1//! The GPUI geometry module is a collection of types and traits that
2//! can be used to describe common units, concepts, and the relationships
3//! between them.
4
5use core::fmt::Debug;
6use derive_more::{Add, AddAssign, Div, DivAssign, Mul, Neg, Sub, SubAssign};
7use refineable::Refineable;
8use schemars::JsonSchema;
9use serde_derive::{Deserialize, Serialize};
10use std::{
11 cmp::{self, PartialOrd},
12 fmt,
13 hash::Hash,
14 ops::{Add, Div, Mul, MulAssign, Sub},
15};
16
17use crate::{AppContext, DisplayId};
18
19/// An axis along which a measurement can be made.
20#[derive(Copy, Clone, PartialEq, Eq, Debug)]
21pub enum Axis {
22 /// The y axis, or up and down
23 Vertical,
24 /// The x axis, or left and right
25 Horizontal,
26}
27
28impl Axis {
29 /// Swap this axis to the opposite axis.
30 pub fn invert(self) -> Self {
31 match self {
32 Axis::Vertical => Axis::Horizontal,
33 Axis::Horizontal => Axis::Vertical,
34 }
35 }
36}
37
38/// A trait for accessing the given unit along a certain axis.
39pub trait Along {
40 /// The unit associated with this type
41 type Unit;
42
43 /// Returns the unit along the given axis.
44 fn along(&self, axis: Axis) -> Self::Unit;
45
46 /// Applies the given function to the unit along the given axis and returns a new value.
47 fn apply_along(&self, axis: Axis, f: impl FnOnce(Self::Unit) -> Self::Unit) -> Self;
48}
49
50/// Describes a location in a 2D cartesian coordinate space.
51///
52/// It holds two public fields, `x` and `y`, which represent the coordinates in the space.
53/// The type `T` for the coordinates can be any type that implements `Default`, `Clone`, and `Debug`.
54///
55/// # Examples
56///
57/// ```
58/// # use zed::Point;
59/// let point = Point { x: 10, y: 20 };
60/// println!("{:?}", point); // Outputs: Point { x: 10, y: 20 }
61/// ```
62#[derive(Refineable, Default, Add, AddAssign, Sub, SubAssign, Copy, Debug, PartialEq, Eq, Hash)]
63#[refineable(Debug)]
64#[repr(C)]
65pub struct Point<T: Default + Clone + Debug> {
66 /// The x coordinate of the point.
67 pub x: T,
68 /// The y coordinate of the point.
69 pub y: T,
70}
71
72/// Constructs a new `Point<T>` with the given x and y coordinates.
73///
74/// # Arguments
75///
76/// * `x` - The x coordinate of the point.
77/// * `y` - The y coordinate of the point.
78///
79/// # Returns
80///
81/// Returns a `Point<T>` with the specified coordinates.
82///
83/// # Examples
84///
85/// ```
86/// # use zed::Point;
87/// let p = point(10, 20);
88/// assert_eq!(p.x, 10);
89/// assert_eq!(p.y, 20);
90/// ```
91pub const fn point<T: Clone + Debug + Default>(x: T, y: T) -> Point<T> {
92 Point { x, y }
93}
94
95impl<T: Clone + Debug + Default> Point<T> {
96 /// Creates a new `Point` with the specified `x` and `y` coordinates.
97 ///
98 /// # Arguments
99 ///
100 /// * `x` - The horizontal coordinate of the point.
101 /// * `y` - The vertical coordinate of the point.
102 ///
103 /// # Examples
104 ///
105 /// ```
106 /// let p = Point::new(10, 20);
107 /// assert_eq!(p.x, 10);
108 /// assert_eq!(p.y, 20);
109 /// ```
110 pub const fn new(x: T, y: T) -> Self {
111 Self { x, y }
112 }
113
114 /// Transforms the point to a `Point<U>` by applying the given function to both coordinates.
115 ///
116 /// This method allows for converting a `Point<T>` to a `Point<U>` by specifying a closure
117 /// that defines how to convert between the two types. The closure is applied to both the `x`
118 /// and `y` coordinates, resulting in a new point of the desired type.
119 ///
120 /// # Arguments
121 ///
122 /// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
123 ///
124 /// # Examples
125 ///
126 /// ```
127 /// # use zed::Point;
128 /// let p = Point { x: 3, y: 4 };
129 /// let p_float = p.map(|coord| coord as f32);
130 /// assert_eq!(p_float, Point { x: 3.0, y: 4.0 });
131 /// ```
132 pub fn map<U: Clone + Default + Debug>(&self, f: impl Fn(T) -> U) -> Point<U> {
133 Point {
134 x: f(self.x.clone()),
135 y: f(self.y.clone()),
136 }
137 }
138}
139
140impl<T: Clone + Debug + Default> Along for Point<T> {
141 type Unit = T;
142
143 fn along(&self, axis: Axis) -> T {
144 match axis {
145 Axis::Horizontal => self.x.clone(),
146 Axis::Vertical => self.y.clone(),
147 }
148 }
149
150 fn apply_along(&self, axis: Axis, f: impl FnOnce(T) -> T) -> Point<T> {
151 match axis {
152 Axis::Horizontal => Point {
153 x: f(self.x.clone()),
154 y: self.y.clone(),
155 },
156 Axis::Vertical => Point {
157 x: self.x.clone(),
158 y: f(self.y.clone()),
159 },
160 }
161 }
162}
163
164impl<T: Clone + Debug + Default + Negate> Negate for Point<T> {
165 fn negate(self) -> Self {
166 self.map(Negate::negate)
167 }
168}
169
170impl Point<Pixels> {
171 /// Scales the point by a given factor, which is typically derived from the resolution
172 /// of a target display to ensure proper sizing of UI elements.
173 ///
174 /// # Arguments
175 ///
176 /// * `factor` - The scaling factor to apply to both the x and y coordinates.
177 ///
178 /// # Examples
179 ///
180 /// ```
181 /// # use zed::{Point, Pixels, ScaledPixels};
182 /// let p = Point { x: Pixels(10.0), y: Pixels(20.0) };
183 /// let scaled_p = p.scale(1.5);
184 /// assert_eq!(scaled_p, Point { x: ScaledPixels(15.0), y: ScaledPixels(30.0) });
185 /// ```
186 pub fn scale(&self, factor: f32) -> Point<ScaledPixels> {
187 Point {
188 x: self.x.scale(factor),
189 y: self.y.scale(factor),
190 }
191 }
192
193 /// Calculates the Euclidean distance from the origin (0, 0) to this point.
194 ///
195 /// # Examples
196 ///
197 /// ```
198 /// # use zed::Point;
199 /// # use zed::Pixels;
200 /// let p = Point { x: Pixels(3.0), y: Pixels(4.0) };
201 /// assert_eq!(p.magnitude(), 5.0);
202 /// ```
203 pub fn magnitude(&self) -> f64 {
204 ((self.x.0.powi(2) + self.y.0.powi(2)) as f64).sqrt()
205 }
206}
207
208impl<T, Rhs> Mul<Rhs> for Point<T>
209where
210 T: Mul<Rhs, Output = T> + Clone + Default + Debug,
211 Rhs: Clone + Debug,
212{
213 type Output = Point<T>;
214
215 fn mul(self, rhs: Rhs) -> Self::Output {
216 Point {
217 x: self.x * rhs.clone(),
218 y: self.y * rhs,
219 }
220 }
221}
222
223impl<T, S> MulAssign<S> for Point<T>
224where
225 T: Clone + Mul<S, Output = T> + Default + Debug,
226 S: Clone,
227{
228 fn mul_assign(&mut self, rhs: S) {
229 self.x = self.x.clone() * rhs.clone();
230 self.y = self.y.clone() * rhs;
231 }
232}
233
234impl<T, S> Div<S> for Point<T>
235where
236 T: Div<S, Output = T> + Clone + Default + Debug,
237 S: Clone,
238{
239 type Output = Self;
240
241 fn div(self, rhs: S) -> Self::Output {
242 Self {
243 x: self.x / rhs.clone(),
244 y: self.y / rhs,
245 }
246 }
247}
248
249impl<T> Point<T>
250where
251 T: PartialOrd + Clone + Default + Debug,
252{
253 /// Returns a new point with the maximum values of each dimension from `self` and `other`.
254 ///
255 /// # Arguments
256 ///
257 /// * `other` - A reference to another `Point` to compare with `self`.
258 ///
259 /// # Examples
260 ///
261 /// ```
262 /// # use zed::Point;
263 /// let p1 = Point { x: 3, y: 7 };
264 /// let p2 = Point { x: 5, y: 2 };
265 /// let max_point = p1.max(&p2);
266 /// assert_eq!(max_point, Point { x: 5, y: 7 });
267 /// ```
268 pub fn max(&self, other: &Self) -> Self {
269 Point {
270 x: if self.x > other.x {
271 self.x.clone()
272 } else {
273 other.x.clone()
274 },
275 y: if self.y > other.y {
276 self.y.clone()
277 } else {
278 other.y.clone()
279 },
280 }
281 }
282
283 /// Returns a new point with the minimum values of each dimension from `self` and `other`.
284 ///
285 /// # Arguments
286 ///
287 /// * `other` - A reference to another `Point` to compare with `self`.
288 ///
289 /// # Examples
290 ///
291 /// ```
292 /// # use zed::Point;
293 /// let p1 = Point { x: 3, y: 7 };
294 /// let p2 = Point { x: 5, y: 2 };
295 /// let min_point = p1.min(&p2);
296 /// assert_eq!(min_point, Point { x: 3, y: 2 });
297 /// ```
298 pub fn min(&self, other: &Self) -> Self {
299 Point {
300 x: if self.x <= other.x {
301 self.x.clone()
302 } else {
303 other.x.clone()
304 },
305 y: if self.y <= other.y {
306 self.y.clone()
307 } else {
308 other.y.clone()
309 },
310 }
311 }
312
313 /// Clamps the point to a specified range.
314 ///
315 /// Given a minimum point and a maximum point, this method constrains the current point
316 /// such that its coordinates do not exceed the range defined by the minimum and maximum points.
317 /// If the current point's coordinates are less than the minimum, they are set to the minimum.
318 /// If they are greater than the maximum, they are set to the maximum.
319 ///
320 /// # Arguments
321 ///
322 /// * `min` - A reference to a `Point` representing the minimum allowable coordinates.
323 /// * `max` - A reference to a `Point` representing the maximum allowable coordinates.
324 ///
325 /// # Examples
326 ///
327 /// ```
328 /// # use zed::Point;
329 /// let p = Point { x: 10, y: 20 };
330 /// let min = Point { x: 0, y: 5 };
331 /// let max = Point { x: 15, y: 25 };
332 /// let clamped_p = p.clamp(&min, &max);
333 /// assert_eq!(clamped_p, Point { x: 10, y: 20 });
334 ///
335 /// let p_out_of_bounds = Point { x: -5, y: 30 };
336 /// let clamped_p_out_of_bounds = p_out_of_bounds.clamp(&min, &max);
337 /// assert_eq!(clamped_p_out_of_bounds, Point { x: 0, y: 25 });
338 /// ```
339 pub fn clamp(&self, min: &Self, max: &Self) -> Self {
340 self.max(min).min(max)
341 }
342}
343
344impl<T: Clone + Default + Debug> Clone for Point<T> {
345 fn clone(&self) -> Self {
346 Self {
347 x: self.x.clone(),
348 y: self.y.clone(),
349 }
350 }
351}
352
353/// A structure representing a two-dimensional size with width and height in a given unit.
354///
355/// This struct is generic over the type `T`, which can be any type that implements `Clone`, `Default`, and `Debug`.
356/// It is commonly used to specify dimensions for elements in a UI, such as a window or element.
357#[derive(Refineable, Default, Clone, Copy, PartialEq, Div, Hash, Serialize, Deserialize)]
358#[refineable(Debug)]
359#[repr(C)]
360pub struct Size<T: Clone + Default + Debug> {
361 /// The width component of the size.
362 pub width: T,
363 /// The height component of the size.
364 pub height: T,
365}
366
367/// Constructs a new `Size<T>` with the provided width and height.
