,
 547                None,
 548            );
 549        }
 550
 551        let retry_after = None;
 552        LanguageModelCompletionError::from_http_status(
 553            PROVIDER_NAME,
 554            error.status,
 555            error.body,
 556            retry_after,
 557        )
 558    }
 559}
 560
 561impl LanguageModel for CloudLanguageModel {
 562    fn id(&self) -> LanguageModelId {
 563        self.id.clone()
 564    }
 565
 566    fn name(&self) -> LanguageModelName {
 567        LanguageModelName::from(self.model.display_name.clone())
 568    }
 569
 570    fn provider_id(&self) -> LanguageModelProviderId {
 571        PROVIDER_ID
 572    }
 573
 574    fn provider_name(&self) -> LanguageModelProviderName {
 575        PROVIDER_NAME
 576    }
 577
 578    fn upstream_provider_id(&self) -> LanguageModelProviderId {
 579        use cloud_llm_client::LanguageModelProvider::*;
 580        match self.model.provider {
 581            Anthropic => language_model::ANTHROPIC_PROVIDER_ID,
 582            OpenAi => language_model::OPEN_AI_PROVIDER_ID,
 583            Google => language_model::GOOGLE_PROVIDER_ID,
 584            XAi => language_model::X_AI_PROVIDER_ID,
 585        }
 586    }
 587
 588    fn upstream_provider_name(&self) -> LanguageModelProviderName {
 589        use cloud_llm_client::LanguageModelProvider::*;
 590        match self.model.provider {
 591            Anthropic => language_model::ANTHROPIC_PROVIDER_NAME,
 592            OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 593            Google => language_model::GOOGLE_PROVIDER_NAME,
 594            XAi => language_model::X_AI_PROVIDER_NAME,
 595        }
 596    }
 597
 598    fn supports_tools(&self) -> bool {
 599        self.model.supports_tools
 600    }
 601
 602    fn supports_images(&self) -> bool {
 603        self.model.supports_images
 604    }
 605
 606    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 607        match choice {
 608            LanguageModelToolChoice::Auto
 609            | LanguageModelToolChoice::Any
 610            | LanguageModelToolChoice::None => true,
 611        }
 612    }
 613
 614    fn supports_burn_mode(&self) -> bool {
 615        self.model.supports_max_mode
 616    }
 617
 618    fn telemetry_id(&self) -> String {
 619        format!("zed.dev/{}", self.model.id)
 620    }
 621
 622    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 623        match self.model.provider {
 624            cloud_llm_client::LanguageModelProvider::Anthropic
 625            | cloud_llm_client::LanguageModelProvider::OpenAi
 626            | cloud_llm_client::LanguageModelProvider::XAi => {
 627                LanguageModelToolSchemaFormat::JsonSchema
 628            }
 629            cloud_llm_client::LanguageModelProvider::Google => {
 630                LanguageModelToolSchemaFormat::JsonSchemaSubset
 631            }
 632        }
 633    }
 634
 635    fn max_token_count(&self) -> u64 {
 636        self.model.max_token_count as u64
 637    }
 638
 639    fn max_token_count_in_burn_mode(&self) -> Option<u64> {
 640        self.model
 641            .max_token_count_in_max_mode
 642            .filter(|_| self.model.supports_max_mode)
 643            .map(|max_token_count| max_token_count as u64)
 644    }
 645
 646    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
 647        match &self.model.provider {
 648            cloud_llm_client::LanguageModelProvider::Anthropic => {
 649                Some(LanguageModelCacheConfiguration {
 650                    min_total_token: 2_048,
 651                    should_speculate: true,
 652                    max_cache_anchors: 4,
 653                })
 654            }
 655            cloud_llm_client::LanguageModelProvider::OpenAi
 656            | cloud_llm_client::LanguageModelProvider::XAi
 657            | cloud_llm_client::LanguageModelProvider::Google => None,
 658        }
 659    }
 660
 661    fn count_tokens(
 662        &self,
 663        request: LanguageModelRequest,
 664        cx: &App,
 665    ) -> BoxFuture<'static, Result<u64>> {
 666        match self.model.provider {
 667            cloud_llm_client::LanguageModelProvider::Anthropic => {
 668                count_anthropic_tokens(request, cx)
 669            }
 670            cloud_llm_client::LanguageModelProvider::OpenAi => {
 671                let model = match open_ai::Model::from_id(&self.model.id.0) {
 672                    Ok(model) => model,
 673                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 674                };
 675                count_open_ai_tokens(request, model, cx)
 676            }
 677            cloud_llm_client::LanguageModelProvider::XAi => {
 678                let model = match x_ai::Model::from_id(&self.model.id.0) {
 679                    Ok(model) => model,
 680                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 681                };
 682                count_xai_tokens(request, model, cx)
 683            }
 684            cloud_llm_client::LanguageModelProvider::Google => {
