cloud.rs

   1use ai_onboarding::YoungAccountBanner;
   2use anthropic::AnthropicModelMode;
   3use anyhow::{Context as _, Result, anyhow};
   4use chrono::{DateTime, Utc};
   5use client::{Client, ModelRequestUsage, UserStore, zed_urls};
   6use cloud_llm_client::{
   7    CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CURRENT_PLAN_HEADER_NAME, CompletionBody,
   8    CompletionEvent, CompletionRequestStatus, CountTokensBody, CountTokensResponse,
   9    EXPIRED_LLM_TOKEN_HEADER_NAME, ListModelsResponse, MODEL_REQUESTS_RESOURCE_HEADER_VALUE, Plan,
  10    PlanV1, PlanV2, SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME,
  11    SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME, TOOL_USE_LIMIT_REACHED_HEADER_NAME,
  12    ZED_VERSION_HEADER_NAME,
  13};
  14use futures::{
  15    AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream,
  16};
  17use google_ai::GoogleModelMode;
  18use gpui::{
  19    AnyElement, AnyView, App, AsyncApp, Context, Entity, SemanticVersion, Subscription, Task,
  20};
  21use http_client::http::{HeaderMap, HeaderValue};
  22use http_client::{AsyncBody, HttpClient, Method, Response, StatusCode};
  23use language_model::{
  24    AuthenticateError, LanguageModel, LanguageModelCacheConfiguration,
  25    LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
  26    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  27    LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
  28    LanguageModelToolSchemaFormat, LlmApiToken, ModelRequestLimitReachedError,
  29    PaymentRequiredError, RateLimiter, RefreshLlmTokenListener,
  30};
  31use release_channel::AppVersion;
  32use schemars::JsonSchema;
  33use serde::{Deserialize, Serialize, de::DeserializeOwned};
  34use settings::SettingsStore;
  35use smol::io::{AsyncReadExt, BufReader};
  36use std::pin::Pin;
  37use std::str::FromStr as _;
  38use std::sync::Arc;
  39use std::time::Duration;
  40use thiserror::Error;
  41use ui::{TintColor, prelude::*};
  42use util::{ResultExt as _, maybe};
  43
  44use crate::provider::anthropic::{AnthropicEventMapper, count_anthropic_tokens, into_anthropic};
  45use crate::provider::google::{GoogleEventMapper, into_google};
  46use crate::provider::open_ai::{OpenAiEventMapper, count_open_ai_tokens, into_open_ai};
  47
  48const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID;
  49const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME;
  50
  51#[derive(Default, Clone, Debug, PartialEq)]
  52pub struct ZedDotDevSettings {
  53    pub available_models: Vec<AvailableModel>,
  54}
  55
  56#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  57#[serde(rename_all = "lowercase")]
  58pub enum AvailableProvider {
  59    Anthropic,
  60    OpenAi,
  61    Google,
  62}
  63
  64#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  65pub struct AvailableModel {
  66    /// The provider of the language model.
  67    pub provider: AvailableProvider,
  68    /// The model's name in the provider's API. e.g. claude-3-5-sonnet-20240620
  69    pub name: String,
  70    /// The name displayed in the UI, such as in the assistant panel model dropdown menu.
  71    pub display_name: Option<String>,
  72    /// The size of the context window, indicating the maximum number of tokens the model can process.
  73    pub max_tokens: usize,
  74    /// The maximum number of output tokens allowed by the model.
  75    pub max_output_tokens: Option<u64>,
  76    /// The maximum number of completion tokens allowed by the model (o1-* only)
  77    pub max_completion_tokens: Option<u64>,
  78    /// Override this model with a different Anthropic model for tool calls.
  79    pub tool_override: Option<String>,
  80    /// Indicates whether this custom model supports caching.
  81    pub cache_configuration: Option<LanguageModelCacheConfiguration>,
  82    /// The default temperature to use for this model.
  83    pub default_temperature: Option<f32>,
  84    /// Any extra beta headers to provide when using the model.