368///
369/// # Arguments
370///
371/// * `width` - The width component of the `Size`.
372/// * `height` - The height component of the `Size`.
373///
374/// # Examples
375///
376/// ```
377/// # use zed::Size;
378/// let my_size = size(10, 20);
379/// assert_eq!(my_size.width, 10);
380/// assert_eq!(my_size.height, 20);
381/// ```
382pub const fn size<T>(width: T, height: T) -> Size<T>
383where
384 T: Clone + Default + Debug,
385{
386 Size { width, height }
387}
388
389impl<T> Size<T>
390where
391 T: Clone + Default + Debug,
392{
393 /// Applies a function to the width and height of the size, producing a new `Size<U>`.
394 ///
395 /// This method allows for converting a `Size<T>` to a `Size<U>` by specifying a closure
396 /// that defines how to convert between the two types. The closure is applied to both the `width`
397 /// and `height`, resulting in a new size of the desired type.
398 ///
399 /// # Arguments
400 ///
401 /// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
402 ///
403 /// # Examples
404 ///
405 /// ```
406 /// # use zed::Size;
407 /// let my_size = Size { width: 10, height: 20 };
408 /// let my_new_size = my_size.map(|dimension| dimension as f32 * 1.5);
409 /// assert_eq!(my_new_size, Size { width: 15.0, height: 30.0 });
410 /// ```
411 pub fn map<U>(&self, f: impl Fn(T) -> U) -> Size<U>
412 where
413 U: Clone + Default + Debug,
414 {
415 Size {
416 width: f(self.width.clone()),
417 height: f(self.height.clone()),
418 }
419 }
420}
421
422impl<T> Size<T>
423where
424 T: Clone + Default + Debug + Half,
425{
426 /// Compute the center point of the size.g
427 pub fn center(&self) -> Point<T> {
428 Point {
429 x: self.width.half(),
430 y: self.height.half(),
431 }
432 }
433}
434
435impl Size<Pixels> {
436 /// Scales the size by a given factor.
437 ///
438 /// This method multiplies both the width and height by the provided scaling factor,
439 /// resulting in a new `Size<ScaledPixels>` that is proportionally larger or smaller
440 /// depending on the factor.
441 ///
442 /// # Arguments
443 ///
444 /// * `factor` - The scaling factor to apply to the width and height.
445 ///
446 /// # Examples
447 ///
448 /// ```
449 /// # use zed::{Size, Pixels, ScaledPixels};
450 /// let size = Size { width: Pixels(100.0), height: Pixels(50.0) };
451 /// let scaled_size = size.scale(2.0);
452 /// assert_eq!(scaled_size, Size { width: ScaledPixels(200.0), height: ScaledPixels(100.0) });
453 /// ```
454 pub fn scale(&self, factor: f32) -> Size<ScaledPixels> {
455 Size {
456 width: self.width.scale(factor),
457 height: self.height.scale(factor),
458 }
459 }
460}
461
462impl<T> Along for Size<T>
463where
464 T: Clone + Default + Debug,
465{
466 type Unit = T;
467
468 fn along(&self, axis: Axis) -> T {
469 match axis {
470 Axis::Horizontal => self.width.clone(),
471 Axis::Vertical => self.height.clone(),
472 }
473 }
474
475 /// Returns the value of this size along the given axis.
476 fn apply_along(&self, axis: Axis, f: impl FnOnce(T) -> T) -> Self {
477 match axis {
478 Axis::Horizontal => Size {
479 width: f(self.width.clone()),
480 height: self.height.clone(),
481 },
482 Axis::Vertical => Size {
483 width: self.width.clone(),
484 height: f(self.height.clone()),
485 },
486 }
487 }
488}
489
490impl<T> Size<T>
491where
492 T: PartialOrd + Clone + Default + Debug,
493{
494 /// Returns a new `Size` with the maximum width and height from `self` and `other`.
495 ///
496 /// # Arguments
497 ///
498 /// * `other` - A reference to another `Size` to compare with `self`.
499 ///
500 /// # Examples
501 ///
502 /// ```
503 /// # use zed::Size;
504 /// let size1 = Size { width: 30, height: 40 };
505 /// let size2 = Size { width: 50, height: 20 };
506 /// let max_size = size1.max(&size2);
507 /// assert_eq!(max_size, Size { width: 50, height: 40 });
508 /// ```
509 pub fn max(&self, other: &Self) -> Self {
510 Size {
511 width: if self.width >= other.width {
512 self.width.clone()
513 } else {
514 other.width.clone()
515 },
516 height: if self.height >= other.height {
517 self.height.clone()
518 } else {
519 other.height.clone()
520 },
521 }
522 }
523 /// Returns a new `Size` with the minimum width and height from `self` and `other`.
524 ///
525 /// # Arguments
526 ///
527 /// * `other` - A reference to another `Size` to compare with `self`.
528 ///
529 /// # Examples
530 ///
531 /// ```
532 /// # use zed::Size;
533 /// let size1 = Size { width: 30, height: 40 };
534 /// let size2 = Size { width: 50, height: 20 };
535 /// let min_size = size1.min(&size2);
536 /// assert_eq!(min_size, Size { width: 30, height: 20 });
537 /// ```
538 pub fn min(&self, other: &Self) -> Self {
539 Size {
540 width: if self.width >= other.width {
541 other.width.clone()
542 } else {
543 self.width.clone()
544 },
545 height: if self.height >= other.height {
546 other.height.clone()
547 } else {
548 self.height.clone()
549 },
550 }
551 }
552}
553
554impl<T> Sub for Size<T>
555where
556 T: Sub<Output = T> + Clone + Default + Debug,
557{
558 type Output = Size<T>;
559
560 fn sub(self, rhs: Self) -> Self::Output {
561 Size {
562 width: self.width - rhs.width,
563 height: self.height - rhs.height,
564 }
565 }
566}
567
568impl<T> Add for Size<T>
569where
570 T: Add<Output = T> + Clone + Default + Debug,
571{
572 type Output = Size<T>;
573
574 fn add(self, rhs: Self) -> Self::Output {
575 Size {
576 width: self.width + rhs.width,
577 height: self.height + rhs.height,
578 }
579 }
580}
581
582impl<T, Rhs> Mul<Rhs> for Size<T>
583where
584 T: Mul<Rhs, Output = Rhs> + Clone + Default + Debug,
585 Rhs: Clone + Default + Debug,
586{
587 type Output = Size<Rhs>;
588
589 fn mul(self, rhs: Rhs) -> Self::Output {
590 Size {
591 width: self.width * rhs.clone(),
592 height: self.height * rhs,
593 }
594 }
595}
596
597impl<T, S> MulAssign<S> for Size<T>
598where
599 T: Mul<S, Output = T> + Clone + Default + Debug,
600 S: Clone,
601{
602 fn mul_assign(&mut self, rhs: S) {
603 self.width = self.width.clone() * rhs.clone();
604 self.height = self.height.clone() * rhs;
605 }
606}
607
608impl<T> Eq for Size<T> where T: Eq + Default + Debug + Clone {}
609
610impl<T> Debug for Size<T>
611where
612 T: Clone + Default + Debug,
613{
614 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
615 write!(f, "Size {{ {:?} × {:?} }}", self.width, self.height)
616 }
617}
618
619impl<T: Clone + Default + Debug> From<Point<T>> for Size<T> {
620 fn from(point: Point<T>) -> Self {
621 Self {
622 width: point.x,
623 height: point.y,
624 }
625 }
626}
627
628impl From<Size<Pixels>> for Size<DefiniteLength> {
629 fn from(size: Size<Pixels>) -> Self {
630 Size {
631 width: size.width.into(),
632 height: size.height.into(),
633 }
634 }
635}
636
637impl From<Size<Pixels>> for Size<AbsoluteLength> {
638 fn from(size: Size<Pixels>) -> Self {
639 Size {
640 width: size.width.into(),
641 height: size.height.into(),
642 }
643 }
644}
645
646impl Size<Length> {
647 /// Returns a `Size` with both width and height set to fill the available space.
648 ///
649 /// This function creates a `Size` instance where both the width and height are set to `Length::Definite(DefiniteLength::Fraction(1.0))`,
650 /// which represents 100% of the available space in both dimensions.
651 ///
652 /// # Returns
653 ///
654 /// A `Size<Length>` that will fill the available space when used in a layout.
655 pub fn full() -> Self {
656 Self {
657 width: relative(1.).into(),
658 height: relative(1.).into(),
659 }
660 }
661}
662
663impl Size<Length> {
664 /// Returns a `Size` with both width and height set to `auto`, which allows the layout engine to determine the size.
665 ///
666 /// This function creates a `Size` instance where both the width and height are set to `Length::Auto`,
667 /// indicating that their size should be computed based on the layout context, such as the content size or
668 /// available space.
669 ///
670 /// # Returns
671 ///
672 /// A `Size<Length>` with width and height set to `Length::Auto`.
673 pub fn auto() -> Self {
674 Self {
675 width: Length::Auto,
676 height: Length::Auto,
677 }
678 }
679}
680
681/// Represents a rectangular area in a 2D space with an origin point and a size.
682///
683/// The `Bounds` struct is generic over a type `T` which represents the type of the coordinate system.
684/// The origin is represented as a `Point<T>` which defines the upper-left corner of the rectangle,
685/// and the size is represented as a `Size<T>` which defines the width and height of the rectangle.
686///
687/// # Examples
688///
689/// ```
690/// # use zed::{Bounds, Point, Size};
691/// let origin = Point { x: 0, y: 0 };
692/// let size = Size { width: 10, height: 20 };
693/// let bounds = Bounds::new(origin, size);
694///
695/// assert_eq!(bounds.origin, origin);
696/// assert_eq!(bounds.size, size);
697/// ```
698#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq, Hash)]
699#[refineable(Debug)]
700#[repr(C)]
701pub struct Bounds<T: Clone + Default + Debug> {
702 /// The origin point of this area.
703 pub origin: Point<T>,
704 /// The size of the rectangle.
705 pub size: Size<T>,
706}
707
708impl Bounds<Pixels> {
709 /// Generate a centered bounds for the given display or primary display if none is provided
710 pub fn centered(
711 display_id: Option<DisplayId>,
712 size: Size<Pixels>,
713 cx: &mut AppContext,
714 ) -> Self {
715 let display = display_id
716 .and_then(|id| cx.find_display(id))
717 .or_else(|| cx.primary_display());
718
719 display
720 .map(|display| {
721 let center = display.bounds().center();
722 Bounds {
723 origin: point(center.x - size.width / 2., center.y - size.height / 2.),
724 size,
725 }
726 })
727 .unwrap_or_else(|| Bounds {
728 origin: point(px(0.), px(0.)),
729 size,
730 })
731 }
732
733 /// Generate maximized bounds for the given display or primary display if none is provided
734 pub fn maximized(display_id: Option<DisplayId>, cx: &mut AppContext) -> Self {
735 let display = display_id
736 .and_then(|id| cx.find_display(id))
737 .or_else(|| cx.primary_display());
738
739 display
740 .map(|display| display.bounds())
741 .unwrap_or_else(|| Bounds {
742 origin: point(px(0.), px(0.)),
743 size: size(px(1024.), px(768.)),
744 })
745 }
746}
747
748impl<T> Bounds<T>
749where
750 T: Clone + Debug + Sub<Output = T> + Default,
751{
752 /// Constructs a `Bounds` from two corner points: the upper-left and lower-right corners.
753 ///
754 /// This function calculates the origin and size of the `Bounds` based on the provided corner points.
755 /// The origin is set to the upper-left corner, and the size is determined by the difference between
756 /// the x and y coordinates of the lower-right and upper-left points.
757 ///
758 /// # Arguments
759 ///
760 /// * `upper_left` - A `Point<T>` representing the upper-left corner of the rectangle.
761 /// * `lower_right` - A `Point<T>` representing the lower-right corner of the rectangle.
762 ///
763 /// # Returns
764 ///
765 /// Returns a `Bounds<T>` that encompasses the area defined by the two corner points.
