shaders.wgsl

   1/* Functions useful for debugging:
   2
   3// A heat map color for debugging (blue -> cyan -> green -> yellow -> red).
   4fn heat_map_color(value: f32, minValue: f32, maxValue: f32, position: vec2<f32>) -> vec4<f32> {
   5    // Normalize value to 0-1 range
   6    let t = clamp((value - minValue) / (maxValue - minValue), 0.0, 1.0);
   7
   8    // Heat map color calculation
   9    let r = t * t;
  10    let g = 4.0 * t * (1.0 - t);
  11    let b = (1.0 - t) * (1.0 - t);
  12    let heat_color = vec3<f32>(r, g, b);
  13
  14    // Create a checkerboard pattern (black and white)
  15    let sum = floor(position.x / 3) + floor(position.y / 3);
  16    let is_odd = fract(sum * 0.5); // 0.0 for even, 0.5 for odd
  17    let checker_value = is_odd * 2.0; // 0.0 for even, 1.0 for odd
  18    let checker_color = vec3<f32>(checker_value);
  19
  20    // Determine if value is in range (1.0 if in range, 0.0 if out of range)
  21    let in_range = step(minValue, value) * step(value, maxValue);
  22
  23    // Mix checkerboard and heat map based on whether value is in range
  24    let final_color = mix(checker_color, heat_color, in_range);
  25
  26    return vec4<f32>(final_color, 1.0);
  27}
  28
  29*/
  30
  31fn color_brightness(color: vec3<f32>) -> f32 {
  32    // REC. 601 luminance coefficients for perceived brightness
  33    return dot(color, vec3<f32>(0.30, 0.59, 0.11));
  34}
  35
  36fn light_on_dark_contrast(enhancedContrast: f32, color: vec3<f32>) -> f32 {
  37    let brightness = color_brightness(color);
  38    let multiplier = saturate(4.0 * (0.75 - brightness));
  39    return enhancedContrast * multiplier;
  40}
  41
  42fn enhance_contrast(alpha: f32, k: f32) -> f32 {
  43    return alpha * (k + 1.0) / (alpha * k + 1.0);
  44}
  45
  46fn apply_alpha_correction(a: f32, b: f32, g: vec4<f32>) -> f32 {
  47    let brightness_adjustment = g.x * b + g.y;
  48    let correction = brightness_adjustment * a + (g.z * b + g.w);
  49    return a + a * (1.0 - a) * correction;
  50}
  51
  52fn apply_contrast_and_gamma_correction(sample: f32, color: vec3<f32>, enhanced_contrast_factor: f32, gamma_ratios: vec4<f32>) -> f32 {
  53    let enhanced_contrast = light_on_dark_contrast(enhanced_contrast_factor, color);
  54    let brightness = color_brightness(color);
  55
  56    let contrasted = enhance_contrast(sample, enhanced_contrast);
  57    return apply_alpha_correction(contrasted, brightness, gamma_ratios);
  58}
  59
  60struct GlobalParams {
  61    viewport_size: vec2<f32>,
  62    premultiplied_alpha: u32,
  63    pad: u32,
  64}
  65
  66var<uniform> globals: GlobalParams;
  67var<uniform> gamma_ratios: vec4<f32>;
  68var<uniform> grayscale_enhanced_contrast: f32;
  69var t_sprite: texture_2d<f32>;
  70var s_sprite: sampler;
  71
  72const M_PI_F: f32 = 3.1415926;
  73const GRAYSCALE_FACTORS: vec3<f32> = vec3<f32>(0.2126, 0.7152, 0.0722);
  74
  75struct Bounds {
  76    origin: vec2<f32>,
  77    size: vec2<f32>,
  78}
  79
  80struct Corners {
  81    top_left: f32,
  82    top_right: f32,
  83    bottom_right: f32,
  84    bottom_left: f32,
  85}
  86
  87struct Edges {
  88    top: f32,
  89    right: f32,
  90    bottom: f32,
  91    left: f32,
  92}
  93
  94struct Hsla {
  95    h: f32,
  96    s: f32,
  97    l: f32,
  98    a: f32,
  99}
 100
 101struct LinearColorStop {
 102    color: Hsla,
 103    percentage: f32,
 104}
 105
 106struct Background {
 107    // 0u is Solid
 108    // 1u is LinearGradient
 109    // 2u is PatternSlash
 110    tag: u32,
 111    // 0u is sRGB linear color
 112    // 1u is Oklab color
 113    color_space: u32,
 114    solid: Hsla,
 115    gradient_angle_or_pattern_height: f32,
 116    colors: array<LinearColorStop, 2>,
 117    pad: u32,
 118}
 119
 120struct AtlasTextureId {
 121    index: u32,
 122    kind: u32,
 123}
 124
 125struct AtlasBounds {
 126    origin: vec2<i32>,
 127    size: vec2<i32>,
 128}
 129
 130struct AtlasTile {
 131    texture_id: AtlasTextureId,
 132    tile_id: u32,
 133    padding: u32,
 134    bounds: AtlasBounds,
 135}
 136
 137struct TransformationMatrix {
 138    rotation_scale: mat2x2<f32>,
 139    translation: vec2<f32>,
 140}
 141
 142fn to_device_position_impl(position: vec2<f32>) -> vec4<f32> {
 143    let device_position = position / globals.viewport_size * vec2<f32>(2.0, -2.0) + vec2<f32>(-1.0, 1.0);
 144    return vec4<f32>(device_position, 0.0, 1.0);
 145}
 146
 147fn to_device_position(unit_vertex: vec2<f32>, bounds: Bounds) -> vec4<f32> {
 148    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 149    return to_device_position_impl(position);
 150}
 151
 152fn to_device_position_transformed(unit_vertex: vec2<f32>, bounds: Bounds, transform: TransformationMatrix) -> vec4<f32> {
 153    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 154    //Note: Rust side stores it as row-major, so transposing here
 155    let transformed = transpose(transform.rotation_scale) * position + transform.translation;
 156    return to_device_position_impl(transformed);
 157}
 158
 159fn to_tile_position(unit_vertex: vec2<f32>, tile: AtlasTile) -> vec2<f32> {
 160  let atlas_size = vec2<f32>(textureDimensions(t_sprite, 0));
 161  return (vec2<f32>(tile.bounds.origin) + unit_vertex * vec2<f32>(tile.bounds.size)) / atlas_size;
 162}
 163
 164fn distance_from_clip_rect_impl(position: vec2<f32>, clip_bounds: Bounds) -> vec4<f32> {
 165    let tl = position - clip_bounds.origin;
 166    let br = clip_bounds.origin + clip_bounds.size - position;
 167    return vec4<f32>(tl.x, br.x, tl.y, br.y);
 168}
 169
 170fn distance_from_clip_rect(unit_vertex: vec2<f32>, bounds: Bounds, clip_bounds: Bounds) -> vec4<f32> {
 171    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 172    return distance_from_clip_rect_impl(position, clip_bounds);
 173}
 174
 175// https://gamedev.stackexchange.com/questions/92015/optimized-linear-to-srgb-glsl
 176fn srgb_to_linear(srgb: vec3<f32>) -> vec3<f32> {
 177    let cutoff = srgb < vec3<f32>(0.04045);
 178    let higher = pow((srgb + vec3<f32>(0.055)) / vec3<f32>(1.055), vec3<f32>(2.4));
 179    let lower = srgb / vec3<f32>(12.92);
 180    return select(higher, lower, cutoff);
 181}
 182
 183fn srgb_to_linear_component(a: f32) -> f32 {
 184    let cutoff = a < 0.04045;
 185    let higher = pow((a + 0.055) / 1.055, 2.4);
 186    let lower = a / 12.92;
 187    return select(higher, lower, cutoff);
 188}
 189
 190fn linear_to_srgb(linear: vec3<f32>) -> vec3<f32> {
 191    let cutoff = linear < vec3<f32>(0.0031308);
 192    let higher = vec3<f32>(1.055) * pow(linear, vec3<f32>(1.0 / 2.4)) - vec3<f32>(0.055);
 193    let lower = linear * vec3<f32>(12.92);
 194    return select(higher, lower, cutoff);
 195}
 196
 197/// Convert a linear color to sRGBA space.
