window.rs

   1#[cfg(any(feature = "inspector", debug_assertions))]
   2use crate::Inspector;
   3use crate::{
   4    Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
   5    AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
   6    Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
   7    DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
   8    FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
   9    KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
  10    LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
  11    MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
  12    PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
  13    Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
  14    SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y, ScaledPixels, Scene, Shadow,
  15    SharedString, Size, StrikethroughStyle, Style, SubscriberSet, Subscription, SystemWindowTab,
  16    SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
  17    TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
  18    WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
  19    point, prelude::*, px, rems, size, transparent_black,
  20};
  21use anyhow::{Context as _, Result, anyhow};
  22use collections::{FxHashMap, FxHashSet};
  23#[cfg(target_os = "macos")]
  24use core_video::pixel_buffer::CVPixelBuffer;
  25use derive_more::{Deref, DerefMut};
  26use futures::FutureExt;
  27use futures::channel::oneshot;
  28use itertools::FoldWhile::{Continue, Done};
  29use itertools::Itertools;
  30use parking_lot::RwLock;
  31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
  32use refineable::Refineable;
  33use slotmap::SlotMap;
  34use smallvec::SmallVec;
  35use std::{
  36    any::{Any, TypeId},
  37    borrow::Cow,
  38    cell::{Cell, RefCell},
  39    cmp,
  40    fmt::{Debug, Display},
  41    hash::{Hash, Hasher},
  42    marker::PhantomData,
  43    mem,
  44    ops::{DerefMut, Range},
  45    rc::Rc,
  46    sync::{
  47        Arc, Weak,
  48        atomic::{AtomicUsize, Ordering::SeqCst},
  49    },
  50    time::{Duration, Instant},
  51};
  52use util::post_inc;
  53use util::{ResultExt, measure};
  54use uuid::Uuid;
  55
  56mod prompts;
  57
  58use crate::util::atomic_incr_if_not_zero;
  59pub use prompts::*;
  60
  61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
  62
  63/// Represents the two different phases when dispatching events.
  64#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
  65pub enum DispatchPhase {
  66    /// After the capture phase comes the bubble phase, in which mouse event listeners are
  67    /// invoked front to back and keyboard event listeners are invoked from the focused element
  68    /// to the root of the element tree. This is the phase you'll most commonly want to use when
  69    /// registering event listeners.
  70    #[default]
  71    Bubble,
  72    /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
  73    /// listeners are invoked from the root of the tree downward toward the focused element. This phase
  74    /// is used for special purposes such as clearing the "pressed" state for click events. If
  75    /// you stop event propagation during this phase, you need to know what you're doing. Handlers
  76    /// outside of the immediate region may rely on detecting non-local events during this phase.
  77    Capture,
  78}
  79
  80impl DispatchPhase {
  81    /// Returns true if this represents the "bubble" phase.
  82    #[inline]
  83    pub fn bubble(self) -> bool {
  84        self == DispatchPhase::Bubble
  85    }
  86
  87    /// Returns true if this represents the "capture" phase.
  88    #[inline]
  89    pub fn capture(self) -> bool {
  90        self == DispatchPhase::Capture
  91    }
  92}
  93
  94struct WindowInvalidatorInner {
  95    pub dirty: bool,
  96    pub draw_phase: DrawPhase,
  97    pub dirty_views: FxHashSet<EntityId>,
  98}
  99
 100#[derive(Clone)]
 101pub(crate) struct WindowInvalidator {
 102    inner: Rc<RefCell<WindowInvalidatorInner>>,
 103}
 104
 105impl WindowInvalidator {
 106    pub fn new() -> Self {
 107        WindowInvalidator {
 108            inner: Rc::new(RefCell::new(WindowInvalidatorInner {
 109                dirty: true,
 110                draw_phase: DrawPhase::None,
 111                dirty_views: FxHashSet::default(),
 112            })),
 113        }
 114    }
 115
 116    pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
 117        let mut inner = self.inner.borrow_mut();
 118        inner.dirty_views.insert(entity);
 119        if inner.draw_phase == DrawPhase::None {
 120            inner.dirty = true;
 121            cx.push_effect(Effect::Notify { emitter: entity });
 122            true
 123        } else {
 124            false
 125        }
 126    }
 127
 128    pub fn is_dirty(&self) -> bool {
 129        self.inner.borrow().dirty
 130    }
 131
 132    pub fn set_dirty(&self, dirty: bool) {
 133        self.inner.borrow_mut().dirty = dirty
 134    }
 135
 136    pub fn set_phase(&self, phase: DrawPhase) {
 137        self.inner.borrow_mut().draw_phase = phase
 138    }
 139
 140    pub fn take_views(&self) -> FxHashSet<EntityId> {
 141        mem::take(&mut self.inner.borrow_mut().dirty_views)
 142    }
 143
 144    pub fn replace_views(&self, views: FxHashSet<EntityId>) {
 145        self.inner.borrow_mut().dirty_views = views;
 146    }
 147
 148    pub fn not_drawing(&self) -> bool {
 149        self.inner.borrow().draw_phase == DrawPhase::None
 150    }
 151
 152    #[track_caller]
 153    pub fn debug_assert_paint(&self) {
 154        debug_assert!(
 155            matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
 156            "this method can only be called during paint"
 157        );
 158    }
 159
 160    #[track_caller]
 161    pub fn debug_assert_prepaint(&self) {
 162        debug_assert!(
 163            matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
 164            "this method can only be called during request_layout, or prepaint"
 165        );
 166    }
 167
 168    #[track_caller]
 169    pub fn debug_assert_paint_or_prepaint(&self) {
 170        debug_assert!(
 171            matches!(
 172                self.inner.borrow().draw_phase,
 173                DrawPhase::Paint | DrawPhase::Prepaint
 174            ),
 175            "this method can only be called during request_layout, prepaint, or paint"
 176        );
 177    }
 178}
 179
 180type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
 181
 182pub(crate) type AnyWindowFocusListener =
 183    Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
 184
 185pub(crate) struct WindowFocusEvent {
 186    pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
 187    pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
 188}
 189
 190impl WindowFocusEvent {
 191    pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
 192        !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
 193    }
 194
 195    pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
 196        self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
 197    }
 198}
 199
 200/// This is provided when subscribing for `Context::on_focus_out` events.
 201pub struct FocusOutEvent {
 202    /// A weak focus handle representing what was blurred.
 203    pub blurred: WeakFocusHandle,
 204}
 205
 206slotmap::new_key_type! {
 207    /// A globally unique identifier for a focusable element.
 208    pub struct FocusId;
 209}
 210
 211thread_local! {
 212    pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
 213}
 214
 215/// Returned when the element arena has been used and so must be cleared before the next draw.
 216#[must_use]
 217pub struct ArenaClearNeeded;
 218
 219impl ArenaClearNeeded {
 220    /// Clear the element arena.
 221    pub fn clear(self) {
 222        ELEMENT_ARENA.with_borrow_mut(|element_arena| {
 223            element_arena.clear();
 224        });
 225    }
 226}
 227
 228pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
 229pub(crate) struct FocusRef {
 230    pub(crate) ref_count: AtomicUsize,
 231    pub(crate) tab_index: isize,
 232    pub(crate) tab_stop: bool,
 233}
 234
 235impl FocusId {
 236    /// Obtains whether the element associated with this handle is currently focused.
 237    pub fn is_focused(&self, window: &Window) -> bool {
 238        window.focus == Some(*self)
 239    }
 240
 241    /// Obtains whether the element associated with this handle contains the focused
 242    /// element or is itself focused.
 243    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 244        window
 245            .focused(cx)
 246            .is_some_and(|focused| self.contains(focused.id, window))
 247    }
 248
 249    /// Obtains whether the element associated with this handle is contained within the
 250    /// focused element or is itself focused.
 251    pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
 252        let focused = window.focused(cx);
 253        focused.is_some_and(|focused| focused.id.contains(*self, window))
 254    }
 255
 256    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 257    pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
 258        window
 259            .rendered_frame
 260            .dispatch_tree
 261            .focus_contains(*self, other)
 262    }
 263}
 264
 265/// A handle which can be used to track and manipulate the focused element in a window.
 266pub struct FocusHandle {
 267    pub(crate) id: FocusId,
 268    handles: Arc<FocusMap>,
 269    /// The index of this element in the tab order.
 270    pub tab_index: isize,
 271    /// Whether this element can be focused by tab navigation.
 272    pub tab_stop: bool,
 273}
 274
 275impl std::fmt::Debug for FocusHandle {
 276    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 277        f.write_fmt(format_args!("FocusHandle({:?})", self.id))
 278    }
 279}
 280
 281impl FocusHandle {
 282    pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
 283        let id = handles.write().insert(FocusRef {
 284            ref_count: AtomicUsize::new(1),
 285            tab_index: 0,
 286            tab_stop: false,
 287        });
 288
 289        Self {
 290            id,
 291            tab_index: 0,
 292            tab_stop: false,
 293            handles: handles.clone(),
 294        }
 295    }
 296
 297    pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
 298        let lock = handles.read();
 299        let focus = lock.get(id)?;
 300        if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
 301            return None;
 302        }
 303        Some(Self {
 304            id,
 305            tab_index: focus.tab_index,
 306            tab_stop: focus.tab_stop,
 307            handles: handles.clone(),
 308        })
 309    }
 310
 311    /// Sets the tab index of the element associated with this handle.
 312    pub fn tab_index(mut self, index: isize) -> Self {
 313        self.tab_index = index;
 314        if let Some(focus) = self.handles.write().get_mut(self.id) {
 315            focus.tab_index = index;
 316        }
 317        self
 318    }
 319
 320    /// Sets whether the element associated with this handle is a tab stop.
 321    ///
 322    /// When `false`, the element will not be included in the tab order.
 323    pub fn tab_stop(mut self, tab_stop: bool) -> Self {
 324        self.tab_stop = tab_stop;
 325        if let Some(focus) = self.handles.write().get_mut(self.id) {
 326            focus.tab_stop = tab_stop;
 327        }
 328        self
 329    }
 330
 331    /// Converts this focus handle into a weak variant, which does not prevent it from being released.
 332    pub fn downgrade(&self) -> WeakFocusHandle {
 333        WeakFocusHandle {
 334            id: self.id,
 335            handles: Arc::downgrade(&self.handles),
 336        }
 337    }
 338
 339    /// Moves the focus to the element associated with this handle.
 340    pub fn focus(&self, window: &mut Window) {
 341        window.focus(self)
 342    }
 343
 344    /// Obtains whether the element associated with this handle is currently focused.
 345    pub fn is_focused(&self, window: &Window) -> bool {
 346        self.id.is_focused(window)
 347    }
 348
 349    /// Obtains whether the element associated with this handle contains the focused
 350    /// element or is itself focused.
 351    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 352        self.id.contains_focused(window, cx)
 353    }
 354
 355    /// Obtains whether the element associated with this handle is contained within the
 356    /// focused element or is itself focused.
 357    pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
 358        self.id.within_focused(window, cx)
 359    }
 360
 361    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 362    pub fn contains(&self, other: &Self, window: &Window) -> bool {
 363        self.id.contains(other.id, window)
 364    }
 365
 366    /// Dispatch an action on the element that rendered this focus handle
 367    pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
 368        if let Some(node_id) = window
 369            .rendered_frame
 370            .dispatch_tree
 371            .focusable_node_id(self.id)
 372        {
 373            window.dispatch_action_on_node(node_id, action, cx)
 374        }
 375    }
 376}
 377
 378impl Clone for FocusHandle {
 379    fn clone(&self) -> Self {
 380        Self::for_id(self.id, &self.handles).unwrap()
 381    }
 382}
 383
 384impl PartialEq for FocusHandle {
 385    fn eq(&self, other: &Self) -> bool {
 386        self.id == other.id
 387    }
 388}
 389
 390impl Eq for FocusHandle {}
 391
 392impl Drop for FocusHandle {
 393    fn drop(&mut self) {
 394        self.handles
 395            .read()
 396            .get(self.id)
 397            .unwrap()
 398            .ref_count
 399            .fetch_sub(1, SeqCst);
 400    }
 401}
 402
 403/// A weak reference to a focus handle.
 404#[derive(Clone, Debug)]
 405pub struct WeakFocusHandle {
 406    pub(crate) id: FocusId,
 407    pub(crate) handles: Weak<FocusMap>,
 408}
 409
 410impl WeakFocusHandle {
 411    /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
 412    pub fn upgrade(&self) -> Option<FocusHandle> {
 413        let handles = self.handles.upgrade()?;
 414        FocusHandle::for_id(self.id, &handles)
 415    }
 416}
 417
 418impl PartialEq for WeakFocusHandle {
 419    fn eq(&self, other: &WeakFocusHandle) -> bool {
 420        self.id == other.id
 421    }
 422}
 423
 424impl Eq for WeakFocusHandle {}
 425
 426impl PartialEq<FocusHandle> for WeakFocusHandle {
 427    fn eq(&self, other: &FocusHandle) -> bool {
 428        self.id == other.id
 429    }
 430}
 431
 432impl PartialEq<WeakFocusHandle> for FocusHandle {
 433    fn eq(&self, other: &WeakFocusHandle) -> bool {
 434        self.id == other.id
 435    }
 436}
 437
 438/// Focusable allows users of your view to easily
 439/// focus it (using window.focus_view(cx, view))
 440pub trait Focusable: 'static {
 441    /// Returns the focus handle associated with this view.
 442    fn focus_handle(&self, cx: &App) -> FocusHandle;
 443}
 444
 445impl<V: Focusable> Focusable for Entity<V> {
 446    fn focus_handle(&self, cx: &App) -> FocusHandle {
 447        self.read(cx).focus_handle(cx)
 448    }
 449}
 450
 451/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
 452/// where the lifecycle of the view is handled by another view.
 453pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
 454
 455impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
 456
 457/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
 458pub struct DismissEvent;
 459
 460type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
 461
 462pub(crate) type AnyMouseListener =
 463    Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
 464
 465#[derive(Clone)]
 466pub(crate) struct CursorStyleRequest {
 467    pub(crate) hitbox_id: Option<HitboxId>,
 468    pub(crate) style: CursorStyle,
 469}
 470
 471#[derive(Default, Eq, PartialEq)]
 472pub(crate) struct HitTest {
 473    pub(crate) ids: SmallVec<[HitboxId; 8]>,
 474    pub(crate) hover_hitbox_count: usize,
 475}
 476
 477/// A type of window control area that corresponds to the platform window.
 478#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 479pub enum WindowControlArea {
 480    /// An area that allows dragging of the platform window.
 481    Drag,
 482    /// An area that allows closing of the platform window.
 483    Close,
 484    /// An area that allows maximizing of the platform window.
 485    Max,
 486    /// An area that allows minimizing of the platform window.
 487    Min,
 488}
 489
 490/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
 491#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
 492pub struct HitboxId(u64);
 493
 494impl HitboxId {
 495    /// Checks if the hitbox with this ID is currently hovered. Except when handling
 496    /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
 497    /// events or paint hover styles.
 498    ///
 499    /// See [`Hitbox::is_hovered`] for details.
 500    pub fn is_hovered(self, window: &Window) -> bool {
 501        let hit_test = &window.mouse_hit_test;
 502        for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
 503            if self == *id {
 504                return true;
 505            }
 506        }
 507        false
 508    }
 509
 510    /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
 511    /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
 512    /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
 513    /// this distinction.
 514    pub fn should_handle_scroll(self, window: &Window) -> bool {
 515        window.mouse_hit_test.ids.contains(&self)
 516    }
 517
 518    fn next(mut self) -> HitboxId {
 519        HitboxId(self.0.wrapping_add(1))
 520    }
 521}
 522
 523/// A rectangular region that potentially blocks hitboxes inserted prior.
 524/// See [Window::insert_hitbox] for more details.
 525#[derive(Clone, Debug, Deref)]
 526pub struct Hitbox {
 527    /// A unique identifier for the hitbox.
 528    pub id: HitboxId,
 529    /// The bounds of the hitbox.
 530    #[deref]
 531    pub bounds: Bounds<Pixels>,
 532    /// The content mask when the hitbox was inserted.
 533    pub content_mask: ContentMask<Pixels>,
 534    /// Flags that specify hitbox behavior.
 535    pub behavior: HitboxBehavior,
 536}
 537
 538impl Hitbox {
 539    /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
 540    /// typically what you want when determining whether to handle mouse events or paint hover
 541    /// styles.
 542    ///
 543    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 544    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
 545    /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
 546    ///
 547    /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
 548    /// Concretely, this is due to use-cases like overlays that cause the elements under to be
 549    /// non-interactive while still allowing scrolling. More abstractly, this is because
 550    /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
 551    /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
 552    /// container.
 553    pub fn is_hovered(&self, window: &Window) -> bool {
 554        self.id.is_hovered(window)
 555    }
 556
 557    /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
 558    /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
 559    /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
 560    ///
 561    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 562    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
 563    pub fn should_handle_scroll(&self, window: &Window) -> bool {
 564        self.id.should_handle_scroll(window)
 565    }
 566}
 567
 568/// How the hitbox affects mouse behavior.
 569#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
 570pub enum HitboxBehavior {
 571    /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
 572    #[default]
 573    Normal,
 574
 575    /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
 576    /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
 577    /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
 578    /// [`InteractiveElement::occlude`].
 579    ///
 580    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 581    /// bubble-phase handler for every mouse event type:
 582    ///
 583    /// ```ignore
 584    /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
 585    ///     if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
 586    ///         cx.stop_propagation();
 587    ///     }
 588    /// })
 589    /// ```
 590    ///
 591    /// This has effects beyond event handling - any use of hitbox checking, such as hover
 592    /// styles and tooltops. These other behaviors are the main point of this mechanism. An
 593    /// alternative might be to not affect mouse event handling - but this would allow
 594    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 595    /// be hovered.
 596    BlockMouse,
 597
 598    /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
 599    /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
 600    /// interaction except scroll events to be ignored - see the documentation of
 601    /// [`Hitbox::is_hovered`] for details. This flag is set by
 602    /// [`InteractiveElement::block_mouse_except_scroll`].
 603    ///
 604    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 605    /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
 606    ///
 607    /// ```ignore
 608    /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
 609    ///     if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
 610    ///         cx.stop_propagation();
 611    ///     }
 612    /// })
 613    /// ```
 614    ///
 615    /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
 616    /// handled differently than other mouse events. If also blocking these scroll events is
 617    /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
 618    ///
 619    /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
 620    /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
 621    /// An alternative might be to not affect mouse event handling - but this would allow
 622    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 623    /// be hovered.
 624    BlockMouseExceptScroll,
 625}
 626
 627/// An identifier for a tooltip.
 628#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
 629pub struct TooltipId(usize);
 630
 631impl TooltipId {
 632    /// Checks if the tooltip is currently hovered.