 685                let client = self.client.clone();
 686                let llm_api_token = self.llm_api_token.clone();
 687                let model_id = self.model.id.to_string();
 688                let generate_content_request =
 689                    into_google(request, model_id.clone(), GoogleModelMode::Default);
 690                async move {
 691                    let http_client = &client.http_client();
 692                    let token = llm_api_token.acquire(&client).await?;
 693
 694                    let request_body = CountTokensBody {
 695                        provider: cloud_llm_client::LanguageModelProvider::Google,
 696                        model: model_id,
 697                        provider_request: serde_json::to_value(&google_ai::CountTokensRequest {
 698                            generate_content_request,
 699                        })?,
 700                    };
 701                    let request = http_client::Request::builder()
 702                        .method(Method::POST)
 703                        .uri(
 704                            http_client
 705                                .build_zed_llm_url("/count_tokens", &[])?
 706                                .as_ref(),
 707                        )
 708                        .header("Content-Type", "application/json")
 709                        .header("Authorization", format!("Bearer {token}"))
 710                        .body(serde_json::to_string(&request_body)?.into())?;
 711                    let mut response = http_client.send(request).await?;
 712                    let status = response.status();
 713                    let headers = response.headers().clone();
 714                    let mut response_body = String::new();
 715                    response
 716                        .body_mut()
 717                        .read_to_string(&mut response_body)
 718                        .await?;
 719
 720                    if status.is_success() {
 721                        let response_body: CountTokensResponse =
 722                            serde_json::from_str(&response_body)?;
 723
 724                        Ok(response_body.tokens as u64)
 725                    } else {
 726                        Err(anyhow!(ApiError {
 727                            status,
 728                            body: response_body,
 729                            headers
 730                        }))
 731                    }
 732                }
 733                .boxed()
 734            }
 735        }
 736    }
 737
 738    fn stream_completion(
 739        &self,
 740        request: LanguageModelRequest,
 741        cx: &AsyncApp,
 742    ) -> BoxFuture<
 743        'static,
 744        Result<
 745            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
 746            LanguageModelCompletionError,
 747        >,
 748    > {
 749        let thread_id = request.thread_id.clone();
 750        let prompt_id = request.prompt_id.clone();
 751        let intent = request.intent;
 752        let mode = request.mode;
 753        let app_version = cx.update(|cx| AppVersion::global(cx)).ok();
 754        let thinking_allowed = request.thinking_allowed;
 755        match self.model.provider {
 756            cloud_llm_client::LanguageModelProvider::Anthropic => {
 757                let request = into_anthropic(
 758                    request,
 759                    self.model.id.to_string(),
 760                    1.0,
 761                    self.model.max_output_tokens as u64,
 762                    if thinking_allowed && self.model.id.0.ends_with("-thinking") {
 763                        AnthropicModelMode::Thinking {
 764                            budget_tokens: Some(4_096),
 765                        }
 766                    } else {
 767                        AnthropicModelMode::Default
 768                    },
 769                );
 770                let client = self.client.clone();
 771                let llm_api_token = self.llm_api_token.clone();
 772                let future = self.request_limiter.stream(async move {
 773                    let PerformLlmCompletionResponse {
 774                        response,
 775                        usage,
 776                        includes_status_messages,
 777                        tool_use_limit_reached,
 778                    } = Self::perform_llm_completion(
 779                        client.clone(),
 780                        llm_api_token,
 781                        app_version,
 782                        CompletionBody {
 783                            thread_id,
 784                            prompt_id,
 785                            intent,
 786                            mode,
 787                            provider: cloud_llm_client::LanguageModelProvider::Anthropic,
 788                            model: request.model.clone(),
 789                            provider_request: serde_json::to_value(&request)
 790                                .map_err(|e| anyhow!(e))?,
 791                        },
 792                    )