 198fn linear_to_srgba(color: vec4<f32>) -> vec4<f32> {
 199    return vec4<f32>(linear_to_srgb(color.rgb), color.a);
 200}
 201
 202/// Convert a sRGBA color to linear space.
 203fn srgba_to_linear(color: vec4<f32>) -> vec4<f32> {
 204    return vec4<f32>(srgb_to_linear(color.rgb), color.a);
 205}
 206
 207/// Hsla to linear RGBA conversion.
 208fn hsla_to_rgba(hsla: Hsla) -> vec4<f32> {
 209    let h = hsla.h * 6.0; // Now, it's an angle but scaled in [0, 6) range
 210    let s = hsla.s;
 211    let l = hsla.l;
 212    let a = hsla.a;
 213
 214    let c = (1.0 - abs(2.0 * l - 1.0)) * s;
 215    let x = c * (1.0 - abs(h % 2.0 - 1.0));
 216    let m = l - c / 2.0;
 217    var color = vec3<f32>(m);
 218
 219    if (h >= 0.0 && h < 1.0) {
 220        color.r += c;
 221        color.g += x;
 222    } else if (h >= 1.0 && h < 2.0) {
 223        color.r += x;
 224        color.g += c;
 225    } else if (h >= 2.0 && h < 3.0) {
 226        color.g += c;
 227        color.b += x;
 228    } else if (h >= 3.0 && h < 4.0) {
 229        color.g += x;
 230        color.b += c;
 231    } else if (h >= 4.0 && h < 5.0) {
 232        color.r += x;
 233        color.b += c;
 234    } else {
 235        color.r += c;
 236        color.b += x;
 237    }
 238
 239    return vec4<f32>(color, a);
 240}
 241
 242/// Convert a linear sRGB to Oklab space.
 243/// Reference: https://bottosson.github.io/posts/oklab/#converting-from-linear-srgb-to-oklab
 244fn linear_srgb_to_oklab(color: vec4<f32>) -> vec4<f32> {
 245	let l = 0.4122214708 * color.r + 0.5363325363 * color.g + 0.0514459929 * color.b;
 246	let m = 0.2119034982 * color.r + 0.6806995451 * color.g + 0.1073969566 * color.b;
 247	let s = 0.0883024619 * color.r + 0.2817188376 * color.g + 0.6299787005 * color.b;
 248
 249	let l_ = pow(l, 1.0 / 3.0);
 250	let m_ = pow(m, 1.0 / 3.0);
 251	let s_ = pow(s, 1.0 / 3.0);
 252
 253	return vec4<f32>(
 254		0.2104542553 * l_ + 0.7936177850 * m_ - 0.0040720468 * s_,
 255		1.9779984951 * l_ - 2.4285922050 * m_ + 0.4505937099 * s_,
 256		0.0259040371 * l_ + 0.7827717662 * m_ - 0.8086757660 * s_,
 257		color.a
 258	);
 259}
 260
 261/// Convert an Oklab color to linear sRGB space.
 262fn oklab_to_linear_srgb(color: vec4<f32>) -> vec4<f32> {
 263	let l_ = color.r + 0.3963377774 * color.g + 0.2158037573 * color.b;
 264	let m_ = color.r - 0.1055613458 * color.g - 0.0638541728 * color.b;
 265	let s_ = color.r - 0.0894841775 * color.g - 1.2914855480 * color.b;
 266
 267	let l = l_ * l_ * l_;
 268	let m = m_ * m_ * m_;
 269	let s = s_ * s_ * s_;
 270
 271	return vec4<f32>(
 272		4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s,
 273		-1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s,
 274		-0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s,
 275		color.a
 276	);
 277}
 278
 279fn over(below: vec4<f32>, above: vec4<f32>) -> vec4<f32> {
 280    let alpha = above.a + below.a * (1.0 - above.a);
 281    let color = (above.rgb * above.a + below.rgb * below.a * (1.0 - above.a)) / alpha;
 282    return vec4<f32>(color, alpha);
 283}
 284
 285// A standard gaussian function, used for weighting samples
 286fn gaussian(x: f32, sigma: f32) -> f32{
 287    return exp(-(x * x) / (2.0 * sigma * sigma)) / (sqrt(2.0 * M_PI_F) * sigma);
 288}
 289
 290// This approximates the error function, needed for the gaussian integral
 291fn erf(v: vec2<f32>) -> vec2<f32> {
 292    let s = sign(v);
 293    let a = abs(v);
 294    let r1 = 1.0 + (0.278393 + (0.230389 + (0.000972 + 0.078108 * a) * a) * a) * a;
 295    let r2 = r1 * r1;
 296    return s - s / (r2 * r2);
 297}
 298
 299fn blur_along_x(x: f32, y: f32, sigma: f32, corner: f32, half_size: vec2<f32>) -> f32 {
 300  let delta = min(half_size.y - corner - abs(y), 0.0);
 301  let curved = half_size.x - corner + sqrt(max(0.0, corner * corner - delta * delta));
 302  let integral = 0.5 + 0.5 * erf((x + vec2<f32>(-curved, curved)) * (sqrt(0.5) / sigma));
 303  return integral.y - integral.x;
 304}
 305
 306// Selects corner radius based on quadrant.