  85    #[serde(default)]
  86    pub extra_beta_headers: Vec<String>,
  87    /// The model's mode (e.g. thinking)
  88    pub mode: Option<ModelMode>,
  89}
  90
  91#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  92#[serde(tag = "type", rename_all = "lowercase")]
  93pub enum ModelMode {
  94    #[default]
  95    Default,
  96    Thinking {
  97        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  98        budget_tokens: Option<u32>,
  99    },
 100}
 101
 102impl From<ModelMode> for AnthropicModelMode {
 103    fn from(value: ModelMode) -> Self {
 104        match value {
 105            ModelMode::Default => AnthropicModelMode::Default,
 106            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
 107        }
 108    }
 109}
 110
 111pub struct CloudLanguageModelProvider {
 112    client: Arc<Client>,
 113    state: gpui::Entity<State>,
 114    _maintain_client_status: Task<()>,
 115}
 116
 117pub struct State {
 118    client: Arc<Client>,
 119    llm_api_token: LlmApiToken,
 120    user_store: Entity<UserStore>,
 121    status: client::Status,
 122    models: Vec<Arc<cloud_llm_client::LanguageModel>>,
 123    default_model: Option<Arc<cloud_llm_client::LanguageModel>>,
 124    default_fast_model: Option<Arc<cloud_llm_client::LanguageModel>>,
 125    recommended_models: Vec<Arc<cloud_llm_client::LanguageModel>>,
 126    _fetch_models_task: Task<()>,
 127    _settings_subscription: Subscription,
 128    _llm_token_subscription: Subscription,
 129}
 130
 131impl State {
 132    fn new(
 133        client: Arc<Client>,
 134        user_store: Entity<UserStore>,
 135        status: client::Status,
 136        cx: &mut Context<Self>,
 137    ) -> Self {
 138        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
 139        let mut current_user = user_store.read(cx).watch_current_user();
 140        Self {
 141            client: client.clone(),
 142            llm_api_token: LlmApiToken::default(),
 143            user_store,
 144            status,
 145            models: Vec::new(),
 146            default_model: None,
 147            default_fast_model: None,
 148            recommended_models: Vec::new(),
 149            _fetch_models_task: cx.spawn(async move |this, cx| {
 150                maybe!(async move {
 151                    let (client, llm_api_token) = this
 152                        .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?;
 153
 154                    while current_user.borrow().is_none() {
 155                        current_user.next().await;
 156                    }
 157
 158                    let response =
 159                        Self::fetch_models(client.clone(), llm_api_token.clone()).await?;
 160                    this.update(cx, |this, cx| this.update_models(response, cx))?;
 161                    anyhow::Ok(())
 162                })
 163                .await
 164                .context("failed to fetch Zed models")
 165                .log_err();
 166            }),
 167            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 168                cx.notify();
 169            }),
 170            _llm_token_subscription: cx.subscribe(
 171                &refresh_llm_token_listener,
 172                move |this, _listener, _event, cx| {
 173                    let client = this.client.clone();
 174                    let llm_api_token = this.llm_api_token.clone();
 175                    cx.spawn(async move |this, cx| {
 176                        llm_api_token.refresh(&client).await?;
 177                        let response = Self::fetch_models(client, llm_api_token).await?;
 178                        this.update(cx, |this, cx| {
 179                            this.update_models(response, cx);
 180                        })
 181                    })
 182                    .detach_and_log_err(cx);
 183                },
 184            ),
 185        }
 186    }
 187
 188    fn is_signed_out(&self, cx: &App) -> bool {
 189        self.user_store.read(cx).current_user().is_none()
 190    }
 191
 192    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 193        let client = self.client.clone();
 194        cx.spawn(async move |state, cx| {
 195            client.sign_in_with_optional_connect(true, cx).await?;
 196            state.update(cx, |_, cx| cx.notify())
 197        })
 198    }
 199    fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context<Self>) {
 200        let mut models = Vec::new();
 201
 202        for model in response.models {
 203            models.push(Arc::new(model.clone()));
 204
 205            // Right now we represent thinking variants of models as separate models on the client,
 206            // so we need to insert variants for any model that supports thinking.
 207            if model.supports_thinking {
 208                models.push(Arc::new(cloud_llm_client::LanguageModel {
 209                    id: cloud_llm_client::LanguageModelId(format!("{}-thinking", model.id).into()),
 210                    display_name: format!("{} Thinking", model.display_name),
 211                    ..model
 212                }));
 213            }
 214        }
 215
 216        self.default_model = models
 217            .iter()
 218            .find(|model| model.id == response.default_model)
 219            .cloned();
 220        self.default_fast_model = models
 221            .iter()
 222            .find(|model| model.id == response.default_fast_model)
 223            .cloned();
 224        self.recommended_models = response
 225            .recommended_models
 226            .iter()
 227            .filter_map(|id| models.iter().find(|model| &model.id == id))
 228            .cloned()
 229            .collect();
 230        self.models = models;
 231        cx.notify();
 232    }
 233
 234    async fn fetch_models(
 235        client: Arc<Client>,
 236        llm_api_token: LlmApiToken,
 237    ) -> Result<ListModelsResponse> {
 238        let http_client = &client.http_client();
 239        let token = llm_api_token.acquire(&client).await?;
 240
 241        let request = http_client::Request::builder()
 242            .method(Method::GET)
 243            .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref())
 244            .header("Authorization", format!("Bearer {token}"))
 245            .body(AsyncBody::empty())?;
 246        let mut response = http_client
 247            .send(request)
 248            .await
 249            .context("failed to send list models request")?;
 250
 251        if response.status().is_success() {
 252            let mut body = String::new();
 253            response.body_mut().read_to_string(&mut body).await?;