 633    pub fn is_hovered(&self, window: &Window) -> bool {
 634        window
 635            .tooltip_bounds
 636            .as_ref()
 637            .is_some_and(|tooltip_bounds| {
 638                tooltip_bounds.id == *self
 639                    && tooltip_bounds.bounds.contains(&window.mouse_position())
 640            })
 641    }
 642}
 643
 644pub(crate) struct TooltipBounds {
 645    id: TooltipId,
 646    bounds: Bounds<Pixels>,
 647}
 648
 649#[derive(Clone)]
 650pub(crate) struct TooltipRequest {
 651    id: TooltipId,
 652    tooltip: AnyTooltip,
 653}
 654
 655pub(crate) struct DeferredDraw {
 656    current_view: EntityId,
 657    priority: usize,
 658    parent_node: DispatchNodeId,
 659    element_id_stack: SmallVec<[ElementId; 32]>,
 660    text_style_stack: Vec<TextStyleRefinement>,
 661    element: Option<AnyElement>,
 662    absolute_offset: Point<Pixels>,
 663    prepaint_range: Range<PrepaintStateIndex>,
 664    paint_range: Range<PaintIndex>,
 665}
 666
 667pub(crate) struct Frame {
 668    pub(crate) focus: Option<FocusId>,
 669    pub(crate) window_active: bool,
 670    pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
 671    accessed_element_states: Vec<(GlobalElementId, TypeId)>,
 672    pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
 673    pub(crate) dispatch_tree: DispatchTree,
 674    pub(crate) scene: Scene,
 675    pub(crate) hitboxes: Vec<Hitbox>,
 676    pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
 677    pub(crate) deferred_draws: Vec<DeferredDraw>,
 678    pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
 679    pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
 680    pub(crate) cursor_styles: Vec<CursorStyleRequest>,
 681    #[cfg(any(test, feature = "test-support"))]
 682    pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
 683    #[cfg(any(feature = "inspector", debug_assertions))]
 684    pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
 685    #[cfg(any(feature = "inspector", debug_assertions))]
 686    pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
 687    pub(crate) tab_stops: TabStopMap,
 688}
 689
 690#[derive(Clone, Default)]
 691pub(crate) struct PrepaintStateIndex {
 692    hitboxes_index: usize,
 693    tooltips_index: usize,
 694    deferred_draws_index: usize,
 695    dispatch_tree_index: usize,
 696    accessed_element_states_index: usize,
 697    line_layout_index: LineLayoutIndex,
 698}
 699
 700#[derive(Clone, Default)]
 701pub(crate) struct PaintIndex {
 702    scene_index: usize,
 703    mouse_listeners_index: usize,
 704    input_handlers_index: usize,
 705    cursor_styles_index: usize,
 706    accessed_element_states_index: usize,
 707    tab_handle_index: usize,
 708    line_layout_index: LineLayoutIndex,
 709}
 710
 711impl Frame {
 712    pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
 713        Frame {
 714            focus: None,
 715            window_active: false,
 716            element_states: FxHashMap::default(),
 717            accessed_element_states: Vec::new(),
 718            mouse_listeners: Vec::new(),
 719            dispatch_tree,
 720            scene: Scene::default(),
 721            hitboxes: Vec::new(),
 722            window_control_hitboxes: Vec::new(),
 723            deferred_draws: Vec::new(),
 724            input_handlers: Vec::new(),
 725            tooltip_requests: Vec::new(),
 726            cursor_styles: Vec::new(),
 727
 728            #[cfg(any(test, feature = "test-support"))]
 729            debug_bounds: FxHashMap::default(),
 730
 731            #[cfg(any(feature = "inspector", debug_assertions))]
 732            next_inspector_instance_ids: FxHashMap::default(),
 733
 734            #[cfg(any(feature = "inspector", debug_assertions))]
 735            inspector_hitboxes: FxHashMap::default(),
 736            tab_stops: TabStopMap::default(),
 737        }
 738    }
 739
 740    pub(crate) fn clear(&mut self) {
 741        self.element_states.clear();
 742        self.accessed_element_states.clear();
 743        self.mouse_listeners.clear();
 744        self.dispatch_tree.clear();
 745        self.scene.clear();
 746        self.input_handlers.clear();
 747        self.tooltip_requests.clear();
 748        self.cursor_styles.clear();
 749        self.hitboxes.clear();
 750        self.window_control_hitboxes.clear();
 751        self.deferred_draws.clear();
 752        self.tab_stops.clear();
 753        self.focus = None;
 754
 755        #[cfg(any(feature = "inspector", debug_assertions))]
 756        {
 757            self.next_inspector_instance_ids.clear();
 758            self.inspector_hitboxes.clear();
 759        }
 760    }
 761
 762    pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
 763        self.cursor_styles
 764            .iter()
 765            .rev()
 766            .fold_while(None, |style, request| match request.hitbox_id {
 767                None => Done(Some(request.style)),
 768                Some(hitbox_id) => Continue(
 769                    style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
 770                ),
 771            })
 772            .into_inner()
 773    }
 774
 775    pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
 776        let mut set_hover_hitbox_count = false;
 777        let mut hit_test = HitTest::default();
 778        for hitbox in self.hitboxes.iter().rev() {
 779            let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
 780            if bounds.contains(&position) {
 781                hit_test.ids.push(hitbox.id);
 782                if !set_hover_hitbox_count
 783                    && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
 784                {
 785                    hit_test.hover_hitbox_count = hit_test.ids.len();
 786                    set_hover_hitbox_count = true;
 787                }
 788                if hitbox.behavior == HitboxBehavior::BlockMouse {
 789                    break;
 790                }
 791            }
 792        }
 793        if !set_hover_hitbox_count {
 794            hit_test.hover_hitbox_count = hit_test.ids.len();
 795        }
 796        hit_test
 797    }
 798
 799    pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
 800        self.focus
 801            .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
 802            .unwrap_or_default()
 803    }
 804
 805    pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
 806        for element_state_key in &self.accessed_element_states {
 807            if let Some((element_state_key, element_state)) =
 808                prev_frame.element_states.remove_entry(element_state_key)
 809            {
 810                self.element_states.insert(element_state_key, element_state);
 811            }
 812        }
 813
 814        self.scene.finish();
 815    }
 816}
 817
 818/// Holds the state for a specific window.
 819pub struct Window {
 820    pub(crate) handle: AnyWindowHandle,
 821    pub(crate) invalidator: WindowInvalidator,
 822    pub(crate) removed: bool,
 823    pub(crate) platform_window: Box<dyn PlatformWindow>,
 824    display_id: Option<DisplayId>,
 825    sprite_atlas: Arc<dyn PlatformAtlas>,
 826    text_system: Arc<WindowTextSystem>,
 827    rem_size: Pixels,
 828    /// The stack of override values for the window's rem size.
 829    ///
 830    /// This is used by `with_rem_size` to allow rendering an element tree with
 831    /// a given rem size.
 832    rem_size_override_stack: SmallVec<[Pixels; 8]>,
 833    pub(crate) viewport_size: Size<Pixels>,
 834    layout_engine: Option<TaffyLayoutEngine>,
 835    pub(crate) root: Option<AnyView>,
 836    pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
 837    pub(crate) text_style_stack: Vec<TextStyleRefinement>,
 838    pub(crate) rendered_entity_stack: Vec<EntityId>,
 839    pub(crate) element_offset_stack: Vec<Point<Pixels>>,
 840    pub(crate) element_opacity: Option<f32>,
 841    pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
 842    pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
 843    pub(crate) image_cache_stack: Vec<AnyImageCache>,
 844    pub(crate) rendered_frame: Frame,
 845    pub(crate) next_frame: Frame,
 846    next_hitbox_id: HitboxId,
 847    pub(crate) next_tooltip_id: TooltipId,
 848    pub(crate) tooltip_bounds: Option<TooltipBounds>,
 849    next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
 850    pub(crate) dirty_views: FxHashSet<EntityId>,
 851    focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
 852    pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
 853    default_prevented: bool,
 854    mouse_position: Point<Pixels>,
 855    mouse_hit_test: HitTest,
 856    modifiers: Modifiers,
 857    capslock: Capslock,
 858    scale_factor: f32,
 859    pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
 860    appearance: WindowAppearance,
 861    pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
 862    active: Rc<Cell<bool>>,
 863    hovered: Rc<Cell<bool>>,
 864    pub(crate) needs_present: Rc<Cell<bool>>,
 865    pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
 866    pub(crate) refreshing: bool,
 867    pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
 868    pub(crate) focus: Option<FocusId>,
 869    focus_enabled: bool,
 870    pending_input: Option<PendingInput>,
 871    pending_modifier: ModifierState,
 872    pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
 873    prompt: Option<RenderablePromptHandle>,
 874    pub(crate) client_inset: Option<Pixels>,
 875    #[cfg(any(feature = "inspector", debug_assertions))]
 876    inspector: Option<Entity<Inspector>>,
 877}
 878
 879#[derive(Clone, Debug, Default)]
 880struct ModifierState {
 881    modifiers: Modifiers,
 882    saw_keystroke: bool,
 883}
 884
 885#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 886pub(crate) enum DrawPhase {
 887    None,
 888    Prepaint,
 889    Paint,
 890    Focus,
 891}
 892
 893#[derive(Default, Debug)]
 894struct PendingInput {
 895    keystrokes: SmallVec<[Keystroke; 1]>,
 896    focus: Option<FocusId>,
 897    timer: Option<Task<()>>,
 898}
 899
 900pub(crate) struct ElementStateBox {
 901    pub(crate) inner: Box<dyn Any>,
 902    #[cfg(debug_assertions)]
 903    pub(crate) type_name: &'static str,
 904}
 905
 906fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
 907    const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
 908
 909    // TODO, BUG: if you open a window with the currently active window
 910    // on the stack, this will erroneously select the 'unwrap_or_else'
 911    // code path
 912    cx.active_window()
 913        .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
 914        .map(|mut bounds| {
 915            bounds.origin += DEFAULT_WINDOW_OFFSET;
 916            bounds
 917        })
 918        .unwrap_or_else(|| {
 919            let display = display_id
 920                .map(|id| cx.find_display(id))
 921                .unwrap_or_else(|| cx.primary_display());
 922
 923            display
 924                .map(|display| display.default_bounds())
 925                .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
 926        })
 927}
 928
 929impl Window {
 930    pub(crate) fn new(
 931        handle: AnyWindowHandle,
 932        options: WindowOptions,
 933        cx: &mut App,
 934    ) -> Result<Self> {
 935        let WindowOptions {
 936            window_bounds,
 937            titlebar,
 938            focus,
 939            show,
 940            kind,
 941            is_movable,
 942            is_resizable,
 943            is_minimizable,
 944            display_id,
 945            window_background,
 946            app_id,
 947            window_min_size,
 948            window_decorations,
 949            #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
 950            tabbing_identifier,
 951        } = options;
 952
 953        let bounds = window_bounds
 954            .map(|bounds| bounds.get_bounds())
 955            .unwrap_or_else(|| default_bounds(display_id, cx));
 956        let mut platform_window = cx.platform.open_window(
 957            handle,
 958            WindowParams {
 959                bounds,
 960                titlebar,
 961                kind,
 962                is_movable,
 963                is_resizable,
 964                is_minimizable,
 965                focus,
 966                show,
 967                display_id,
 968                window_min_size,
 969                #[cfg(target_os = "macos")]
 970                tabbing_identifier,
 971            },
 972        )?;
 973
 974        let tab_bar_visible = platform_window.tab_bar_visible();
 975        SystemWindowTabController::init_visible(cx, tab_bar_visible);
 976        if let Some(tabs) = platform_window.tabbed_windows() {
 977            SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
 978        }
 979
 980        let display_id = platform_window.display().map(|display| display.id());
 981        let sprite_atlas = platform_window.sprite_atlas();
 982        let mouse_position = platform_window.mouse_position();
 983        let modifiers = platform_window.modifiers();
 984        let capslock = platform_window.capslock();
 985        let content_size = platform_window.content_size();
 986        let scale_factor = platform_window.scale_factor();
 987        let appearance = platform_window.appearance();
 988        let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
 989        let invalidator = WindowInvalidator::new();
 990        let active = Rc::new(Cell::new(platform_window.is_active()));
 991        let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
 992        let needs_present = Rc::new(Cell::new(false));
 993        let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
 994        let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
 995
 996        platform_window
 997            .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
 998        platform_window.set_background_appearance(window_background);
 999
1000        if let Some(ref window_open_state) = window_bounds {
1001            match window_open_state {
1002                WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1003                WindowBounds::Maximized(_) => platform_window.zoom(),
1004                WindowBounds::Windowed(_) => {}
1005            }
1006        }
1007
1008        platform_window.on_close(Box::new({
1009            let window_id = handle.window_id();
1010            let mut cx = cx.to_async();
1011            move || {
1012                let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1013                let _ = cx.update(|cx| {
1014                    SystemWindowTabController::remove_tab(cx, window_id);
1015                });
1016            }
1017        }));
1018        platform_window.on_request_frame(Box::new({
1019            let mut cx = cx.to_async();
1020            let invalidator = invalidator.clone();
1021            let active = active.clone();
1022            let needs_present = needs_present.clone();
1023            let next_frame_callbacks = next_frame_callbacks.clone();
1024            let last_input_timestamp = last_input_timestamp.clone();
1025            move |request_frame_options| {
1026                let next_frame_callbacks = next_frame_callbacks.take();
1027                if !next_frame_callbacks.is_empty() {
1028                    handle
1029                        .update(&mut cx, |_, window, cx| {
1030                            for callback in next_frame_callbacks {
1031                                callback(window, cx);
1032                            }
1033                        })
1034                        .log_err();
1035                }
1036
1037                // Keep presenting the current scene for 1 extra second since the
1038                // last input to prevent the display from underclocking the refresh rate.
1039                let needs_present = request_frame_options.require_presentation
1040                    || needs_present.get()
1041                    || (active.get()
1042                        && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1043
1044                if invalidator.is_dirty() || request_frame_options.force_render {
1045                    measure("frame duration", || {
1046                        handle
1047                            .update(&mut cx, |_, window, cx| {
1048                                let arena_clear_needed = window.draw(cx);
1049                                window.present();
1050                                // drop the arena elements after present to reduce latency
1051                                arena_clear_needed.clear();
1052                            })
1053                            .log_err();
1054                    })
1055                } else if needs_present {
1056                    handle
1057                        .update(&mut cx, |_, window, _| window.present())
1058                        .log_err();
1059                }
1060
1061                handle
1062                    .update(&mut cx, |_, window, _| {
1063                        window.complete_frame();
1064                    })
1065                    .log_err();
1066            }
1067        }));
1068        platform_window.on_resize(Box::new({
1069            let mut cx = cx.to_async();
1070            move |_, _| {
1071                handle
1072                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1073                    .log_err();
1074            }
1075        }));
1076        platform_window.on_moved(Box::new({
1077            let mut cx = cx.to_async();
1078            move || {
1079                handle
1080                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1081                    .log_err();
1082            }
1083        }));
1084        platform_window.on_appearance_changed(Box::new({
1085            let mut cx = cx.to_async();
1086            move || {
1087                handle
1088                    .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1089                    .log_err();
1090            }
1091        }));
1092        platform_window.on_active_status_change(Box::new({
1093            let mut cx = cx.to_async();
1094            move |active| {
1095                handle
1096                    .update(&mut cx, |_, window, cx| {
1097                        window.active.set(active);
1098                        window.modifiers = window.platform_window.modifiers();
1099                        window.capslock = window.platform_window.capslock();
1100                        window
1101                            .activation_observers
1102                            .clone()
1103                            .retain(&(), |callback| callback(window, cx));
1104
1105                        window.bounds_changed(cx);
1106                        window.refresh();
1107
1108                        SystemWindowTabController::update_last_active(cx, window.handle.id);
1109                    })
1110                    .log_err();
1111            }
1112        }));
1113        platform_window.on_hover_status_change(Box::new({
1114            let mut cx = cx.to_async();
1115            move |active| {
1116                handle
1117                    .update(&mut cx, |_, window, _| {
1118                        window.hovered.set(active);
1119                        window.refresh();
1120                    })
1121                    .log_err();
1122            }
1123        }));
1124        platform_window.on_input({
1125            let mut cx = cx.to_async();
1126            Box::new(move |event| {
1127                handle
1128                    .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1129                    .log_err()
1130                    .unwrap_or(DispatchEventResult::default())
1131            })
1132        });
1133        platform_window.on_hit_test_window_control({
1134            let mut cx = cx.to_async();
1135            Box::new(move || {
1136                handle
1137                    .update(&mut cx, |_, window, _cx| {
1138                        for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1139                            if window.mouse_hit_test.ids.contains(&hitbox.id) {
1140                                return Some(*area);
1141                            }
1142                        }
1143                        None
1144                    })
1145                    .log_err()
1146                    .unwrap_or(None)
1147            })
1148        });
1149        platform_window.on_move_tab_to_new_window({
1150            let mut cx = cx.to_async();
1151            Box::new(move || {
1152                handle
1153                    .update(&mut cx, |_, _window, cx| {
1154                        SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1155                    })
1156                    .log_err();
1157            })
1158        });
1159        platform_window.on_merge_all_windows({
1160            let mut cx = cx.to_async();
1161            Box::new(move || {
1162                handle
1163                    .update(&mut cx, |_, _window, cx| {
1164                        SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1165                    })
1166                    .log_err();
1167            })
1168        });
1169        platform_window.on_select_next_tab({
1170            let mut cx = cx.to_async();
1171            Box::new(move || {
1172                handle
1173                    .update(&mut cx, |_, _window, cx| {
1174                        SystemWindowTabController::select_next_tab(cx, handle.window_id());
1175                    })
1176                    .log_err();
1177            })
1178        });
1179        platform_window.on_select_previous_tab({
1180            let mut cx = cx.to_async();
1181            Box::new(move || {
1182                handle
1183                    .update(&mut cx, |_, _window, cx| {
1184                        SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1185                    })
1186                    .log_err();
1187            })
1188        });
1189        platform_window.on_toggle_tab_bar({
1190            let mut cx = cx.to_async();
1191            Box::new(move || {
1192                handle
1193                    .update(&mut cx, |_, window, cx| {
1194                        let tab_bar_visible = window.platform_window.tab_bar_visible();
1195                        SystemWindowTabController::set_visible(cx, tab_bar_visible);
1196                    })
1197                    .log_err();
1198            })
1199        });
1200
1201        if let Some(app_id) = app_id {
1202            platform_window.set_app_id(&app_id);
1203        }
1204
1205        platform_window.map_window().unwrap();
1206
1207        Ok(Window {
1208            handle,
1209            invalidator,
1210            removed: false,
1211            platform_window,
1212            display_id,
1213            sprite_atlas,
1214            text_system,
1215            rem_size: px(16.),
1216            rem_size_override_stack: SmallVec::new(),
1217            viewport_size: content_size,
1218            layout_engine: Some(TaffyLayoutEngine::new()),
1219            root: None,
1220            element_id_stack: SmallVec::default(),
1221            text_style_stack: Vec::new(),
1222            rendered_entity_stack: Vec::new(),
1223            element_offset_stack: Vec::new(),
1224            content_mask_stack: Vec::new(),
1225            element_opacity: None,
1226            requested_autoscroll: None,
1227            rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1228            next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1229            next_frame_callbacks,
1230            next_hitbox_id: HitboxId(0),
1231            next_tooltip_id: TooltipId::default(),
1232            tooltip_bounds: None,
1233            dirty_views: FxHashSet::default(),
1234            focus_listeners: SubscriberSet::new(),
1235            focus_lost_listeners: SubscriberSet::new(),
1236            default_prevented: true,
1237            mouse_position,
1238            mouse_hit_test: HitTest::default(),
1239            modifiers,
1240            capslock,
1241            scale_factor,
1242            bounds_observers: SubscriberSet::new(),
1243            appearance,
1244            appearance_observers: SubscriberSet::new(),
1245            active,
1246            hovered,
1247            needs_present,
1248            last_input_timestamp,
1249            refreshing: false,
1250            activation_observers: SubscriberSet::new(),
1251            focus: None,
1252            focus_enabled: true,
1253            pending_input: None,
1254            pending_modifier: ModifierState::default(),
1255            pending_input_observers: SubscriberSet::new(),
1256            prompt: None,
1257            client_inset: None,
1258            image_cache_stack: Vec::new(),
1259            #[cfg(any(feature = "inspector", debug_assertions))]
1260            inspector: None,
1261        })
1262    }
1263
1264    pub(crate) fn new_focus_listener(
1265        &self,
1266        value: AnyWindowFocusListener,
1267    ) -> (Subscription, impl FnOnce() + use<>) {
1268        self.focus_listeners.insert((), value)
1269    }
1270}
1271
1272#[derive(Clone, Debug, Default, PartialEq, Eq)]
1273pub(crate) struct DispatchEventResult {
1274    pub propagate: bool,
1275    pub default_prevented: bool,
1276}
1277
1278/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1279/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1280/// to leave room to support more complex shapes in the future.