 307fn pick_corner_radius(center_to_point: vec2<f32>, radii: Corners) -> f32 {
 308    if (center_to_point.x < 0.0) {
 309        if (center_to_point.y < 0.0) {
 310            return radii.top_left;
 311        } else {
 312            return radii.bottom_left;
 313        }
 314    } else {
 315        if (center_to_point.y < 0.0) {
 316            return radii.top_right;
 317        } else {
 318            return radii.bottom_right;
 319        }
 320    }
 321}
 322
 323// Signed distance of the point to the quad's border - positive outside the
 324// border, and negative inside.
 325//
 326// See comments on similar code using `quad_sdf_impl` in `fs_quad` for
 327// explanation.
 328fn quad_sdf(point: vec2<f32>, bounds: Bounds, corner_radii: Corners) -> f32 {
 329    let half_size = bounds.size / 2.0;
 330    let center = bounds.origin + half_size;
 331    let center_to_point = point - center;
 332    let corner_radius = pick_corner_radius(center_to_point, corner_radii);
 333    let corner_to_point = abs(center_to_point) - half_size;
 334    let corner_center_to_point = corner_to_point + corner_radius;
 335    return quad_sdf_impl(corner_center_to_point, corner_radius);
 336}
 337
 338fn quad_sdf_impl(corner_center_to_point: vec2<f32>, corner_radius: f32) -> f32 {
 339    if (corner_radius == 0.0) {
 340        // Fast path for unrounded corners.
 341        return max(corner_center_to_point.x, corner_center_to_point.y);
 342    } else {
 343        // Signed distance of the point from a quad that is inset by corner_radius.
 344        // It is negative inside this quad, and positive outside.
 345        let signed_distance_to_inset_quad =
 346            // 0 inside the inset quad, and positive outside.
 347            length(max(vec2<f32>(0.0), corner_center_to_point)) +
 348            // 0 outside the inset quad, and negative inside.
 349            min(0.0, max(corner_center_to_point.x, corner_center_to_point.y));
 350
 351        return signed_distance_to_inset_quad - corner_radius;
 352    }
 353}
 354
 355// Abstract away the final color transformation based on the
 356// target alpha compositing mode.
 357fn blend_color(color: vec4<f32>, alpha_factor: f32) -> vec4<f32> {
 358    let alpha = color.a * alpha_factor;
 359    let multiplier = select(1.0, alpha, globals.premultiplied_alpha != 0u);
 360    return vec4<f32>(color.rgb * multiplier, alpha);
 361}
 362
 363
 364struct GradientColor {
 365    solid: vec4<f32>,
 366    color0: vec4<f32>,
 367    color1: vec4<f32>,
 368}
 369
 370fn prepare_gradient_color(tag: u32, color_space: u32,
 371    solid: Hsla, colors: array<LinearColorStop, 2>) -> GradientColor {
 372    var result = GradientColor();
 373
 374    if (tag == 0u || tag == 2u) {
 375        result.solid = hsla_to_rgba(solid);
 376    } else if (tag == 1u) {
 377        // The hsla_to_rgba is returns a linear sRGB color
 378        result.color0 = hsla_to_rgba(colors[0].color);
 379        result.color1 = hsla_to_rgba(colors[1].color);
 380
 381        // Prepare color space in vertex for avoid conversion
 382        // in fragment shader for performance reasons
 383        if (color_space == 0u) {
 384            // sRGB
 385            result.color0 = linear_to_srgba(result.color0);
 386            result.color1 = linear_to_srgba(result.color1);
 387        } else if (color_space == 1u) {
 388            // Oklab
 389            result.color0 = linear_srgb_to_oklab(result.color0);
 390            result.color1 = linear_srgb_to_oklab(result.color1);
 391        }
 392    }
 393
 394    return result;
 395}
 396
 397fn gradient_color(background: Background, position: vec2<f32>, bounds: Bounds,
 398    solid_color: vec4<f32>, color0: vec4<f32>, color1: vec4<f32>) -> vec4<f32> {
 399    var background_color = vec4<f32>(0.0);
 400
 401    switch (background.tag) {
 402        default: {
 403            return solid_color;
 404        }
 405        case 1u: {
 406            // Linear gradient background.
 407            // -90 degrees to match the CSS gradient angle.
 408            let angle = background.gradient_angle_or_pattern_height;
 409            let radians = (angle % 360.0 - 90.0) * M_PI_F / 180.0;
 410            var direction = vec2<f32>(cos(radians), sin(radians));
 411            let stop0_percentage = background.colors[0].percentage;
 412            let stop1_percentage = background.colors[1].percentage;
 413
 414            // Expand the short side to be the same as the long side
 415            if (bounds.size.x > bounds.size.y) {
 416                direction.y *= bounds.size.y / bounds.size.x;
 417            } else {
 418                direction.x *= bounds.size.x / bounds.size.y;
 419            }
 420
 421            // Get the t value for the linear gradient with the color stop percentages.
 422            let half_size = bounds.size / 2.0;
 423            let center = bounds.origin + half_size;
 424            let center_to_point = position - center;
 425            var t = dot(center_to_point, direction) / length(direction);
 426            // Check the direct to determine the use x or y
 427            if (abs(direction.x) > abs(direction.y)) {
 428                t = (t + half_size.x) / bounds.size.x;
 429            } else {
 430                t = (t + half_size.y) / bounds.size.y;
 431            }
 432
 433            // Adjust t based on the stop percentages
 434            t = (t - stop0_percentage) / (stop1_percentage - stop0_percentage);
 435            t = clamp(t, 0.0, 1.0);
 436
 437            switch (background.color_space) {
 438                default: {
 439                    background_color = srgba_to_linear(mix(color0, color1, t));
 440                }
 441                case 1u: {
 442                    let oklab_color = mix(color0, color1, t);
 443                    background_color = oklab_to_linear_srgb(oklab_color);
 444                }
 445            }
 446        }
 447        case 2u: {
 448            let gradient_angle_or_pattern_height = background.gradient_angle_or_pattern_height;
 449            let pattern_width = (gradient_angle_or_pattern_height / 65535.0f) / 255.0f;
 450            let pattern_interval = (gradient_angle_or_pattern_height % 65535.0f) / 255.0f;
 451            let pattern_height = pattern_width + pattern_interval;
 452            let stripe_angle = M_PI_F / 4.0;
 453            let pattern_period = pattern_height * sin(stripe_angle);
 454            let rotation = mat2x2<f32>(
 455                cos(stripe_angle), -sin(stripe_angle),
 456                sin(stripe_angle), cos(stripe_angle)
 457            );
 458            let relative_position = position - bounds.origin;
 459            let rotated_point = rotation * relative_position;
 460            let pattern = rotated_point.x % pattern_period;
 461            let distance = min(pattern, pattern_period - pattern) - pattern_period * (pattern_width / pattern_height) /  2.0f;
 462            background_color = solid_color;
 463            background_color.a *= saturate(0.5 - distance);
 464        }
 465    }
 466
 467    return background_color;
 468}
 469
 470// --- quads --- //
 471
 472struct Quad {
 473    order: u32,
 474    border_style: u32,
 475    bounds: Bounds,
 476    content_mask: Bounds,
 477    background: Background,
 478    border_color: Hsla,
 479    corner_radii: Corners,
 480    border_widths: Edges,
 481}
 482var<storage, read> b_quads: array<Quad>;
 483
 484struct QuadVarying {
 485    @builtin(position) position: vec4<f32>,
 486    @location(0) @interpolate(flat) border_color: vec4<f32>,
 487    @location(1) @interpolate(flat) quad_id: u32,
 488    // TODO: use `clip_distance` once Naga supports it
 489    @location(2) clip_distances: vec4<f32>,
 490    @location(3) @interpolate(flat) background_solid: vec4<f32>,
 491    @location(4) @interpolate(flat) background_color0: vec4<f32>,
 492    @location(5) @interpolate(flat) background_color1: vec4<f32>,
 493}
 494
 495@vertex
 496fn vs_quad(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> QuadVarying {
 497    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
 498    let quad = b_quads[instance_id];
 499
 500    var out = QuadVarying();
 501    out.position = to_device_position(unit_vertex, quad.bounds);
 502
 503    let gradient = prepare_gradient_color(
 504        quad.background.tag,
 505        quad.background.color_space,
 506        quad.background.solid,
 507        quad.background.colors
 508    );
 509    out.background_solid = gradient.solid;
 510    out.background_color0 = gradient.color0;
 511    out.background_color1 = gradient.color1;
 512    out.border_color = hsla_to_rgba(quad.border_color);
 513    out.quad_id = instance_id;
 514    out.clip_distances = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask);
 515    return out;
 516}
 517
 518@fragment
 519fn fs_quad(input: QuadVarying) -> @location(0) vec4<f32> {
 520    // Alpha clip first, since we don't have `clip_distance`.