 254            Ok(serde_json::from_str(&body)?)
 255        } else {
 256            let mut body = String::new();
 257            response.body_mut().read_to_string(&mut body).await?;
 258            anyhow::bail!(
 259                "error listing models.\nStatus: {:?}\nBody: {body}",
 260                response.status(),
 261            );
 262        }
 263    }
 264}
 265
 266impl CloudLanguageModelProvider {
 267    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
 268        let mut status_rx = client.status();
 269        let status = *status_rx.borrow();
 270
 271        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
 272
 273        let state_ref = state.downgrade();
 274        let maintain_client_status = cx.spawn(async move |cx| {
 275            while let Some(status) = status_rx.next().await {
 276                if let Some(this) = state_ref.upgrade() {
 277                    _ = this.update(cx, |this, cx| {
 278                        if this.status != status {
 279                            this.status = status;
 280                            cx.notify();
 281                        }
 282                    });
 283                } else {
 284                    break;
 285                }
 286            }
 287        });
 288
 289        Self {
 290            client,
 291            state,
 292            _maintain_client_status: maintain_client_status,
 293        }
 294    }
 295
 296    fn create_language_model(
 297        &self,
 298        model: Arc<cloud_llm_client::LanguageModel>,
 299        llm_api_token: LlmApiToken,
 300    ) -> Arc<dyn LanguageModel> {
 301        Arc::new(CloudLanguageModel {
 302            id: LanguageModelId(SharedString::from(model.id.0.clone())),
 303            model,
 304            llm_api_token,
 305            client: self.client.clone(),
 306            request_limiter: RateLimiter::new(4),
 307        })
 308    }
 309}
 310
 311impl LanguageModelProviderState for CloudLanguageModelProvider {
 312    type ObservableEntity = State;
 313
 314    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
 315        Some(self.state.clone())
 316    }
 317}
 318
 319impl LanguageModelProvider for CloudLanguageModelProvider {
 320    fn id(&self) -> LanguageModelProviderId {
 321        PROVIDER_ID
 322    }
 323
 324    fn name(&self) -> LanguageModelProviderName {
 325        PROVIDER_NAME
 326    }
 327
 328    fn icon(&self) -> IconName {
 329        IconName::AiZed
 330    }
 331
 332    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 333        let default_model = self.state.read(cx).default_model.clone()?;
 334        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 335        Some(self.create_language_model(default_model, llm_api_token))
 336    }
 337
 338    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 339        let default_fast_model = self.state.read(cx).default_fast_model.clone()?;
 340        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 341        Some(self.create_language_model(default_fast_model, llm_api_token))
 342    }
 343
 344    fn recommended_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 345        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 346        self.state
 347            .read(cx)
 348            .recommended_models
 349            .iter()
 350            .cloned()
 351            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 352            .collect()
 353    }
 354
 355    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 356        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 357        self.state
 358            .read(cx)
 359            .models
 360            .iter()
 361            .cloned()
 362            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 363            .collect()
 364    }
 365
 366    fn is_authenticated(&self, cx: &App) -> bool {
 367        let state = self.state.read(cx);
 368        !state.is_signed_out(cx)
 369    }
 370
 371    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 372        Task::ready(Ok(()))
 373    }
 374
 375    fn configuration_view(
 376        &self,
 377        _target_agent: language_model::ConfigurationViewTargetAgent,
 378        _: &mut Window,
 379        cx: &mut App,
 380    ) -> AnyView {
 381        cx.new(|_| ConfigurationView::new(self.state.clone()))
 382            .into()
 383    }
 384
 385    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
 386        Task::ready(Ok(()))
 387    }
 388}
 389
 390pub struct CloudLanguageModel {
 391    id: LanguageModelId,
 392    model: Arc<cloud_llm_client::LanguageModel>,
 393    llm_api_token: LlmApiToken,
 394    client: Arc<Client>,
 395    request_limiter: RateLimiter,
 396}
 397
 398struct PerformLlmCompletionResponse {
 399    response: Response<AsyncBody>,
 400    usage: Option<ModelRequestUsage>,
 401    tool_use_limit_reached: bool,
 402    includes_status_messages: bool,
 403}
 404
 405impl CloudLanguageModel {
 406    async fn perform_llm_completion(
 407        client: Arc<Client>,
 408        llm_api_token: LlmApiToken,
 409        app_version: Option<SemanticVersion>,
 410        body: CompletionBody,
 411    ) -> Result<PerformLlmCompletionResponse> {
 412        let http_client = &client.http_client();
 413
 414        let mut token = llm_api_token.acquire(&client).await?;
 415        let mut refreshed_token = false;
 416
 417        loop {
 418            let request_builder = http_client::Request::builder()
 419                .method(Method::POST)
 420                .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref());
 421            let request_builder = if let Some(app_version) = app_version {
 422                request_builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string())
 423            } else {
 424                request_builder
 425            };
 426
 427            let request = request_builder
 428                .header("Content-Type", "application/json")
 429                .header("Authorization", format!("Bearer {token}"))
 430                .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true")
 431                .body(serde_json::to_string(&body)?.into())?;
 432            let mut response = http_client.send(request).await?;
 433            let status = response.status();
 434            if status.is_success() {
 435                let includes_status_messages = response
 436                    .headers()
 437                    .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME)
 438                    .is_some();
 439
 440                let tool_use_limit_reached = response
 441                    .headers()
 442                    .get(TOOL_USE_LIMIT_REACHED_HEADER_NAME)
 443                    .is_some();
 444
 445                let usage = if includes_status_messages {
 446                    None
 447                } else {
 448                    ModelRequestUsage::from_headers(response.headers()).ok()
 449                };
 450
 451                return Ok(PerformLlmCompletionResponse {
 452                    response,
 453                    usage,
 454                    includes_status_messages,
 455                    tool_use_limit_reached,
 456                });
 457            }
 458
 459            if !refreshed_token
 460                && response
 461                    .headers()
 462                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
 463                    .is_some()
 464            {
 465                token = llm_api_token.refresh(&client).await?;
 466                refreshed_token = true;
 467                continue;
 468            }
 469
 470            if status == StatusCode::FORBIDDEN
 471                && response
 472                    .headers()
 473                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 474                    .is_some()
 475            {
 476                if let Some(MODEL_REQUESTS_RESOURCE_HEADER_VALUE) = response
 477                    .headers()
 478                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 479                    .and_then(|resource| resource.to_str().ok())
 480                    && let Some(plan) = response
 481                        .headers()
 482                        .get(CURRENT_PLAN_HEADER_NAME)
 483                        .and_then(|plan| plan.to_str().ok())
 484                        .and_then(|plan| cloud_llm_client::PlanV1::from_str(plan).ok())
 485                        .map(Plan::V1)
 486                {
 487                    return Err(anyhow!(ModelRequestLimitReachedError { plan }));
 488                }
 489            } else if status == StatusCode::PAYMENT_REQUIRED {
 490                return Err(anyhow!(PaymentRequiredError));
 491            }
 492
 493            let mut body = String::new();
 494            let headers = response.headers().clone();
 495            response.body_mut().read_to_string(&mut body).await?;
 496            return Err(anyhow!(ApiError {
 497                status,
 498                body,
 499                headers
 500            }));
 501        }
 502    }
 503}
 504
 505#[derive(Debug, Error)]
 506#[error("cloud language model request failed with status {status}: {body}")]
 507struct ApiError {
 508    status: StatusCode,
 509    body: String,
 510    headers: HeaderMap<HeaderValue>,
 511}
 512
 513/// Represents error responses from Zed's cloud API.