1281#[derive(Clone, Debug, Default, PartialEq, Eq)]
1282#[repr(C)]
1283pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1284    /// The bounds
1285    pub bounds: Bounds<P>,
1286}
1287
1288impl ContentMask<Pixels> {
1289    /// Scale the content mask's pixel units by the given scaling factor.
1290    pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1291        ContentMask {
1292            bounds: self.bounds.scale(factor),
1293        }
1294    }
1295
1296    /// Intersect the content mask with the given content mask.
1297    pub fn intersect(&self, other: &Self) -> Self {
1298        let bounds = self.bounds.intersect(&other.bounds);
1299        ContentMask { bounds }
1300    }
1301}
1302
1303impl Window {
1304    fn mark_view_dirty(&mut self, view_id: EntityId) {
1305        // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1306        // should already be dirty.
1307        for view_id in self
1308            .rendered_frame
1309            .dispatch_tree
1310            .view_path(view_id)
1311            .into_iter()
1312            .rev()
1313        {
1314            if !self.dirty_views.insert(view_id) {
1315                break;
1316            }
1317        }
1318    }
1319
1320    /// Registers a callback to be invoked when the window appearance changes.
1321    pub fn observe_window_appearance(
1322        &self,
1323        mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1324    ) -> Subscription {
1325        let (subscription, activate) = self.appearance_observers.insert(
1326            (),
1327            Box::new(move |window, cx| {
1328                callback(window, cx);
1329                true
1330            }),
1331        );
1332        activate();
1333        subscription
1334    }
1335
1336    /// Replaces the root entity of the window with a new one.
1337    pub fn replace_root<E>(
1338        &mut self,
1339        cx: &mut App,
1340        build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1341    ) -> Entity<E>
1342    where
1343        E: 'static + Render,
1344    {
1345        let view = cx.new(|cx| build_view(self, cx));
1346        self.root = Some(view.clone().into());
1347        self.refresh();
1348        view
1349    }
1350
1351    /// Returns the root entity of the window, if it has one.
1352    pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1353    where
1354        E: 'static + Render,
1355    {
1356        self.root
1357            .as_ref()
1358            .map(|view| view.clone().downcast::<E>().ok())
1359    }
1360
1361    /// Obtain a handle to the window that belongs to this context.
1362    pub fn window_handle(&self) -> AnyWindowHandle {
1363        self.handle
1364    }
1365
1366    /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1367    pub fn refresh(&mut self) {
1368        if self.invalidator.not_drawing() {
1369            self.refreshing = true;
1370            self.invalidator.set_dirty(true);
1371        }
1372    }
1373
1374    /// Close this window.
1375    pub fn remove_window(&mut self) {
1376        self.removed = true;
1377    }
1378
1379    /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1380    pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1381        self.focus
1382            .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1383    }
1384
1385    /// Move focus to the element associated with the given [`FocusHandle`].
1386    pub fn focus(&mut self, handle: &FocusHandle) {
1387        if !self.focus_enabled || self.focus == Some(handle.id) {
1388            return;
1389        }
1390
1391        self.focus = Some(handle.id);
1392        self.clear_pending_keystrokes();
1393        self.refresh();
1394    }
1395
1396    /// Remove focus from all elements within this context's window.
1397    pub fn blur(&mut self) {
1398        if !self.focus_enabled {
1399            return;
1400        }
1401
1402        self.focus = None;
1403        self.refresh();
1404    }
1405
1406    /// Blur the window and don't allow anything in it to be focused again.
1407    pub fn disable_focus(&mut self) {
1408        self.blur();
1409        self.focus_enabled = false;
1410    }
1411
1412    /// Move focus to next tab stop.
1413    pub fn focus_next(&mut self) {
1414        if !self.focus_enabled {
1415            return;
1416        }
1417
1418        if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1419            self.focus(&handle)
1420        }
1421    }
1422
1423    /// Move focus to previous tab stop.
1424    pub fn focus_prev(&mut self) {
1425        if !self.focus_enabled {
1426            return;
1427        }
1428
1429        if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1430            self.focus(&handle)
1431        }
1432    }
1433
1434    /// Accessor for the text system.
1435    pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1436        &self.text_system
1437    }
1438
1439    /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1440    pub fn text_style(&self) -> TextStyle {
1441        let mut style = TextStyle::default();
1442        for refinement in &self.text_style_stack {
1443            style.refine(refinement);
1444        }
1445        style
1446    }
1447
1448    /// Check if the platform window is maximized
1449    /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1450    pub fn is_maximized(&self) -> bool {
1451        self.platform_window.is_maximized()
1452    }
1453
1454    /// request a certain window decoration (Wayland)
1455    pub fn request_decorations(&self, decorations: WindowDecorations) {
1456        self.platform_window.request_decorations(decorations);
1457    }
1458
1459    /// Start a window resize operation (Wayland)
1460    pub fn start_window_resize(&self, edge: ResizeEdge) {
1461        self.platform_window.start_window_resize(edge);
1462    }
1463
1464    /// Return the `WindowBounds` to indicate that how a window should be opened
1465    /// after it has been closed
1466    pub fn window_bounds(&self) -> WindowBounds {
1467        self.platform_window.window_bounds()
1468    }
1469
1470    /// Return the `WindowBounds` excluding insets (Wayland and X11)
1471    pub fn inner_window_bounds(&self) -> WindowBounds {
1472        self.platform_window.inner_window_bounds()
1473    }
1474
1475    /// Dispatch the given action on the currently focused element.
1476    pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1477        let focus_id = self.focused(cx).map(|handle| handle.id);
1478
1479        let window = self.handle;
1480        cx.defer(move |cx| {
1481            window
1482                .update(cx, |_, window, cx| {
1483                    let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1484                    window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1485                })
1486                .log_err();
1487        })
1488    }
1489
1490    pub(crate) fn dispatch_keystroke_observers(
1491        &mut self,
1492        event: &dyn Any,
1493        action: Option<Box<dyn Action>>,
1494        context_stack: Vec<KeyContext>,
1495        cx: &mut App,
1496    ) {
1497        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1498            return;
1499        };
1500
1501        cx.keystroke_observers.clone().retain(&(), move |callback| {
1502            (callback)(
1503                &KeystrokeEvent {
1504                    keystroke: key_down_event.keystroke.clone(),
1505                    action: action.as_ref().map(|action| action.boxed_clone()),
1506                    context_stack: context_stack.clone(),
1507                },
1508                self,
1509                cx,
1510            )
1511        });
1512    }
1513
1514    pub(crate) fn dispatch_keystroke_interceptors(
1515        &mut self,
1516        event: &dyn Any,
1517        context_stack: Vec<KeyContext>,
1518        cx: &mut App,
1519    ) {
1520        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1521            return;
1522        };
1523
1524        cx.keystroke_interceptors
1525            .clone()
1526            .retain(&(), move |callback| {
1527                (callback)(
1528                    &KeystrokeEvent {
1529                        keystroke: key_down_event.keystroke.clone(),
1530                        action: None,
1531                        context_stack: context_stack.clone(),
1532                    },
1533                    self,
1534                    cx,
1535                )
1536            });
1537    }
1538
1539    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1540    /// that are currently on the stack to be returned to the app.
1541    pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1542        let handle = self.handle;
1543        cx.defer(move |cx| {
1544            handle.update(cx, |_, window, cx| f(window, cx)).ok();
1545        });
1546    }
1547
1548    /// Subscribe to events emitted by a entity.
1549    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1550    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1551    pub fn observe<T: 'static>(
1552        &mut self,
1553        observed: &Entity<T>,
1554        cx: &mut App,
1555        mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1556    ) -> Subscription {
1557        let entity_id = observed.entity_id();
1558        let observed = observed.downgrade();
1559        let window_handle = self.handle;
1560        cx.new_observer(
1561            entity_id,
1562            Box::new(move |cx| {
1563                window_handle
1564                    .update(cx, |_, window, cx| {
1565                        if let Some(handle) = observed.upgrade() {
1566                            on_notify(handle, window, cx);
1567                            true
1568                        } else {
1569                            false
1570                        }
1571                    })
1572                    .unwrap_or(false)
1573            }),
1574        )
1575    }
1576
1577    /// Subscribe to events emitted by a entity.
1578    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1579    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1580    pub fn subscribe<Emitter, Evt>(
1581        &mut self,
1582        entity: &Entity<Emitter>,
1583        cx: &mut App,
1584        mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1585    ) -> Subscription
1586    where
1587        Emitter: EventEmitter<Evt>,
1588        Evt: 'static,
1589    {
1590        let entity_id = entity.entity_id();
1591        let handle = entity.downgrade();
1592        let window_handle = self.handle;
1593        cx.new_subscription(
1594            entity_id,
1595            (
1596                TypeId::of::<Evt>(),
1597                Box::new(move |event, cx| {
1598                    window_handle
1599                        .update(cx, |_, window, cx| {
1600                            if let Some(entity) = handle.upgrade() {
1601                                let event = event.downcast_ref().expect("invalid event type");
1602                                on_event(entity, event, window, cx);
1603                                true
1604                            } else {
1605                                false
1606                            }
1607                        })
1608                        .unwrap_or(false)
1609                }),
1610            ),
1611        )
1612    }
1613
1614    /// Register a callback to be invoked when the given `Entity` is released.
1615    pub fn observe_release<T>(
1616        &self,
1617        entity: &Entity<T>,
1618        cx: &mut App,
1619        mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1620    ) -> Subscription
1621    where
1622        T: 'static,
1623    {
1624        let entity_id = entity.entity_id();
1625        let window_handle = self.handle;
1626        let (subscription, activate) = cx.release_listeners.insert(
1627            entity_id,
1628            Box::new(move |entity, cx| {
1629                let entity = entity.downcast_mut().expect("invalid entity type");
1630                let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1631            }),
1632        );
1633        activate();
1634        subscription
1635    }
1636
1637    /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1638    /// await points in async code.
1639    pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1640        AsyncWindowContext::new_context(cx.to_async(), self.handle)
1641    }
1642
1643    /// Schedule the given closure to be run directly after the current frame is rendered.
1644    pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1645        RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1646    }
1647
1648    /// Schedule a frame to be drawn on the next animation frame.
1649    ///
1650    /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1651    /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1652    ///
1653    /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1654    pub fn request_animation_frame(&self) {
1655        let entity = self.current_view();
1656        self.on_next_frame(move |_, cx| cx.notify(entity));
1657    }
1658
1659    /// Spawn the future returned by the given closure on the application thread pool.
1660    /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1661    /// use within your future.
1662    #[track_caller]
1663    pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1664    where
1665        R: 'static,
1666        AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1667    {
1668        let handle = self.handle;
1669        cx.spawn(async move |app| {
1670            let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1671            f(&mut async_window_cx).await
1672        })
1673    }
1674
1675    fn bounds_changed(&mut self, cx: &mut App) {
1676        self.scale_factor = self.platform_window.scale_factor();
1677        self.viewport_size = self.platform_window.content_size();
1678        self.display_id = self.platform_window.display().map(|display| display.id());
1679
1680        self.refresh();
1681
1682        self.bounds_observers
1683            .clone()
1684            .retain(&(), |callback| callback(self, cx));
1685    }
1686
1687    /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1688    pub fn bounds(&self) -> Bounds<Pixels> {
1689        self.platform_window.bounds()
1690    }
1691
1692    /// Set the content size of the window.
1693    pub fn resize(&mut self, size: Size<Pixels>) {
1694        self.platform_window.resize(size);
1695    }
1696
1697    /// Returns whether or not the window is currently fullscreen
1698    pub fn is_fullscreen(&self) -> bool {
1699        self.platform_window.is_fullscreen()
1700    }
1701
1702    pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1703        self.appearance = self.platform_window.appearance();
1704
1705        self.appearance_observers
1706            .clone()
1707            .retain(&(), |callback| callback(self, cx));
1708    }
1709
1710    /// Returns the appearance of the current window.
1711    pub fn appearance(&self) -> WindowAppearance {
1712        self.appearance
1713    }
1714
1715    /// Returns the size of the drawable area within the window.
1716    pub fn viewport_size(&self) -> Size<Pixels> {
1717        self.viewport_size
1718    }
1719
1720    /// Returns whether this window is focused by the operating system (receiving key events).
1721    pub fn is_window_active(&self) -> bool {
1722        self.active.get()
1723    }
1724
1725    /// Returns whether this window is considered to be the window
1726    /// that currently owns the mouse cursor.
1727    /// On mac, this is equivalent to `is_window_active`.
1728    pub fn is_window_hovered(&self) -> bool {
1729        if cfg!(any(
1730            target_os = "windows",
1731            target_os = "linux",
1732            target_os = "freebsd"
1733        )) {
1734            self.hovered.get()
1735        } else {
1736            self.is_window_active()
1737        }
1738    }
1739
1740    /// Toggle zoom on the window.
1741    pub fn zoom_window(&self) {
1742        self.platform_window.zoom();
1743    }
1744
1745    /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1746    pub fn show_window_menu(&self, position: Point<Pixels>) {
1747        self.platform_window.show_window_menu(position)
1748    }
1749
1750    /// Tells the compositor to take control of window movement (Wayland and X11)
1751    ///
1752    /// Events may not be received during a move operation.
1753    pub fn start_window_move(&self) {
1754        self.platform_window.start_window_move()
1755    }
1756
1757    /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1758    pub fn set_client_inset(&mut self, inset: Pixels) {
1759        self.client_inset = Some(inset);
1760        self.platform_window.set_client_inset(inset);
1761    }
1762
1763    /// Returns the client_inset value by [`Self::set_client_inset`].
1764    pub fn client_inset(&self) -> Option<Pixels> {
1765        self.client_inset
1766    }
1767
1768    /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1769    pub fn window_decorations(&self) -> Decorations {
1770        self.platform_window.window_decorations()
1771    }
1772
1773    /// Returns which window controls are currently visible (Wayland)
1774    pub fn window_controls(&self) -> WindowControls {
1775        self.platform_window.window_controls()
1776    }
1777
1778    /// Updates the window's title at the platform level.
1779    pub fn set_window_title(&mut self, title: &str) {
1780        self.platform_window.set_title(title);
1781    }
1782
1783    /// Sets the application identifier.
1784    pub fn set_app_id(&mut self, app_id: &str) {
1785        self.platform_window.set_app_id(app_id);
1786    }
1787
1788    /// Sets the window background appearance.
1789    pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1790        self.platform_window
1791            .set_background_appearance(background_appearance);
1792    }
1793
1794    /// Mark the window as dirty at the platform level.
1795    pub fn set_window_edited(&mut self, edited: bool) {
1796        self.platform_window.set_edited(edited);
1797    }
1798
1799    /// Determine the display on which the window is visible.
1800    pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1801        cx.platform
1802            .displays()
1803            .into_iter()
1804            .find(|display| Some(display.id()) == self.display_id)
1805    }
1806
1807    /// Show the platform character palette.
1808    pub fn show_character_palette(&self) {
1809        self.platform_window.show_character_palette();
1810    }
1811
1812    /// The scale factor of the display associated with the window. For example, it could
1813    /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1814    /// be rendered as two pixels on screen.
1815    pub fn scale_factor(&self) -> f32 {
1816        self.scale_factor
1817    }
1818
1819    /// The size of an em for the base font of the application. Adjusting this value allows the
1820    /// UI to scale, just like zooming a web page.
1821    pub fn rem_size(&self) -> Pixels {
1822        self.rem_size_override_stack
1823            .last()
1824            .copied()
1825            .unwrap_or(self.rem_size)
1826    }
1827
1828    /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1829    /// UI to scale, just like zooming a web page.
1830    pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1831        self.rem_size = rem_size.into();
1832    }
1833
1834    /// Acquire a globally unique identifier for the given ElementId.
1835    /// Only valid for the duration of the provided closure.
1836    pub fn with_global_id<R>(
1837        &mut self,
1838        element_id: ElementId,
1839        f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1840    ) -> R {
1841        self.element_id_stack.push(element_id);
1842        let global_id = GlobalElementId(self.element_id_stack.clone());
1843        let result = f(&global_id, self);
1844        self.element_id_stack.pop();
1845        result
1846    }
1847
1848    /// Executes the provided function with the specified rem size.
1849    ///
1850    /// This method must only be called as part of element drawing.
1851    pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1852    where
1853        F: FnOnce(&mut Self) -> R,
1854    {
1855        self.invalidator.debug_assert_paint_or_prepaint();
1856
1857        if let Some(rem_size) = rem_size {
1858            self.rem_size_override_stack.push(rem_size.into());
1859            let result = f(self);
1860            self.rem_size_override_stack.pop();
1861            result
1862        } else {
1863            f(self)
1864        }
1865    }
1866
1867    /// The line height associated with the current text style.
1868    pub fn line_height(&self) -> Pixels {
1869        self.text_style().line_height_in_pixels(self.rem_size())
1870    }
1871
1872    /// Call to prevent the default action of an event. Currently only used to prevent
1873    /// parent elements from becoming focused on mouse down.
1874    pub fn prevent_default(&mut self) {
1875        self.default_prevented = true;
1876    }
1877
1878    /// Obtain whether default has been prevented for the event currently being dispatched.
1879    pub fn default_prevented(&self) -> bool {
1880        self.default_prevented
1881    }
1882
1883    /// Determine whether the given action is available along the dispatch path to the currently focused element.
1884    pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1885        let node_id =
1886            self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1887        self.rendered_frame
1888            .dispatch_tree
1889            .is_action_available(action, node_id)
1890    }
1891
1892    /// The position of the mouse relative to the window.
1893    pub fn mouse_position(&self) -> Point<Pixels> {
1894        self.mouse_position
1895    }
1896
1897    /// The current state of the keyboard's modifiers
1898    pub fn modifiers(&self) -> Modifiers {
1899        self.modifiers
1900    }
1901
1902    /// The current state of the keyboard's capslock
1903    pub fn capslock(&self) -> Capslock {
1904        self.capslock
1905    }
1906
1907    fn complete_frame(&self) {
1908        self.platform_window.completed_frame();
1909    }
1910
1911    /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1912    /// the contents of the new [`Scene`], use [`Self::present`].
1913    #[profiling::function]
1914    pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1915        self.invalidate_entities();
1916        cx.entities.clear_accessed();
1917        debug_assert!(self.rendered_entity_stack.is_empty());
1918        self.invalidator.set_dirty(false);
1919        self.requested_autoscroll = None;
1920
1921        // Restore the previously-used input handler.