 793                    .await
 794                    .map_err(|err| match err.downcast::<ApiError>() {
 795                        Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)),
 796                        Err(err) => anyhow!(err),
 797                    })?;
 798
 799                    let mut mapper = AnthropicEventMapper::new();
 800                    Ok(map_cloud_completion_events(
 801                        Box::pin(
 802                            response_lines(response, includes_status_messages)
 803                                .chain(usage_updated_event(usage))
 804                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 805                        ),
 806                        move |event| mapper.map_event(event),
 807                    ))
 808                });
 809                async move { Ok(future.await?.boxed()) }.boxed()
 810            }
 811            cloud_llm_client::LanguageModelProvider::OpenAi => {
 812                let client = self.client.clone();
 813                let model = match open_ai::Model::from_id(&self.model.id.0) {
 814                    Ok(model) => model,
 815                    Err(err) => return async move { Err(anyhow!(err).into()) }.boxed(),
 816                };
 817                let request = into_open_ai(
 818                    request,
 819                    model.id(),
 820                    model.supports_parallel_tool_calls(),
 821                    model.supports_prompt_cache_key(),
 822                    None,
 823                    None,
 824                );
 825                let llm_api_token = self.llm_api_token.clone();
 826                let future = self.request_limiter.stream(async move {
 827                    let PerformLlmCompletionResponse {
 828                        response,
 829                        usage,
 830                        includes_status_messages,
 831                        tool_use_limit_reached,
 832                    } = Self::perform_llm_completion(
 833                        client.clone(),
 834                        llm_api_token,
 835                        app_version,
 836                        CompletionBody {
 837                            thread_id,
 838                            prompt_id,
 839                            intent,
 840                            mode,
 841                            provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 842                            model: request.model.clone(),
 843                            provider_request: serde_json::to_value(&request)
 844                                .map_err(|e| anyhow!(e))?,
 845                        },
 846                    )
 847                    .await?;
 848
 849                    let mut mapper = OpenAiEventMapper::new();
 850                    Ok(map_cloud_completion_events(
 851                        Box::pin(
 852                            response_lines(response, includes_status_messages)
 853                                .chain(usage_updated_event(usage))
 854                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 855                        ),
 856                        move |event| mapper.map_event(event),
 857                    ))
 858                });
 859                async move { Ok(future.await?.boxed()) }.boxed()
 860            }
 861            cloud_llm_client::LanguageModelProvider::XAi => {
 862                let client = self.client.clone();
 863                let model = match x_ai::Model::from_id(&self.model.id.0) {
 864                    Ok(model) => model,
 865                    Err(err) => return async move { Err(anyhow!(err).into()) }.boxed(),
 866                };
 867                let request = into_open_ai(
 868                    request,
 869                    model.id(),
 870                    model.supports_parallel_tool_calls(),
 871                    model.supports_prompt_cache_key(),
 872                    None,
 873                    None,
 874                );
 875                let llm_api_token = self.llm_api_token.clone();
 876                let future = self.request_limiter.stream(async move {
 877                    let PerformLlmCompletionResponse {
 878                        response,
 879                        usage,
 880                        includes_status_messages,
 881                        tool_use_limit_reached,
 882                    } = Self::perform_llm_completion(
 883                        client.clone(),
 884                        llm_api_token,
 885                        app_version,
 886                        CompletionBody {
 887                            thread_id,
 888                            prompt_id,
 889                            intent,
 890                            mode,
 891                            provider: cloud_llm_client::LanguageModelProvider::XAi,
 892                            model: request.model.clone(),
 893                            provider_request: serde_json::to_value(&request)
 894                                .map_err(|e| anyhow!(e))?,