 521    if (any(input.clip_distances < vec4<f32>(0.0))) {
 522        return vec4<f32>(0.0);
 523    }
 524
 525    let quad = b_quads[input.quad_id];
 526
 527    let background_color = gradient_color(quad.background, input.position.xy, quad.bounds,
 528        input.background_solid, input.background_color0, input.background_color1);
 529
 530    let unrounded = quad.corner_radii.top_left == 0.0 &&
 531        quad.corner_radii.bottom_left == 0.0 &&
 532        quad.corner_radii.top_right == 0.0 &&
 533        quad.corner_radii.bottom_right == 0.0;
 534
 535    // Fast path when the quad is not rounded and doesn't have any border
 536    if (quad.border_widths.top == 0.0 &&
 537            quad.border_widths.left == 0.0 &&
 538            quad.border_widths.right == 0.0 &&
 539            quad.border_widths.bottom == 0.0 &&
 540            unrounded) {
 541        return blend_color(background_color, 1.0);
 542    }
 543
 544    let size = quad.bounds.size;
 545    let half_size = size / 2.0;
 546    let point = input.position.xy - quad.bounds.origin;
 547    let center_to_point = point - half_size;
 548
 549    // Signed distance field threshold for inclusion of pixels. 0.5 is the
 550    // minimum distance between the center of the pixel and the edge.
 551    let antialias_threshold = 0.5;
 552
 553    // Radius of the nearest corner
 554    let corner_radius = pick_corner_radius(center_to_point, quad.corner_radii);
 555
 556    // Width of the nearest borders
 557    let border = vec2<f32>(
 558        select(
 559            quad.border_widths.right,
 560            quad.border_widths.left,
 561            center_to_point.x < 0.0),
 562        select(
 563            quad.border_widths.bottom,
 564            quad.border_widths.top,
 565            center_to_point.y < 0.0));
 566
 567    // 0-width borders are reduced so that `inner_sdf >= antialias_threshold`.
 568    // The purpose of this is to not draw antialiasing pixels in this case.
 569    let reduced_border =
 570        vec2<f32>(select(border.x, -antialias_threshold, border.x == 0.0),
 571                  select(border.y, -antialias_threshold, border.y == 0.0));
 572
 573    // Vector from the corner of the quad bounds to the point, after mirroring
 574    // the point into the bottom right quadrant. Both components are <= 0.
 575    let corner_to_point = abs(center_to_point) - half_size;
 576
 577    // Vector from the point to the center of the rounded corner's circle, also
 578    // mirrored into bottom right quadrant.
 579    let corner_center_to_point = corner_to_point + corner_radius;
 580
 581    // Whether the nearest point on the border is rounded
 582    let is_near_rounded_corner =
 583            corner_center_to_point.x >= 0 &&
 584            corner_center_to_point.y >= 0;
 585
 586    // Vector from straight border inner corner to point.
 587    let straight_border_inner_corner_to_point = corner_to_point + reduced_border;
 588
 589    // Whether the point is beyond the inner edge of the straight border.
 590    let is_beyond_inner_straight_border =
 591            straight_border_inner_corner_to_point.x > 0 ||
 592            straight_border_inner_corner_to_point.y > 0;
 593
 594    // Whether the point is far enough inside the quad, such that the pixels are
 595    // not affected by the straight border.
 596    let is_within_inner_straight_border =
 597        straight_border_inner_corner_to_point.x < -antialias_threshold &&
 598        straight_border_inner_corner_to_point.y < -antialias_threshold;
 599
 600    // Fast path for points that must be part of the background.
 601    //
 602    // This could be optimized further for large rounded corners by including
 603    // points in an inscribed rectangle, or some other quick linear check.
 604    // However, that might negatively impact performance in the case of
 605    // reasonable sizes for rounded corners.
 606    if (is_within_inner_straight_border && !is_near_rounded_corner) {
 607        return blend_color(background_color, 1.0);
 608    }
 609
 610    // Signed distance of the point to the outside edge of the quad's border. It
 611    // is positive outside this edge, and negative inside.
 612    let outer_sdf = quad_sdf_impl(corner_center_to_point, corner_radius);
 613
 614    // Approximate signed distance of the point to the inside edge of the quad's
 615    // border. It is negative outside this edge (within the border), and
 616    // positive inside.
 617    //
 618    // This is not always an accurate signed distance:
 619    // * The rounded portions with varying border width use an approximation of
 620    //   nearest-point-on-ellipse.
 621    // * When it is quickly known to be outside the edge, -1.0 is used.
 622    var inner_sdf = 0.0;
 623    if (corner_center_to_point.x <= 0 || corner_center_to_point.y <= 0) {
 624        // Fast paths for straight borders.
 625        inner_sdf = -max(straight_border_inner_corner_to_point.x,
 626                         straight_border_inner_corner_to_point.y);
 627    } else if (is_beyond_inner_straight_border) {
 628        // Fast path for points that must be outside the inner edge.