1922        if let Some(input_handler) = self.platform_window.take_input_handler() {
1923            self.rendered_frame.input_handlers.push(Some(input_handler));
1924        }
1925        self.draw_roots(cx);
1926        self.dirty_views.clear();
1927        self.next_frame.window_active = self.active.get();
1928
1929        // Register requested input handler with the platform window.
1930        if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1931            self.platform_window
1932                .set_input_handler(input_handler.unwrap());
1933        }
1934
1935        self.layout_engine.as_mut().unwrap().clear();
1936        self.text_system().finish_frame();
1937        self.next_frame.finish(&mut self.rendered_frame);
1938
1939        self.invalidator.set_phase(DrawPhase::Focus);
1940        let previous_focus_path = self.rendered_frame.focus_path();
1941        let previous_window_active = self.rendered_frame.window_active;
1942        mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1943        self.next_frame.clear();
1944        let current_focus_path = self.rendered_frame.focus_path();
1945        let current_window_active = self.rendered_frame.window_active;
1946
1947        if previous_focus_path != current_focus_path
1948            || previous_window_active != current_window_active
1949        {
1950            if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1951                self.focus_lost_listeners
1952                    .clone()
1953                    .retain(&(), |listener| listener(self, cx));
1954            }
1955
1956            let event = WindowFocusEvent {
1957                previous_focus_path: if previous_window_active {
1958                    previous_focus_path
1959                } else {
1960                    Default::default()
1961                },
1962                current_focus_path: if current_window_active {
1963                    current_focus_path
1964                } else {
1965                    Default::default()
1966                },
1967            };
1968            self.focus_listeners
1969                .clone()
1970                .retain(&(), |listener| listener(&event, self, cx));
1971        }
1972
1973        debug_assert!(self.rendered_entity_stack.is_empty());
1974        self.record_entities_accessed(cx);
1975        self.reset_cursor_style(cx);
1976        self.refreshing = false;
1977        self.invalidator.set_phase(DrawPhase::None);
1978        self.needs_present.set(true);
1979
1980        ArenaClearNeeded
1981    }
1982
1983    fn record_entities_accessed(&mut self, cx: &mut App) {
1984        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1985        let mut entities = mem::take(entities_ref.deref_mut());
1986        drop(entities_ref);
1987        let handle = self.handle;
1988        cx.record_entities_accessed(
1989            handle,
1990            // Try moving window invalidator into the Window
1991            self.invalidator.clone(),
1992            &entities,
1993        );
1994        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1995        mem::swap(&mut entities, entities_ref.deref_mut());
1996    }
1997
1998    fn invalidate_entities(&mut self) {
1999        let mut views = self.invalidator.take_views();
2000        for entity in views.drain() {
2001            self.mark_view_dirty(entity);
2002        }
2003        self.invalidator.replace_views(views);
2004    }
2005
2006    #[profiling::function]
2007    fn present(&self) {
2008        self.platform_window.draw(&self.rendered_frame.scene);
2009        self.needs_present.set(false);
2010        profiling::finish_frame!();
2011    }
2012
2013    fn draw_roots(&mut self, cx: &mut App) {
2014        self.invalidator.set_phase(DrawPhase::Prepaint);
2015        self.tooltip_bounds.take();
2016
2017        let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2018        let root_size = {
2019            #[cfg(any(feature = "inspector", debug_assertions))]
2020            {
2021                if self.inspector.is_some() {
2022                    let mut size = self.viewport_size;
2023                    size.width = (size.width - _inspector_width).max(px(0.0));
2024                    size
2025                } else {
2026                    self.viewport_size
2027                }
2028            }
2029            #[cfg(not(any(feature = "inspector", debug_assertions)))]
2030            {
2031                self.viewport_size
2032            }
2033        };
2034
2035        // Layout all root elements.
2036        let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2037        root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2038
2039        #[cfg(any(feature = "inspector", debug_assertions))]
2040        let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2041
2042        let mut sorted_deferred_draws =
2043            (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2044        sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2045        self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2046
2047        let mut prompt_element = None;
2048        let mut active_drag_element = None;
2049        let mut tooltip_element = None;
2050        if let Some(prompt) = self.prompt.take() {
2051            let mut element = prompt.view.any_view().into_any();
2052            element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2053            prompt_element = Some(element);
2054            self.prompt = Some(prompt);
2055        } else if let Some(active_drag) = cx.active_drag.take() {
2056            let mut element = active_drag.view.clone().into_any();
2057            let offset = self.mouse_position() - active_drag.cursor_offset;
2058            element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2059            active_drag_element = Some(element);
2060            cx.active_drag = Some(active_drag);
2061        } else {
2062            tooltip_element = self.prepaint_tooltip(cx);
2063        }
2064
2065        self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2066
2067        // Now actually paint the elements.
2068        self.invalidator.set_phase(DrawPhase::Paint);
2069        root_element.paint(self, cx);
2070
2071        #[cfg(any(feature = "inspector", debug_assertions))]
2072        self.paint_inspector(inspector_element, cx);
2073
2074        self.paint_deferred_draws(&sorted_deferred_draws, cx);
2075
2076        if let Some(mut prompt_element) = prompt_element {
2077            prompt_element.paint(self, cx);
2078        } else if let Some(mut drag_element) = active_drag_element {
2079            drag_element.paint(self, cx);
2080        } else if let Some(mut tooltip_element) = tooltip_element {
2081            tooltip_element.paint(self, cx);
2082        }
2083
2084        #[cfg(any(feature = "inspector", debug_assertions))]
2085        self.paint_inspector_hitbox(cx);
2086    }
2087
2088    fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2089        // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2090        for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2091            let Some(Some(tooltip_request)) = self
2092                .next_frame
2093                .tooltip_requests
2094                .get(tooltip_request_index)
2095                .cloned()
2096            else {
2097                log::error!("Unexpectedly absent TooltipRequest");
2098                continue;
2099            };
2100            let mut element = tooltip_request.tooltip.view.clone().into_any();
2101            let mouse_position = tooltip_request.tooltip.mouse_position;
2102            let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2103
2104            let mut tooltip_bounds =
2105                Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2106            let window_bounds = Bounds {
2107                origin: Point::default(),
2108                size: self.viewport_size(),
2109            };
2110
2111            if tooltip_bounds.right() > window_bounds.right() {
2112                let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2113                if new_x >= Pixels::ZERO {
2114                    tooltip_bounds.origin.x = new_x;
2115                } else {
2116                    tooltip_bounds.origin.x = cmp::max(
2117                        Pixels::ZERO,
2118                        tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2119                    );
2120                }
2121            }
2122
2123            if tooltip_bounds.bottom() > window_bounds.bottom() {
2124                let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2125                if new_y >= Pixels::ZERO {
2126                    tooltip_bounds.origin.y = new_y;
2127                } else {
2128                    tooltip_bounds.origin.y = cmp::max(
2129                        Pixels::ZERO,
2130                        tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2131                    );
2132                }
2133            }
2134
2135            // It's possible for an element to have an active tooltip while not being painted (e.g.
2136            // via the `visible_on_hover` method). Since mouse listeners are not active in this
2137            // case, instead update the tooltip's visibility here.
2138            let is_visible =
2139                (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2140            if !is_visible {
2141                continue;
2142            }
2143
2144            self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2145                element.prepaint(window, cx)
2146            });
2147
2148            self.tooltip_bounds = Some(TooltipBounds {
2149                id: tooltip_request.id,
2150                bounds: tooltip_bounds,
2151            });
2152            return Some(element);
2153        }
2154        None
2155    }
2156
2157    fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2158        assert_eq!(self.element_id_stack.len(), 0);
2159
2160        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2161        for deferred_draw_ix in deferred_draw_indices {
2162            let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2163            self.element_id_stack
2164                .clone_from(&deferred_draw.element_id_stack);
2165            self.text_style_stack
2166                .clone_from(&deferred_draw.text_style_stack);
2167            self.next_frame
2168                .dispatch_tree
2169                .set_active_node(deferred_draw.parent_node);
2170
2171            let prepaint_start = self.prepaint_index();
2172            if let Some(element) = deferred_draw.element.as_mut() {
2173                self.with_rendered_view(deferred_draw.current_view, |window| {
2174                    window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2175                        element.prepaint(window, cx)
2176                    });
2177                })
2178            } else {
2179                self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2180            }
2181            let prepaint_end = self.prepaint_index();
2182            deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2183        }
2184        assert_eq!(
2185            self.next_frame.deferred_draws.len(),
2186            0,
2187            "cannot call defer_draw during deferred drawing"
2188        );
2189        self.next_frame.deferred_draws = deferred_draws;
2190        self.element_id_stack.clear();
2191        self.text_style_stack.clear();
2192    }
2193
2194    fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2195        assert_eq!(self.element_id_stack.len(), 0);
2196
2197        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2198        for deferred_draw_ix in deferred_draw_indices {
2199            let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2200            self.element_id_stack
2201                .clone_from(&deferred_draw.element_id_stack);
2202            self.next_frame
2203                .dispatch_tree
2204                .set_active_node(deferred_draw.parent_node);
2205
2206            let paint_start = self.paint_index();
2207            if let Some(element) = deferred_draw.element.as_mut() {
2208                self.with_rendered_view(deferred_draw.current_view, |window| {
2209                    element.paint(window, cx);
2210                })
2211            } else {
2212                self.reuse_paint(deferred_draw.paint_range.clone());
2213            }
2214            let paint_end = self.paint_index();
2215            deferred_draw.paint_range = paint_start..paint_end;
2216        }
2217        self.next_frame.deferred_draws = deferred_draws;
2218        self.element_id_stack.clear();
2219    }
2220
2221    pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2222        PrepaintStateIndex {
2223            hitboxes_index: self.next_frame.hitboxes.len(),
2224            tooltips_index: self.next_frame.tooltip_requests.len(),
2225            deferred_draws_index: self.next_frame.deferred_draws.len(),
2226            dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2227            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2228            line_layout_index: self.text_system.layout_index(),
2229        }
2230    }
2231
2232    pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2233        self.next_frame.hitboxes.extend(
2234            self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2235                .iter()
2236                .cloned(),
2237        );
2238        self.next_frame.tooltip_requests.extend(
2239            self.rendered_frame.tooltip_requests
2240                [range.start.tooltips_index..range.end.tooltips_index]
2241                .iter_mut()
2242                .map(|request| request.take()),
2243        );
2244        self.next_frame.accessed_element_states.extend(
2245            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2246                ..range.end.accessed_element_states_index]
2247                .iter()
2248                .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2249        );
2250        self.text_system
2251            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2252
2253        let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2254            range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2255            &mut self.rendered_frame.dispatch_tree,
2256            self.focus,
2257        );
2258
2259        if reused_subtree.contains_focus() {
2260            self.next_frame.focus = self.focus;
2261        }
2262
2263        self.next_frame.deferred_draws.extend(
2264            self.rendered_frame.deferred_draws
2265                [range.start.deferred_draws_index..range.end.deferred_draws_index]
2266                .iter()
2267                .map(|deferred_draw| DeferredDraw {
2268                    current_view: deferred_draw.current_view,
2269                    parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2270                    element_id_stack: deferred_draw.element_id_stack.clone(),
2271                    text_style_stack: deferred_draw.text_style_stack.clone(),
2272                    priority: deferred_draw.priority,
2273                    element: None,
2274                    absolute_offset: deferred_draw.absolute_offset,
2275                    prepaint_range: deferred_draw.prepaint_range.clone(),
2276                    paint_range: deferred_draw.paint_range.clone(),
2277                }),
2278        );
2279    }
2280
2281    pub(crate) fn paint_index(&self) -> PaintIndex {
2282        PaintIndex {
2283            scene_index: self.next_frame.scene.len(),
2284            mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2285            input_handlers_index: self.next_frame.input_handlers.len(),
2286            cursor_styles_index: self.next_frame.cursor_styles.len(),
2287            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2288            tab_handle_index: self.next_frame.tab_stops.paint_index(),
2289            line_layout_index: self.text_system.layout_index(),
2290        }
2291    }
2292
2293    pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2294        self.next_frame.cursor_styles.extend(
2295            self.rendered_frame.cursor_styles
2296                [range.start.cursor_styles_index..range.end.cursor_styles_index]
2297                .iter()
2298                .cloned(),
2299        );
2300        self.next_frame.input_handlers.extend(
2301            self.rendered_frame.input_handlers
2302                [range.start.input_handlers_index..range.end.input_handlers_index]
2303                .iter_mut()
2304                .map(|handler| handler.take()),
2305        );
2306        self.next_frame.mouse_listeners.extend(
2307            self.rendered_frame.mouse_listeners
2308                [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2309                .iter_mut()
2310                .map(|listener| listener.take()),
2311        );
2312        self.next_frame.accessed_element_states.extend(
2313            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2314                ..range.end.accessed_element_states_index]
2315                .iter()
2316                .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2317        );
2318        self.next_frame.tab_stops.replay(
2319            &self.rendered_frame.tab_stops.insertion_history
2320                [range.start.tab_handle_index..range.end.tab_handle_index],
2321        );
2322
2323        self.text_system
2324            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2325        self.next_frame.scene.replay(
2326            range.start.scene_index..range.end.scene_index,
2327            &self.rendered_frame.scene,
2328        );
2329    }
2330
2331    /// Push a text style onto the stack, and call a function with that style active.
2332    /// Use [`Window::text_style`] to get the current, combined text style. This method
2333    /// should only be called as part of element drawing.
2334    pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2335    where
2336        F: FnOnce(&mut Self) -> R,
2337    {
2338        self.invalidator.debug_assert_paint_or_prepaint();
2339        if let Some(style) = style {
2340            self.text_style_stack.push(style);
2341            let result = f(self);
2342            self.text_style_stack.pop();
2343            result
2344        } else {
2345            f(self)
2346        }
2347    }
2348
2349    /// Updates the cursor style at the platform level. This method should only be called
2350    /// during the prepaint phase of element drawing.
2351    pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2352        self.invalidator.debug_assert_paint();
2353        self.next_frame.cursor_styles.push(CursorStyleRequest {
2354            hitbox_id: Some(hitbox.id),
2355            style,
2356        });
2357    }
2358
2359    /// Updates the cursor style for the entire window at the platform level. A cursor
2360    /// style using this method will have precedence over any cursor style set using
2361    /// `set_cursor_style`. This method should only be called during the prepaint
2362    /// phase of element drawing.
2363    pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2364        self.invalidator.debug_assert_paint();
2365        self.next_frame.cursor_styles.push(CursorStyleRequest {
2366            hitbox_id: None,
2367            style,
2368        })
2369    }
2370
2371    /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2372    /// during the paint phase of element drawing.
2373    pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2374        self.invalidator.debug_assert_prepaint();
2375        let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2376        self.next_frame
2377            .tooltip_requests
2378            .push(Some(TooltipRequest { id, tooltip }));
2379        id
2380    }
2381
2382    /// Invoke the given function with the given content mask after intersecting it
2383    /// with the current mask. This method should only be called during element drawing.
2384    pub fn with_content_mask<R>(
2385        &mut self,
2386        mask: Option<ContentMask<Pixels>>,
2387        f: impl FnOnce(&mut Self) -> R,
2388    ) -> R {
2389        self.invalidator.debug_assert_paint_or_prepaint();
2390        if let Some(mask) = mask {
2391            let mask = mask.intersect(&self.content_mask());
2392            self.content_mask_stack.push(mask);
2393            let result = f(self);
2394            self.content_mask_stack.pop();
2395            result
2396        } else {
2397            f(self)
2398        }
2399    }
2400
2401    /// Updates the global element offset relative to the current offset. This is used to implement
2402    /// scrolling. This method should only be called during the prepaint phase of element drawing.
2403    pub fn with_element_offset<R>(
2404        &mut self,
2405        offset: Point<Pixels>,
2406        f: impl FnOnce(&mut Self) -> R,
2407    ) -> R {
2408        self.invalidator.debug_assert_prepaint();
2409
2410        if offset.is_zero() {
2411            return f(self);
2412        };
2413
2414        let abs_offset = self.element_offset() + offset;
2415        self.with_absolute_element_offset(abs_offset, f)
2416    }
2417
2418    /// Updates the global element offset based on the given offset. This is used to implement
2419    /// drag handles and other manual painting of elements. This method should only be called during
2420    /// the prepaint phase of element drawing.
2421    pub fn with_absolute_element_offset<R>(
2422        &mut self,
2423        offset: Point<Pixels>,
2424        f: impl FnOnce(&mut Self) -> R,
2425    ) -> R {
2426        self.invalidator.debug_assert_prepaint();
2427        self.element_offset_stack.push(offset);
2428        let result = f(self);
2429        self.element_offset_stack.pop();
2430        result
2431    }
2432
2433    pub(crate) fn with_element_opacity<R>(
2434        &mut self,
2435        opacity: Option<f32>,
2436        f: impl FnOnce(&mut Self) -> R,
2437    ) -> R {
2438        if opacity.is_none() {
2439            return f(self);
2440        }
2441
2442        self.invalidator.debug_assert_paint_or_prepaint();
2443        self.element_opacity = opacity;
2444        let result = f(self);
2445        self.element_opacity = None;
2446        result
2447    }
2448
2449    /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2450    /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2451    /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2452    /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2453    /// called during the prepaint phase of element drawing.
2454    pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2455        self.invalidator.debug_assert_prepaint();
2456        let index = self.prepaint_index();
2457        let result = f(self);
2458        if result.is_err() {
2459            self.next_frame.hitboxes.truncate(index.hitboxes_index);
2460            self.next_frame
2461                .tooltip_requests
2462                .truncate(index.tooltips_index);
2463            self.next_frame
2464                .deferred_draws
2465                .truncate(index.deferred_draws_index);
2466            self.next_frame
2467                .dispatch_tree
2468                .truncate(index.dispatch_tree_index);
2469            self.next_frame
2470                .accessed_element_states
2471                .truncate(index.accessed_element_states_index);
2472            self.text_system.truncate_layouts(index.line_layout_index);
2473        }
2474        result
2475    }
2476
2477    /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2478    /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2479    /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2480    /// that supports this method being called on the elements it contains. This method should only be
2481    /// called during the prepaint phase of element drawing.
2482    pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2483        self.invalidator.debug_assert_prepaint();
2484        self.requested_autoscroll = Some(bounds);
2485    }
2486
2487    /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2488    /// described in [`Self::request_autoscroll`].
2489    pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2490        self.invalidator.debug_assert_prepaint();
2491        self.requested_autoscroll.take()
2492    }
2493
2494    /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2495    /// Your view will be re-drawn once the asset has finished loading.
2496    ///
2497    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2498    /// time.
2499    pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2500        let (task, is_first) = cx.fetch_asset::<A>(source);
2501        task.clone().now_or_never().or_else(|| {
2502            if is_first {
2503                let entity_id = self.current_view();
2504                self.spawn(cx, {
2505                    let task = task.clone();
2506                    async move |cx| {
2507                        task.await;
2508
2509                        cx.on_next_frame(move |_, cx| {
2510                            cx.notify(entity_id);
2511                        });
2512                    }
2513                })
2514                .detach();
2515            }
2516
2517            None
2518        })
2519    }
2520
2521    /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2522    /// Your view will not be re-drawn once the asset has finished loading.
2523    ///
2524    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2525    /// time.
2526    pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2527        let (task, _) = cx.fetch_asset::<A>(source);
2528        task.now_or_never()
2529    }
2530    /// Obtain the current element offset. This method should only be called during the
2531    /// prepaint phase of element drawing.