766 ///
767 /// # Examples
768 ///
769 /// ```
770 /// # use zed::{Bounds, Point};
771 /// let upper_left = Point { x: 0, y: 0 };
772 /// let lower_right = Point { x: 10, y: 10 };
773 /// let bounds = Bounds::from_corners(upper_left, lower_right);
774 ///
775 /// assert_eq!(bounds.origin, upper_left);
776 /// assert_eq!(bounds.size.width, 10);
777 /// assert_eq!(bounds.size.height, 10);
778 /// ```
779 pub fn from_corners(upper_left: Point<T>, lower_right: Point<T>) -> Self {
780 let origin = Point {
781 x: upper_left.x.clone(),
782 y: upper_left.y.clone(),
783 };
784 let size = Size {
785 width: lower_right.x - upper_left.x,
786 height: lower_right.y - upper_left.y,
787 };
788 Bounds { origin, size }
789 }
790
791 /// Creates a new `Bounds` with the specified origin and size.
792 ///
793 /// # Arguments
794 ///
795 /// * `origin` - A `Point<T>` representing the origin of the bounds.
796 /// * `size` - A `Size<T>` representing the size of the bounds.
797 ///
798 /// # Returns
799 ///
800 /// Returns a `Bounds<T>` that has the given origin and size.
801 pub fn new(origin: Point<T>, size: Size<T>) -> Self {
802 Bounds { origin, size }
803 }
804}
805
806impl<T> Bounds<T>
807where
808 T: Clone + Debug + PartialOrd + Add<T, Output = T> + Sub<Output = T> + Default + Half,
809{
810 /// Checks if this `Bounds` intersects with another `Bounds`.
811 ///
812 /// Two `Bounds` instances intersect if they overlap in the 2D space they occupy.
813 /// This method checks if there is any overlapping area between the two bounds.
814 ///
815 /// # Arguments
816 ///
817 /// * `other` - A reference to another `Bounds` to check for intersection with.
818 ///
819 /// # Returns
820 ///
821 /// Returns `true` if there is any intersection between the two bounds, `false` otherwise.
822 ///
823 /// # Examples
824 ///
825 /// ```
826 /// # use zed::{Bounds, Point, Size};
827 /// let bounds1 = Bounds {
828 /// origin: Point { x: 0, y: 0 },
829 /// size: Size { width: 10, height: 10 },
830 /// };
831 /// let bounds2 = Bounds {
832 /// origin: Point { x: 5, y: 5 },
833 /// size: Size { width: 10, height: 10 },
834 /// };
835 /// let bounds3 = Bounds {
836 /// origin: Point { x: 20, y: 20 },
837 /// size: Size { width: 10, height: 10 },
838 /// };
839 ///
840 /// assert_eq!(bounds1.intersects(&bounds2), true); // Overlapping bounds
841 /// assert_eq!(bounds1.intersects(&bounds3), false); // Non-overlapping bounds
842 /// ```
843 pub fn intersects(&self, other: &Bounds<T>) -> bool {
844 let my_lower_right = self.lower_right();
845 let their_lower_right = other.lower_right();
846
847 self.origin.x < their_lower_right.x
848 && my_lower_right.x > other.origin.x
849 && self.origin.y < their_lower_right.y
850 && my_lower_right.y > other.origin.y
851 }
852
853 /// Dilates the bounds by a specified amount in all directions.
854 ///
855 /// This method expands the bounds by the given `amount`, increasing the size
856 /// and adjusting the origin so that the bounds grow outwards equally in all directions.
857 /// The resulting bounds will have its width and height increased by twice the `amount`
858 /// (since it grows in both directions), and the origin will be moved by `-amount`
859 /// in both the x and y directions.
860 ///
861 /// # Arguments
862 ///
863 /// * `amount` - The amount by which to dilate the bounds.
864 ///
865 /// # Examples
866 ///
867 /// ```
868 /// # use zed::{Bounds, Point, Size};
869 /// let mut bounds = Bounds {
870 /// origin: Point { x: 10, y: 10 },
871 /// size: Size { width: 10, height: 10 },
872 /// };
873 /// bounds.dilate(5);
874 /// assert_eq!(bounds, Bounds {
875 /// origin: Point { x: 5, y: 5 },
876 /// size: Size { width: 20, height: 20 },
877 /// });
878 /// ```
879 pub fn dilate(&mut self, amount: T) {
880 self.origin.x = self.origin.x.clone() - amount.clone();
881 self.origin.y = self.origin.y.clone() - amount.clone();
882 let double_amount = amount.clone() + amount;
883 self.size.width = self.size.width.clone() + double_amount.clone();
884 self.size.height = self.size.height.clone() + double_amount;
885 }
886
887 /// inset the bounds by a specified amount
888 /// Note that this may panic if T does not support negative values
889 pub fn inset(&self, amount: T) -> Self {
890 let mut result = self.clone();
891 result.dilate(T::default() - amount);
892 result
893 }
894
895 /// Returns the center point of the bounds.
896 ///
897 /// Calculates the center by taking the origin's x and y coordinates and adding half the width and height
898 /// of the bounds, respectively. The center is represented as a `Point<T>` where `T` is the type of the
899 /// coordinate system.
900 ///
901 /// # Returns
902 ///
903 /// A `Point<T>` representing the center of the bounds.
904 ///
905 /// # Examples
906 ///
907 /// ```
908 /// # use zed::{Bounds, Point, Size};
909 /// let bounds = Bounds {
910 /// origin: Point { x: 0, y: 0 },
911 /// size: Size { width: 10, height: 20 },
912 /// };
913 /// let center = bounds.center();
914 /// assert_eq!(center, Point { x: 5, y: 10 });
915 /// ```
916 pub fn center(&self) -> Point<T> {
917 Point {
918 x: self.origin.x.clone() + self.size.width.clone().half(),
919 y: self.origin.y.clone() + self.size.height.clone().half(),
920 }
921 }
922
923 /// Calculates the half perimeter of a rectangle defined by the bounds.
924 ///
925 /// The half perimeter is calculated as the sum of the width and the height of the rectangle.
926 /// This method is generic over the type `T` which must implement the `Sub` trait to allow
927 /// calculation of the width and height from the bounds' origin and size, as well as the `Add` trait
928 /// to sum the width and height for the half perimeter.
929 ///
930 /// # Examples
931 ///
932 /// ```
933 /// # use zed::{Bounds, Point, Size};
934 /// let bounds = Bounds {
935 /// origin: Point { x: 0, y: 0 },
936 /// size: Size { width: 10, height: 20 },
937 /// };
938 /// let half_perimeter = bounds.half_perimeter();
939 /// assert_eq!(half_perimeter, 30);
940 /// ```
941 pub fn half_perimeter(&self) -> T {
942 self.size.width.clone() + self.size.height.clone()
943 }
944
945 /// centered_at creates a new bounds centered at the given point.
946 pub fn centered_at(center: Point<T>, size: Size<T>) -> Self {
947 let origin = Point {
948 x: center.x - size.width.half(),
949 y: center.y - size.height.half(),
950 };
951 Self::new(origin, size)
952 }
953}
954
955impl<T: Clone + Default + Debug + PartialOrd + Add<T, Output = T> + Sub<Output = T>> Bounds<T> {
956 /// Calculates the intersection of two `Bounds` objects.
957 ///
958 /// This method computes the overlapping region of two `Bounds`. If the bounds do not intersect,
959 /// the resulting `Bounds` will have a size with width and height of zero.
960 ///
961 /// # Arguments
962 ///
963 /// * `other` - A reference to another `Bounds` to intersect with.
964 ///
965 /// # Returns
966 ///
967 /// Returns a `Bounds` representing the intersection area. If there is no intersection,
968 /// the returned `Bounds` will have a size with width and height of zero.
969 ///
970 /// # Examples
971 ///
972 /// ```
973 /// # use zed::{Bounds, Point, Size};
974 /// let bounds1 = Bounds {
975 /// origin: Point { x: 0, y: 0 },
976 /// size: Size { width: 10, height: 10 },
977 /// };
978 /// let bounds2 = Bounds {
979 /// origin: Point { x: 5, y: 5 },
980 /// size: Size { width: 10, height: 10 },
981 /// };
982 /// let intersection = bounds1.intersect(&bounds2);
983 ///
984 /// assert_eq!(intersection, Bounds {
985 /// origin: Point { x: 5, y: 5 },
986 /// size: Size { width: 5, height: 5 },
987 /// });
988 /// ```
989 pub fn intersect(&self, other: &Self) -> Self {
990 let upper_left = self.origin.max(&other.origin);
991 let lower_right = self.lower_right().min(&other.lower_right());
992 Self::from_corners(upper_left, lower_right)
993 }
994
995 /// Computes the union of two `Bounds`.
996 ///
997 /// This method calculates the smallest `Bounds` that contains both the current `Bounds` and the `other` `Bounds`.
998 /// The resulting `Bounds` will have an origin that is the minimum of the origins of the two `Bounds`,
999 /// and a size that encompasses the furthest extents of both `Bounds`.
1000 ///
1001 /// # Arguments
1002 ///
1003 /// * `other` - A reference to another `Bounds` to create a union with.
1004 ///
1005 /// # Returns
1006 ///
1007 /// Returns a `Bounds` representing the union of the two `Bounds`.
1008 ///
1009 /// # Examples
1010 ///
1011 /// ```
1012 /// # use zed::{Bounds, Point, Size};
1013 /// let bounds1 = Bounds {
1014 /// origin: Point { x: 0, y: 0 },
1015 /// size: Size { width: 10, height: 10 },
1016 /// };
1017 /// let bounds2 = Bounds {
1018 /// origin: Point { x: 5, y: 5 },
1019 /// size: Size { width: 15, height: 15 },
1020 /// };
1021 /// let union_bounds = bounds1.union(&bounds2);
1022 ///
1023 /// assert_eq!(union_bounds, Bounds {
1024 /// origin: Point { x: 0, y: 0 },
1025 /// size: Size { width: 20, height: 20 },
1026 /// });
1027 /// ```
1028 pub fn union(&self, other: &Self) -> Self {
1029 let top_left = self.origin.min(&other.origin);
1030 let bottom_right = self.lower_right().max(&other.lower_right());
1031 Bounds::from_corners(top_left, bottom_right)
1032 }
1033}
1034
1035impl<T, Rhs> Mul<Rhs> for Bounds<T>
1036where
1037 T: Mul<Rhs, Output = Rhs> + Clone + Default + Debug,
1038 Point<T>: Mul<Rhs, Output = Point<Rhs>>,
1039 Rhs: Clone + Default + Debug,
1040{
1041 type Output = Bounds<Rhs>;
1042
1043 fn mul(self, rhs: Rhs) -> Self::Output {
1044 Bounds {
1045 origin: self.origin * rhs.clone(),
1046 size: self.size * rhs,
1047 }
1048 }
1049}
1050
1051impl<T, S> MulAssign<S> for Bounds<T>
1052where
1053 T: Mul<S, Output = T> + Clone + Default + Debug,
1054 S: Clone,
1055{
1056 fn mul_assign(&mut self, rhs: S) {
1057 self.origin *= rhs.clone();
1058 self.size *= rhs;
1059 }
1060}
1061
1062impl<T, S> Div<S> for Bounds<T>
1063where
1064 Size<T>: Div<S, Output = Size<T>>,
1065 T: Div<S, Output = T> + Default + Clone + Debug,
1066 S: Clone,
1067{
1068 type Output = Self;
1069
1070 fn div(self, rhs: S) -> Self {
1071 Self {
1072 origin: self.origin / rhs.clone(),
1073 size: self.size / rhs,
1074 }
1075 }
1076}
1077
1078impl<T> Bounds<T>
1079where
1080 T: Add<T, Output = T> + Clone + Default + Debug,
1081{
1082 /// Returns the top edge of the bounds.
1083 ///
1084 /// # Returns
1085 ///
1086 /// A value of type `T` representing the y-coordinate of the top edge of the bounds.
1087 pub fn top(&self) -> T {
1088 self.origin.y.clone()
1089 }
1090
1091 /// Returns the bottom edge of the bounds.
1092 ///
1093 /// # Returns
1094 ///
1095 /// A value of type `T` representing the y-coordinate of the bottom edge of the bounds.