 514///
 515/// Example JSON for an upstream HTTP error:
 516/// ```json
 517/// {
 518///   "code": "upstream_http_error",
 519///   "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout",
 520///   "upstream_status": 503
 521/// }
 522/// ```
 523#[derive(Debug, serde::Deserialize)]
 524struct CloudApiError {
 525    code: String,
 526    message: String,
 527    #[serde(default)]
 528    #[serde(deserialize_with = "deserialize_optional_status_code")]
 529    upstream_status: Option<StatusCode>,
 530    #[serde(default)]
 531    retry_after: Option<f64>,
 532}
 533
 534fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result<Option<StatusCode>, D::Error>
 535where
 536    D: serde::Deserializer<'de>,
 537{
 538    let opt: Option<u16> = Option::deserialize(deserializer)?;
 539    Ok(opt.and_then(|code| StatusCode::from_u16(code).ok()))
 540}
 541
 542impl From<ApiError> for LanguageModelCompletionError {
 543    fn from(error: ApiError) -> Self {
 544        if let Ok(cloud_error) = serde_json::from_str::<CloudApiError>(&error.body)
 545            && cloud_error.code.starts_with("upstream_http_")
 546        {
 547            let status = if let Some(status) = cloud_error.upstream_status {
 548                status
 549            } else if cloud_error.code.ends_with("_error") {
 550                error.status
 551            } else {
 552                // If there's a status code in the code string (e.g. "upstream_http_429")
 553                // then use that; otherwise, see if the JSON contains a status code.
 554                cloud_error
 555                    .code
 556                    .strip_prefix("upstream_http_")
 557                    .and_then(|code_str| code_str.parse::<u16>().ok())
 558                    .and_then(|code| StatusCode::from_u16(code).ok())
 559                    .unwrap_or(error.status)
 560            };
 561
 562            return LanguageModelCompletionError::UpstreamProviderError {
 563                message: cloud_error.message,
 564                status,
 565                retry_after: cloud_error.retry_after.map(Duration::from_secs_f64),
 566            };
 567        }
 568
 569        let retry_after = None;
 570        LanguageModelCompletionError::from_http_status(
 571            PROVIDER_NAME,
 572            error.status,
 573            error.body,
 574            retry_after,
 575        )
 576    }
 577}
 578
 579impl LanguageModel for CloudLanguageModel {
 580    fn id(&self) -> LanguageModelId {
 581        self.id.clone()
 582    }
 583
 584    fn name(&self) -> LanguageModelName {
 585        LanguageModelName::from(self.model.display_name.clone())
 586    }
 587
 588    fn provider_id(&self) -> LanguageModelProviderId {
 589        PROVIDER_ID
 590    }
 591
 592    fn provider_name(&self) -> LanguageModelProviderName {
 593        PROVIDER_NAME
 594    }
 595
 596    fn upstream_provider_id(&self) -> LanguageModelProviderId {
 597        use cloud_llm_client::LanguageModelProvider::*;
 598        match self.model.provider {
 599            Anthropic => language_model::ANTHROPIC_PROVIDER_ID,
 600            OpenAi => language_model::OPEN_AI_PROVIDER_ID,
 601            Google => language_model::GOOGLE_PROVIDER_ID,
 602        }
 603    }
 604
 605    fn upstream_provider_name(&self) -> LanguageModelProviderName {
 606        use cloud_llm_client::LanguageModelProvider::*;
 607        match self.model.provider {
 608            Anthropic => language_model::ANTHROPIC_PROVIDER_NAME,
 609            OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 610            Google => language_model::GOOGLE_PROVIDER_NAME,
 611        }
 612    }
 613
 614    fn supports_tools(&self) -> bool {
 615        self.model.supports_tools
 616    }
 617
 618    fn supports_images(&self) -> bool {
 619        self.model.supports_images
 620    }
 621
 622    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 623        match choice {
 624            LanguageModelToolChoice::Auto
 625            | LanguageModelToolChoice::Any
 626            | LanguageModelToolChoice::None => true,
 627        }
 628    }
 629
 630    fn supports_burn_mode(&self) -> bool {
 631        self.model.supports_max_mode
 632    }
 633
 634    fn telemetry_id(&self) -> String {
 635        format!("zed.dev/{}", self.model.id)
 636    }
 637
 638    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 639        match self.model.provider {
 640            cloud_llm_client::LanguageModelProvider::Anthropic
 641            | cloud_llm_client::LanguageModelProvider::OpenAi => {
 642                LanguageModelToolSchemaFormat::JsonSchema
 643            }
 644            cloud_llm_client::LanguageModelProvider::Google => {
 645                LanguageModelToolSchemaFormat::JsonSchemaSubset
 646            }
 647        }
 648    }
 649
 650    fn max_token_count(&self) -> u64 {
 651        self.model.max_token_count as u64
 652    }
 653
 654    fn max_token_count_in_burn_mode(&self) -> Option<u64> {
 655        self.model
 656            .max_token_count_in_max_mode
 657            .filter(|_| self.model.supports_max_mode)
 658            .map(|max_token_count| max_token_count as u64)
 659    }
 660
 661    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
 662        match &self.model.provider {
 663            cloud_llm_client::LanguageModelProvider::Anthropic => {
 664                Some(LanguageModelCacheConfiguration {
 665                    min_total_token: 2_048,
 666                    should_speculate: true,
 667                    max_cache_anchors: 4,
 668                })
 669            }
 670            cloud_llm_client::LanguageModelProvider::OpenAi
 671            | cloud_llm_client::LanguageModelProvider::Google => None,
 672        }
 673    }
 674
 675    fn count_tokens(
 676        &self,
 677        request: LanguageModelRequest,
 678        cx: &App,
 679    ) -> BoxFuture<'static, Result<u64>> {
 680        match self.model.provider {
 681            cloud_llm_client::LanguageModelProvider::Anthropic => {
 682                count_anthropic_tokens(request, cx)
 683            }
 684            cloud_llm_client::LanguageModelProvider::OpenAi => {
 685                let model = match open_ai::Model::from_id(&self.model.id.0) {
 686                    Ok(model) => model,
 687                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 688                };
 689                count_open_ai_tokens(request, model, cx)