2532    pub fn element_offset(&self) -> Point<Pixels> {
2533        self.invalidator.debug_assert_prepaint();
2534        self.element_offset_stack
2535            .last()
2536            .copied()
2537            .unwrap_or_default()
2538    }
2539
2540    /// Obtain the current element opacity. This method should only be called during the
2541    /// prepaint phase of element drawing.
2542    pub(crate) fn element_opacity(&self) -> f32 {
2543        self.invalidator.debug_assert_paint_or_prepaint();
2544        self.element_opacity.unwrap_or(1.0)
2545    }
2546
2547    /// Obtain the current content mask. This method should only be called during element drawing.
2548    pub fn content_mask(&self) -> ContentMask<Pixels> {
2549        self.invalidator.debug_assert_paint_or_prepaint();
2550        self.content_mask_stack
2551            .last()
2552            .cloned()
2553            .unwrap_or_else(|| ContentMask {
2554                bounds: Bounds {
2555                    origin: Point::default(),
2556                    size: self.viewport_size,
2557                },
2558            })
2559    }
2560
2561    /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2562    /// This can be used within a custom element to distinguish multiple sets of child elements.
2563    pub fn with_element_namespace<R>(
2564        &mut self,
2565        element_id: impl Into<ElementId>,
2566        f: impl FnOnce(&mut Self) -> R,
2567    ) -> R {
2568        self.element_id_stack.push(element_id.into());
2569        let result = f(self);
2570        self.element_id_stack.pop();
2571        result
2572    }
2573
2574    /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2575    pub fn use_keyed_state<S: 'static>(
2576        &mut self,
2577        key: impl Into<ElementId>,
2578        cx: &mut App,
2579        init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2580    ) -> Entity<S> {
2581        let current_view = self.current_view();
2582        self.with_global_id(key.into(), |global_id, window| {
2583            window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2584                if let Some(state) = state {
2585                    (state.clone(), state)
2586                } else {
2587                    let new_state = cx.new(|cx| init(window, cx));
2588                    cx.observe(&new_state, move |_, cx| {
2589                        cx.notify(current_view);
2590                    })
2591                    .detach();
2592                    (new_state.clone(), new_state)
2593                }
2594            })
2595        })
2596    }
2597
2598    /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2599    pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2600        self.with_global_id(id.into(), |_, window| f(window))
2601    }
2602
2603    /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2604    ///
2605    /// NOTE: This method uses the location of the caller to generate an ID for this state.
2606    ///       If this is not sufficient to identify your state (e.g. you're rendering a list item),
2607    ///       you can provide a custom ElementID using the `use_keyed_state` method.
2608    #[track_caller]
2609    pub fn use_state<S: 'static>(
2610        &mut self,
2611        cx: &mut App,
2612        init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2613    ) -> Entity<S> {
2614        self.use_keyed_state(
2615            ElementId::CodeLocation(*core::panic::Location::caller()),
2616            cx,
2617            init,
2618        )
2619    }
2620
2621    /// Updates or initializes state for an element with the given id that lives across multiple
2622    /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2623    /// to the given closure. The state returned by the closure will be stored so it can be referenced
2624    /// when drawing the next frame. This method should only be called as part of element drawing.
2625    pub fn with_element_state<S, R>(
2626        &mut self,
2627        global_id: &GlobalElementId,
2628        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2629    ) -> R
2630    where
2631        S: 'static,
2632    {
2633        self.invalidator.debug_assert_paint_or_prepaint();
2634
2635        let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2636        self.next_frame
2637            .accessed_element_states
2638            .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2639
2640        if let Some(any) = self
2641            .next_frame
2642            .element_states
2643            .remove(&key)
2644            .or_else(|| self.rendered_frame.element_states.remove(&key))
2645        {
2646            let ElementStateBox {
2647                inner,
2648                #[cfg(debug_assertions)]
2649                type_name,
2650            } = any;
2651            // Using the extra inner option to avoid needing to reallocate a new box.
2652            let mut state_box = inner
2653                .downcast::<Option<S>>()
2654                .map_err(|_| {
2655                    #[cfg(debug_assertions)]
2656                    {
2657                        anyhow::anyhow!(
2658                            "invalid element state type for id, requested {:?}, actual: {:?}",
2659                            std::any::type_name::<S>(),
2660                            type_name
2661                        )
2662                    }
2663
2664                    #[cfg(not(debug_assertions))]
2665                    {
2666                        anyhow::anyhow!(
2667                            "invalid element state type for id, requested {:?}",
2668                            std::any::type_name::<S>(),
2669                        )
2670                    }
2671                })
2672                .unwrap();
2673
2674            let state = state_box.take().expect(
2675                "reentrant call to with_element_state for the same state type and element id",
2676            );
2677            let (result, state) = f(Some(state), self);
2678            state_box.replace(state);
2679            self.next_frame.element_states.insert(
2680                key,
2681                ElementStateBox {
2682                    inner: state_box,
2683                    #[cfg(debug_assertions)]
2684                    type_name,
2685                },
2686            );
2687            result
2688        } else {
2689            let (result, state) = f(None, self);
2690            self.next_frame.element_states.insert(
2691                key,
2692                ElementStateBox {
2693                    inner: Box::new(Some(state)),
2694                    #[cfg(debug_assertions)]
2695                    type_name: std::any::type_name::<S>(),
2696                },
2697            );
2698            result
2699        }
2700    }
2701
2702    /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2703    /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2704    /// when the element is guaranteed to have an id.
2705    ///
2706    /// The first option means 'no ID provided'
2707    /// The second option means 'not yet initialized'
2708    pub fn with_optional_element_state<S, R>(
2709        &mut self,
2710        global_id: Option<&GlobalElementId>,
2711        f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2712    ) -> R
2713    where
2714        S: 'static,
2715    {
2716        self.invalidator.debug_assert_paint_or_prepaint();
2717
2718        if let Some(global_id) = global_id {
2719            self.with_element_state(global_id, |state, cx| {
2720                let (result, state) = f(Some(state), cx);
2721                let state =
2722                    state.expect("you must return some state when you pass some element id");
2723                (result, state)
2724            })
2725        } else {
2726            let (result, state) = f(None, self);
2727            debug_assert!(
2728                state.is_none(),
2729                "you must not return an element state when passing None for the global id"
2730            );
2731            result
2732        }
2733    }
2734
2735    /// Executes the given closure within the context of a tab group.
2736    #[inline]
2737    pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2738        if let Some(index) = index {
2739            self.next_frame.tab_stops.begin_group(index);
2740            let result = f(self);
2741            self.next_frame.tab_stops.end_group();
2742            result
2743        } else {
2744            f(self)
2745        }
2746    }
2747
2748    /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2749    /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2750    /// with higher values being drawn on top.
2751    ///
2752    /// This method should only be called as part of the prepaint phase of element drawing.
2753    pub fn defer_draw(
2754        &mut self,
2755        element: AnyElement,
2756        absolute_offset: Point<Pixels>,
2757        priority: usize,
2758    ) {
2759        self.invalidator.debug_assert_prepaint();
2760        let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2761        self.next_frame.deferred_draws.push(DeferredDraw {
2762            current_view: self.current_view(),
2763            parent_node,
2764            element_id_stack: self.element_id_stack.clone(),
2765            text_style_stack: self.text_style_stack.clone(),
2766            priority,
2767            element: Some(element),
2768            absolute_offset,
2769            prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2770            paint_range: PaintIndex::default()..PaintIndex::default(),
2771        });
2772    }
2773
2774    /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2775    /// of geometry that are non-overlapping and have the same draw order. This is typically used
2776    /// for performance reasons.
2777    ///
2778    /// This method should only be called as part of the paint phase of element drawing.
2779    pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2780        self.invalidator.debug_assert_paint();
2781
2782        let scale_factor = self.scale_factor();
2783        let content_mask = self.content_mask();
2784        let clipped_bounds = bounds.intersect(&content_mask.bounds);
2785        if !clipped_bounds.is_empty() {
2786            self.next_frame
2787                .scene
2788                .push_layer(clipped_bounds.scale(scale_factor));
2789        }
2790
2791        let result = f(self);
2792
2793        if !clipped_bounds.is_empty() {
2794            self.next_frame.scene.pop_layer();
2795        }
2796
2797        result
2798    }
2799
2800    /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2801    ///
2802    /// This method should only be called as part of the paint phase of element drawing.
2803    pub fn paint_shadows(
2804        &mut self,
2805        bounds: Bounds<Pixels>,
2806        corner_radii: Corners<Pixels>,
2807        shadows: &[BoxShadow],
2808    ) {
2809        self.invalidator.debug_assert_paint();
2810
2811        let scale_factor = self.scale_factor();
2812        let content_mask = self.content_mask();
2813        let opacity = self.element_opacity();
2814        for shadow in shadows {
2815            let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2816            self.next_frame.scene.insert_primitive(Shadow {
2817                order: 0,
2818                blur_radius: shadow.blur_radius.scale(scale_factor),
2819                bounds: shadow_bounds.scale(scale_factor),
2820                content_mask: content_mask.scale(scale_factor),
2821                corner_radii: corner_radii.scale(scale_factor),
2822                color: shadow.color.opacity(opacity),
2823            });
2824        }
2825    }
2826
2827    /// Paint one or more quads into the scene for the next frame at the current stacking context.
2828    /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2829    /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2830    ///
2831    /// This method should only be called as part of the paint phase of element drawing.
2832    ///
2833    /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2834    /// where the circular arcs meet. This will not display well when combined with dashed borders.
2835    /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2836    pub fn paint_quad(&mut self, quad: PaintQuad) {
2837        self.invalidator.debug_assert_paint();
2838
2839        let scale_factor = self.scale_factor();
2840        let content_mask = self.content_mask();
2841        let opacity = self.element_opacity();
2842        self.next_frame.scene.insert_primitive(Quad {
2843            order: 0,
2844            bounds: quad.bounds.scale(scale_factor),
2845            content_mask: content_mask.scale(scale_factor),
2846            background: quad.background.opacity(opacity),
2847            border_color: quad.border_color.opacity(opacity),
2848            corner_radii: quad.corner_radii.scale(scale_factor),
2849            border_widths: quad.border_widths.scale(scale_factor),
2850            border_style: quad.border_style,
2851        });
2852    }
2853
2854    /// Paint the given `Path` into the scene for the next frame at the current z-index.
2855    ///
2856    /// This method should only be called as part of the paint phase of element drawing.
2857    pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2858        self.invalidator.debug_assert_paint();
2859
2860        let scale_factor = self.scale_factor();
2861        let content_mask = self.content_mask();
2862        let opacity = self.element_opacity();
2863        path.content_mask = content_mask;
2864        let color: Background = color.into();
2865        path.color = color.opacity(opacity);
2866        self.next_frame
2867            .scene
2868            .insert_primitive(path.scale(scale_factor));
2869    }
2870
2871    /// Paint an underline into the scene for the next frame at the current z-index.
2872    ///
2873    /// This method should only be called as part of the paint phase of element drawing.
2874    pub fn paint_underline(
2875        &mut self,
2876        origin: Point<Pixels>,
2877        width: Pixels,
2878        style: &UnderlineStyle,
2879    ) {
2880        self.invalidator.debug_assert_paint();
2881
2882        let scale_factor = self.scale_factor();
2883        let height = if style.wavy {
2884            style.thickness * 3.
2885        } else {
2886            style.thickness
2887        };
2888        let bounds = Bounds {
2889            origin,
2890            size: size(width, height),
2891        };
2892        let content_mask = self.content_mask();
2893        let element_opacity = self.element_opacity();
2894
2895        self.next_frame.scene.insert_primitive(Underline {
2896            order: 0,
2897            pad: 0,
2898            bounds: bounds.scale(scale_factor),
2899            content_mask: content_mask.scale(scale_factor),
2900            color: style.color.unwrap_or_default().opacity(element_opacity),
2901            thickness: style.thickness.scale(scale_factor),
2902            wavy: if style.wavy { 1 } else { 0 },
2903        });
2904    }
2905
2906    /// Paint a strikethrough into the scene for the next frame at the current z-index.
2907    ///
2908    /// This method should only be called as part of the paint phase of element drawing.
2909    pub fn paint_strikethrough(
2910        &mut self,
2911        origin: Point<Pixels>,
2912        width: Pixels,
2913        style: &StrikethroughStyle,
2914    ) {
2915        self.invalidator.debug_assert_paint();
2916
2917        let scale_factor = self.scale_factor();
2918        let height = style.thickness;
2919        let bounds = Bounds {
2920            origin,
2921            size: size(width, height),
2922        };
2923        let content_mask = self.content_mask();
2924        let opacity = self.element_opacity();
2925
2926        self.next_frame.scene.insert_primitive(Underline {
2927            order: 0,
2928            pad: 0,
2929            bounds: bounds.scale(scale_factor),
2930            content_mask: content_mask.scale(scale_factor),
2931            thickness: style.thickness.scale(scale_factor),
2932            color: style.color.unwrap_or_default().opacity(opacity),
2933            wavy: 0,
2934        });
2935    }
2936
2937    /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2938    ///
2939    /// The y component of the origin is the baseline of the glyph.
2940    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2941    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2942    /// This method is only useful if you need to paint a single glyph that has already been shaped.
2943    ///
2944    /// This method should only be called as part of the paint phase of element drawing.
2945    pub fn paint_glyph(
2946        &mut self,
2947        origin: Point<Pixels>,
2948        font_id: FontId,
2949        glyph_id: GlyphId,
2950        font_size: Pixels,
2951        color: Hsla,
2952    ) -> Result<()> {
2953        self.invalidator.debug_assert_paint();
2954
2955        let element_opacity = self.element_opacity();
2956        let scale_factor = self.scale_factor();
2957        let glyph_origin = origin.scale(scale_factor);
2958
2959        let subpixel_variant = Point {
2960            x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
2961            y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
2962        };
2963        let params = RenderGlyphParams {
2964            font_id,
2965            glyph_id,
2966            font_size,
2967            subpixel_variant,
2968            scale_factor,
2969            is_emoji: false,
2970        };
2971
2972        let raster_bounds = self.text_system().raster_bounds(&params)?;
2973        if !raster_bounds.is_zero() {
2974            let tile = self
2975                .sprite_atlas
2976                .get_or_insert_with(&params.clone().into(), &mut || {
2977                    let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
2978                    Ok(Some((size, Cow::Owned(bytes))))
2979                })?
2980                .expect("Callback above only errors or returns Some");
2981            let bounds = Bounds {
2982                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2983                size: tile.bounds.size.map(Into::into),
2984            };
2985            let content_mask = self.content_mask().scale(scale_factor);
2986            self.next_frame.scene.insert_primitive(MonochromeSprite {
2987                order: 0,
2988                pad: 0,
2989                bounds,
2990                content_mask,
2991                color: color.opacity(element_opacity),
2992                tile,
2993                transformation: TransformationMatrix::unit(),
2994            });
2995        }
2996        Ok(())
2997    }
2998
2999    /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3000    ///
3001    /// The y component of the origin is the baseline of the glyph.
3002    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3003    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3004    /// This method is only useful if you need to paint a single emoji that has already been shaped.
3005    ///
3006    /// This method should only be called as part of the paint phase of element drawing.
3007    pub fn paint_emoji(
3008        &mut self,
3009        origin: Point<Pixels>,
3010        font_id: FontId,
3011        glyph_id: GlyphId,
3012        font_size: Pixels,
3013    ) -> Result<()> {
3014        self.invalidator.debug_assert_paint();
3015
3016        let scale_factor = self.scale_factor();
3017        let glyph_origin = origin.scale(scale_factor);
3018        let params = RenderGlyphParams {
3019            font_id,
3020            glyph_id,
3021            font_size,
3022            // We don't render emojis with subpixel variants.
3023            subpixel_variant: Default::default(),
3024            scale_factor,
3025            is_emoji: true,
3026        };
3027
3028        let raster_bounds = self.text_system().raster_bounds(&params)?;
3029        if !raster_bounds.is_zero() {
3030            let tile = self
3031                .sprite_atlas
3032                .get_or_insert_with(&params.clone().into(), &mut || {
3033                    let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
3034                    Ok(Some((size, Cow::Owned(bytes))))
3035                })?
3036                .expect("Callback above only errors or returns Some");
3037
3038            let bounds = Bounds {
3039                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3040                size: tile.bounds.size.map(Into::into),
3041            };
3042            let content_mask = self.content_mask().scale(scale_factor);
3043            let opacity = self.element_opacity();
3044
3045            self.next_frame.scene.insert_primitive(PolychromeSprite {
3046                order: 0,
3047                pad: 0,
3048                grayscale: false,
3049                bounds,
3050                corner_radii: Default::default(),
3051                content_mask,
3052                tile,
3053                opacity,
3054            });
3055        }
3056        Ok(())
3057    }
3058
3059    /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3060    ///
3061    /// This method should only be called as part of the paint phase of element drawing.
3062    pub fn paint_svg(
3063        &mut self,
3064        bounds: Bounds<Pixels>,
3065        path: SharedString,
3066        transformation: TransformationMatrix,
3067        color: Hsla,
3068        cx: &App,
3069    ) -> Result<()> {
3070        self.invalidator.debug_assert_paint();
3071
3072        let element_opacity = self.element_opacity();
3073        let scale_factor = self.scale_factor();
3074        let bounds = bounds.scale(scale_factor);
3075        let params = RenderSvgParams {
3076            path,
3077            size: bounds.size.map(|pixels| {
3078                DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3079            }),
3080        };
3081
3082        let Some(tile) =
3083            self.sprite_atlas
3084                .get_or_insert_with(&params.clone().into(), &mut || {
3085                    let Some(bytes) = cx.svg_renderer.render(&params)? else {
3086                        return Ok(None);
3087                    };
3088                    Ok(Some((params.size, Cow::Owned(bytes))))
3089                })?
3090        else {
3091            return Ok(());
3092        };
3093        let content_mask = self.content_mask().scale(scale_factor);
3094
3095        self.next_frame.scene.insert_primitive(MonochromeSprite {
3096            order: 0,
3097            pad: 0,
3098            bounds: bounds
3099                .map_origin(|origin| origin.floor())
3100                .map_size(|size| size.ceil()),
3101            content_mask,
3102            color: color.opacity(element_opacity),
3103            tile,
3104            transformation,
3105        });
3106
3107        Ok(())
3108    }
3109
3110    /// Paint an image into the scene for the next frame at the current z-index.
3111    /// This method will panic if the frame_index is not valid
3112    ///
3113    /// This method should only be called as part of the paint phase of element drawing.
3114    pub fn paint_image(
3115        &mut self,
3116        bounds: Bounds<Pixels>,
3117        corner_radii: Corners<Pixels>,
3118        data: Arc<RenderImage>,
3119        frame_index: usize,
3120        grayscale: bool,
3121    ) -> Result<()> {
3122        self.invalidator.debug_assert_paint();
3123
3124        let scale_factor = self.scale_factor();
3125        let bounds = bounds.scale(scale_factor);
3126        let params = RenderImageParams {
3127            image_id: data.id,
3128            frame_index,
3129        };
3130
3131        let tile = self
3132            .sprite_atlas
3133            .get_or_insert_with(&params.into(), &mut || {
3134                Ok(Some((
3135                    data.size(frame_index),
3136                    Cow::Borrowed(
3137                        data.as_bytes(frame_index)
3138                            .expect("It's the caller's job to pass a valid frame index"),
3139                    ),
3140                )))
3141            })?