 629        inner_sdf = -1.0;
 630    } else if (reduced_border.x == reduced_border.y) {
 631        // Fast path for circular inner edge.
 632        inner_sdf = -(outer_sdf + reduced_border.x);
 633    } else {
 634        let ellipse_radii = max(vec2<f32>(0.0), corner_radius - reduced_border);
 635        inner_sdf = quarter_ellipse_sdf(corner_center_to_point, ellipse_radii);
 636    }
 637
 638    // Negative when inside the border
 639    let border_sdf = max(inner_sdf, outer_sdf);
 640
 641    var color = background_color;
 642    if (border_sdf < antialias_threshold) {
 643        var border_color = input.border_color;
 644
 645        // Dashed border logic when border_style == 1
 646        if (quad.border_style == 1) {
 647            // Position along the perimeter in "dash space", where each dash
 648            // period has length 1
 649            var t = 0.0;
 650
 651            // Total number of dash periods, so that the dash spacing can be
 652            // adjusted to evenly divide it
 653            var max_t = 0.0;
 654
 655            // Border width is proportional to dash size. This is the behavior
 656            // used by browsers, but also avoids dashes from different segments
 657            // overlapping when dash size is smaller than the border width.
 658            //
 659            // Dash pattern: (2 * border width) dash, (1 * border width) gap
 660            let dash_length_per_width = 2.0;
 661            let dash_gap_per_width = 1.0;
 662            let dash_period_per_width = dash_length_per_width + dash_gap_per_width;
 663
 664            // Since the dash size is determined by border width, the density of
 665            // dashes varies. Multiplying a pixel distance by this returns a
 666            // position in dash space - it has units (dash period / pixels). So
 667            // a dash velocity of (1 / 10) is 1 dash every 10 pixels.
 668            var dash_velocity = 0.0;
 669
 670            // Dividing this by the border width gives the dash velocity
 671            let dv_numerator = 1.0 / dash_period_per_width;
 672
 673            if (unrounded) {
 674                // When corners aren't rounded, the dashes are separately laid
 675                // out on each straight line, rather than around the whole
 676                // perimeter. This way each line starts and ends with a dash.
 677                let is_horizontal =
 678                        corner_center_to_point.x <
 679                        corner_center_to_point.y;
 680                let border_width = select(border.y, border.x, is_horizontal);
 681                dash_velocity = dv_numerator / border_width;
 682                t = select(point.y, point.x, is_horizontal) * dash_velocity;
 683                max_t = select(size.y, size.x, is_horizontal) * dash_velocity;
 684            } else {
 685                // When corners are rounded, the dashes are laid out clockwise
 686                // around the whole perimeter.
 687
 688                let r_tr = quad.corner_radii.top_right;
 689                let r_br = quad.corner_radii.bottom_right;
 690                let r_bl = quad.corner_radii.bottom_left;
 691                let r_tl = quad.corner_radii.top_left;
 692
 693                let w_t = quad.border_widths.top;
 694                let w_r = quad.border_widths.right;
 695                let w_b = quad.border_widths.bottom;
 696                let w_l = quad.border_widths.left;
 697
 698                // Straight side dash velocities
 699                let dv_t = select(dv_numerator / w_t, 0.0, w_t <= 0.0);
 700                let dv_r = select(dv_numerator / w_r, 0.0, w_r <= 0.0);
 701                let dv_b = select(dv_numerator / w_b, 0.0, w_b <= 0.0);
 702                let dv_l = select(dv_numerator / w_l, 0.0, w_l <= 0.0);
 703
 704                // Straight side lengths in dash space
 705                let s_t = (size.x - r_tl - r_tr) * dv_t;
 706                let s_r = (size.y - r_tr - r_br) * dv_r;
 707                let s_b = (size.x - r_br - r_bl) * dv_b;
 708                let s_l = (size.y - r_bl - r_tl) * dv_l;
 709
 710                let corner_dash_velocity_tr = corner_dash_velocity(dv_t, dv_r);
 711                let corner_dash_velocity_br = corner_dash_velocity(dv_b, dv_r);
 712                let corner_dash_velocity_bl = corner_dash_velocity(dv_b, dv_l);
 713                let corner_dash_velocity_tl = corner_dash_velocity(dv_t, dv_l);
 714
 715                // Corner lengths in dash space
 716                let c_tr = r_tr * (M_PI_F / 2.0) * corner_dash_velocity_tr;
 717                let c_br = r_br * (M_PI_F / 2.0) * corner_dash_velocity_br;
 718                let c_bl = r_bl * (M_PI_F / 2.0) * corner_dash_velocity_bl;
 719                let c_tl = r_tl * (M_PI_F / 2.0) * corner_dash_velocity_tl;
 720
 721                // Cumulative dash space upto each segment
 722                let upto_tr = s_t;
 723                let upto_r = upto_tr + c_tr;
 724                let upto_br = upto_r + s_r;
 725                let upto_b = upto_br + c_br;
 726                let upto_bl = upto_b + s_b;
 727                let upto_l = upto_bl + c_bl;
 728                let upto_tl = upto_l + s_l;
 729                max_t = upto_tl + c_tl;
 730
 731                if (is_near_rounded_corner) {
 732                    let radians = atan2(corner_center_to_point.y,
 733                                        corner_center_to_point.x);
 734                    let corner_t = radians * corner_radius;
 735
 736                    if (center_to_point.x >= 0.0) {
 737                        if (center_to_point.y < 0.0) {
 738                            dash_velocity = corner_dash_velocity_tr;
 739                            // Subtracted because radians is pi/2 to 0 when
 740                            // going clockwise around the top right corner,
 741                            // since the y axis has been flipped
 742                            t = upto_r - corner_t * dash_velocity;
 743                        } else {
 744                            dash_velocity = corner_dash_velocity_br;
 745                            // Added because radians is 0 to pi/2 when going
 746                            // clockwise around the bottom-right corner
 747                            t = upto_br + corner_t * dash_velocity;
 748                        }
 749                    } else {
 750                        if (center_to_point.y >= 0.0) {
 751                            dash_velocity = corner_dash_velocity_bl;
 752                            // Subtracted because radians is pi/2 to 0 when
 753                            // going clockwise around the bottom-left corner,
 754                            // since the x axis has been flipped
 755                            t = upto_l - corner_t * dash_velocity;
 756                        } else {
 757                            dash_velocity = corner_dash_velocity_tl;
 758                            // Added because radians is 0 to pi/2 when going
 759                            // clockwise around the top-left corner, since both
 760                            // axis were flipped
 761                            t = upto_tl + corner_t * dash_velocity;
 762                        }
 763                    }
 764                } else {
 765                    // Straight borders
 766                    let is_horizontal =
 767                            corner_center_to_point.x <
 768                            corner_center_to_point.y;
 769                    if (is_horizontal) {
 770                        if (center_to_point.y < 0.0) {
 771                            dash_velocity = dv_t;
 772                            t = (point.x - r_tl) * dash_velocity;
 773                        } else {
 774                            dash_velocity = dv_b;
 775                            t = upto_bl - (point.x - r_bl) * dash_velocity;
 776                        }
 777                    } else {
 778                        if (center_to_point.x < 0.0) {
 779                            dash_velocity = dv_l;
 780                            t = upto_tl - (point.y - r_tl) * dash_velocity;
 781                        } else {
 782                            dash_velocity = dv_r;
 783                            t = upto_r + (point.y - r_tr) * dash_velocity;
 784                        }
 785                    }
 786                }
 787            }
 788
 789            let dash_length = dash_length_per_width / dash_period_per_width;
 790            let desired_dash_gap = dash_gap_per_width / dash_period_per_width;
 791
 792            // Straight borders should start and end with a dash, so max_t is
 793            // reduced to cause this.