 690            }
 691            cloud_llm_client::LanguageModelProvider::Google => {
 692                let client = self.client.clone();
 693                let llm_api_token = self.llm_api_token.clone();
 694                let model_id = self.model.id.to_string();
 695                let generate_content_request =
 696                    into_google(request, model_id.clone(), GoogleModelMode::Default);
 697                async move {
 698                    let http_client = &client.http_client();
 699                    let token = llm_api_token.acquire(&client).await?;
 700
 701                    let request_body = CountTokensBody {
 702                        provider: cloud_llm_client::LanguageModelProvider::Google,
 703                        model: model_id,
 704                        provider_request: serde_json::to_value(&google_ai::CountTokensRequest {
 705                            generate_content_request,
 706                        })?,
 707                    };
 708                    let request = http_client::Request::builder()
 709                        .method(Method::POST)
 710                        .uri(
 711                            http_client
 712                                .build_zed_llm_url("/count_tokens", &[])?
 713                                .as_ref(),
 714                        )
 715                        .header("Content-Type", "application/json")
 716                        .header("Authorization", format!("Bearer {token}"))
 717                        .body(serde_json::to_string(&request_body)?.into())?;
 718                    let mut response = http_client.send(request).await?;
 719                    let status = response.status();
 720                    let headers = response.headers().clone();
 721                    let mut response_body = String::new();
 722                    response
 723                        .body_mut()
 724                        .read_to_string(&mut response_body)
 725                        .await?;
 726
 727                    if status.is_success() {
 728                        let response_body: CountTokensResponse =
 729                            serde_json::from_str(&response_body)?;
 730
 731                        Ok(response_body.tokens as u64)
 732                    } else {
 733                        Err(anyhow!(ApiError {
 734                            status,
 735                            body: response_body,
 736                            headers
 737                        }))
 738                    }
 739                }
 740                .boxed()
 741            }
 742        }
 743    }
 744
 745    fn stream_completion(
 746        &self,
 747        request: LanguageModelRequest,
 748        cx: &AsyncApp,
 749    ) -> BoxFuture<
 750        'static,
 751        Result<
 752            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
 753            LanguageModelCompletionError,
 754        >,
 755    > {
 756        let thread_id = request.thread_id.clone();
 757        let prompt_id = request.prompt_id.clone();
 758        let intent = request.intent;
 759        let mode = request.mode;
 760        let app_version = cx.update(|cx| AppVersion::global(cx)).ok();
 761        let thinking_allowed = request.thinking_allowed;
 762        match self.model.provider {
 763            cloud_llm_client::LanguageModelProvider::Anthropic => {
 764                let request = into_anthropic(
 765                    request,
 766                    self.model.id.to_string(),
 767                    1.0,
 768                    self.model.max_output_tokens as u64,
 769                    if thinking_allowed && self.model.id.0.ends_with("-thinking") {
 770                        AnthropicModelMode::Thinking {
 771                            budget_tokens: Some(4_096),
 772                        }
 773                    } else {
 774                        AnthropicModelMode::Default
 775                    },
 776                );
 777                let client = self.client.clone();
 778                let llm_api_token = self.llm_api_token.clone();
 779                let future = self.request_limiter.stream(async move {
 780                    let PerformLlmCompletionResponse {
 781                        response,
 782                        usage,
 783                        includes_status_messages,
 784                        tool_use_limit_reached,
 785                    } = Self::perform_llm_completion(
 786                        client.clone(),
 787                        llm_api_token,
 788                        app_version,
 789                        CompletionBody {
 790                            thread_id,
 791                            prompt_id,
 792                            intent,
 793                            mode,
 794                            provider: cloud_llm_client::LanguageModelProvider::Anthropic,
 795                            model: request.model.clone(),
 796                            provider_request: serde_json::to_value(&request)
 797                                .map_err(|e| anyhow!(e))?,
 798                        },
 799                    )
 800                    .await
 801                    .map_err(|err| match err.downcast::<ApiError>() {
 802                        Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)),
 803                        Err(err) => anyhow!(err),
 804                    })?;
 805
 806                    let mut mapper = AnthropicEventMapper::new();
 807                    Ok(map_cloud_completion_events(
 808                        Box::pin(
 809                            response_lines(response, includes_status_messages)
 810                                .chain(usage_updated_event(usage))
 811                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 812                        ),
 813                        move |event| mapper.map_event(event),
 814                    ))
 815                });
 816                async move { Ok(future.await?.boxed()) }.boxed()
 817            }
 818            cloud_llm_client::LanguageModelProvider::OpenAi => {
 819                let client = self.client.clone();
 820                let model = match open_ai::Model::from_id(&self.model.id.0) {
 821                    Ok(model) => model,
 822                    Err(err) => return async move { Err(anyhow!(err).into()) }.boxed(),
 823                };