3142            .expect("Callback above only returns Some");
3143        let content_mask = self.content_mask().scale(scale_factor);
3144        let corner_radii = corner_radii.scale(scale_factor);
3145        let opacity = self.element_opacity();
3146
3147        self.next_frame.scene.insert_primitive(PolychromeSprite {
3148            order: 0,
3149            pad: 0,
3150            grayscale,
3151            bounds: bounds
3152                .map_origin(|origin| origin.floor())
3153                .map_size(|size| size.ceil()),
3154            content_mask,
3155            corner_radii,
3156            tile,
3157            opacity,
3158        });
3159        Ok(())
3160    }
3161
3162    /// Paint a surface into the scene for the next frame at the current z-index.
3163    ///
3164    /// This method should only be called as part of the paint phase of element drawing.
3165    #[cfg(target_os = "macos")]
3166    pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3167        use crate::PaintSurface;
3168
3169        self.invalidator.debug_assert_paint();
3170
3171        let scale_factor = self.scale_factor();
3172        let bounds = bounds.scale(scale_factor);
3173        let content_mask = self.content_mask().scale(scale_factor);
3174        self.next_frame.scene.insert_primitive(PaintSurface {
3175            order: 0,
3176            bounds,
3177            content_mask,
3178            image_buffer,
3179        });
3180    }
3181
3182    /// Removes an image from the sprite atlas.
3183    pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3184        for frame_index in 0..data.frame_count() {
3185            let params = RenderImageParams {
3186                image_id: data.id,
3187                frame_index,
3188            };
3189
3190            self.sprite_atlas.remove(&params.clone().into());
3191        }
3192
3193        Ok(())
3194    }
3195
3196    /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3197    /// layout is being requested, along with the layout ids of any children. This method is called during
3198    /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3199    ///
3200    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3201    #[must_use]
3202    pub fn request_layout(
3203        &mut self,
3204        style: Style,
3205        children: impl IntoIterator<Item = LayoutId>,
3206        cx: &mut App,
3207    ) -> LayoutId {
3208        self.invalidator.debug_assert_prepaint();
3209
3210        cx.layout_id_buffer.clear();
3211        cx.layout_id_buffer.extend(children);
3212        let rem_size = self.rem_size();
3213
3214        self.layout_engine
3215            .as_mut()
3216            .unwrap()
3217            .request_layout(style, rem_size, &cx.layout_id_buffer)
3218    }
3219
3220    /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3221    /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3222    /// determine the element's size. One place this is used internally is when measuring text.
3223    ///
3224    /// The given closure is invoked at layout time with the known dimensions and available space and
3225    /// returns a `Size`.
3226    ///
3227    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3228    pub fn request_measured_layout<
3229        F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3230            + 'static,
3231    >(
3232        &mut self,
3233        style: Style,
3234        measure: F,
3235    ) -> LayoutId {
3236        self.invalidator.debug_assert_prepaint();
3237
3238        let rem_size = self.rem_size();
3239        self.layout_engine
3240            .as_mut()
3241            .unwrap()
3242            .request_measured_layout(style, rem_size, measure)
3243    }
3244
3245    /// Compute the layout for the given id within the given available space.
3246    /// This method is called for its side effect, typically by the framework prior to painting.
3247    /// After calling it, you can request the bounds of the given layout node id or any descendant.
3248    ///
3249    /// This method should only be called as part of the prepaint phase of element drawing.
3250    pub fn compute_layout(
3251        &mut self,
3252        layout_id: LayoutId,
3253        available_space: Size<AvailableSpace>,
3254        cx: &mut App,
3255    ) {
3256        self.invalidator.debug_assert_prepaint();
3257
3258        let mut layout_engine = self.layout_engine.take().unwrap();
3259        layout_engine.compute_layout(layout_id, available_space, self, cx);
3260        self.layout_engine = Some(layout_engine);
3261    }
3262
3263    /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3264    /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3265    ///
3266    /// This method should only be called as part of element drawing.
3267    pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3268        self.invalidator.debug_assert_prepaint();
3269
3270        let mut bounds = self
3271            .layout_engine
3272            .as_mut()
3273            .unwrap()
3274            .layout_bounds(layout_id)
3275            .map(Into::into);
3276        bounds.origin += self.element_offset();
3277        bounds
3278    }
3279
3280    /// This method should be called during `prepaint`. You can use
3281    /// the returned [Hitbox] during `paint` or in an event handler
3282    /// to determine whether the inserted hitbox was the topmost.
3283    ///
3284    /// This method should only be called as part of the prepaint phase of element drawing.
3285    pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3286        self.invalidator.debug_assert_prepaint();
3287
3288        let content_mask = self.content_mask();
3289        let mut id = self.next_hitbox_id;
3290        self.next_hitbox_id = self.next_hitbox_id.next();
3291        let hitbox = Hitbox {
3292            id,
3293            bounds,
3294            content_mask,
3295            behavior,
3296        };
3297        self.next_frame.hitboxes.push(hitbox.clone());
3298        hitbox
3299    }
3300
3301    /// Set a hitbox which will act as a control area of the platform window.
3302    ///
3303    /// This method should only be called as part of the paint phase of element drawing.
3304    pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3305        self.invalidator.debug_assert_paint();
3306        self.next_frame.window_control_hitboxes.push((area, hitbox));
3307    }
3308
3309    /// Sets the key context for the current element. This context will be used to translate
3310    /// keybindings into actions.
3311    ///
3312    /// This method should only be called as part of the paint phase of element drawing.
3313    pub fn set_key_context(&mut self, context: KeyContext) {
3314        self.invalidator.debug_assert_paint();
3315        self.next_frame.dispatch_tree.set_key_context(context);
3316    }
3317
3318    /// Sets the focus handle for the current element. This handle will be used to manage focus state
3319    /// and keyboard event dispatch for the element.
3320    ///
3321    /// This method should only be called as part of the prepaint phase of element drawing.
3322    pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3323        self.invalidator.debug_assert_prepaint();
3324        if focus_handle.is_focused(self) {
3325            self.next_frame.focus = Some(focus_handle.id);
3326        }
3327        self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3328    }
3329
3330    /// Sets the view id for the current element, which will be used to manage view caching.
3331    ///
3332    /// This method should only be called as part of element prepaint. We plan on removing this
3333    /// method eventually when we solve some issues that require us to construct editor elements
3334    /// directly instead of always using editors via views.
3335    pub fn set_view_id(&mut self, view_id: EntityId) {
3336        self.invalidator.debug_assert_prepaint();
3337        self.next_frame.dispatch_tree.set_view_id(view_id);
3338    }
3339
3340    /// Get the entity ID for the currently rendering view
3341    pub fn current_view(&self) -> EntityId {
3342        self.invalidator.debug_assert_paint_or_prepaint();
3343        self.rendered_entity_stack.last().copied().unwrap()
3344    }
3345
3346    pub(crate) fn with_rendered_view<R>(
3347        &mut self,
3348        id: EntityId,
3349        f: impl FnOnce(&mut Self) -> R,
3350    ) -> R {
3351        self.rendered_entity_stack.push(id);
3352        let result = f(self);
3353        self.rendered_entity_stack.pop();
3354        result
3355    }
3356
3357    /// Executes the provided function with the specified image cache.
3358    pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3359    where
3360        F: FnOnce(&mut Self) -> R,
3361    {
3362        if let Some(image_cache) = image_cache {
3363            self.image_cache_stack.push(image_cache);
3364            let result = f(self);
3365            self.image_cache_stack.pop();
3366            result
3367        } else {
3368            f(self)
3369        }
3370    }
3371
3372    /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3373    /// platform to receive textual input with proper integration with concerns such
3374    /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3375    /// rendered.
3376    ///
3377    /// This method should only be called as part of the paint phase of element drawing.
3378    ///
3379    /// [element_input_handler]: crate::ElementInputHandler
3380    pub fn handle_input(
3381        &mut self,
3382        focus_handle: &FocusHandle,
3383        input_handler: impl InputHandler,
3384        cx: &App,
3385    ) {
3386        self.invalidator.debug_assert_paint();
3387
3388        if focus_handle.is_focused(self) {
3389            let cx = self.to_async(cx);
3390            self.next_frame
3391                .input_handlers
3392                .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3393        }
3394    }
3395
3396    /// Register a mouse event listener on the window for the next frame. The type of event
3397    /// is determined by the first parameter of the given listener. When the next frame is rendered
3398    /// the listener will be cleared.
3399    ///
3400    /// This method should only be called as part of the paint phase of element drawing.
3401    pub fn on_mouse_event<Event: MouseEvent>(
3402        &mut self,
3403        mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3404    ) {
3405        self.invalidator.debug_assert_paint();
3406
3407        self.next_frame.mouse_listeners.push(Some(Box::new(
3408            move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3409                if let Some(event) = event.downcast_ref() {
3410                    handler(event, phase, window, cx)
3411                }
3412            },
3413        )));
3414    }
3415
3416    /// Register a key event listener on the window for the next frame. The type of event
3417    /// is determined by the first parameter of the given listener. When the next frame is rendered
3418    /// the listener will be cleared.
3419    ///
3420    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3421    /// a specific need to register a global listener.
3422    ///
3423    /// This method should only be called as part of the paint phase of element drawing.
3424    pub fn on_key_event<Event: KeyEvent>(
3425        &mut self,
3426        listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3427    ) {
3428        self.invalidator.debug_assert_paint();
3429
3430        self.next_frame.dispatch_tree.on_key_event(Rc::new(
3431            move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3432                if let Some(event) = event.downcast_ref::<Event>() {
3433                    listener(event, phase, window, cx)
3434                }
3435            },
3436        ));
3437    }
3438
3439    /// Register a modifiers changed event listener on the window for the next frame.
3440    ///
3441    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3442    /// a specific need to register a global listener.
3443    ///
3444    /// This method should only be called as part of the paint phase of element drawing.
3445    pub fn on_modifiers_changed(
3446        &mut self,
3447        listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3448    ) {
3449        self.invalidator.debug_assert_paint();
3450
3451        self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3452            move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3453                listener(event, window, cx)
3454            },
3455        ));
3456    }
3457
3458    /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3459    /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3460    /// Returns a subscription and persists until the subscription is dropped.
3461    pub fn on_focus_in(
3462        &mut self,
3463        handle: &FocusHandle,
3464        cx: &mut App,
3465        mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3466    ) -> Subscription {
3467        let focus_id = handle.id;
3468        let (subscription, activate) =
3469            self.new_focus_listener(Box::new(move |event, window, cx| {
3470                if event.is_focus_in(focus_id) {
3471                    listener(window, cx);
3472                }
3473                true
3474            }));
3475        cx.defer(move |_| activate());
3476        subscription
3477    }
3478
3479    /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3480    /// Returns a subscription and persists until the subscription is dropped.
3481    pub fn on_focus_out(
3482        &mut self,
3483        handle: &FocusHandle,
3484        cx: &mut App,
3485        mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3486    ) -> Subscription {
3487        let focus_id = handle.id;
3488        let (subscription, activate) =
3489            self.new_focus_listener(Box::new(move |event, window, cx| {
3490                if let Some(blurred_id) = event.previous_focus_path.last().copied()
3491                    && event.is_focus_out(focus_id)
3492                {
3493                    let event = FocusOutEvent {
3494                        blurred: WeakFocusHandle {
3495                            id: blurred_id,
3496                            handles: Arc::downgrade(&cx.focus_handles),
3497                        },
3498                    };
3499                    listener(event, window, cx)
3500                }
3501                true
3502            }));
3503        cx.defer(move |_| activate());
3504        subscription
3505    }
3506
3507    fn reset_cursor_style(&self, cx: &mut App) {
3508        // Set the cursor only if we're the active window.
3509        if self.is_window_hovered() {
3510            let style = self
3511                .rendered_frame
3512                .cursor_style(self)
3513                .unwrap_or(CursorStyle::Arrow);
3514            cx.platform.set_cursor_style(style);
3515        }
3516    }
3517
3518    /// Dispatch a given keystroke as though the user had typed it.
3519    /// You can create a keystroke with Keystroke::parse("").
3520    pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3521        let keystroke = keystroke.with_simulated_ime();
3522        let result = self.dispatch_event(
3523            PlatformInput::KeyDown(KeyDownEvent {
3524                keystroke: keystroke.clone(),
3525                is_held: false,
3526            }),
3527            cx,
3528        );
3529        if !result.propagate {
3530            return true;
3531        }
3532
3533        if let Some(input) = keystroke.key_char
3534            && let Some(mut input_handler) = self.platform_window.take_input_handler()
3535        {
3536            input_handler.dispatch_input(&input, self, cx);
3537            self.platform_window.set_input_handler(input_handler);
3538            return true;
3539        }
3540
3541        false
3542    }
3543
3544    /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3545    /// binding for the action (last binding added to the keymap).
3546    pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3547        self.highest_precedence_binding_for_action(action)
3548            .map(|binding| {
3549                binding
3550                    .keystrokes()
3551                    .iter()
3552                    .map(ToString::to_string)
3553                    .collect::<Vec<_>>()
3554                    .join(" ")
3555            })
3556            .unwrap_or_else(|| action.name().to_string())
3557    }
3558
3559    /// Dispatch a mouse or keyboard event on the window.
3560    #[profiling::function]
3561    pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3562        self.last_input_timestamp.set(Instant::now());
3563        // Handlers may set this to false by calling `stop_propagation`.
3564        cx.propagate_event = true;
3565        // Handlers may set this to true by calling `prevent_default`.
3566        self.default_prevented = false;
3567
3568        let event = match event {
3569            // Track the mouse position with our own state, since accessing the platform
3570            // API for the mouse position can only occur on the main thread.
3571            PlatformInput::MouseMove(mouse_move) => {
3572                self.mouse_position = mouse_move.position;
3573                self.modifiers = mouse_move.modifiers;
3574                PlatformInput::MouseMove(mouse_move)
3575            }
3576            PlatformInput::MouseDown(mouse_down) => {
3577                self.mouse_position = mouse_down.position;
3578                self.modifiers = mouse_down.modifiers;
3579                PlatformInput::MouseDown(mouse_down)
3580            }
3581            PlatformInput::MouseUp(mouse_up) => {
3582                self.mouse_position = mouse_up.position;
3583                self.modifiers = mouse_up.modifiers;
3584                PlatformInput::MouseUp(mouse_up)
3585            }
3586            PlatformInput::MouseExited(mouse_exited) => {
3587                self.modifiers = mouse_exited.modifiers;
3588                PlatformInput::MouseExited(mouse_exited)
3589            }
3590            PlatformInput::ModifiersChanged(modifiers_changed) => {
3591                self.modifiers = modifiers_changed.modifiers;
3592                self.capslock = modifiers_changed.capslock;
3593                PlatformInput::ModifiersChanged(modifiers_changed)
3594            }
3595            PlatformInput::ScrollWheel(scroll_wheel) => {
3596                self.mouse_position = scroll_wheel.position;
3597                self.modifiers = scroll_wheel.modifiers;
3598                PlatformInput::ScrollWheel(scroll_wheel)
3599            }
3600            // Translate dragging and dropping of external files from the operating system
3601            // to internal drag and drop events.
3602            PlatformInput::FileDrop(file_drop) => match file_drop {
3603                FileDropEvent::Entered { position, paths } => {
3604                    self.mouse_position = position;
3605                    if cx.active_drag.is_none() {
3606                        cx.active_drag = Some(AnyDrag {
3607                            value: Arc::new(paths.clone()),
3608                            view: cx.new(|_| paths).into(),
3609                            cursor_offset: position,
3610                            cursor_style: None,
3611                        });
3612                    }
3613                    PlatformInput::MouseMove(MouseMoveEvent {
3614                        position,
3615                        pressed_button: Some(MouseButton::Left),
3616                        modifiers: Modifiers::default(),
3617                    })
3618                }
3619                FileDropEvent::Pending { position } => {
3620                    self.mouse_position = position;
3621                    PlatformInput::MouseMove(MouseMoveEvent {
3622                        position,
3623                        pressed_button: Some(MouseButton::Left),
3624                        modifiers: Modifiers::default(),
3625                    })
3626                }
3627                FileDropEvent::Submit { position } => {
3628                    cx.activate(true);
3629                    self.mouse_position = position;
3630                    PlatformInput::MouseUp(MouseUpEvent {
3631                        button: MouseButton::Left,
3632                        position,
3633                        modifiers: Modifiers::default(),
3634                        click_count: 1,
3635                    })
3636                }
3637                FileDropEvent::Exited => {
3638                    cx.active_drag.take();
3639                    PlatformInput::FileDrop(FileDropEvent::Exited)
3640                }
3641            },
3642            PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3643        };
3644
3645        if let Some(any_mouse_event) = event.mouse_event() {
3646            self.dispatch_mouse_event(any_mouse_event, cx);
3647        } else if let Some(any_key_event) = event.keyboard_event() {
3648            self.dispatch_key_event(any_key_event, cx);
3649        }
3650
3651        DispatchEventResult {
3652            propagate: cx.propagate_event,
3653            default_prevented: self.default_prevented,
3654        }
3655    }
3656
3657    fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3658        let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3659        if hit_test != self.mouse_hit_test {
3660            self.mouse_hit_test = hit_test;
3661            self.reset_cursor_style(cx);
3662        }
3663
3664        #[cfg(any(feature = "inspector", debug_assertions))]
3665        if self.is_inspector_picking(cx) {
3666            self.handle_inspector_mouse_event(event, cx);
3667            // When inspector is picking, all other mouse handling is skipped.
3668            return;
3669        }
3670
3671        let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3672
3673        // Capture phase, events bubble from back to front. Handlers for this phase are used for
3674        // special purposes, such as detecting events outside of a given Bounds.
3675        for listener in &mut mouse_listeners {
3676            let listener = listener.as_mut().unwrap();
3677            listener(event, DispatchPhase::Capture, self, cx);
3678            if !cx.propagate_event {
3679                break;
3680            }
3681        }
3682
3683        // Bubble phase, where most normal handlers do their work.
3684        if cx.propagate_event {
3685            for listener in mouse_listeners.iter_mut().rev() {
3686                let listener = listener.as_mut().unwrap();
3687                listener(event, DispatchPhase::Bubble, self, cx);
3688                if !cx.propagate_event {
3689                    break;
3690                }
3691            }
3692        }
3693
3694        self.rendered_frame.mouse_listeners = mouse_listeners;
3695
3696        if cx.has_active_drag() {
3697            if event.is::<MouseMoveEvent>() {
3698                // If this was a mouse move event, redraw the window so that the
3699                // active drag can follow the mouse cursor.
3700                self.refresh();
3701            } else if event.is::<MouseUpEvent>() {
3702                // If this was a mouse up event, cancel the active drag and redraw
3703                // the window.