1096 pub fn bottom(&self) -> T {
1097 self.origin.y.clone() + self.size.height.clone()
1098 }
1099
1100 /// Returns the left edge of the bounds.
1101 ///
1102 /// # Returns
1103 ///
1104 /// A value of type `T` representing the x-coordinate of the left edge of the bounds.
1105 pub fn left(&self) -> T {
1106 self.origin.x.clone()
1107 }
1108
1109 /// Returns the right edge of the bounds.
1110 ///
1111 /// # Returns
1112 ///
1113 /// A value of type `T` representing the x-coordinate of the right edge of the bounds.
1114 pub fn right(&self) -> T {
1115 self.origin.x.clone() + self.size.width.clone()
1116 }
1117
1118 /// Returns the upper-right corner point of the bounds.
1119 ///
1120 /// # Returns
1121 ///
1122 /// A `Point<T>` representing the upper-right corner of the bounds.
1123 ///
1124 /// # Examples
1125 ///
1126 /// ```
1127 /// # use zed::{Bounds, Point, Size};
1128 /// let bounds = Bounds {
1129 /// origin: Point { x: 0, y: 0 },
1130 /// size: Size { width: 10, height: 20 },
1131 /// };
1132 /// let upper_right = bounds.upper_right();
1133 /// assert_eq!(upper_right, Point { x: 10, y: 0 });
1134 /// ```
1135 pub fn upper_right(&self) -> Point<T> {
1136 Point {
1137 x: self.origin.x.clone() + self.size.width.clone(),
1138 y: self.origin.y.clone(),
1139 }
1140 }
1141
1142 /// Returns the lower-right corner point of the bounds.
1143 ///
1144 /// # Returns
1145 ///
1146 /// A `Point<T>` representing the lower-right corner of the bounds.
1147 ///
1148 /// # Examples
1149 ///
1150 /// ```
1151 /// # use zed::{Bounds, Point, Size};
1152 /// let bounds = Bounds {
1153 /// origin: Point { x: 0, y: 0 },
1154 /// size: Size { width: 10, height: 20 },
1155 /// };
1156 /// let lower_right = bounds.lower_right();
1157 /// assert_eq!(lower_right, Point { x: 10, y: 20 });
1158 /// ```
1159 pub fn lower_right(&self) -> Point<T> {
1160 Point {
1161 x: self.origin.x.clone() + self.size.width.clone(),
1162 y: self.origin.y.clone() + self.size.height.clone(),
1163 }
1164 }
1165
1166 /// Returns the lower-left corner point of the bounds.
1167 ///
1168 /// # Returns
1169 ///
1170 /// A `Point<T>` representing the lower-left corner of the bounds.
1171 ///
1172 /// # Examples
1173 ///
1174 /// ```
1175 /// # use zed::{Bounds, Point, Size};
1176 /// let bounds = Bounds {
1177 /// origin: Point { x: 0, y: 0 },
1178 /// size: Size { width: 10, height: 20 },
1179 /// };
1180 /// let lower_left = bounds.lower_left();
1181 /// assert_eq!(lower_left, Point { x: 0, y: 20 });
1182 /// ```
1183 pub fn lower_left(&self) -> Point<T> {
1184 Point {
1185 x: self.origin.x.clone(),
1186 y: self.origin.y.clone() + self.size.height.clone(),
1187 }
1188 }
1189}
1190
1191impl<T> Bounds<T>
1192where
1193 T: Add<T, Output = T> + PartialOrd + Clone + Default + Debug,
1194{
1195 /// Checks if the given point is within the bounds.
1196 ///
1197 /// This method determines whether a point lies inside the rectangle defined by the bounds,
1198 /// including the edges. The point is considered inside if its x-coordinate is greater than
1199 /// or equal to the left edge and less than or equal to the right edge, and its y-coordinate
1200 /// is greater than or equal to the top edge and less than or equal to the bottom edge of the bounds.
1201 ///
1202 /// # Arguments
1203 ///
1204 /// * `point` - A reference to a `Point<T>` that represents the point to check.
1205 ///
1206 /// # Returns
1207 ///
1208 /// Returns `true` if the point is within the bounds, `false` otherwise.
1209 ///
1210 /// # Examples
1211 ///
1212 /// ```
1213 /// # use zed::{Point, Bounds};
1214 /// let bounds = Bounds {
1215 /// origin: Point { x: 0, y: 0 },
1216 /// size: Size { width: 10, height: 10 },
1217 /// };
1218 /// let inside_point = Point { x: 5, y: 5 };
1219 /// let outside_point = Point { x: 15, y: 15 };
1220 ///
1221 /// assert!(bounds.contains_point(&inside_point));
1222 /// assert!(!bounds.contains_point(&outside_point));
1223 /// ```
1224 pub fn contains(&self, point: &Point<T>) -> bool {
1225 point.x >= self.origin.x
1226 && point.x <= self.origin.x.clone() + self.size.width.clone()
1227 && point.y >= self.origin.y
1228 && point.y <= self.origin.y.clone() + self.size.height.clone()
1229 }
1230
1231 /// Applies a function to the origin and size of the bounds, producing a new `Bounds<U>`.
1232 ///
1233 /// This method allows for converting a `Bounds<T>` to a `Bounds<U>` by specifying a closure
1234 /// that defines how to convert between the two types. The closure is applied to the `origin` and
1235 /// `size` fields, resulting in new bounds of the desired type.
1236 ///
1237 /// # Arguments
1238 ///
1239 /// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
1240 ///
1241 /// # Returns
1242 ///
1243 /// Returns a new `Bounds<U>` with the origin and size mapped by the provided function.
1244 ///
1245 /// # Examples
1246 ///
1247 /// ```
1248 /// # use zed::{Bounds, Point, Size};
1249 /// let bounds = Bounds {
1250 /// origin: Point { x: 10.0, y: 10.0 },
1251 /// size: Size { width: 10.0, height: 20.0 },
1252 /// };
1253 /// let new_bounds = bounds.map(|value| value as f64 * 1.5);
1254 ///
1255 /// assert_eq!(new_bounds, Bounds {
1256 /// origin: Point { x: 15.0, y: 15.0 },
1257 /// size: Size { width: 15.0, height: 30.0 },
1258 /// });
1259 /// ```
1260 pub fn map<U>(&self, f: impl Fn(T) -> U) -> Bounds<U>
1261 where
1262 U: Clone + Default + Debug,
1263 {
1264 Bounds {
1265 origin: self.origin.map(&f),
1266 size: self.size.map(f),
1267 }
1268 }
1269
1270 /// Applies a function to the origin of the bounds, producing a new `Bounds` with the new origin
1271 ///
1272 /// # Examples
1273 ///
1274 /// ```
1275 /// # use zed::{Bounds, Point, Size};
1276 /// let bounds = Bounds {
1277 /// origin: Point { x: 10.0, y: 10.0 },
1278 /// size: Size { width: 10.0, height: 20.0 },
1279 /// };
1280 /// let new_bounds = bounds.map_origin(|value| value * 1.5);
1281 ///
1282 /// assert_eq!(new_bounds, Bounds {
1283 /// origin: Point { x: 15.0, y: 15.0 },
1284 /// size: Size { width: 10.0, height: 20.0 },
1285 /// });
1286 /// ```
1287 pub fn map_origin(self, f: impl Fn(T) -> T) -> Bounds<T> {
1288 Bounds {
1289 origin: self.origin.map(f),
1290 size: self.size,
1291 }
1292 }
1293
1294 /// Applies a function to the origin of the bounds, producing a new `Bounds` with the new origin
1295 ///
1296 /// # Examples
1297 ///
1298 /// ```
1299 /// # use zed::{Bounds, Point, Size};
1300 /// let bounds = Bounds {
1301 /// origin: Point { x: 10.0, y: 10.0 },
1302 /// size: Size { width: 10.0, height: 20.0 },
1303 /// };
1304 /// let new_bounds = bounds.map_size(|value| value * 1.5);
1305 ///
1306 /// assert_eq!(new_bounds, Bounds {
1307 /// origin: Point { x: 10.0, y: 10.0 },
1308 /// size: Size { width: 15.0, height: 30.0 },
1309 /// });
1310 /// ```
1311 pub fn map_size(self, f: impl Fn(T) -> T) -> Bounds<T> {
1312 Bounds {
1313 origin: self.origin,
1314 size: self.size.map(f),
1315 }
1316 }
1317}
1318
1319/// Checks if the bounds represent an empty area.
1320///
1321/// # Returns
1322///
1323/// Returns `true` if either the width or the height of the bounds is less than or equal to zero, indicating an empty area.
1324impl<T: PartialOrd + Default + Debug + Clone> Bounds<T> {
1325 /// Checks if the bounds represent an empty area.
1326 ///
1327 /// # Returns
1328 ///
1329 /// Returns `true` if either the width or the height of the bounds is less than or equal to zero, indicating an empty area.
1330 pub fn is_empty(&self) -> bool {
1331 self.size.width <= T::default() || self.size.height <= T::default()
1332 }
1333}
1334
1335impl Size<DevicePixels> {
1336 /// Converts the size from physical to logical pixels.
1337 pub(crate) fn to_pixels(self, scale_factor: f32) -> Size<Pixels> {
1338 size(
1339 px(self.width.0 as f32 / scale_factor),
1340 px(self.height.0 as f32 / scale_factor),
1341 )
1342 }
1343}
1344
1345impl Size<Pixels> {
1346 /// Converts the size from physical to logical pixels.
1347 pub(crate) fn to_device_pixels(self, scale_factor: f32) -> Size<DevicePixels> {
1348 size(
1349 DevicePixels((self.width.0 * scale_factor) as i32),
1350 DevicePixels((self.height.0 * scale_factor) as i32),
1351 )
1352 }
1353}
1354
1355impl Bounds<Pixels> {
1356 /// Scales the bounds by a given factor, typically used to adjust for display scaling.
1357 ///
1358 /// This method multiplies the origin and size of the bounds by the provided scaling factor,
1359 /// resulting in a new `Bounds<ScaledPixels>` that is proportionally larger or smaller
1360 /// depending on the scaling factor. This can be used to ensure that the bounds are properly
1361 /// scaled for different display densities.
1362 ///
1363 /// # Arguments
1364 ///
1365 /// * `factor` - The scaling factor to apply to the origin and size, typically the display's scaling factor.
1366 ///
1367 /// # Returns
1368 ///
1369 /// Returns a new `Bounds<ScaledPixels>` that represents the scaled bounds.
1370 ///
1371 /// # Examples
1372 ///
1373 /// ```
1374 /// # use zed::{Bounds, Point, Size, Pixels};
1375 /// let bounds = Bounds {
1376 /// origin: Point { x: Pixels(10.0), y: Pixels(20.0) },
1377 /// size: Size { width: Pixels(30.0), height: Pixels(40.0) },
1378 /// };
1379 /// let display_scale_factor = 2.0;
1380 /// let scaled_bounds = bounds.scale(display_scale_factor);
1381 /// assert_eq!(scaled_bounds, Bounds {
1382 /// origin: Point { x: ScaledPixels(20.0), y: ScaledPixels(40.0) },
1383 /// size: Size { width: ScaledPixels(60.0), height: ScaledPixels(80.0) },
1384 /// });
1385 /// ```
1386 pub fn scale(&self, factor: f32) -> Bounds<ScaledPixels> {
1387 Bounds {
1388 origin: self.origin.scale(factor),
1389 size: self.size.scale(factor),
1390 }
1391 }
1392
1393 /// Convert the bounds from logical pixels to physical pixels
1394 pub fn to_device_pixels(&self, factor: f32) -> Bounds<DevicePixels> {
1395 Bounds {
1396 origin: point(
1397 DevicePixels((self.origin.x.0 * factor) as i32),
1398 DevicePixels((self.origin.y.0 * factor) as i32),
1399 ),
1400 size: self.size.to_device_pixels(factor),
1401 }
1402 }
1403}
1404
1405impl Bounds<DevicePixels> {
1406 /// Convert the bounds from physical pixels to logical pixels
1407 pub fn to_pixels(self, scale_factor: f32) -> Bounds<Pixels> {
1408 Bounds {
1409 origin: point(
1410 px(self.origin.x.0 as f32 / scale_factor),
1411 px(self.origin.y.0 as f32 / scale_factor),
1412 ),
1413 size: self.size.to_pixels(scale_factor),
1414 }
1415 }
1416}
1417
1418impl<T: Clone + Debug + Copy + Default> Copy for Bounds<T> {}
1419
1420/// Represents the edges of a box in a 2D space, such as padding or margin.