 895                        },
 896                    )
 897                    .await?;
 898
 899                    let mut mapper = OpenAiEventMapper::new();
 900                    Ok(map_cloud_completion_events(
 901                        Box::pin(
 902                            response_lines(response, includes_status_messages)
 903                                .chain(usage_updated_event(usage))
 904                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 905                        ),
 906                        move |event| mapper.map_event(event),
 907                    ))
 908                });
 909                async move { Ok(future.await?.boxed()) }.boxed()
 910            }
 911            cloud_llm_client::LanguageModelProvider::Google => {
 912                let client = self.client.clone();
 913                let request =
 914                    into_google(request, self.model.id.to_string(), GoogleModelMode::Default);
 915                let llm_api_token = self.llm_api_token.clone();
 916                let future = self.request_limiter.stream(async move {
 917                    let PerformLlmCompletionResponse {
 918                        response,
 919                        usage,
 920                        includes_status_messages,
 921                        tool_use_limit_reached,
 922                    } = Self::perform_llm_completion(
 923                        client.clone(),
 924                        llm_api_token,
 925                        app_version,
 926                        CompletionBody {
 927                            thread_id,
 928                            prompt_id,
 929                            intent,
 930                            mode,
 931                            provider: cloud_llm_client::LanguageModelProvider::Google,
 932                            model: request.model.model_id.clone(),
 933                            provider_request: serde_json::to_value(&request)
 934                                .map_err(|e| anyhow!(e))?,
 935                        },
 936                    )
 937                    .await?;
 938
 939                    let mut mapper = GoogleEventMapper::new();
 940                    Ok(map_cloud_completion_events(
 941                        Box::pin(
 942                            response_lines(response, includes_status_messages)
 943                                .chain(usage_updated_event(usage))
 944                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 945                        ),
 946                        move |event| mapper.map_event(event),
 947                    ))
 948                });
 949                async move { Ok(future.await?.boxed()) }.boxed()
 950            }
 951        }
 952    }
 953}
 954
 955fn map_cloud_completion_events<T, F>(
 956    stream: Pin<Box<dyn Stream<Item = Result<CompletionEvent<T>>> + Send>>,
 957    mut map_callback: F,
 958) -> BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 959where
 960    T: DeserializeOwned + 'static,
 961    F: FnMut(T) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 962        + Send
 963        + 'static,
 964{
 965    stream
 966        .flat_map(move |event| {
 967            futures::stream::iter(match event {
 968                Err(error) => {
 969                    vec![Err(LanguageModelCompletionError::from(error))]
 970                }
 971                Ok(CompletionEvent::Status(event)) => {
 972                    vec![Ok(LanguageModelCompletionEvent::StatusUpdate(event))]
 973                }
 974                Ok(CompletionEvent::Event(event)) => map_callback(event),
 975            })
 976        })
 977        .boxed()
 978}
 979
 980fn usage_updated_event<T>(
 981    usage: Option<ModelRequestUsage>,
 982) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 983    futures::stream::iter(usage.map(|usage| {
 984        Ok(CompletionEvent::Status(
 985            CompletionRequestStatus::UsageUpdated {
 986                amount: usage.amount as usize,
 987                limit: usage.limit,
 988            },
 989        ))
 990    }))
 991}
 992
 993fn tool_use_limit_reached_event<T>(
 994    tool_use_limit_reached: bool,
 995) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 996    futures::stream::iter(tool_use_limit_reached.then(|| {
 997        Ok(CompletionEvent::Status(
 998            CompletionRequestStatus::ToolUseLimitReached,
 999        ))
1000    }))
1001}
1002
1003fn response_lines<T: DeserializeOwned>(
1004    response: Response<AsyncBody>,
1005    includes_status_messages: bool,
1006) -> impl Stream<Item = Result<CompletionEvent<T>>> {
1007    futures::stream::try_unfold(
1008        (String::new(), BufReader::new(response.into_body())),
1009        move |(mut line, mut body)| async move {
1010            match body.read_line(&mut line).await {
1011                Ok(0) => Ok(None),
1012                Ok(_) => {
1013                    let event = if includes_status_messages {
1014                        serde_json::from_str::<CompletionEvent<T>>(&line)?