3704                cx.active_drag = None;
3705                self.refresh();
3706            }
3707        }
3708    }
3709
3710    fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3711        if self.invalidator.is_dirty() {
3712            self.draw(cx).clear();
3713        }
3714
3715        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3716        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3717
3718        let mut keystroke: Option<Keystroke> = None;
3719
3720        if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3721            if event.modifiers.number_of_modifiers() == 0
3722                && self.pending_modifier.modifiers.number_of_modifiers() == 1
3723                && !self.pending_modifier.saw_keystroke
3724            {
3725                let key = match self.pending_modifier.modifiers {
3726                    modifiers if modifiers.shift => Some("shift"),
3727                    modifiers if modifiers.control => Some("control"),
3728                    modifiers if modifiers.alt => Some("alt"),
3729                    modifiers if modifiers.platform => Some("platform"),
3730                    modifiers if modifiers.function => Some("function"),
3731                    _ => None,
3732                };
3733                if let Some(key) = key {
3734                    keystroke = Some(Keystroke {
3735                        key: key.to_string(),
3736                        key_char: None,
3737                        modifiers: Modifiers::default(),
3738                    });
3739                }
3740            }
3741
3742            if self.pending_modifier.modifiers.number_of_modifiers() == 0
3743                && event.modifiers.number_of_modifiers() == 1
3744            {
3745                self.pending_modifier.saw_keystroke = false
3746            }
3747            self.pending_modifier.modifiers = event.modifiers
3748        } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3749            self.pending_modifier.saw_keystroke = true;
3750            keystroke = Some(key_down_event.keystroke.clone());
3751        }
3752
3753        let Some(keystroke) = keystroke else {
3754            self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3755            return;
3756        };
3757
3758        cx.propagate_event = true;
3759        self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3760        if !cx.propagate_event {
3761            self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3762            return;
3763        }
3764
3765        let mut currently_pending = self.pending_input.take().unwrap_or_default();
3766        if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3767            currently_pending = PendingInput::default();
3768        }
3769
3770        let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3771            currently_pending.keystrokes,
3772            keystroke,
3773            &dispatch_path,
3774        );
3775
3776        if !match_result.to_replay.is_empty() {
3777            self.replay_pending_input(match_result.to_replay, cx);
3778            cx.propagate_event = true;
3779        }
3780
3781        if !match_result.pending.is_empty() {
3782            currently_pending.keystrokes = match_result.pending;
3783            currently_pending.focus = self.focus;
3784            currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3785                cx.background_executor.timer(Duration::from_secs(1)).await;
3786                cx.update(move |window, cx| {
3787                    let Some(currently_pending) = window
3788                        .pending_input
3789                        .take()
3790                        .filter(|pending| pending.focus == window.focus)
3791                    else {
3792                        return;
3793                    };
3794
3795                    let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3796                    let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3797
3798                    let to_replay = window
3799                        .rendered_frame
3800                        .dispatch_tree
3801                        .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3802
3803                    window.pending_input_changed(cx);
3804                    window.replay_pending_input(to_replay, cx)
3805                })
3806                .log_err();
3807            }));
3808            self.pending_input = Some(currently_pending);
3809            self.pending_input_changed(cx);
3810            cx.propagate_event = false;
3811            return;
3812        }
3813
3814        for binding in match_result.bindings {
3815            self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3816            if !cx.propagate_event {
3817                self.dispatch_keystroke_observers(
3818                    event,
3819                    Some(binding.action),
3820                    match_result.context_stack,
3821                    cx,
3822                );
3823                self.pending_input_changed(cx);
3824                return;
3825            }
3826        }
3827
3828        self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3829        self.pending_input_changed(cx);
3830    }
3831
3832    fn finish_dispatch_key_event(
3833        &mut self,
3834        event: &dyn Any,
3835        dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3836        context_stack: Vec<KeyContext>,
3837        cx: &mut App,
3838    ) {
3839        self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3840        if !cx.propagate_event {
3841            return;
3842        }
3843
3844        self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3845        if !cx.propagate_event {
3846            return;
3847        }
3848
3849        self.dispatch_keystroke_observers(event, None, context_stack, cx);
3850    }
3851
3852    fn pending_input_changed(&mut self, cx: &mut App) {
3853        self.pending_input_observers
3854            .clone()
3855            .retain(&(), |callback| callback(self, cx));
3856    }
3857
3858    fn dispatch_key_down_up_event(
3859        &mut self,
3860        event: &dyn Any,
3861        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3862        cx: &mut App,
3863    ) {
3864        // Capture phase
3865        for node_id in dispatch_path {
3866            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3867
3868            for key_listener in node.key_listeners.clone() {
3869                key_listener(event, DispatchPhase::Capture, self, cx);
3870                if !cx.propagate_event {
3871                    return;
3872                }
3873            }
3874        }
3875
3876        // Bubble phase
3877        for node_id in dispatch_path.iter().rev() {
3878            // Handle low level key events
3879            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3880            for key_listener in node.key_listeners.clone() {
3881                key_listener(event, DispatchPhase::Bubble, self, cx);
3882                if !cx.propagate_event {
3883                    return;
3884                }
3885            }
3886        }
3887    }
3888
3889    fn dispatch_modifiers_changed_event(
3890        &mut self,
3891        event: &dyn Any,
3892        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3893        cx: &mut App,
3894    ) {
3895        let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3896            return;
3897        };
3898        for node_id in dispatch_path.iter().rev() {
3899            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3900            for listener in node.modifiers_changed_listeners.clone() {
3901                listener(event, self, cx);
3902                if !cx.propagate_event {
3903                    return;
3904                }
3905            }
3906        }
3907    }
3908
3909    /// Determine whether a potential multi-stroke key binding is in progress on this window.
3910    pub fn has_pending_keystrokes(&self) -> bool {
3911        self.pending_input.is_some()
3912    }
3913
3914    pub(crate) fn clear_pending_keystrokes(&mut self) {
3915        self.pending_input.take();
3916    }
3917
3918    /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3919    pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3920        self.pending_input
3921            .as_ref()
3922            .map(|pending_input| pending_input.keystrokes.as_slice())
3923    }
3924
3925    fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3926        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3927        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3928
3929        'replay: for replay in replays {
3930            let event = KeyDownEvent {
3931                keystroke: replay.keystroke.clone(),
3932                is_held: false,
3933            };
3934
3935            cx.propagate_event = true;
3936            for binding in replay.bindings {
3937                self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3938                if !cx.propagate_event {
3939                    self.dispatch_keystroke_observers(
3940                        &event,
3941                        Some(binding.action),
3942                        Vec::default(),
3943                        cx,
3944                    );
3945                    continue 'replay;
3946                }
3947            }
3948
3949            self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3950            if !cx.propagate_event {
3951                continue 'replay;
3952            }
3953            if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
3954                && let Some(mut input_handler) = self.platform_window.take_input_handler()
3955            {
3956                input_handler.dispatch_input(&input, self, cx);
3957                self.platform_window.set_input_handler(input_handler)
3958            }
3959        }
3960    }
3961
3962    fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3963        focus_id
3964            .and_then(|focus_id| {
3965                self.rendered_frame
3966                    .dispatch_tree
3967                    .focusable_node_id(focus_id)
3968            })
3969            .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
3970    }
3971
3972    fn dispatch_action_on_node(
3973        &mut self,
3974        node_id: DispatchNodeId,
3975        action: &dyn Action,
3976        cx: &mut App,
3977    ) {
3978        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3979
3980        // Capture phase for global actions.
3981        cx.propagate_event = true;
3982        if let Some(mut global_listeners) = cx
3983            .global_action_listeners
3984            .remove(&action.as_any().type_id())
3985        {
3986            for listener in &global_listeners {
3987                listener(action.as_any(), DispatchPhase::Capture, cx);
3988                if !cx.propagate_event {
3989                    break;
3990                }
3991            }
3992
3993            global_listeners.extend(
3994                cx.global_action_listeners
3995                    .remove(&action.as_any().type_id())
3996                    .unwrap_or_default(),
3997            );
3998
3999            cx.global_action_listeners
4000                .insert(action.as_any().type_id(), global_listeners);
4001        }
4002
4003        if !cx.propagate_event {
4004            return;
4005        }
4006
4007        // Capture phase for window actions.
4008        for node_id in &dispatch_path {
4009            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4010            for DispatchActionListener {
4011                action_type,
4012                listener,
4013            } in node.action_listeners.clone()
4014            {
4015                let any_action = action.as_any();
4016                if action_type == any_action.type_id() {
4017                    listener(any_action, DispatchPhase::Capture, self, cx);
4018
4019                    if !cx.propagate_event {
4020                        return;
4021                    }
4022                }
4023            }
4024        }
4025
4026        // Bubble phase for window actions.
4027        for node_id in dispatch_path.iter().rev() {
4028            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4029            for DispatchActionListener {
4030                action_type,
4031                listener,
4032            } in node.action_listeners.clone()
4033            {
4034                let any_action = action.as_any();
4035                if action_type == any_action.type_id() {
4036                    cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4037                    listener(any_action, DispatchPhase::Bubble, self, cx);
4038
4039                    if !cx.propagate_event {
4040                        return;
4041                    }
4042                }
4043            }
4044        }
4045
4046        // Bubble phase for global actions.
4047        if let Some(mut global_listeners) = cx
4048            .global_action_listeners
4049            .remove(&action.as_any().type_id())
4050        {
4051            for listener in global_listeners.iter().rev() {
4052                cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4053
4054                listener(action.as_any(), DispatchPhase::Bubble, cx);
4055                if !cx.propagate_event {
4056                    break;
4057                }
4058            }
4059
4060            global_listeners.extend(
4061                cx.global_action_listeners
4062                    .remove(&action.as_any().type_id())
4063                    .unwrap_or_default(),
4064            );
4065
4066            cx.global_action_listeners
4067                .insert(action.as_any().type_id(), global_listeners);
4068        }
4069    }
4070
4071    /// Register the given handler to be invoked whenever the global of the given type
4072    /// is updated.
4073    pub fn observe_global<G: Global>(
4074        &mut self,
4075        cx: &mut App,
4076        f: impl Fn(&mut Window, &mut App) + 'static,
4077    ) -> Subscription {
4078        let window_handle = self.handle;
4079        let (subscription, activate) = cx.global_observers.insert(
4080            TypeId::of::<G>(),
4081            Box::new(move |cx| {
4082                window_handle
4083                    .update(cx, |_, window, cx| f(window, cx))
4084                    .is_ok()
4085            }),
4086        );
4087        cx.defer(move |_| activate());
4088        subscription
4089    }
4090
4091    /// Focus the current window and bring it to the foreground at the platform level.
4092    pub fn activate_window(&self) {
4093        self.platform_window.activate();
4094    }
4095
4096    /// Minimize the current window at the platform level.
4097    pub fn minimize_window(&self) {
4098        self.platform_window.minimize();
4099    }
4100
4101    /// Toggle full screen status on the current window at the platform level.
4102    pub fn toggle_fullscreen(&self) {
4103        self.platform_window.toggle_fullscreen();
4104    }
4105
4106    /// Updates the IME panel position suggestions for languages like japanese, chinese.
4107    pub fn invalidate_character_coordinates(&self) {
4108        self.on_next_frame(|window, cx| {
4109            if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4110                if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4111                    window.platform_window.update_ime_position(bounds);
4112                }
4113                window.platform_window.set_input_handler(input_handler);
4114            }
4115        });
4116    }
4117
4118    /// Present a platform dialog.
4119    /// The provided message will be presented, along with buttons for each answer.
4120    /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4121    pub fn prompt<T>(
4122        &mut self,
4123        level: PromptLevel,
4124        message: &str,
4125        detail: Option<&str>,
4126        answers: &[T],
4127        cx: &mut App,
4128    ) -> oneshot::Receiver<usize>
4129    where
4130        T: Clone + Into<PromptButton>,
4131    {
4132        let prompt_builder = cx.prompt_builder.take();
4133        let Some(prompt_builder) = prompt_builder else {
4134            unreachable!("Re-entrant window prompting is not supported by GPUI");
4135        };
4136
4137        let answers = answers
4138            .iter()
4139            .map(|answer| answer.clone().into())
4140            .collect::<Vec<_>>();
4141
4142        let receiver = match &prompt_builder {
4143            PromptBuilder::Default => self
4144                .platform_window
4145                .prompt(level, message, detail, &answers)
4146                .unwrap_or_else(|| {
4147                    self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4148                }),
4149            PromptBuilder::Custom(_) => {
4150                self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4151            }
4152        };
4153
4154        cx.prompt_builder = Some(prompt_builder);
4155
4156        receiver
4157    }
4158
4159    fn build_custom_prompt(
4160        &mut self,
4161        prompt_builder: &PromptBuilder,
4162        level: PromptLevel,
4163        message: &str,
4164        detail: Option<&str>,
4165        answers: &[PromptButton],
4166        cx: &mut App,
4167    ) -> oneshot::Receiver<usize> {
4168        let (sender, receiver) = oneshot::channel();
4169        let handle = PromptHandle::new(sender);
4170        let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4171        self.prompt = Some(handle);
4172        receiver
4173    }
4174
4175    /// Returns the current context stack.
4176    pub fn context_stack(&self) -> Vec<KeyContext> {
4177        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4178        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4179        dispatch_tree
4180            .dispatch_path(node_id)
4181            .iter()
4182            .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4183            .collect()
4184    }
4185
4186    /// Returns all available actions for the focused element.
4187    pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4188        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4189        let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4190        for action_type in cx.global_action_listeners.keys() {
4191            if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4192                let action = cx.actions.build_action_type(action_type).ok();
4193                if let Some(action) = action {
4194                    actions.insert(ix, action);
4195                }
4196            }
4197        }
4198        actions
4199    }
4200
4201    /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4202    /// returned in the order they were added. For display, the last binding should take precedence.
4203    pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4204        self.rendered_frame
4205            .dispatch_tree
4206            .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4207    }
4208
4209    /// Returns the highest precedence key binding that invokes an action on the currently focused
4210    /// element. This is more efficient than getting the last result of `bindings_for_action`.
4211    pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4212        self.rendered_frame
4213            .dispatch_tree
4214            .highest_precedence_binding_for_action(
4215                action,
4216                &self.rendered_frame.dispatch_tree.context_stack,
4217            )
4218    }
4219
4220    /// Returns the key bindings for an action in a context.
4221    pub fn bindings_for_action_in_context(
4222        &self,
4223        action: &dyn Action,
4224        context: KeyContext,
4225    ) -> Vec<KeyBinding> {
4226        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4227        dispatch_tree.bindings_for_action(action, &[context])
4228    }
4229
4230    /// Returns the highest precedence key binding for an action in a context. This is more
4231    /// efficient than getting the last result of `bindings_for_action_in_context`.
4232    pub fn highest_precedence_binding_for_action_in_context(
4233        &self,
4234        action: &dyn Action,
4235        context: KeyContext,
4236    ) -> Option<KeyBinding> {
4237        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4238        dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4239    }
4240
4241    /// Returns any bindings that would invoke an action on the given focus handle if it were
4242    /// focused. Bindings are returned in the order they were added. For display, the last binding
4243    /// should take precedence.
4244    pub fn bindings_for_action_in(
4245        &self,
4246        action: &dyn Action,
4247        focus_handle: &FocusHandle,
4248    ) -> Vec<KeyBinding> {
4249        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4250        let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4251            return vec![];
4252        };
4253        dispatch_tree.bindings_for_action(action, &context_stack)
4254    }
4255
4256    /// Returns the highest precedence key binding that would invoke an action on the given focus
4257    /// handle if it were focused. This is more efficient than getting the last result of
4258    /// `bindings_for_action_in`.
4259    pub fn highest_precedence_binding_for_action_in(
4260        &self,
4261        action: &dyn Action,
4262        focus_handle: &FocusHandle,
4263    ) -> Option<KeyBinding> {
4264        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4265        let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4266        dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4267    }
4268
4269    fn context_stack_for_focus_handle(
4270        &self,
4271        focus_handle: &FocusHandle,
4272    ) -> Option<Vec<KeyContext>> {
4273        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4274        let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4275        let context_stack: Vec<_> = dispatch_tree
4276            .dispatch_path(node_id)
4277            .into_iter()
4278            .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4279            .collect();
4280        Some(context_stack)
4281    }
4282
4283    /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4284    pub fn listener_for<V: Render, E>(
4285        &self,
4286        view: &Entity<V>,
4287        f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4288    ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4289        let view = view.downgrade();
4290        move |e: &E, window: &mut Window, cx: &mut App| {
4291            view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4292        }
4293    }
4294
4295    /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4296    pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4297        &self,
4298        view: &Entity<V>,
4299        f: Callback,
4300    ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4301        let view = view.downgrade();
4302        move |window: &mut Window, cx: &mut App| {
4303            view.update(cx, |view, cx| f(view, window, cx)).ok();
4304        }
4305    }
4306
4307    /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4308    /// If the callback returns false, the window won't be closed.
4309    pub fn on_window_should_close(
4310        &self,
4311        cx: &App,
4312        f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4313    ) {
4314        let mut cx = self.to_async(cx);
4315        self.platform_window.on_should_close(Box::new(move || {
4316            cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4317        }))
4318    }
4319
4320    /// Register an action listener on the window for the next frame. The type of action
4321    /// is determined by the first parameter of the given listener. When the next frame is rendered
4322    /// the listener will be cleared.
4323    ///
4324    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4325    /// a specific need to register a global listener.
4326    pub fn on_action(
4327        &mut self,
4328        action_type: TypeId,
4329        listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4330    ) {
4331        self.next_frame
4332            .dispatch_tree
4333            .on_action(action_type, Rc::new(listener));
4334    }
4335
4336    /// Register an action listener on the window for the next frame if the condition is true.
4337    /// The type of action is determined by the first parameter of the given listener.
4338    /// When the next frame is rendered the listener will be cleared.
4339    ///
4340    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4341    /// a specific need to register a global listener.
4342    pub fn on_action_when(
4343        &mut self,
4344        condition: bool,
4345        action_type: TypeId,
4346        listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4347    ) {
4348        if condition {
4349            self.next_frame
4350                .dispatch_tree
4351                .on_action(action_type, Rc::new(listener));
4352        }
4353    }
4354
4355    /// Read information about the GPU backing this window.
4356    /// Currently returns None on Mac and Windows.
4357    pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4358        self.platform_window.gpu_specs()
4359    }
4360
4361    /// Perform titlebar double-click action.
4362    /// This is macOS specific.
4363    pub fn titlebar_double_click(&self) {
4364        self.platform_window.titlebar_double_click();
4365    }
4366
4367    /// Gets the window's title at the platform level.
4368    /// This is macOS specific.
4369    pub fn window_title(&self) -> String {
4370        self.platform_window.get_title()
4371    }
4372
4373    /// Returns a list of all tabbed windows and their titles.
4374    /// This is macOS specific.
4375    pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4376        self.platform_window.tabbed_windows()
4377    }
4378
4379    /// Returns the tab bar visibility.
4380    /// This is macOS specific.
4381    pub fn tab_bar_visible(&self) -> bool {
4382        self.platform_window.tab_bar_visible()
4383    }
4384
4385    /// Merges all open windows into a single tabbed window.
4386    /// This is macOS specific.
4387    pub fn merge_all_windows(&self) {
4388        self.platform_window.merge_all_windows()
4389    }
4390
4391    /// Moves the tab to a new containing window.
4392    /// This is macOS specific.
4393    pub fn move_tab_to_new_window(&self) {
4394        self.platform_window.move_tab_to_new_window()
4395    }
4396
4397    /// Shows or hides the window tab overview.
4398    /// This is macOS specific.
4399    pub fn toggle_window_tab_overview(&self) {
4400        self.platform_window.toggle_window_tab_overview()
4401    }
4402
4403    /// Sets the tabbing identifier for the window.
4404    /// This is macOS specific.
4405    pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4406        self.platform_window
4407            .set_tabbing_identifier(tabbing_identifier)
4408    }
4409
4410    /// Toggles the inspector mode on this window.
4411    #[cfg(any(feature = "inspector", debug_assertions))]
4412    pub fn toggle_inspector(&mut self, cx: &mut App) {
4413        self.inspector = match self.inspector {
4414            None => Some(cx.new(|_| Inspector::new())),
4415            Some(_) => None,
4416        };
4417        self.refresh();
4418    }
4419
4420    /// Returns true if the window is in inspector mode.