1421///
1422/// Each field represents the size of the edge on one side of the box: `top`, `right`, `bottom`, and `left`.
1423///
1424/// # Examples
1425///
1426/// ```
1427/// # use zed::Edges;
1428/// let edges = Edges {
1429/// top: 10.0,
1430/// right: 20.0,
1431/// bottom: 30.0,
1432/// left: 40.0,
1433/// };
1434///
1435/// assert_eq!(edges.top, 10.0);
1436/// assert_eq!(edges.right, 20.0);
1437/// assert_eq!(edges.bottom, 30.0);
1438/// assert_eq!(edges.left, 40.0);
1439/// ```
1440#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq)]
1441#[refineable(Debug)]
1442#[repr(C)]
1443pub struct Edges<T: Clone + Default + Debug> {
1444 /// The size of the top edge.
1445 pub top: T,
1446 /// The size of the right edge.
1447 pub right: T,
1448 /// The size of the bottom edge.
1449 pub bottom: T,
1450 /// The size of the left edge.
1451 pub left: T,
1452}
1453
1454impl<T> Mul for Edges<T>
1455where
1456 T: Mul<Output = T> + Clone + Default + Debug,
1457{
1458 type Output = Self;
1459
1460 fn mul(self, rhs: Self) -> Self::Output {
1461 Self {
1462 top: self.top.clone() * rhs.top,
1463 right: self.right.clone() * rhs.right,
1464 bottom: self.bottom.clone() * rhs.bottom,
1465 left: self.left.clone() * rhs.left,
1466 }
1467 }
1468}
1469
1470impl<T, S> MulAssign<S> for Edges<T>
1471where
1472 T: Mul<S, Output = T> + Clone + Default + Debug,
1473 S: Clone,
1474{
1475 fn mul_assign(&mut self, rhs: S) {
1476 self.top = self.top.clone() * rhs.clone();
1477 self.right = self.right.clone() * rhs.clone();
1478 self.bottom = self.bottom.clone() * rhs.clone();
1479 self.left = self.left.clone() * rhs;
1480 }
1481}
1482
1483impl<T: Clone + Default + Debug + Copy> Copy for Edges<T> {}
1484
1485impl<T: Clone + Default + Debug> Edges<T> {
1486 /// Constructs `Edges` where all sides are set to the same specified value.
1487 ///
1488 /// This function creates an `Edges` instance with the `top`, `right`, `bottom`, and `left` fields all initialized
1489 /// to the same value provided as an argument. This is useful when you want to have uniform edges around a box,
1490 /// such as padding or margin with the same size on all sides.
1491 ///
1492 /// # Arguments
1493 ///
1494 /// * `value` - The value to set for all four sides of the edges.
1495 ///
1496 /// # Returns
1497 ///
1498 /// An `Edges` instance with all sides set to the given value.
1499 ///
1500 /// # Examples
1501 ///
1502 /// ```
1503 /// # use zed::Edges;
1504 /// let uniform_edges = Edges::all(10.0);
1505 /// assert_eq!(uniform_edges.top, 10.0);
1506 /// assert_eq!(uniform_edges.right, 10.0);
1507 /// assert_eq!(uniform_edges.bottom, 10.0);
1508 /// assert_eq!(uniform_edges.left, 10.0);
1509 /// ```
1510 pub fn all(value: T) -> Self {
1511 Self {
1512 top: value.clone(),
1513 right: value.clone(),
1514 bottom: value.clone(),
1515 left: value,
1516 }
1517 }
1518
1519 /// Applies a function to each field of the `Edges`, producing a new `Edges<U>`.
1520 ///
1521 /// This method allows for converting an `Edges<T>` to an `Edges<U>` by specifying a closure
1522 /// that defines how to convert between the two types. The closure is applied to each field
1523 /// (`top`, `right`, `bottom`, `left`), resulting in new edges of the desired type.
1524 ///
1525 /// # Arguments
1526 ///
1527 /// * `f` - A closure that takes a reference to a value of type `T` and returns a value of type `U`.
1528 ///
1529 /// # Returns
1530 ///
1531 /// Returns a new `Edges<U>` with each field mapped by the provided function.
1532 ///
1533 /// # Examples
1534 ///
1535 /// ```
1536 /// # use zed::Edges;
1537 /// let edges = Edges { top: 10, right: 20, bottom: 30, left: 40 };
1538 /// let edges_float = edges.map(|&value| value as f32 * 1.1);
1539 /// assert_eq!(edges_float, Edges { top: 11.0, right: 22.0, bottom: 33.0, left: 44.0 });
1540 /// ```
1541 pub fn map<U>(&self, f: impl Fn(&T) -> U) -> Edges<U>
1542 where
1543 U: Clone + Default + Debug,
1544 {
1545 Edges {
1546 top: f(&self.top),
1547 right: f(&self.right),
1548 bottom: f(&self.bottom),
1549 left: f(&self.left),
1550 }
1551 }
1552
1553 /// Checks if any of the edges satisfy a given predicate.
1554 ///
1555 /// This method applies a predicate function to each field of the `Edges` and returns `true` if any field satisfies the predicate.
1556 ///
1557 /// # Arguments
1558 ///
1559 /// * `predicate` - A closure that takes a reference to a value of type `T` and returns a `bool`.
1560 ///
1561 /// # Returns
1562 ///
1563 /// Returns `true` if the predicate returns `true` for any of the edge values, `false` otherwise.
1564 ///
1565 /// # Examples
1566 ///
1567 /// ```
1568 /// # use zed::Edges;
1569 /// let edges = Edges {
1570 /// top: 10,
1571 /// right: 0,
1572 /// bottom: 5,
1573 /// left: 0,
1574 /// };
1575 ///
1576 /// assert!(edges.any(|value| *value == 0));
1577 /// assert!(edges.any(|value| *value > 0));
1578 /// assert!(!edges.any(|value| *value > 10));
1579 /// ```
1580 pub fn any<F: Fn(&T) -> bool>(&self, predicate: F) -> bool {
1581 predicate(&self.top)
1582 || predicate(&self.right)
1583 || predicate(&self.bottom)
1584 || predicate(&self.left)
1585 }
1586}
1587
1588impl Edges<Length> {
1589 /// Sets the edges of the `Edges` struct to `auto`, which is a special value that allows the layout engine to automatically determine the size of the edges.
1590 ///
1591 /// This is typically used in layout contexts where the exact size of the edges is not important, or when the size should be calculated based on the content or container.
1592 ///
1593 /// # Returns
1594 ///
1595 /// Returns an `Edges<Length>` with all edges set to `Length::Auto`.
1596 ///
1597 /// # Examples
1598 ///
1599 /// ```
1600 /// # use zed::Edges;
1601 /// let auto_edges = Edges::auto();
1602 /// assert_eq!(auto_edges.top, Length::Auto);
1603 /// assert_eq!(auto_edges.right, Length::Auto);
1604 /// assert_eq!(auto_edges.bottom, Length::Auto);
1605 /// assert_eq!(auto_edges.left, Length::Auto);
1606 /// ```
1607 pub fn auto() -> Self {
1608 Self {
1609 top: Length::Auto,
1610 right: Length::Auto,
1611 bottom: Length::Auto,
1612 left: Length::Auto,
1613 }
1614 }
1615
1616 /// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
1617 ///
1618 /// This is typically used when you want to specify that a box (like a padding or margin area)
1619 /// should have no edges, effectively making it non-existent or invisible in layout calculations.
1620 ///
1621 /// # Returns
1622 ///
1623 /// Returns an `Edges<Length>` with all edges set to zero length.
1624 ///
1625 /// # Examples
1626 ///
1627 /// ```
1628 /// # use zed::Edges;
1629 /// let no_edges = Edges::zero();
1630 /// assert_eq!(no_edges.top, Length::Definite(DefiniteLength::from(Pixels(0.))));
1631 /// assert_eq!(no_edges.right, Length::Definite(DefiniteLength::from(Pixels(0.))));
1632 /// assert_eq!(no_edges.bottom, Length::Definite(DefiniteLength::from(Pixels(0.))));
1633 /// assert_eq!(no_edges.left, Length::Definite(DefiniteLength::from(Pixels(0.))));
1634 /// ```
1635 pub fn zero() -> Self {
1636 Self {
1637 top: px(0.).into(),
1638 right: px(0.).into(),
1639 bottom: px(0.).into(),
1640 left: px(0.).into(),
1641 }
1642 }
1643}
1644
1645impl Edges<DefiniteLength> {
1646 /// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
1647 ///
1648 /// This is typically used when you want to specify that a box (like a padding or margin area)
1649 /// should have no edges, effectively making it non-existent or invisible in layout calculations.
1650 ///
1651 /// # Returns
1652 ///
1653 /// Returns an `Edges<DefiniteLength>` with all edges set to zero length.
1654 ///
1655 /// # Examples
1656 ///
1657 /// ```
1658 /// # use zed::Edges;
1659 /// let no_edges = Edges::zero();
1660 /// assert_eq!(no_edges.top, DefiniteLength::from(zed::px(0.)));
1661 /// assert_eq!(no_edges.right, DefiniteLength::from(zed::px(0.)));
1662 /// assert_eq!(no_edges.bottom, DefiniteLength::from(zed::px(0.)));
1663 /// assert_eq!(no_edges.left, DefiniteLength::from(zed::px(0.)));
1664 /// ```
1665 pub fn zero() -> Self {
1666 Self {
1667 top: px(0.).into(),
1668 right: px(0.).into(),
1669 bottom: px(0.).into(),
1670 left: px(0.).into(),
1671 }
1672 }
1673
1674 /// Converts the `DefiniteLength` to `Pixels` based on the parent size and the REM size.
1675 ///
1676 /// This method allows for a `DefiniteLength` value to be converted into pixels, taking into account
1677 /// the size of the parent element (for percentage-based lengths) and the size of a rem unit (for rem-based lengths).
1678 ///
1679 /// # Arguments
1680 ///
1681 /// * `parent_size` - `Size<AbsoluteLength>` representing the size of the parent element.
1682 /// * `rem_size` - `Pixels` representing the size of one REM unit.
1683 ///
1684 /// # Returns
1685 ///
1686 /// Returns an `Edges<Pixels>` representing the edges with lengths converted to pixels.
1687 ///
1688 /// # Examples
1689 ///
1690 /// ```
1691 /// # use zed::{Edges, DefiniteLength, px, AbsoluteLength, Size};
1692 /// let edges = Edges {
1693 /// top: DefiniteLength::Absolute(AbsoluteLength::Pixels(px(10.0))),
1694 /// right: DefiniteLength::Fraction(0.5),
1695 /// bottom: DefiniteLength::Absolute(AbsoluteLength::Rems(rems(2.0))),
1696 /// left: DefiniteLength::Fraction(0.25),
1697 /// };
1698 /// let parent_size = Size {
1699 /// width: AbsoluteLength::Pixels(px(200.0)),
1700 /// height: AbsoluteLength::Pixels(px(100.0)),
1701 /// };
1702 /// let rem_size = px(16.0);
1703 /// let edges_in_pixels = edges.to_pixels(parent_size, rem_size);
1704 ///
1705 /// assert_eq!(edges_in_pixels.top, px(10.0)); // Absolute length in pixels
1706 /// assert_eq!(edges_in_pixels.right, px(100.0)); // 50% of parent width
1707 /// assert_eq!(edges_in_pixels.bottom, px(32.0)); // 2 rems
1708 /// assert_eq!(edges_in_pixels.left, px(50.0)); // 25% of parent width
1709 /// ```
1710 pub fn to_pixels(&self, parent_size: Size<AbsoluteLength>, rem_size: Pixels) -> Edges<Pixels> {
1711 Edges {
1712 top: self.top.to_pixels(parent_size.height, rem_size),
1713 right: self.right.to_pixels(parent_size.width, rem_size),
1714 bottom: self.bottom.to_pixels(parent_size.height, rem_size),
1715 left: self.left.to_pixels(parent_size.width, rem_size),
1716 }
1717 }
1718}
1719
1720impl Edges<AbsoluteLength> {
1721 /// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
1722 ///
1723 /// This is typically used when you want to specify that a box (like a padding or margin area)
1724 /// should have no edges, effectively making it non-existent or invisible in layout calculations.