 794            max_t -= select(0.0, dash_length, unrounded);
 795            if (max_t >= 1.0) {
 796                // Adjust dash gap to evenly divide max_t.
 797                let dash_count = floor(max_t);
 798                let dash_period = max_t / dash_count;
 799                border_color.a *= dash_alpha(
 800                    t,
 801                    dash_period,
 802                    dash_length,
 803                    dash_velocity,
 804                    antialias_threshold);
 805            } else if (unrounded) {
 806                // When there isn't enough space for the full gap between the
 807                // two start / end dashes of a straight border, reduce gap to
 808                // make them fit.
 809                let dash_gap = max_t - dash_length;
 810                if (dash_gap > 0.0) {
 811                    let dash_period = dash_length + dash_gap;
 812                    border_color.a *= dash_alpha(
 813                        t,
 814                        dash_period,
 815                        dash_length,
 816                        dash_velocity,
 817                        antialias_threshold);
 818                }
 819            }
 820        }
 821
 822        // Blend the border on top of the background and then linearly interpolate
 823        // between the two as we slide inside the background.
 824        let blended_border = over(background_color, border_color);
 825        color = mix(background_color, blended_border,
 826                    saturate(antialias_threshold - inner_sdf));
 827    }
 828
 829    return blend_color(color, saturate(antialias_threshold - outer_sdf));
 830}
 831
 832// Returns the dash velocity of a corner given the dash velocity of the two
 833// sides, by returning the slower velocity (larger dashes).
 834//
 835// Since 0 is used for dash velocity when the border width is 0 (instead of
 836// +inf), this returns the other dash velocity in that case.
 837//
 838// An alternative to this might be to appropriately interpolate the dash
 839// velocity around the corner, but that seems overcomplicated.
 840fn corner_dash_velocity(dv1: f32, dv2: f32) -> f32 {
 841    if (dv1 == 0.0) {
 842        return dv2;
 843    } else if (dv2 == 0.0) {
 844        return dv1;
 845    } else {
 846        return min(dv1, dv2);
 847    }
 848}
 849
 850// Returns alpha used to render antialiased dashes.
 851// `t` is within the dash when `fmod(t, period) < length`.
 852fn dash_alpha(t: f32, period: f32, length: f32, dash_velocity: f32, antialias_threshold: f32) -> f32 {
 853    let half_period = period / 2;
 854    let half_length = length / 2;
 855    // Value in [-half_period, half_period].
 856    // The dash is in [-half_length, half_length].
 857    let centered = fmod(t + half_period - half_length, period) - half_period;
 858    // Signed distance for the dash, negative values are inside the dash.
 859    let signed_distance = abs(centered) - half_length;
 860    // Antialiased alpha based on the signed distance.
 861    return saturate(antialias_threshold - signed_distance / dash_velocity);
 862}
 863
 864// This approximates distance to the nearest point to a quarter ellipse in a way
 865// that is sufficient for anti-aliasing when the ellipse is not very eccentric.
 866// The components of `point` are expected to be positive.
 867//
 868// Negative on the outside and positive on the inside.
 869fn quarter_ellipse_sdf(point: vec2<f32>, radii: vec2<f32>) -> f32 {
 870    // Scale the space to treat the ellipse like a unit circle.
 871    let circle_vec = point / radii;
 872    let unit_circle_sdf = length(circle_vec) - 1.0;
 873    // Approximate up-scaling of the length by using the average of the radii.
 874    //
 875    // TODO: A better solution would be to use the gradient of the implicit
 876    // function for an ellipse to approximate a scaling factor.
 877    return unit_circle_sdf * (radii.x + radii.y) * -0.5;
 878}
 879
 880// Modulus that has the same sign as `a`.
 881fn fmod(a: f32, b: f32) -> f32 {
 882    return a - b * trunc(a / b);
 883}
 884
 885// --- shadows --- //
 886
 887struct Shadow {
 888    order: u32,
 889    blur_radius: f32,
 890    bounds: Bounds,
 891    corner_radii: Corners,
 892    content_mask: Bounds,
 893    color: Hsla,
 894}
 895var<storage, read> b_shadows: array<Shadow>;
 896
 897struct ShadowVarying {
 898    @builtin(position) position: vec4<f32>,
 899    @location(0) @interpolate(flat) color: vec4<f32>,
 900    @location(1) @interpolate(flat) shadow_id: u32,
 901    //TODO: use `clip_distance` once Naga supports it
 902    @location(3) clip_distances: vec4<f32>,
 903}
 904
 905@vertex
 906fn vs_shadow(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> ShadowVarying {
 907    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
 908    var shadow = b_shadows[instance_id];
 909
 910    let margin = 3.0 * shadow.blur_radius;
 911    // Set the bounds of the shadow and adjust its size based on the shadow's
 912    // spread radius to achieve the spreading effect
 913    shadow.bounds.origin -= vec2<f32>(margin);
 914    shadow.bounds.size += 2.0 * vec2<f32>(margin);
 915
 916    var out = ShadowVarying();
 917    out.position = to_device_position(unit_vertex, shadow.bounds);
 918    out.color = hsla_to_rgba(shadow.color);
 919    out.shadow_id = instance_id;
 920    out.clip_distances = distance_from_clip_rect(unit_vertex, shadow.bounds, shadow.content_mask);
 921    return out;
 922}
 923
 924@fragment
 925fn fs_shadow(input: ShadowVarying) -> @location(0) vec4<f32> {
 926    // Alpha clip first, since we don't have `clip_distance`.