4421    pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4422        #[cfg(any(feature = "inspector", debug_assertions))]
4423        {
4424            if let Some(inspector) = &self.inspector {
4425                return inspector.read(_cx).is_picking();
4426            }
4427        }
4428        false
4429    }
4430
4431    /// Executes the provided function with mutable access to an inspector state.
4432    #[cfg(any(feature = "inspector", debug_assertions))]
4433    pub fn with_inspector_state<T: 'static, R>(
4434        &mut self,
4435        _inspector_id: Option<&crate::InspectorElementId>,
4436        cx: &mut App,
4437        f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4438    ) -> R {
4439        if let Some(inspector_id) = _inspector_id
4440            && let Some(inspector) = &self.inspector
4441        {
4442            let inspector = inspector.clone();
4443            let active_element_id = inspector.read(cx).active_element_id();
4444            if Some(inspector_id) == active_element_id {
4445                return inspector.update(cx, |inspector, _cx| {
4446                    inspector.with_active_element_state(self, f)
4447                });
4448            }
4449        }
4450        f(&mut None, self)
4451    }
4452
4453    #[cfg(any(feature = "inspector", debug_assertions))]
4454    pub(crate) fn build_inspector_element_id(
4455        &mut self,
4456        path: crate::InspectorElementPath,
4457    ) -> crate::InspectorElementId {
4458        self.invalidator.debug_assert_paint_or_prepaint();
4459        let path = Rc::new(path);
4460        let next_instance_id = self
4461            .next_frame
4462            .next_inspector_instance_ids
4463            .entry(path.clone())
4464            .or_insert(0);
4465        let instance_id = *next_instance_id;
4466        *next_instance_id += 1;
4467        crate::InspectorElementId { path, instance_id }
4468    }
4469
4470    #[cfg(any(feature = "inspector", debug_assertions))]
4471    fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4472        if let Some(inspector) = self.inspector.take() {
4473            let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4474            inspector_element.prepaint_as_root(
4475                point(self.viewport_size.width - inspector_width, px(0.0)),
4476                size(inspector_width, self.viewport_size.height).into(),
4477                self,
4478                cx,
4479            );
4480            self.inspector = Some(inspector);
4481            Some(inspector_element)
4482        } else {
4483            None
4484        }
4485    }
4486
4487    #[cfg(any(feature = "inspector", debug_assertions))]
4488    fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4489        if let Some(mut inspector_element) = inspector_element {
4490            inspector_element.paint(self, cx);
4491        };
4492    }
4493
4494    /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4495    /// inspect UI elements by clicking on them.
4496    #[cfg(any(feature = "inspector", debug_assertions))]
4497    pub fn insert_inspector_hitbox(
4498        &mut self,
4499        hitbox_id: HitboxId,
4500        inspector_id: Option<&crate::InspectorElementId>,
4501        cx: &App,
4502    ) {
4503        self.invalidator.debug_assert_paint_or_prepaint();
4504        if !self.is_inspector_picking(cx) {
4505            return;
4506        }
4507        if let Some(inspector_id) = inspector_id {
4508            self.next_frame
4509                .inspector_hitboxes
4510                .insert(hitbox_id, inspector_id.clone());
4511        }
4512    }
4513
4514    #[cfg(any(feature = "inspector", debug_assertions))]
4515    fn paint_inspector_hitbox(&mut self, cx: &App) {
4516        if let Some(inspector) = self.inspector.as_ref() {
4517            let inspector = inspector.read(cx);
4518            if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4519                && let Some(hitbox) = self
4520                    .next_frame
4521                    .hitboxes
4522                    .iter()
4523                    .find(|hitbox| hitbox.id == hitbox_id)
4524            {
4525                self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4526            }
4527        }
4528    }
4529
4530    #[cfg(any(feature = "inspector", debug_assertions))]
4531    fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4532        let Some(inspector) = self.inspector.clone() else {
4533            return;
4534        };
4535        if event.downcast_ref::<MouseMoveEvent>().is_some() {
4536            inspector.update(cx, |inspector, _cx| {
4537                if let Some((_, inspector_id)) =
4538                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4539                {
4540                    inspector.hover(inspector_id, self);
4541                }
4542            });
4543        } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4544            inspector.update(cx, |inspector, _cx| {
4545                if let Some((_, inspector_id)) =
4546                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4547                {
4548                    inspector.select(inspector_id, self);
4549                }
4550            });
4551        } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4552            // This should be kept in sync with SCROLL_LINES in x11 platform.
4553            const SCROLL_LINES: f32 = 3.0;
4554            const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4555            let delta_y = event
4556                .delta
4557                .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4558                .y;
4559            if let Some(inspector) = self.inspector.clone() {
4560                inspector.update(cx, |inspector, _cx| {
4561                    if let Some(depth) = inspector.pick_depth.as_mut() {
4562                        *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4563                        let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4564                        if *depth < 0.0 {
4565                            *depth = 0.0;
4566                        } else if *depth > max_depth {
4567                            *depth = max_depth;
4568                        }
4569                        if let Some((_, inspector_id)) =
4570                            self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4571                        {
4572                            inspector.set_active_element_id(inspector_id, self);
4573                        }
4574                    }
4575                });
4576            }
4577        }
4578    }
4579
4580    #[cfg(any(feature = "inspector", debug_assertions))]
4581    fn hovered_inspector_hitbox(
4582        &self,
4583        inspector: &Inspector,
4584        frame: &Frame,
4585    ) -> Option<(HitboxId, crate::InspectorElementId)> {
4586        if let Some(pick_depth) = inspector.pick_depth {
4587            let depth = (pick_depth as i64).try_into().unwrap_or(0);
4588            let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4589            let skip_count = (depth as usize).min(max_skipped);
4590            for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4591                if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4592                    return Some((*hitbox_id, inspector_id.clone()));
4593                }
4594            }
4595        }
4596        None
4597    }
4598
4599    /// For testing: set the current modifier keys state.
4600    /// This does not generate any events.
4601    #[cfg(any(test, feature = "test-support"))]
4602    pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4603        self.modifiers = modifiers;
4604    }
4605}
4606
4607// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4608slotmap::new_key_type! {
4609    /// A unique identifier for a window.
4610    pub struct WindowId;
4611}
4612
4613impl WindowId {
4614    /// Converts this window ID to a `u64`.
4615    pub fn as_u64(&self) -> u64 {
4616        self.0.as_ffi()
4617    }
4618}
4619
4620impl From<u64> for WindowId {
4621    fn from(value: u64) -> Self {
4622        WindowId(slotmap::KeyData::from_ffi(value))
4623    }
4624}
4625
4626/// A handle to a window with a specific root view type.
4627/// Note that this does not keep the window alive on its own.
4628#[derive(Deref, DerefMut)]
4629pub struct WindowHandle<V> {
4630    #[deref]
4631    #[deref_mut]
4632    pub(crate) any_handle: AnyWindowHandle,
4633    state_type: PhantomData<V>,
4634}
4635
4636impl<V: 'static + Render> WindowHandle<V> {
4637    /// Creates a new handle from a window ID.
4638    /// This does not check if the root type of the window is `V`.
4639    pub fn new(id: WindowId) -> Self {
4640        WindowHandle {
4641            any_handle: AnyWindowHandle {
4642                id,
4643                state_type: TypeId::of::<V>(),
4644            },
4645            state_type: PhantomData,
4646        }
4647    }
4648
4649    /// Get the root view out of this window.
4650    ///
4651    /// This will fail if the window is closed or if the root view's type does not match `V`.
4652    #[cfg(any(test, feature = "test-support"))]
4653    pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4654    where
4655        C: AppContext,
4656    {
4657        crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4658            root_view
4659                .downcast::<V>()
4660                .map_err(|_| anyhow!("the type of the window's root view has changed"))
4661        }))
4662    }
4663
4664    /// Updates the root view of this window.
4665    ///
4666    /// This will fail if the window has been closed or if the root view's type does not match
4667    pub fn update<C, R>(
4668        &self,
4669        cx: &mut C,
4670        update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4671    ) -> Result<R>
4672    where
4673        C: AppContext,
4674    {
4675        cx.update_window(self.any_handle, |root_view, window, cx| {
4676            let view = root_view
4677                .downcast::<V>()
4678                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4679
4680            Ok(view.update(cx, |view, cx| update(view, window, cx)))
4681        })?
4682    }
4683
4684    /// Read the root view out of this window.
4685    ///
4686    /// This will fail if the window is closed or if the root view's type does not match `V`.
4687    pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4688        let x = cx
4689            .windows
4690            .get(self.id)
4691            .and_then(|window| {
4692                window
4693                    .as_ref()
4694                    .and_then(|window| window.root.clone())
4695                    .map(|root_view| root_view.downcast::<V>())
4696            })
4697            .context("window not found")?
4698            .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4699
4700        Ok(x.read(cx))
4701    }
4702
4703    /// Read the root view out of this window, with a callback
4704    ///
4705    /// This will fail if the window is closed or if the root view's type does not match `V`.
4706    pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4707    where
4708        C: AppContext,
4709    {
4710        cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4711    }
4712
4713    /// Read the root view pointer off of this window.
4714    ///
4715    /// This will fail if the window is closed or if the root view's type does not match `V`.
4716    pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4717    where
4718        C: AppContext,
4719    {
4720        cx.read_window(self, |root_view, _cx| root_view)
4721    }
4722
4723    /// Check if this window is 'active'.
4724    ///
4725    /// Will return `None` if the window is closed or currently
4726    /// borrowed.
4727    pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4728        cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4729            .ok()
4730    }
4731}
4732
4733impl<V> Copy for WindowHandle<V> {}
4734
4735impl<V> Clone for WindowHandle<V> {
4736    fn clone(&self) -> Self {
4737        *self
4738    }
4739}
4740
4741impl<V> PartialEq for WindowHandle<V> {
4742    fn eq(&self, other: &Self) -> bool {
4743        self.any_handle == other.any_handle
4744    }
4745}
4746
4747impl<V> Eq for WindowHandle<V> {}
4748
4749impl<V> Hash for WindowHandle<V> {
4750    fn hash<H: Hasher>(&self, state: &mut H) {
4751        self.any_handle.hash(state);
4752    }
4753}
4754
4755impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4756    fn from(val: WindowHandle<V>) -> Self {
4757        val.any_handle
4758    }
4759}
4760
4761unsafe impl<V> Send for WindowHandle<V> {}
4762unsafe impl<V> Sync for WindowHandle<V> {}
4763
4764/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4765#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4766pub struct AnyWindowHandle {
4767    pub(crate) id: WindowId,
4768    state_type: TypeId,
4769}
4770
4771impl AnyWindowHandle {
4772    /// Get the ID of this window.
4773    pub fn window_id(&self) -> WindowId {
4774        self.id
4775    }
4776
4777    /// Attempt to convert this handle to a window handle with a specific root view type.
4778    /// If the types do not match, this will return `None`.
4779    pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4780        if TypeId::of::<T>() == self.state_type {
4781            Some(WindowHandle {
4782                any_handle: *self,
4783                state_type: PhantomData,
4784            })
4785        } else {
4786            None
4787        }
4788    }
4789
4790    /// Updates the state of the root view of this window.
4791    ///
4792    /// This will fail if the window has been closed.
4793    pub fn update<C, R>(
4794        self,
4795        cx: &mut C,
4796        update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4797    ) -> Result<R>
4798    where
4799        C: AppContext,
4800    {
4801        cx.update_window(self, update)
4802    }
4803
4804    /// Read the state of the root view of this window.
4805    ///
4806    /// This will fail if the window has been closed.
4807    pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4808    where
4809        C: AppContext,
4810        T: 'static,
4811    {
4812        let view = self
4813            .downcast::<T>()
4814            .context("the type of the window's root view has changed")?;
4815
4816        cx.read_window(&view, read)
4817    }
4818}
4819
4820impl HasWindowHandle for Window {
4821    fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4822        self.platform_window.window_handle()
4823    }
4824}
4825
4826impl HasDisplayHandle for Window {
4827    fn display_handle(
4828        &self,
4829    ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4830        self.platform_window.display_handle()
4831    }
4832}
4833
4834/// An identifier for an [`Element`].
4835///
4836/// Can be constructed with a string, a number, or both, as well
4837/// as other internal representations.
4838#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4839pub enum ElementId {
4840    /// The ID of a View element
4841    View(EntityId),
4842    /// An integer ID.
4843    Integer(u64),
4844    /// A string based ID.
4845    Name(SharedString),
4846    /// A UUID.
4847    Uuid(Uuid),
4848    /// An ID that's equated with a focus handle.
4849    FocusHandle(FocusId),
4850    /// A combination of a name and an integer.
4851    NamedInteger(SharedString, u64),
4852    /// A path.
4853    Path(Arc<std::path::Path>),
4854    /// A code location.
4855    CodeLocation(core::panic::Location<'static>),
4856    /// A labeled child of an element.
4857    NamedChild(Box<ElementId>, SharedString),
4858}
4859
4860impl ElementId {
4861    /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4862    pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4863        Self::NamedInteger(name.into(), integer as u64)
4864    }
4865}
4866
4867impl Display for ElementId {
4868    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4869        match self {
4870            ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4871            ElementId::Integer(ix) => write!(f, "{}", ix)?,
4872            ElementId::Name(name) => write!(f, "{}", name)?,
4873            ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4874            ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4875            ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4876            ElementId::Path(path) => write!(f, "{}", path.display())?,
4877            ElementId::CodeLocation(location) => write!(f, "{}", location)?,
4878            ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
4879        }
4880
4881        Ok(())
4882    }
4883}
4884
4885impl TryInto<SharedString> for ElementId {
4886    type Error = anyhow::Error;
4887
4888    fn try_into(self) -> anyhow::Result<SharedString> {
4889        if let ElementId::Name(name) = self {
4890            Ok(name)
4891        } else {
4892            anyhow::bail!("element id is not string")
4893        }
4894    }
4895}
4896
4897impl From<usize> for ElementId {
4898    fn from(id: usize) -> Self {
4899        ElementId::Integer(id as u64)
4900    }
4901}
4902
4903impl From<i32> for ElementId {
4904    fn from(id: i32) -> Self {
4905        Self::Integer(id as u64)
4906    }
4907}
4908
4909impl From<SharedString> for ElementId {
4910    fn from(name: SharedString) -> Self {
4911        ElementId::Name(name)
4912    }
4913}
4914
4915impl From<Arc<std::path::Path>> for ElementId {
4916    fn from(path: Arc<std::path::Path>) -> Self {
4917        ElementId::Path(path)
4918    }
4919}
4920
4921impl From<&'static str> for ElementId {
4922    fn from(name: &'static str) -> Self {
4923        ElementId::Name(name.into())
4924    }
4925}
4926
4927impl<'a> From<&'a FocusHandle> for ElementId {
4928    fn from(handle: &'a FocusHandle) -> Self {
4929        ElementId::FocusHandle(handle.id)
4930    }
4931}
4932
4933impl From<(&'static str, EntityId)> for ElementId {
4934    fn from((name, id): (&'static str, EntityId)) -> Self {
4935        ElementId::NamedInteger(name.into(), id.as_u64())
4936    }
4937}
4938
4939impl From<(&'static str, usize)> for ElementId {
4940    fn from((name, id): (&'static str, usize)) -> Self {
4941        ElementId::NamedInteger(name.into(), id as u64)
4942    }
4943}
4944
4945impl From<(SharedString, usize)> for ElementId {
4946    fn from((name, id): (SharedString, usize)) -> Self {
4947        ElementId::NamedInteger(name, id as u64)
4948    }
4949}
4950
4951impl From<(&'static str, u64)> for ElementId {
4952    fn from((name, id): (&'static str, u64)) -> Self {
4953        ElementId::NamedInteger(name.into(), id)
4954    }
4955}
4956
4957impl From<Uuid> for ElementId {
4958    fn from(value: Uuid) -> Self {
4959        Self::Uuid(value)
4960    }
4961}
4962
4963impl From<(&'static str, u32)> for ElementId {
4964    fn from((name, id): (&'static str, u32)) -> Self {
4965        ElementId::NamedInteger(name.into(), id.into())
4966    }
4967}
4968
4969impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
4970    fn from((id, name): (ElementId, T)) -> Self {
4971        ElementId::NamedChild(Box::new(id), name.into())
4972    }
4973}
4974
4975impl From<&'static core::panic::Location<'static>> for ElementId {
4976    fn from(location: &'static core::panic::Location<'static>) -> Self {
4977        ElementId::CodeLocation(*location)
4978    }
4979}
4980
4981/// A rectangle to be rendered in the window at the given position and size.
4982/// Passed as an argument [`Window::paint_quad`].
4983#[derive(Clone)]
4984pub struct PaintQuad {
4985    /// The bounds of the quad within the window.
4986    pub bounds: Bounds<Pixels>,
4987    /// The radii of the quad's corners.
4988    pub corner_radii: Corners<Pixels>,
4989    /// The background color of the quad.
4990    pub background: Background,
4991    /// The widths of the quad's borders.
4992    pub border_widths: Edges<Pixels>,
4993    /// The color of the quad's borders.
4994    pub border_color: Hsla,
4995    /// The style of the quad's borders.
4996    pub border_style: BorderStyle,
4997}
4998
4999impl PaintQuad {
5000    /// Sets the corner radii of the quad.
5001    pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5002        PaintQuad {
5003            corner_radii: corner_radii.into(),
5004            ..self
5005        }
5006    }
5007
5008    /// Sets the border widths of the quad.
5009    pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5010        PaintQuad {
5011            border_widths: border_widths.into(),
5012            ..self
5013        }
5014    }
5015
5016    /// Sets the border color of the quad.
5017    pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5018        PaintQuad {
5019            border_color: border_color.into(),
5020            ..self
5021        }
5022    }
5023
5024    /// Sets the background color of the quad.
5025    pub fn background(self, background: impl Into<Background>) -> Self {
5026        PaintQuad {
5027            background: background.into(),
5028            ..self
5029        }
5030    }
5031}
5032
5033/// Creates a quad with the given parameters.
5034pub fn quad(
5035    bounds: Bounds<Pixels>,
5036    corner_radii: impl Into<Corners<Pixels>>,
5037    background: impl Into<Background>,
5038    border_widths: impl Into<Edges<Pixels>>,
5039    border_color: impl Into<Hsla>,
5040    border_style: BorderStyle,
5041) -> PaintQuad {
5042    PaintQuad {
5043        bounds,
5044        corner_radii: corner_radii.into(),
5045        background: background.into(),
5046        border_widths: border_widths.into(),
5047        border_color: border_color.into(),
5048        border_style,
5049    }
5050}
5051
5052/// Creates a filled quad with the given bounds and background color.
5053pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5054    PaintQuad {
5055        bounds: bounds.into(),
5056        corner_radii: (0.).into(),
5057        background: background.into(),
5058        border_widths: (0.).into(),
5059        border_color: transparent_black(),
5060        border_style: BorderStyle::default(),
5061    }
5062}
5063
5064/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5065pub fn outline(
5066    bounds: impl Into<Bounds<Pixels>>,
5067    border_color: impl Into<Hsla>,
5068    border_style: BorderStyle,
5069) -> PaintQuad {
5070    PaintQuad {
5071        bounds: bounds.into(),
5072        corner_radii: (0.).into(),
5073        background: transparent_black().into(),
5074        border_widths: (1.).into(),
5075        border_color: border_color.into(),
5076        border_style,
5077    }
5078}