1725 ///
1726 /// # Returns
1727 ///
1728 /// Returns an `Edges<AbsoluteLength>` with all edges set to zero length.
1729 ///
1730 /// # Examples
1731 ///
1732 /// ```
1733 /// # use zed::Edges;
1734 /// let no_edges = Edges::zero();
1735 /// assert_eq!(no_edges.top, AbsoluteLength::Pixels(Pixels(0.0)));
1736 /// assert_eq!(no_edges.right, AbsoluteLength::Pixels(Pixels(0.0)));
1737 /// assert_eq!(no_edges.bottom, AbsoluteLength::Pixels(Pixels(0.0)));
1738 /// assert_eq!(no_edges.left, AbsoluteLength::Pixels(Pixels(0.0)));
1739 /// ```
1740 pub fn zero() -> Self {
1741 Self {
1742 top: px(0.).into(),
1743 right: px(0.).into(),
1744 bottom: px(0.).into(),
1745 left: px(0.).into(),
1746 }
1747 }
1748
1749 /// Converts the `AbsoluteLength` to `Pixels` based on the `rem_size`.
1750 ///
1751 /// If the `AbsoluteLength` is already in pixels, it simply returns the corresponding `Pixels` value.
1752 /// If the `AbsoluteLength` is in rems, it multiplies the number of rems by the `rem_size` to convert it to pixels.
1753 ///
1754 /// # Arguments
1755 ///
1756 /// * `rem_size` - The size of one rem unit in pixels.
1757 ///
1758 /// # Returns
1759 ///
1760 /// Returns an `Edges<Pixels>` representing the edges with lengths converted to pixels.
1761 ///
1762 /// # Examples
1763 ///
1764 /// ```
1765 /// # use zed::{Edges, AbsoluteLength, Pixels, px};
1766 /// let edges = Edges {
1767 /// top: AbsoluteLength::Pixels(px(10.0)),
1768 /// right: AbsoluteLength::Rems(rems(1.0)),
1769 /// bottom: AbsoluteLength::Pixels(px(20.0)),
1770 /// left: AbsoluteLength::Rems(rems(2.0)),
1771 /// };
1772 /// let rem_size = px(16.0);
1773 /// let edges_in_pixels = edges.to_pixels(rem_size);
1774 ///
1775 /// assert_eq!(edges_in_pixels.top, px(10.0)); // Already in pixels
1776 /// assert_eq!(edges_in_pixels.right, px(16.0)); // 1 rem converted to pixels
1777 /// assert_eq!(edges_in_pixels.bottom, px(20.0)); // Already in pixels
1778 /// assert_eq!(edges_in_pixels.left, px(32.0)); // 2 rems converted to pixels
1779 /// ```
1780 pub fn to_pixels(&self, rem_size: Pixels) -> Edges<Pixels> {
1781 Edges {
1782 top: self.top.to_pixels(rem_size),
1783 right: self.right.to_pixels(rem_size),
1784 bottom: self.bottom.to_pixels(rem_size),
1785 left: self.left.to_pixels(rem_size),
1786 }
1787 }
1788}
1789
1790impl Edges<Pixels> {
1791 /// Scales the `Edges<Pixels>` by a given factor, returning `Edges<ScaledPixels>`.
1792 ///
1793 /// This method is typically used for adjusting the edge sizes for different display densities or scaling factors.
1794 ///
1795 /// # Arguments
1796 ///
1797 /// * `factor` - The scaling factor to apply to each edge.
1798 ///
1799 /// # Returns
1800 ///
1801 /// Returns a new `Edges<ScaledPixels>` where each edge is the result of scaling the original edge by the given factor.
1802 ///
1803 /// # Examples
1804 ///
1805 /// ```
1806 /// # use zed::{Edges, Pixels};
1807 /// let edges = Edges {
1808 /// top: Pixels(10.0),
1809 /// right: Pixels(20.0),
1810 /// bottom: Pixels(30.0),
1811 /// left: Pixels(40.0),
1812 /// };
1813 /// let scaled_edges = edges.scale(2.0);
1814 /// assert_eq!(scaled_edges.top, ScaledPixels(20.0));
1815 /// assert_eq!(scaled_edges.right, ScaledPixels(40.0));
1816 /// assert_eq!(scaled_edges.bottom, ScaledPixels(60.0));
1817 /// assert_eq!(scaled_edges.left, ScaledPixels(80.0));
1818 /// ```
1819 pub fn scale(&self, factor: f32) -> Edges<ScaledPixels> {
1820 Edges {
1821 top: self.top.scale(factor),
1822 right: self.right.scale(factor),
1823 bottom: self.bottom.scale(factor),
1824 left: self.left.scale(factor),
1825 }
1826 }
1827
1828 /// Returns the maximum value of any edge.
1829 ///
1830 /// # Returns
1831 ///
1832 /// The maximum `Pixels` value among all four edges.
1833 pub fn max(&self) -> Pixels {
1834 self.top.max(self.right).max(self.bottom).max(self.left)
1835 }
1836}
1837
1838impl From<f32> for Edges<Pixels> {
1839 fn from(val: f32) -> Self {
1840 let val: Pixels = val.into();
1841 val.into()
1842 }
1843}
1844
1845impl From<Pixels> for Edges<Pixels> {
1846 fn from(val: Pixels) -> Self {
1847 Edges {
1848 top: val,
1849 right: val,
1850 bottom: val,
1851 left: val,
1852 }
1853 }
1854}
1855
1856/// Represents the corners of a box in a 2D space, such as border radius.
1857///
1858/// Each field represents the size of the corner on one side of the box: `top_left`, `top_right`, `bottom_right`, and `bottom_left`.
1859#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq)]
1860#[refineable(Debug)]
1861#[repr(C)]
1862pub struct Corners<T: Clone + Default + Debug> {
1863 /// The value associated with the top left corner.
1864 pub top_left: T,
1865 /// The value associated with the top right corner.
1866 pub top_right: T,
1867 /// The value associated with the bottom right corner.
1868 pub bottom_right: T,
1869 /// The value associated with the bottom left corner.
1870 pub bottom_left: T,
1871}
1872
1873impl<T> Corners<T>
1874where
1875 T: Clone + Default + Debug,
1876{
1877 /// Constructs `Corners` where all sides are set to the same specified value.
1878 ///
1879 /// This function creates a `Corners` instance with the `top_left`, `top_right`, `bottom_right`, and `bottom_left` fields all initialized
1880 /// to the same value provided as an argument. This is useful when you want to have uniform corners around a box,
1881 /// such as a uniform border radius on a rectangle.
1882 ///
1883 /// # Arguments
1884 ///
1885 /// * `value` - The value to set for all four corners.
1886 ///
1887 /// # Returns
1888 ///
1889 /// An `Corners` instance with all corners set to the given value.
1890 ///
1891 /// # Examples
1892 ///
1893 /// ```
1894 /// # use zed::Corners;
1895 /// let uniform_corners = Corners::all(5.0);
1896 /// assert_eq!(uniform_corners.top_left, 5.0);
1897 /// assert_eq!(uniform_corners.top_right, 5.0);
1898 /// assert_eq!(uniform_corners.bottom_right, 5.0);
1899 /// assert_eq!(uniform_corners.bottom_left, 5.0);
1900 /// ```
1901 pub fn all(value: T) -> Self {
1902 Self {
1903 top_left: value.clone(),
1904 top_right: value.clone(),
1905 bottom_right: value.clone(),
1906 bottom_left: value,
1907 }
1908 }
1909}
1910
1911impl Corners<AbsoluteLength> {
1912 /// Converts the `AbsoluteLength` to `Pixels` based on the provided size and rem size, ensuring the resulting
1913 /// `Pixels` do not exceed half of the minimum of the provided size's width and height.
1914 ///
1915 /// This method is particularly useful when dealing with corner radii, where the radius in pixels should not
1916 /// exceed half the size of the box it applies to, to avoid the corners overlapping.
1917 ///
1918 /// # Arguments
1919 ///
1920 /// * `size` - The `Size<Pixels>` against which the minimum allowable radius is determined.
1921 /// * `rem_size` - The size of one REM unit in pixels, used for conversion if the `AbsoluteLength` is in REMs.
1922 ///
1923 /// # Returns
1924 ///
1925 /// Returns a `Corners<Pixels>` instance with each corner's length converted to pixels and clamped to the
1926 /// minimum allowable radius based on the provided size.
1927 ///
1928 /// # Examples
1929 ///
1930 /// ```
1931 /// # use zed::{Corners, AbsoluteLength, Pixels, Size};
1932 /// let corners = Corners {
1933 /// top_left: AbsoluteLength::Pixels(Pixels(15.0)),
1934 /// top_right: AbsoluteLength::Rems(Rems(1.0)),
1935 /// bottom_right: AbsoluteLength::Pixels(Pixels(30.0)),
1936 /// bottom_left: AbsoluteLength::Rems(Rems(2.0)),
1937 /// };
1938 /// let size = Size { width: Pixels(100.0), height: Pixels(50.0) };
1939 /// let rem_size = Pixels(16.0);
1940 /// let corners_in_pixels = corners.to_pixels(size, rem_size);
1941 ///
1942 /// // The resulting corners should not exceed half the size of the smallest dimension (50.0 / 2.0 = 25.0).
1943 /// assert_eq!(corners_in_pixels.top_left, Pixels(15.0));
1944 /// assert_eq!(corners_in_pixels.top_right, Pixels(16.0)); // 1 rem converted to pixels
1945 /// assert_eq!(corners_in_pixels.bottom_right, Pixels(30.0).min(Pixels(25.0))); // Clamped to 25.0
1946 /// assert_eq!(corners_in_pixels.bottom_left, Pixels(32.0).min(Pixels(25.0))); // 2 rems converted to pixels and clamped to 25.0
1947 /// ```
1948 pub fn to_pixels(&self, size: Size<Pixels>, rem_size: Pixels) -> Corners<Pixels> {
1949 let max = size.width.min(size.height) / 2.;
1950 Corners {
1951 top_left: self.top_left.to_pixels(rem_size).min(max),
1952 top_right: self.top_right.to_pixels(rem_size).min(max),
1953 bottom_right: self.bottom_right.to_pixels(rem_size).min(max),
1954 bottom_left: self.bottom_left.to_pixels(rem_size).min(max),
1955 }
1956 }
1957}
1958
1959impl Corners<Pixels> {
1960 /// Scales the `Corners<Pixels>` by a given factor, returning `Corners<ScaledPixels>`.
1961 ///
1962 /// This method is typically used for adjusting the corner sizes for different display densities or scaling factors.
1963 ///
1964 /// # Arguments
1965 ///
1966 /// * `factor` - The scaling factor to apply to each corner.
1967 ///
1968 /// # Returns
1969 ///
1970 /// Returns a new `Corners<ScaledPixels>` where each corner is the result of scaling the original corner by the given factor.
1971 ///
1972 /// # Examples
1973 ///
1974 /// ```
1975 /// # use zed::{Corners, Pixels};
1976 /// let corners = Corners {
1977 /// top_left: Pixels(10.0),
1978 /// top_right: Pixels(20.0),
1979 /// bottom_right: Pixels(30.0),
1980 /// bottom_left: Pixels(40.0),
1981 /// };
1982 /// let scaled_corners = corners.scale(2.0);
1983 /// assert_eq!(scaled_corners.top_left, ScaledPixels(20.0));
1984 /// assert_eq!(scaled_corners.top_right, ScaledPixels(40.0));
1985 /// assert_eq!(scaled_corners.bottom_right, ScaledPixels(60.0));
1986 /// assert_eq!(scaled_corners.bottom_left, ScaledPixels(80.0));
1987 /// ```
1988 pub fn scale(&self, factor: f32) -> Corners<ScaledPixels> {
1989 Corners {
1990 top_left: self.top_left.scale(factor),
1991 top_right: self.top_right.scale(factor),
1992 bottom_right: self.bottom_right.scale(factor),
1993 bottom_left: self.bottom_left.scale(factor),
1994 }
1995 }
1996
1997 /// Returns the maximum value of any corner.