1015                    } else {
1016                        CompletionEvent::Event(serde_json::from_str::<T>(&line)?)
1017                    };
1018
1019                    line.clear();
1020                    Ok(Some((event, (line, body))))
1021                }
1022                Err(e) => Err(e.into()),
1023            }
1024        },
1025    )
1026}
1027
1028#[derive(IntoElement, RegisterComponent)]
1029struct ZedAiConfiguration {
1030    is_connected: bool,
1031    plan: Option<Plan>,
1032    subscription_period: Option<(DateTime<Utc>, DateTime<Utc>)>,
1033    eligible_for_trial: bool,
1034    account_too_young: bool,
1035    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1036}
1037
1038impl RenderOnce for ZedAiConfiguration {
1039    fn render(self, _window: &mut Window, _cx: &mut App) -> impl IntoElement {
1040        let is_pro = self.plan.is_some_and(|plan| {
1041            matches!(plan, Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro))
1042        });
1043        let subscription_text = match (self.plan, self.subscription_period) {
1044            (Some(Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro)), Some(_)) => {
1045                "You have access to Zed's hosted models through your Pro subscription."
1046            }
1047            (Some(Plan::V1(PlanV1::ZedProTrial) | Plan::V2(PlanV2::ZedProTrial)), Some(_)) => {
1048                "You have access to Zed's hosted models through your Pro trial."
1049            }
1050            (Some(Plan::V1(PlanV1::ZedFree)), Some(_)) => {
1051                "You have basic access to Zed's hosted models through the Free plan."
1052            }
1053            (Some(Plan::V2(PlanV2::ZedFree)), Some(_)) => {
1054                if self.eligible_for_trial {
1055                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1056                } else {
1057                    "Subscribe for access to Zed's hosted models."
1058                }
1059            }
1060            _ => {
1061                if self.eligible_for_trial {
1062                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1063                } else {
1064                    "Subscribe for access to Zed's hosted models."
1065                }
1066            }
1067        };
1068
1069        let manage_subscription_buttons = if is_pro {
1070            Button::new("manage_settings", "Manage Subscription")
1071                .full_width()
1072                .style(ButtonStyle::Tinted(TintColor::Accent))
1073                .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx)))
1074                .into_any_element()
1075        } else if self.plan.is_none() || self.eligible_for_trial {
1076            Button::new("start_trial", "Start 14-day Free Pro Trial")
1077                .full_width()
1078                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1079                .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx)))
1080                .into_any_element()
1081        } else {
1082            Button::new("upgrade", "Upgrade to Pro")
1083                .full_width()
1084                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1085                .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx)))
1086                .into_any_element()
1087        };
1088
1089        if !self.is_connected {
1090            return v_flex()
1091                .gap_2()
1092                .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models."))