 824                let request = into_open_ai(
 825                    request,
 826                    model.id(),
 827                    model.supports_parallel_tool_calls(),
 828                    model.supports_prompt_cache_key(),
 829                    None,
 830                    None,
 831                );
 832                let llm_api_token = self.llm_api_token.clone();
 833                let future = self.request_limiter.stream(async move {
 834                    let PerformLlmCompletionResponse {
 835                        response,
 836                        usage,
 837                        includes_status_messages,
 838                        tool_use_limit_reached,
 839                    } = Self::perform_llm_completion(
 840                        client.clone(),
 841                        llm_api_token,
 842                        app_version,
 843                        CompletionBody {
 844                            thread_id,
 845                            prompt_id,
 846                            intent,
 847                            mode,
 848                            provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 849                            model: request.model.clone(),
 850                            provider_request: serde_json::to_value(&request)
 851                                .map_err(|e| anyhow!(e))?,
 852                        },
 853                    )
 854                    .await?;
 855
 856                    let mut mapper = OpenAiEventMapper::new();
 857                    Ok(map_cloud_completion_events(
 858                        Box::pin(
 859                            response_lines(response, includes_status_messages)
 860                                .chain(usage_updated_event(usage))
 861                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 862                        ),
 863                        move |event| mapper.map_event(event),
 864                    ))
 865                });
 866                async move { Ok(future.await?.boxed()) }.boxed()
 867            }
 868            cloud_llm_client::LanguageModelProvider::Google => {
 869                let client = self.client.clone();
 870                let request =
 871                    into_google(request, self.model.id.to_string(), GoogleModelMode::Default);
 872                let llm_api_token = self.llm_api_token.clone();
 873                let future = self.request_limiter.stream(async move {
 874                    let PerformLlmCompletionResponse {
 875                        response,
 876                        usage,
 877                        includes_status_messages,
 878                        tool_use_limit_reached,
 879                    } = Self::perform_llm_completion(
 880                        client.clone(),
 881                        llm_api_token,
 882                        app_version,
 883                        CompletionBody {
 884                            thread_id,
 885                            prompt_id,
 886                            intent,
 887                            mode,
 888                            provider: cloud_llm_client::LanguageModelProvider::Google,
 889                            model: request.model.model_id.clone(),
 890                            provider_request: serde_json::to_value(&request)
 891                                .map_err(|e| anyhow!(e))?,
 892                        },
 893                    )
 894                    .await?;
 895
 896                    let mut mapper = GoogleEventMapper::new();
 897                    Ok(map_cloud_completion_events(
 898                        Box::pin(
 899                            response_lines(response, includes_status_messages)
 900                                .chain(usage_updated_event(usage))
 901                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 902                        ),
 903                        move |event| mapper.map_event(event),
 904                    ))
 905                });
 906                async move { Ok(future.await?.boxed()) }.boxed()
 907            }
 908        }
 909    }
 910}
 911
 912fn map_cloud_completion_events<T, F>(
 913    stream: Pin<Box<dyn Stream<Item = Result<CompletionEvent<T>>> + Send>>,
 914    mut map_callback: F,
 915) -> BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 916where
 917    T: DeserializeOwned + 'static,
 918    F: FnMut(T) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 919        + Send
 920        + 'static,
 921{
 922    stream
 923        .flat_map(move |event| {
 924            futures::stream::iter(match event {
 925                Err(error) => {
 926                    vec![Err(LanguageModelCompletionError::from(error))]
 927                }
 928                Ok(CompletionEvent::Status(event)) => {
 929                    vec![Ok(LanguageModelCompletionEvent::StatusUpdate(event))]
 930                }
 931                Ok(CompletionEvent::Event(event)) => map_callback(event),
 932            })
 933        })
 934        .boxed()
 935}
 936
 937fn usage_updated_event<T>(
 938    usage: Option<ModelRequestUsage>,
 939) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 940    futures::stream::iter(usage.map(|usage| {
 941        Ok(CompletionEvent::Status(
 942            CompletionRequestStatus::UsageUpdated {
 943                amount: usage.amount as usize,
 944                limit: usage.limit,
 945            },
 946        ))
 947    }))
 948}
 949
 950fn tool_use_limit_reached_event<T>(
 951    tool_use_limit_reached: bool,
 952) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 953    futures::stream::iter(tool_use_limit_reached.then(|| {
 954        Ok(CompletionEvent::Status(
 955            CompletionRequestStatus::ToolUseLimitReached,
 956        ))
 957    }))
 958}
 959
 960fn response_lines<T: DeserializeOwned>(
 961    response: Response<AsyncBody>,
 962    includes_status_messages: bool,
 963) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 964    futures::stream::try_unfold(
 965        (String::new(), BufReader::new(response.into_body())),
 966        move |(mut line, mut body)| async move {
 967            match body.read_line(&mut line).await {
 968                Ok(0) => Ok(None),
 969                Ok(_) => {
 970                    let event = if includes_status_messages {
 971                        serde_json::from_str::<CompletionEvent<T>>(&line)?