1998 ///
1999 /// # Returns
2000 ///
2001 /// The maximum `Pixels` value among all four corners.
2002 pub fn max(&self) -> Pixels {
2003 self.top_left
2004 .max(self.top_right)
2005 .max(self.bottom_right)
2006 .max(self.bottom_left)
2007 }
2008}
2009
2010impl<T: Clone + Default + Debug> Corners<T> {
2011 /// Applies a function to each field of the `Corners`, producing a new `Corners<U>`.
2012 ///
2013 /// This method allows for converting a `Corners<T>` to a `Corners<U>` by specifying a closure
2014 /// that defines how to convert between the two types. The closure is applied to each field
2015 /// (`top_left`, `top_right`, `bottom_right`, `bottom_left`), resulting in new corners of the desired type.
2016 ///
2017 /// # Arguments
2018 ///
2019 /// * `f` - A closure that takes a reference to a value of type `T` and returns a value of type `U`.
2020 ///
2021 /// # Returns
2022 ///
2023 /// Returns a new `Corners<U>` with each field mapped by the provided function.
2024 ///
2025 /// # Examples
2026 ///
2027 /// ```
2028 /// # use zed::{Corners, Pixels};
2029 /// let corners = Corners {
2030 /// top_left: Pixels(10.0),
2031 /// top_right: Pixels(20.0),
2032 /// bottom_right: Pixels(30.0),
2033 /// bottom_left: Pixels(40.0),
2034 /// };
2035 /// let corners_in_rems = corners.map(|&px| Rems(px.0 / 16.0));
2036 /// assert_eq!(corners_in_rems, Corners {
2037 /// top_left: Rems(0.625),
2038 /// top_right: Rems(1.25),
2039 /// bottom_right: Rems(1.875),
2040 /// bottom_left: Rems(2.5),
2041 /// });
2042 /// ```
2043 pub fn map<U>(&self, f: impl Fn(&T) -> U) -> Corners<U>
2044 where
2045 U: Clone + Default + Debug,
2046 {
2047 Corners {
2048 top_left: f(&self.top_left),
2049 top_right: f(&self.top_right),
2050 bottom_right: f(&self.bottom_right),
2051 bottom_left: f(&self.bottom_left),
2052 }
2053 }
2054}
2055
2056impl<T> Mul for Corners<T>
2057where
2058 T: Mul<Output = T> + Clone + Default + Debug,
2059{
2060 type Output = Self;
2061
2062 fn mul(self, rhs: Self) -> Self::Output {
2063 Self {
2064 top_left: self.top_left.clone() * rhs.top_left,
2065 top_right: self.top_right.clone() * rhs.top_right,
2066 bottom_right: self.bottom_right.clone() * rhs.bottom_right,
2067 bottom_left: self.bottom_left.clone() * rhs.bottom_left,
2068 }
2069 }
2070}
2071
2072impl<T, S> MulAssign<S> for Corners<T>
2073where
2074 T: Mul<S, Output = T> + Clone + Default + Debug,
2075 S: Clone,
2076{
2077 fn mul_assign(&mut self, rhs: S) {
2078 self.top_left = self.top_left.clone() * rhs.clone();
2079 self.top_right = self.top_right.clone() * rhs.clone();
2080 self.bottom_right = self.bottom_right.clone() * rhs.clone();
2081 self.bottom_left = self.bottom_left.clone() * rhs;
2082 }
2083}
2084
2085impl<T> Copy for Corners<T> where T: Copy + Clone + Default + Debug {}
2086
2087impl From<f32> for Corners<Pixels> {
2088 fn from(val: f32) -> Self {
2089 Corners {
2090 top_left: val.into(),
2091 top_right: val.into(),
2092 bottom_right: val.into(),
2093 bottom_left: val.into(),
2094 }
2095 }
2096}
2097
2098impl From<Pixels> for Corners<Pixels> {
2099 fn from(val: Pixels) -> Self {
2100 Corners {
2101 top_left: val,
2102 top_right: val,
2103 bottom_right: val,
2104 bottom_left: val,
2105 }
2106 }
2107}
2108
2109/// Represents an angle in Radians
2110#[derive(
2111 Clone,
2112 Copy,
2113 Default,
2114 Add,
2115 AddAssign,
2116 Sub,
2117 SubAssign,
2118 Neg,
2119 Div,
2120 DivAssign,
2121 PartialEq,
2122 Serialize,
2123 Deserialize,
2124 Debug,
2125)]
2126#[repr(transparent)]
2127pub struct Radians(pub f32);
2128
2129/// Create a `Radian` from a raw value
2130pub fn radians(value: f32) -> Radians {
2131 Radians(value)
2132}
2133
2134/// A type representing a percentage value.
2135#[derive(
2136 Clone,
2137 Copy,
2138 Default,
2139 Add,
2140 AddAssign,
2141 Sub,
2142 SubAssign,
2143 Neg,
2144 Div,
2145 DivAssign,
2146 PartialEq,
2147 Serialize,
2148 Deserialize,
2149 Debug,
2150)]
2151#[repr(transparent)]
2152pub struct Percentage(pub f32);
2153
2154/// Generate a `Radian` from a percentage of a full circle.
2155pub fn percentage(value: f32) -> Percentage {
2156 debug_assert!(
2157 (0.0..=1.0).contains(&value),
2158 "Percentage must be between 0 and 1"
2159 );
2160 Percentage(value)
2161}
2162
2163impl From<Percentage> for Radians {
2164 fn from(value: Percentage) -> Self {
2165 radians(value.0 * std::f32::consts::PI * 2.0)
2166 }
2167}
2168
2169/// Represents a length in pixels, the base unit of measurement in the UI framework.
2170///
2171/// `Pixels` is a value type that represents an absolute length in pixels, which is used
2172/// for specifying sizes, positions, and distances in the UI. It is the fundamental unit
2173/// of measurement for all visual elements and layout calculations.
2174///
2175/// The inner value is an `f32`, allowing for sub-pixel precision which can be useful for
2176/// anti-aliasing and animations. However, when applied to actual pixel grids, the value
2177/// is typically rounded to the nearest integer.
2178///
2179/// # Examples
2180///
2181/// ```
2182/// use zed::Pixels;
2183///
2184/// // Define a length of 10 pixels
2185/// let length = Pixels(10.0);
2186///
2187/// // Define a length and scale it by a factor of 2
2188/// let scaled_length = length.scale(2.0);
2189/// assert_eq!(scaled_length, Pixels(20.0));
2190/// ```
2191#[derive(
2192 Clone,
2193 Copy,
2194 Default,
2195 Add,
2196 AddAssign,
2197 Sub,
2198 SubAssign,
2199 Neg,
2200 Div,
2201 DivAssign,
2202 PartialEq,
2203 Serialize,
2204 Deserialize,
2205 JsonSchema,
2206)]
2207#[repr(transparent)]
2208pub struct Pixels(pub f32);
2209
2210impl std::fmt::Display for Pixels {
2211 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2212 f.write_fmt(format_args!("{}px", self.0))
2213 }
2214}
2215
2216impl std::ops::Div for Pixels {
2217 type Output = f32;
2218
2219 fn div(self, rhs: Self) -> Self::Output {
2220 self.0 / rhs.0
2221 }
2222}
2223
2224impl std::ops::DivAssign for Pixels {
2225 fn div_assign(&mut self, rhs: Self) {
2226 *self = Self(self.0 / rhs.0);
2227 }
2228}
2229
2230impl std::ops::RemAssign for Pixels {
2231 fn rem_assign(&mut self, rhs: Self) {
2232 self.0 %= rhs.0;
2233 }
2234}
2235
2236impl std::ops::Rem for Pixels {
2237 type Output = Self;
2238
2239 fn rem(self, rhs: Self) -> Self {
2240 Self(self.0 % rhs.0)
2241 }
2242}
2243
2244impl Mul<f32> for Pixels {
2245 type Output = Pixels;
2246
2247 fn mul(self, other: f32) -> Pixels {
2248 Pixels(self.0 * other)
2249 }
2250}
2251
2252impl Mul<usize> for Pixels {
2253 type Output = Pixels;
2254
2255 fn mul(self, other: usize) -> Pixels {
2256 Pixels(self.0 * other as f32)
2257 }
2258}
2259
2260impl Mul<Pixels> for f32 {
2261 type Output = Pixels;
2262
2263 fn mul(self, rhs: Pixels) -> Self::Output {
2264 Pixels(self * rhs.0)
2265 }
2266}
2267
2268impl MulAssign<f32> for Pixels {
2269 fn mul_assign(&mut self, other: f32) {
2270 self.0 *= other;
2271 }
2272}
2273
2274impl Pixels {
2275 /// Represents zero pixels.
2276 pub const ZERO: Pixels = Pixels(0.0);
2277 /// The maximum value that can be represented by `Pixels`.
2278 pub const MAX: Pixels = Pixels(f32::MAX);
2279
2280 /// Floors the `Pixels` value to the nearest whole number.
2281 ///
2282 /// # Returns
2283 ///
2284 /// Returns a new `Pixels` instance with the floored value.
2285 pub fn floor(&self) -> Self {
2286 Self(self.0.floor())
2287 }
2288
2289 /// Rounds the `Pixels` value to the nearest whole number.
2290 ///
2291 /// # Returns
2292 ///
2293 /// Returns a new `Pixels` instance with the rounded value.
2294 pub fn round(&self) -> Self {
2295 Self(self.0.round())
2296 }
2297
2298 /// Returns the ceiling of the `Pixels` value to the nearest whole number.
2299 ///
2300 /// # Returns
2301 ///
2302 /// Returns a new `Pixels` instance with the ceiling value.
2303 pub fn ceil(&self) -> Self {
2304 Self(self.0.ceil())
2305 }
2306
2307 /// Scales the `Pixels` value by a given factor, producing `ScaledPixels`.
2308 ///
2309 /// This method is used when adjusting pixel values for display scaling factors,
2310 /// such as high DPI (dots per inch) or Retina displays, where the pixel density is higher and
2311 /// thus requires scaling to maintain visual consistency and readability.
2312 ///
2313 /// The resulting `ScaledPixels` represent the scaled value which can be used for rendering
2314 /// calculations where display scaling is considered.
2315 pub fn scale(&self, factor: f32) -> ScaledPixels {
2316 ScaledPixels(self.0 * factor)
2317 }
2318
2319 /// Raises the `Pixels` value to a given power.
2320 ///
2321 /// # Arguments
2322 ///
2323 /// * `exponent` - The exponent to raise the `Pixels` value by.
2324 ///
2325 /// # Returns
2326 ///
2327 /// Returns a new `Pixels` instance with the value raised to the given exponent.
2328 pub fn pow(&self, exponent: f32) -> Self {
2329 Self(self.0.powf(exponent))
2330 }
2331
2332 /// Returns the absolute value of the `Pixels`.
2333 ///
2334 /// # Returns
2335 ///
2336 /// A new `Pixels` instance with the absolute value of the original `Pixels`.
2337 pub fn abs(&self) -> Self {
2338 Self(self.0.abs())
2339 }
2340
2341 /// Returns the sign of the `Pixels` value.
2342 ///
2343 /// # Returns
2344 ///
2345 /// Returns:
2346 /// * `1.0` if the value is positive
2347 /// * `-1.0` if the value is negative
2348 /// * `0.0` if the value is zero
2349 pub fn signum(&self) -> f32 {
2350 self.0.signum()
2351 }
2352
2353 /// Returns the f64 value of `Pixels`.
2354 ///
2355 /// # Returns
2356 ///
2357 /// A f64 value of the `Pixels`.