 927    if (any(input.clip_distances < vec4<f32>(0.0))) {
 928        return vec4<f32>(0.0);
 929    }
 930
 931    let shadow = b_shadows[input.shadow_id];
 932    let half_size = shadow.bounds.size / 2.0;
 933    let center = shadow.bounds.origin + half_size;
 934    let center_to_point = input.position.xy - center;
 935
 936    let corner_radius = pick_corner_radius(center_to_point, shadow.corner_radii);
 937
 938    // The signal is only non-zero in a limited range, so don't waste samples
 939    let low = center_to_point.y - half_size.y;
 940    let high = center_to_point.y + half_size.y;
 941    let start = clamp(-3.0 * shadow.blur_radius, low, high);
 942    let end = clamp(3.0 * shadow.blur_radius, low, high);
 943
 944    // Accumulate samples (we can get away with surprisingly few samples)
 945    let step = (end - start) / 4.0;
 946    var y = start + step * 0.5;
 947    var alpha = 0.0;
 948    for (var i = 0; i < 4; i += 1) {
 949        let blur = blur_along_x(center_to_point.x, center_to_point.y - y,
 950            shadow.blur_radius, corner_radius, half_size);
 951        alpha +=  blur * gaussian(y, shadow.blur_radius) * step;
 952        y += step;
 953    }
 954
 955    return blend_color(input.color, alpha);
 956}
 957
 958// --- path rasterization --- //
 959
 960struct PathRasterizationVertex {
 961    xy_position: vec2<f32>,
 962    st_position: vec2<f32>,
 963    color: Background,
 964    bounds: Bounds,
 965}
 966
 967var<storage, read> b_path_vertices: array<PathRasterizationVertex>;
 968
 969struct PathRasterizationVarying {
 970    @builtin(position) position: vec4<f32>,
 971    @location(0) st_position: vec2<f32>,
 972    @location(1) vertex_id: u32,
 973    //TODO: use `clip_distance` once Naga supports it
 974    @location(3) clip_distances: vec4<f32>,
 975}
 976
 977@vertex
 978fn vs_path_rasterization(@builtin(vertex_index) vertex_id: u32) -> PathRasterizationVarying {
 979    let v = b_path_vertices[vertex_id];
 980
 981    var out = PathRasterizationVarying();
 982    out.position = to_device_position_impl(v.xy_position);
 983    out.st_position = v.st_position;
 984    out.vertex_id = vertex_id;
 985    out.clip_distances = distance_from_clip_rect_impl(v.xy_position, v.bounds);
 986    return out;
 987}
 988
 989@fragment
 990fn fs_path_rasterization(input: PathRasterizationVarying) -> @location(0) vec4<f32> {
 991    let dx = dpdx(input.st_position);
 992    let dy = dpdy(input.st_position);
 993    if (any(input.clip_distances < vec4<f32>(0.0))) {
 994        return vec4<f32>(0.0);
 995    }
 996
 997    let v = b_path_vertices[input.vertex_id];
 998    let background = v.color;
 999    let bounds = v.bounds;
1000
1001    var alpha: f32;
1002    if (length(vec2<f32>(dx.x, dy.x)) < 0.001) {
1003        // If the gradient is too small, return a solid color.
1004        alpha = 1.0;
1005    } else {
1006        let gradient = 2.0 * input.st_position.xx * vec2<f32>(dx.x, dy.x) - vec2<f32>(dx.y, dy.y);
1007        let f = input.st_position.x * input.st_position.x - input.st_position.y;
1008        let distance = f / length(gradient);
1009        alpha = saturate(0.5 - distance);
1010    }
1011    let gradient_color = prepare_gradient_color(
1012        background.tag,
1013        background.color_space,
1014        background.solid,
1015        background.colors,
1016    );
1017    let color = gradient_color(background, input.position.xy, bounds,
1018        gradient_color.solid, gradient_color.color0, gradient_color.color1);
1019    return vec4<f32>(color.rgb * color.a * alpha, color.a * alpha);
1020}
1021
1022// --- paths --- //
1023
1024struct PathSprite {
1025    bounds: Bounds,
1026}
1027var<storage, read> b_path_sprites: array<PathSprite>;
1028
1029struct PathVarying {
1030    @builtin(position) position: vec4<f32>,
1031    @location(0) texture_coords: vec2<f32>,
1032}
1033
1034@vertex
1035fn vs_path(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PathVarying {
1036    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1037    let sprite = b_path_sprites[instance_id];
1038    // Don't apply content mask because it was already accounted for when rasterizing the path.
1039    let device_position = to_device_position(unit_vertex, sprite.bounds);
1040    // For screen-space intermediate texture, convert screen position to texture coordinates
1041    let screen_position = sprite.bounds.origin + unit_vertex * sprite.bounds.size;
1042    let texture_coords = screen_position / globals.viewport_size;
1043
1044    var out = PathVarying();
1045    out.position = device_position;
1046    out.texture_coords = texture_coords;
1047
1048    return out;
1049}
1050
1051@fragment
1052fn fs_path(input: PathVarying) -> @location(0) vec4<f32> {
1053    let sample = textureSample(t_sprite, s_sprite, input.texture_coords);
1054    return sample;
1055}
1056
1057// --- underlines --- //
1058
1059struct Underline {
1060    order: u32,
1061    pad: u32,
1062    bounds: Bounds,
1063    content_mask: Bounds,
1064    color: Hsla,
1065    thickness: f32,
1066    wavy: u32,
1067}
1068var<storage, read> b_underlines: array<Underline>;
1069
1070struct UnderlineVarying {
1071    @builtin(position) position: vec4<f32>,
1072    @location(0) @interpolate(flat) color: vec4<f32>,
1073    @location(1) @interpolate(flat) underline_id: u32,
1074    //TODO: use `clip_distance` once Naga supports it
1075    @location(3) clip_distances: vec4<f32>,
1076}
1077
1078@vertex
1079fn vs_underline(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> UnderlineVarying {
1080    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1081    let underline = b_underlines[instance_id];
1082
1083    var out = UnderlineVarying();
1084    out.position = to_device_position(unit_vertex, underline.bounds);
1085    out.color = hsla_to_rgba(underline.color);
1086    out.underline_id = instance_id;
1087    out.clip_distances = distance_from_clip_rect(unit_vertex, underline.bounds, underline.content_mask);
1088    return out;
1089}
1090
1091@fragment
1092fn fs_underline(input: UnderlineVarying) -> @location(0) vec4<f32> {
1093    const WAVE_FREQUENCY: f32 = 2.0;
1094    const WAVE_HEIGHT_RATIO: f32 = 0.8;
1095
1096    // Alpha clip first, since we don't have `clip_distance`.