 972                    } else {
 973                        CompletionEvent::Event(serde_json::from_str::<T>(&line)?)
 974                    };
 975
 976                    line.clear();
 977                    Ok(Some((event, (line, body))))
 978                }
 979                Err(e) => Err(e.into()),
 980            }
 981        },
 982    )
 983}
 984
 985#[derive(IntoElement, RegisterComponent)]
 986struct ZedAiConfiguration {
 987    is_connected: bool,
 988    plan: Option<Plan>,
 989    subscription_period: Option<(DateTime<Utc>, DateTime<Utc>)>,
 990    eligible_for_trial: bool,
 991    account_too_young: bool,
 992    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
 993}
 994
 995impl RenderOnce for ZedAiConfiguration {
 996    fn render(self, _window: &mut Window, _cx: &mut App) -> impl IntoElement {
 997        let young_account_banner = YoungAccountBanner;
 998
 999        let is_pro = self.plan.is_some_and(|plan| {
1000            matches!(plan, Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro))
1001        });
1002        let subscription_text = match (self.plan, self.subscription_period) {
1003            (Some(Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro)), Some(_)) => {
1004                "You have access to Zed's hosted models through your Pro subscription."
1005            }
1006            (Some(Plan::V1(PlanV1::ZedProTrial) | Plan::V2(PlanV2::ZedProTrial)), Some(_)) => {
1007                "You have access to Zed's hosted models through your Pro trial."
1008            }
1009            (Some(Plan::V1(PlanV1::ZedFree) | Plan::V2(PlanV2::ZedFree)), Some(_)) => {
1010                "You have basic access to Zed's hosted models through the Free plan."
1011            }
1012            _ => {
1013                if self.eligible_for_trial {
1014                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1015                } else {
1016                    "Subscribe for access to Zed's hosted models."
1017                }
1018            }
1019        };
1020
1021        let manage_subscription_buttons = if is_pro {
1022            Button::new("manage_settings", "Manage Subscription")
1023                .full_width()
1024                .style(ButtonStyle::Tinted(TintColor::Accent))
1025                .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx)))
1026                .into_any_element()
1027        } else if self.plan.is_none() || self.eligible_for_trial {
1028            Button::new("start_trial", "Start 14-day Free Pro Trial")
1029                .full_width()
1030                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1031                .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx)))
1032                .into_any_element()
1033        } else {
1034            Button::new("upgrade", "Upgrade to Pro")
1035                .full_width()
1036                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1037                .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx)))
1038                .into_any_element()
1039        };
1040
1041        if !self.is_connected {
1042            return v_flex()
1043                .gap_2()
1044                .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models."))
1045                .child(
1046                    Button::new("sign_in", "Sign In to use Zed AI")
1047                        .icon_color(Color::Muted)
1048                        .icon(IconName::Github)
1049                        .icon_size(IconSize::Small)
1050                        .icon_position(IconPosition::Start)
1051                        .full_width()
1052                        .on_click({
1053                            let callback = self.sign_in_callback.clone();
1054                            move |_, window, cx| (callback)(window, cx)
1055                        }),
1056                );
1057        }
1058
1059        v_flex().gap_2().w_full().map(|this| {
1060            if self.account_too_young {
1061                this.child(young_account_banner).child(
1062                    Button::new("upgrade", "Upgrade to Pro")
1063                        .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1064                        .full_width()
1065                        .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))),
1066                )
1067            } else {
1068                this.text_sm()
1069                    .child(subscription_text)
1070                    .child(manage_subscription_buttons)
1071            }
1072        })
1073    }
1074}
1075
1076struct ConfigurationView {
1077    state: Entity<State>,
1078    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1079}
1080
1081impl ConfigurationView {
1082    fn new(state: Entity<State>) -> Self {
1083        let sign_in_callback = Arc::new({
1084            let state = state.clone();
1085            move |_window: &mut Window, cx: &mut App| {
1086                state.update(cx, |state, cx| {
1087                    state.authenticate(cx).detach_and_log_err(cx);
1088                });
1089            }
1090        });
1091
1092        Self {
1093            state,
1094            sign_in_callback,
1095        }
1096    }
1097}
1098
1099impl Render for ConfigurationView {
1100    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1101        let state = self.state.read(cx);
1102        let user_store = state.user_store.read(cx);
1103
1104        ZedAiConfiguration {
1105            is_connected: !state.is_signed_out(cx),
1106            plan: user_store.plan(),
1107            subscription_period: user_store.subscription_period(),
1108            eligible_for_trial: user_store.trial_started_at().is_none(),
1109            account_too_young: user_store.account_too_young(),
1110            sign_in_callback: self.sign_in_callback.clone(),
1111        }
1112    }
1113}
1114
1115impl Component for ZedAiConfiguration {
1116    fn name() -> &'static str {
1117        "AI Configuration Content"
1118    }
1119
1120    fn sort_name() -> &'static str {
1121        "AI Configuration Content"
1122    }
1123
1124    fn scope() -> ComponentScope {
1125        ComponentScope::Onboarding
1126    }
1127
1128    fn preview(_window: &mut Window, _cx: &mut App) -> Option<AnyElement> {
1129        fn configuration(
1130            is_connected: bool,
1131            plan: Option<Plan>,
1132            eligible_for_trial: bool,
1133            account_too_young: bool,
1134        ) -> AnyElement {
1135            ZedAiConfiguration {
1136                is_connected,
1137                plan,
1138                subscription_period: plan
1139                    .is_some()
1140                    .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))),
1141                eligible_for_trial,
1142                account_too_young,
1143                sign_in_callback: Arc::new(|_, _| {}),
1144            }
1145            .into_any_element()
1146        }
1147
1148        Some(
1149            v_flex()
1150                .p_4()
1151                .gap_4()
1152                .children(vec![
1153                    single_example("Not connected", configuration(false, None, false, false)),