1093                .child(
1094                    Button::new("sign_in", "Sign In to use Zed AI")
1095                        .icon_color(Color::Muted)
1096                        .icon(IconName::Github)
1097                        .icon_size(IconSize::Small)
1098                        .icon_position(IconPosition::Start)
1099                        .full_width()
1100                        .on_click({
1101                            let callback = self.sign_in_callback.clone();
1102                            move |_, window, cx| (callback)(window, cx)
1103                        }),
1104                );
1105        }
1106
1107        v_flex().gap_2().w_full().map(|this| {
1108            if self.account_too_young {
1109                this.child(YoungAccountBanner).child(
1110                    Button::new("upgrade", "Upgrade to Pro")
1111                        .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1112                        .full_width()
1113                        .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))),
1114                )
1115            } else {
1116                this.text_sm()
1117                    .child(subscription_text)
1118                    .child(manage_subscription_buttons)
1119            }
1120        })
1121    }
1122}
1123
1124struct ConfigurationView {
1125    state: Entity<State>,
1126    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1127}
1128
1129impl ConfigurationView {
1130    fn new(state: Entity<State>) -> Self {
1131        let sign_in_callback = Arc::new({
1132            let state = state.clone();
1133            move |_window: &mut Window, cx: &mut App| {
1134                state.update(cx, |state, cx| {
1135                    state.authenticate(cx).detach_and_log_err(cx);
1136                });
1137            }
1138        });
1139
1140        Self {
1141            state,
1142            sign_in_callback,
1143        }
1144    }
1145}
1146
1147impl Render for ConfigurationView {
1148    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1149        let state = self.state.read(cx);
1150        let user_store = state.user_store.read(cx);
1151
1152        ZedAiConfiguration {
1153            is_connected: !state.is_signed_out(cx),
1154            plan: user_store.plan(),
1155            subscription_period: user_store.subscription_period(),
1156            eligible_for_trial: user_store.trial_started_at().is_none(),
1157            account_too_young: user_store.account_too_young(),
1158            sign_in_callback: self.sign_in_callback.clone(),
1159        }
1160    }
1161}
1162
1163impl Component for ZedAiConfiguration {
1164    fn name() -> &'static str {
1165        "AI Configuration Content"
1166    }
1167
1168    fn sort_name() -> &'static str {
1169        "AI Configuration Content"
1170    }
1171
1172    fn scope() -> ComponentScope {
1173        ComponentScope::Onboarding
1174    }
1175
1176    fn preview(_window: &mut Window, _cx: &mut App) -> Option<AnyElement> {
1177        fn configuration(
1178            is_connected: bool,
1179            plan: Option<Plan>,
1180            eligible_for_trial: bool,
1181            account_too_young: bool,
1182        ) -> AnyElement {
1183            ZedAiConfiguration {
1184                is_connected,
1185                plan,
1186                subscription_period: plan
1187                    .is_some()
1188                    .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))),
1189                eligible_for_trial,
1190                account_too_young,
1191                sign_in_callback: Arc::new(|_, _| {}),
1192            }
1193            .into_any_element()
1194        }
1195
1196        Some(
1197            v_flex()
1198                .p_4()
1199                .gap_4()
1200                .children(vec![
1201                    single_example("Not connected", configuration(false, None, false, false)),
1202                    single_example(
1203                        "Accept Terms of Service",
1204                        configuration(true, None, true, false),
1205                    ),
1206                    single_example(
1207                        "No Plan - Not eligible for trial",
1208                        configuration(true, None, false, false),
1209                    ),
1210                    single_example(
1211                        "No Plan - Eligible for trial",
1212                        configuration(true, None, true, false),
1213                    ),
1214                    single_example(
1215                        "Free Plan",
1216                        configuration(true, Some(Plan::V1(PlanV1::ZedFree)), true, false),
1217                    ),
1218                    single_example(
1219                        "Zed Pro Trial Plan",
1220                        configuration(true, Some(Plan::V1(PlanV1::ZedProTrial)), true, false),
1221                    ),
1222                    single_example(
1223                        "Zed Pro Plan",
1224                        configuration(true, Some(Plan::V1(PlanV1::ZedPro)), true, false),
1225                    ),
1226                ])
1227                .into_any_element(),
1228        )
1229    }
1230}
1231
1232#[cfg(test)]
1233mod tests {
1234    use super::*;
1235    use http_client::http::{HeaderMap, StatusCode};
1236    use language_model::LanguageModelCompletionError;
1237
1238    #[test]
1239    fn test_api_error_conversion_with_upstream_http_error() {
1240        // upstream_http_error with 503 status should become ServerOverloaded