1097    if (any(input.clip_distances < vec4<f32>(0.0))) {
1098        return vec4<f32>(0.0);
1099    }
1100
1101    let underline = b_underlines[input.underline_id];
1102    if ((underline.wavy & 0xFFu) == 0u)
1103    {
1104        return blend_color(input.color, input.color.a);
1105    }
1106
1107    let half_thickness = underline.thickness * 0.5;
1108
1109    let st = (input.position.xy - underline.bounds.origin) / underline.bounds.size.y - vec2<f32>(0.0, 0.5);
1110    let frequency = M_PI_F * WAVE_FREQUENCY * underline.thickness / underline.bounds.size.y;
1111    let amplitude = (underline.thickness * WAVE_HEIGHT_RATIO) / underline.bounds.size.y;
1112
1113    let sine = sin(st.x * frequency) * amplitude;
1114    let dSine = cos(st.x * frequency) * amplitude * frequency;
1115    let distance = (st.y - sine) / sqrt(1.0 + dSine * dSine);
1116    let distance_in_pixels = distance * underline.bounds.size.y;
1117    let distance_from_top_border = distance_in_pixels - half_thickness;
1118    let distance_from_bottom_border = distance_in_pixels + half_thickness;
1119    let alpha = saturate(0.5 - max(-distance_from_bottom_border, distance_from_top_border));
1120    return blend_color(input.color, alpha * input.color.a);
1121}
1122
1123// --- monochrome sprites --- //
1124
1125struct MonochromeSprite {
1126    order: u32,
1127    pad: u32,
1128    bounds: Bounds,
1129    content_mask: Bounds,
1130    color: Hsla,
1131    tile: AtlasTile,
1132    transformation: TransformationMatrix,
1133}
1134var<storage, read> b_mono_sprites: array<MonochromeSprite>;
1135
1136struct MonoSpriteVarying {
1137    @builtin(position) position: vec4<f32>,
1138    @location(0) tile_position: vec2<f32>,
1139    @location(1) @interpolate(flat) color: vec4<f32>,
1140    @location(3) clip_distances: vec4<f32>,
1141}
1142
1143@vertex
1144fn vs_mono_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> MonoSpriteVarying {
1145    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1146    let sprite = b_mono_sprites[instance_id];
1147
1148    var out = MonoSpriteVarying();
1149    out.position = to_device_position_transformed(unit_vertex, sprite.bounds, sprite.transformation);
1150
1151    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
1152    out.color = hsla_to_rgba(sprite.color);
1153    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
1154    return out;
1155}
1156
1157@fragment
1158fn fs_mono_sprite(input: MonoSpriteVarying) -> @location(0) vec4<f32> {
1159    let sample = textureSample(t_sprite, s_sprite, input.tile_position).r;
1160    let alpha_corrected = apply_contrast_and_gamma_correction(sample, input.color.rgb, grayscale_enhanced_contrast, gamma_ratios);
1161
1162    // Alpha clip after using the derivatives.
1163    if (any(input.clip_distances < vec4<f32>(0.0))) {
1164        return vec4<f32>(0.0);
1165    }
1166
1167    // convert to srgb space as the rest of the code (output swapchain) expects that
1168    return blend_color(input.color, alpha_corrected);
1169}
1170
1171// --- polychrome sprites --- //
1172
1173struct PolychromeSprite {
1174    order: u32,
1175    pad: u32,
1176    grayscale: u32,
1177    opacity: f32,
1178    bounds: Bounds,
1179    content_mask: Bounds,
1180    corner_radii: Corners,
1181    tile: AtlasTile,
1182}
1183var<storage, read> b_poly_sprites: array<PolychromeSprite>;
1184
1185struct PolySpriteVarying {
1186    @builtin(position) position: vec4<f32>,
1187    @location(0) tile_position: vec2<f32>,
1188    @location(1) @interpolate(flat) sprite_id: u32,
1189    @location(3) clip_distances: vec4<f32>,
1190}
1191
1192@vertex
1193fn vs_poly_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PolySpriteVarying {
1194    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1195    let sprite = b_poly_sprites[instance_id];
1196
1197    var out = PolySpriteVarying();
1198    out.position = to_device_position(unit_vertex, sprite.bounds);
1199    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
1200    out.sprite_id = instance_id;
1201    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
1202    return out;
1203}
1204
1205@fragment
1206fn fs_poly_sprite(input: PolySpriteVarying) -> @location(0) vec4<f32> {
1207    let sample = textureSample(t_sprite, s_sprite, input.tile_position);
1208    // Alpha clip after using the derivatives.
1209    if (any(input.clip_distances < vec4<f32>(0.0))) {
1210        return vec4<f32>(0.0);
1211    }
1212
1213    let sprite = b_poly_sprites[input.sprite_id];
1214    let distance = quad_sdf(input.position.xy, sprite.bounds, sprite.corner_radii);
1215
1216    var color = sample;
1217    if ((sprite.grayscale & 0xFFu) != 0u) {
1218        let grayscale = dot(color.rgb, GRAYSCALE_FACTORS);
1219        color = vec4<f32>(vec3<f32>(grayscale), sample.a);
1220    }
1221    return blend_color(color, sprite.opacity * saturate(0.5 - distance));
1222}
1223
1224// --- surfaces --- //
1225
1226struct SurfaceParams {
1227    bounds: Bounds,
1228    content_mask: Bounds,
1229}
1230
1231var<uniform> surface_locals: SurfaceParams;
1232var t_y: texture_2d<f32>;
1233var t_cb_cr: texture_2d<f32>;
1234var s_surface: sampler;
1235
1236const ycbcr_to_RGB = mat4x4<f32>(
1237    vec4<f32>( 1.0000f,  1.0000f,  1.0000f, 0.0),
1238    vec4<f32>( 0.0000f, -0.3441f,  1.7720f, 0.0),
1239    vec4<f32>( 1.4020f, -0.7141f,  0.0000f, 0.0),
1240    vec4<f32>(-0.7010f,  0.5291f, -0.8860f, 1.0),
1241);
1242
1243struct SurfaceVarying {
1244    @builtin(position) position: vec4<f32>,
1245    @location(0) texture_position: vec2<f32>,
1246    @location(3) clip_distances: vec4<f32>,
1247}
1248
1249@vertex
1250fn vs_surface(@builtin(vertex_index) vertex_id: u32) -> SurfaceVarying {
1251    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1252
1253    var out = SurfaceVarying();
1254    out.position = to_device_position(unit_vertex, surface_locals.bounds);
1255    out.texture_position = unit_vertex;
1256    out.clip_distances = distance_from_clip_rect(unit_vertex, surface_locals.bounds, surface_locals.content_mask);
1257    return out;
1258}
1259
1260@fragment
1261fn fs_surface(input: SurfaceVarying) -> @location(0) vec4<f32> {
1262    // Alpha clip after using the derivatives.
1263    if (any(input.clip_distances < vec4<f32>(0.0))) {
1264        return vec4<f32>(0.0);
1265    }
1266
1267    let y_cb_cr = vec4<f32>(
1268        textureSampleLevel(t_y, s_surface, input.texture_position, 0.0).r,
1269        textureSampleLevel(t_cb_cr, s_surface, input.texture_position, 0.0).rg,
1270        1.0);
1271
1272    return ycbcr_to_RGB * y_cb_cr;
1273}