1154                    single_example(
1155                        "Accept Terms of Service",
1156                        configuration(true, None, true, false),
1157                    ),
1158                    single_example(
1159                        "No Plan - Not eligible for trial",
1160                        configuration(true, None, false, false),
1161                    ),
1162                    single_example(
1163                        "No Plan - Eligible for trial",
1164                        configuration(true, None, true, false),
1165                    ),
1166                    single_example(
1167                        "Free Plan",
1168                        configuration(true, Some(Plan::V1(PlanV1::ZedFree)), true, false),
1169                    ),
1170                    single_example(
1171                        "Zed Pro Trial Plan",
1172                        configuration(true, Some(Plan::V1(PlanV1::ZedProTrial)), true, false),
1173                    ),
1174                    single_example(
1175                        "Zed Pro Plan",
1176                        configuration(true, Some(Plan::V1(PlanV1::ZedPro)), true, false),
1177                    ),
1178                ])
1179                .into_any_element(),
1180        )
1181    }
1182}
1183
1184#[cfg(test)]
1185mod tests {
1186    use super::*;
1187    use http_client::http::{HeaderMap, StatusCode};
1188    use language_model::LanguageModelCompletionError;
1189
1190    #[test]
1191    fn test_api_error_conversion_with_upstream_http_error() {
1192        // upstream_http_error with 503 status should become ServerOverloaded
1193        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#;
1194
1195        let api_error = ApiError {
1196            status: StatusCode::INTERNAL_SERVER_ERROR,
1197            body: error_body.to_string(),
1198            headers: HeaderMap::new(),
1199        };
1200
1201        let completion_error: LanguageModelCompletionError = api_error.into();
1202
1203        match completion_error {
1204            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1205                assert_eq!(
1206                    message,
1207                    "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout"
1208                );
1209            }
1210            _ => panic!(
1211                "Expected UpstreamProviderError for upstream 503, got: {:?}",
1212                completion_error
1213            ),
1214        }
1215
1216        // upstream_http_error with 500 status should become ApiInternalServerError
1217        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#;
1218
1219        let api_error = ApiError {
1220            status: StatusCode::INTERNAL_SERVER_ERROR,
1221            body: error_body.to_string(),
1222            headers: HeaderMap::new(),
1223        };
1224
1225        let completion_error: LanguageModelCompletionError = api_error.into();
1226
1227        match completion_error {
1228            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1229                assert_eq!(
1230                    message,
1231                    "Received an error from the OpenAI API: internal server error"
1232                );
1233            }
1234            _ => panic!(
1235                "Expected UpstreamProviderError for upstream 500, got: {:?}",
1236                completion_error
1237            ),
1238        }
1239
1240        // upstream_http_error with 429 status should become RateLimitExceeded
1241        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#;
1242
1243        let api_error = ApiError {
1244            status: StatusCode::INTERNAL_SERVER_ERROR,
1245            body: error_body.to_string(),
1246            headers: HeaderMap::new(),
1247        };
1248
1249        let completion_error: LanguageModelCompletionError = api_error.into();
1250
1251        match completion_error {
1252            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1253                assert_eq!(
1254                    message,
1255                    "Received an error from the Google API: rate limit exceeded"
1256                );
1257            }
1258            _ => panic!(
1259                "Expected UpstreamProviderError for upstream 429, got: {:?}",
1260                completion_error
1261            ),
1262        }
1263
1264        // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed
1265        let error_body = "Regular internal server error";
1266
1267        let api_error = ApiError {
1268            status: StatusCode::INTERNAL_SERVER_ERROR,
1269            body: error_body.to_string(),
1270            headers: HeaderMap::new(),
1271        };
1272
1273        let completion_error: LanguageModelCompletionError = api_error.into();
1274
1275        match completion_error {
1276            LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
1277                assert_eq!(provider, PROVIDER_NAME);
1278                assert_eq!(message, "Regular internal server error");
1279            }
1280            _ => panic!(
1281                "Expected ApiInternalServerError for regular 500, got: {:?}",
1282                completion_error
1283            ),
1284        }
1285
1286        // upstream_http_429 format should be converted to UpstreamProviderError
1287        let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#;
1288
1289        let api_error = ApiError {
1290            status: StatusCode::INTERNAL_SERVER_ERROR,
1291            body: error_body.to_string(),
1292            headers: HeaderMap::new(),
1293        };
1294
1295        let completion_error: LanguageModelCompletionError = api_error.into();
1296
1297        match completion_error {
1298            LanguageModelCompletionError::UpstreamProviderError {
1299                message,
1300                status,
1301                retry_after,
1302            } => {
1303                assert_eq!(message, "Upstream Anthropic rate limit exceeded.");
1304                assert_eq!(status, StatusCode::TOO_MANY_REQUESTS);
1305                assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5)));
1306            }
1307            _ => panic!(
1308                "Expected UpstreamProviderError for upstream_http_429, got: {:?}",
1309                completion_error
1310            ),
1311        }
1312
1313        // Invalid JSON in error body should fall back to regular error handling
1314        let error_body = "Not JSON at all";
1315
1316        let api_error = ApiError {
1317            status: StatusCode::INTERNAL_SERVER_ERROR,
1318            body: error_body.to_string(),
1319            headers: HeaderMap::new(),
1320        };
1321
1322        let completion_error: LanguageModelCompletionError = api_error.into();
1323
1324        match completion_error {
1325            LanguageModelCompletionError::ApiInternalServerError { provider, .. } => {
1326                assert_eq!(provider, PROVIDER_NAME);
1327            }
1328            _ => panic!(
1329                "Expected ApiInternalServerError for invalid JSON, got: {:?}",
1330                completion_error
1331            ),
1332        }
1333    }
1334}