1241        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#;
1242
1243        let api_error = ApiError {
1244            status: StatusCode::INTERNAL_SERVER_ERROR,
1245            body: error_body.to_string(),
1246            headers: HeaderMap::new(),
1247        };
1248
1249        let completion_error: LanguageModelCompletionError = api_error.into();
1250
1251        match completion_error {
1252            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1253                assert_eq!(
1254                    message,
1255                    "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout"
1256                );
1257            }
1258            _ => panic!(
1259                "Expected UpstreamProviderError for upstream 503, got: {:?}",
1260                completion_error
1261            ),
1262        }
1263
1264        // upstream_http_error with 500 status should become ApiInternalServerError
1265        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#;
1266
1267        let api_error = ApiError {
1268            status: StatusCode::INTERNAL_SERVER_ERROR,
1269            body: error_body.to_string(),
1270            headers: HeaderMap::new(),
1271        };
1272
1273        let completion_error: LanguageModelCompletionError = api_error.into();
1274
1275        match completion_error {
1276            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1277                assert_eq!(
1278                    message,
1279                    "Received an error from the OpenAI API: internal server error"
1280                );
1281            }
1282            _ => panic!(
1283                "Expected UpstreamProviderError for upstream 500, got: {:?}",
1284                completion_error
1285            ),
1286        }
1287
1288        // upstream_http_error with 429 status should become RateLimitExceeded
1289        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#;
1290
1291        let api_error = ApiError {
1292            status: StatusCode::INTERNAL_SERVER_ERROR,
1293            body: error_body.to_string(),
1294            headers: HeaderMap::new(),
1295        };
1296
1297        let completion_error: LanguageModelCompletionError = api_error.into();
1298
1299        match completion_error {
1300            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1301                assert_eq!(
1302                    message,
1303                    "Received an error from the Google API: rate limit exceeded"
1304                );
1305            }
1306            _ => panic!(
1307                "Expected UpstreamProviderError for upstream 429, got: {:?}",
1308                completion_error
1309            ),
1310        }
1311
1312        // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed
1313        let error_body = "Regular internal server error";
1314
1315        let api_error = ApiError {
1316            status: StatusCode::INTERNAL_SERVER_ERROR,
1317            body: error_body.to_string(),
1318            headers: HeaderMap::new(),
1319        };
1320
1321        let completion_error: LanguageModelCompletionError = api_error.into();
1322
1323        match completion_error {
1324            LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
1325                assert_eq!(provider, PROVIDER_NAME);
1326                assert_eq!(message, "Regular internal server error");
1327            }
1328            _ => panic!(
1329                "Expected ApiInternalServerError for regular 500, got: {:?}",
1330                completion_error
1331            ),
1332        }
1333
1334        // upstream_http_429 format should be converted to UpstreamProviderError
1335        let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#;
1336
1337        let api_error = ApiError {
1338            status: StatusCode::INTERNAL_SERVER_ERROR,
1339            body: error_body.to_string(),
1340            headers: HeaderMap::new(),
1341        };
1342
1343        let completion_error: LanguageModelCompletionError = api_error.into();
1344
1345        match completion_error {
1346            LanguageModelCompletionError::UpstreamProviderError {
1347                message,
1348                status,
1349                retry_after,
1350            } => {
1351                assert_eq!(message, "Upstream Anthropic rate limit exceeded.");
1352                assert_eq!(status, StatusCode::TOO_MANY_REQUESTS);
1353                assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5)));
1354            }
1355            _ => panic!(
1356                "Expected UpstreamProviderError for upstream_http_429, got: {:?}",
1357                completion_error
1358            ),
1359        }
1360
1361        // Invalid JSON in error body should fall back to regular error handling
1362        let error_body = "Not JSON at all";
1363
1364        let api_error = ApiError {
1365            status: StatusCode::INTERNAL_SERVER_ERROR,
1366            body: error_body.to_string(),
1367            headers: HeaderMap::new(),
1368        };
1369
1370        let completion_error: LanguageModelCompletionError = api_error.into();
1371
1372        match completion_error {
1373            LanguageModelCompletionError::ApiInternalServerError { provider, .. } => {
1374                assert_eq!(provider, PROVIDER_NAME);
1375            }
1376            _ => panic!(
1377                "Expected ApiInternalServerError for invalid JSON, got: {:?}",
1378                completion_error
1379            ),
1380        }
1381    }
1382}