2358 pub fn to_f64(self) -> f64 {
2359 self.0 as f64
2360 }
2361}
2362
2363impl Mul<Pixels> for Pixels {
2364 type Output = Pixels;
2365
2366 fn mul(self, rhs: Pixels) -> Self::Output {
2367 Pixels(self.0 * rhs.0)
2368 }
2369}
2370
2371impl Eq for Pixels {}
2372
2373impl PartialOrd for Pixels {
2374 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2375 Some(self.cmp(other))
2376 }
2377}
2378
2379impl Ord for Pixels {
2380 fn cmp(&self, other: &Self) -> cmp::Ordering {
2381 self.0.total_cmp(&other.0)
2382 }
2383}
2384
2385impl std::hash::Hash for Pixels {
2386 fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
2387 self.0.to_bits().hash(state);
2388 }
2389}
2390
2391impl From<f64> for Pixels {
2392 fn from(pixels: f64) -> Self {
2393 Pixels(pixels as f32)
2394 }
2395}
2396
2397impl From<f32> for Pixels {
2398 fn from(pixels: f32) -> Self {
2399 Pixels(pixels)
2400 }
2401}
2402
2403impl Debug for Pixels {
2404 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2405 write!(f, "{} px", self.0)
2406 }
2407}
2408
2409impl From<Pixels> for f32 {
2410 fn from(pixels: Pixels) -> Self {
2411 pixels.0
2412 }
2413}
2414
2415impl From<&Pixels> for f32 {
2416 fn from(pixels: &Pixels) -> Self {
2417 pixels.0
2418 }
2419}
2420
2421impl From<Pixels> for f64 {
2422 fn from(pixels: Pixels) -> Self {
2423 pixels.0 as f64
2424 }
2425}
2426
2427impl From<Pixels> for u32 {
2428 fn from(pixels: Pixels) -> Self {
2429 pixels.0 as u32
2430 }
2431}
2432
2433impl From<u32> for Pixels {
2434 fn from(pixels: u32) -> Self {
2435 Pixels(pixels as f32)
2436 }
2437}
2438
2439impl From<Pixels> for usize {
2440 fn from(pixels: Pixels) -> Self {
2441 pixels.0 as usize
2442 }
2443}
2444
2445impl From<usize> for Pixels {
2446 fn from(pixels: usize) -> Self {
2447 Pixels(pixels as f32)
2448 }
2449}
2450
2451/// Represents physical pixels on the display.
2452///
2453/// `DevicePixels` is a unit of measurement that refers to the actual pixels on a device's screen.
2454/// This type is used when precise pixel manipulation is required, such as rendering graphics or
2455/// interfacing with hardware that operates on the pixel level. Unlike logical pixels that may be
2456/// affected by the device's scale factor, `DevicePixels` always correspond to real pixels on the
2457/// display.
2458#[derive(
2459 Add,
2460 AddAssign,
2461 Clone,
2462 Copy,
2463 Default,
2464 Div,
2465 Eq,
2466 Hash,
2467 Ord,
2468 PartialEq,
2469 PartialOrd,
2470 Sub,
2471 SubAssign,
2472 Serialize,
2473 Deserialize,
2474)]
2475#[repr(transparent)]
2476pub struct DevicePixels(pub i32);
2477
2478impl DevicePixels {
2479 /// Converts the `DevicePixels` value to the number of bytes needed to represent it in memory.
2480 ///
2481 /// This function is useful when working with graphical data that needs to be stored in a buffer,
2482 /// such as images or framebuffers, where each pixel may be represented by a specific number of bytes.
2483 ///
2484 /// # Arguments
2485 ///
2486 /// * `bytes_per_pixel` - The number of bytes used to represent a single pixel.
2487 ///
2488 /// # Returns
2489 ///
2490 /// The number of bytes required to represent the `DevicePixels` value in memory.
2491 ///
2492 /// # Examples
2493 ///
2494 /// ```
2495 /// # use zed::DevicePixels;
2496 /// let pixels = DevicePixels(10); // 10 device pixels
2497 /// let bytes_per_pixel = 4; // Assume each pixel is represented by 4 bytes (e.g., RGBA)
2498 /// let total_bytes = pixels.to_bytes(bytes_per_pixel);
2499 /// assert_eq!(total_bytes, 40); // 10 pixels * 4 bytes/pixel = 40 bytes
2500 /// ```
2501 pub fn to_bytes(&self, bytes_per_pixel: u8) -> u32 {
2502 self.0 as u32 * bytes_per_pixel as u32
2503 }
2504}
2505
2506impl fmt::Debug for DevicePixels {
2507 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2508 write!(f, "{} px (device)", self.0)
2509 }
2510}
2511
2512impl From<DevicePixels> for i32 {
2513 fn from(device_pixels: DevicePixels) -> Self {
2514 device_pixels.0
2515 }
2516}
2517
2518impl From<i32> for DevicePixels {
2519 fn from(device_pixels: i32) -> Self {
2520 DevicePixels(device_pixels)
2521 }
2522}
2523
2524impl From<u32> for DevicePixels {
2525 fn from(device_pixels: u32) -> Self {
2526 DevicePixels(device_pixels as i32)
2527 }
2528}
2529
2530impl From<DevicePixels> for u32 {
2531 fn from(device_pixels: DevicePixels) -> Self {
2532 device_pixels.0 as u32
2533 }
2534}
2535
2536impl From<DevicePixels> for u64 {
2537 fn from(device_pixels: DevicePixels) -> Self {
2538 device_pixels.0 as u64
2539 }
2540}
2541
2542impl From<u64> for DevicePixels {
2543 fn from(device_pixels: u64) -> Self {
2544 DevicePixels(device_pixels as i32)
2545 }
2546}
2547
2548impl From<DevicePixels> for usize {
2549 fn from(device_pixels: DevicePixels) -> Self {
2550 device_pixels.0 as usize
2551 }
2552}
2553
2554impl From<usize> for DevicePixels {
2555 fn from(device_pixels: usize) -> Self {
2556 DevicePixels(device_pixels as i32)
2557 }
2558}
2559
2560/// Represents scaled pixels that take into account the device's scale factor.
2561///
2562/// `ScaledPixels` are used to ensure that UI elements appear at the correct size on devices
2563/// with different pixel densities. When a device has a higher scale factor (such as Retina displays),
2564/// a single logical pixel may correspond to multiple physical pixels. By using `ScaledPixels`,
2565/// dimensions and positions can be specified in a way that scales appropriately across different
2566/// display resolutions.
2567#[derive(Clone, Copy, Default, Add, AddAssign, Sub, SubAssign, Div, PartialEq, PartialOrd)]
2568#[repr(transparent)]
2569pub struct ScaledPixels(pub(crate) f32);
2570
2571impl ScaledPixels {
2572 /// Floors the `ScaledPixels` value to the nearest whole number.
2573 ///
2574 /// # Returns
2575 ///
2576 /// Returns a new `ScaledPixels` instance with the floored value.
2577 pub fn floor(&self) -> Self {
2578 Self(self.0.floor())
2579 }
2580
2581 /// Rounds the `ScaledPixels` value to the nearest whole number.
2582 ///
2583 /// # Returns
2584 ///
2585 /// Returns a new `ScaledPixels` instance with the rounded value.
2586 pub fn ceil(&self) -> Self {
2587 Self(self.0.ceil())
2588 }
2589}
2590
2591impl Eq for ScaledPixels {}
2592
2593impl Debug for ScaledPixels {
2594 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2595 write!(f, "{} px (scaled)", self.0)
2596 }
2597}
2598
2599impl From<ScaledPixels> for DevicePixels {
2600 fn from(scaled: ScaledPixels) -> Self {
2601 DevicePixels(scaled.0.ceil() as i32)
2602 }
2603}
2604
2605impl From<DevicePixels> for ScaledPixels {
2606 fn from(device: DevicePixels) -> Self {
2607 ScaledPixels(device.0 as f32)
2608 }
2609}
2610
2611impl From<ScaledPixels> for f64 {
2612 fn from(scaled_pixels: ScaledPixels) -> Self {
2613 scaled_pixels.0 as f64
2614 }
2615}
2616
2617/// Represents a length in rems, a unit based on the font-size of the window, which can be assigned with [`WindowContext::set_rem_size`][set_rem_size].
2618///
2619/// Rems are used for defining lengths that are scalable and consistent across different UI elements.
2620/// The value of `1rem` is typically equal to the font-size of the root element (often the `<html>` element in browsers),
2621/// making it a flexible unit that adapts to the user's text size preferences. In this framework, `rems` serve a similar
2622/// purpose, allowing for scalable and accessible design that can adjust to different display settings or user preferences.
2623///
2624/// For example, if the root element's font-size is `16px`, then `1rem` equals `16px`. A length of `2rems` would then be `32px`.
2625///
2626/// [set_rem_size]: crate::WindowContext::set_rem_size
2627#[derive(Clone, Copy, Default, Add, Sub, Mul, Div, Neg, PartialEq)]
2628pub struct Rems(pub f32);
2629
2630impl Rems {
2631 /// Convert this Rem value to pixels.
2632 pub fn to_pixels(&self, rem_size: Pixels) -> Pixels {
2633 *self * rem_size
2634 }
2635}
2636
2637impl Mul<Pixels> for Rems {
2638 type Output = Pixels;
2639
2640 fn mul(self, other: Pixels) -> Pixels {
2641 Pixels(self.0 * other.0)
2642 }
2643}
2644
2645impl Debug for Rems {
2646 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2647 write!(f, "{} rem", self.0)
2648 }
2649}
2650
2651/// Represents an absolute length in pixels or rems.
2652///
2653/// `AbsoluteLength` can be either a fixed number of pixels, which is an absolute measurement not
2654/// affected by the current font size, or a number of rems, which is relative to the font size of
2655/// the root element. It is used for specifying dimensions that are either independent of or
2656/// related to the typographic scale.
2657#[derive(Clone, Copy, Debug, Neg, PartialEq)]
2658pub enum AbsoluteLength {
2659 /// A length in pixels.
2660 Pixels(Pixels),
2661 /// A length in rems.
2662 Rems(Rems),
2663}
2664
2665impl AbsoluteLength {
2666 /// Checks if the absolute length is zero.
2667 pub fn is_zero(&self) -> bool {
2668 match self {
2669 AbsoluteLength::Pixels(px) => px.0 == 0.0,
2670 AbsoluteLength::Rems(rems) => rems.0 == 0.0,
2671 }
2672 }
2673}
2674
2675impl From<Pixels> for AbsoluteLength {
2676 fn from(pixels: Pixels) -> Self {
2677 AbsoluteLength::Pixels(pixels)
2678 }
2679}
2680
2681impl From<Rems> for AbsoluteLength {
2682 fn from(rems: Rems) -> Self {
2683 AbsoluteLength::Rems(rems)
2684 }
2685}
2686
2687impl AbsoluteLength {
2688 /// Converts an `AbsoluteLength` to `Pixels` based on a given `rem_size`.
2689 ///
2690 /// # Arguments
2691 ///
2692 /// * `rem_size` - The size of one rem in pixels.
2693 ///
2694 /// # Returns
2695 ///
2696 /// Returns the `AbsoluteLength` as `Pixels`.
2697 ///
2698 /// # Examples
2699 ///
2700 /// ```
2701 /// # use zed::{AbsoluteLength, Pixels};
2702 /// let length_in_pixels = AbsoluteLength::Pixels(Pixels(42.0));
2703 /// let length_in_rems = AbsoluteLength::Rems(Rems(2.0));
2704 /// let rem_size = Pixels(16.0);
2705 ///
2706 /// assert_eq!(length_in_pixels.to_pixels(rem_size), Pixels(42.0));
2707 /// assert_eq!(length_in_rems.to_pixels(rem_size), Pixels(32.0));
2708 /// ```
2709 pub fn to_pixels(&self, rem_size: Pixels) -> Pixels {
2710 match self {
2711 AbsoluteLength::Pixels(pixels) => *pixels,
2712 AbsoluteLength::Rems(rems) => rems.to_pixels(rem_size),
2713 }
2714 }
2715}
2716
2717impl Default for AbsoluteLength {
2718 fn default() -> Self {
2719 px(0.).into()
2720 }
2721}
2722
2723/// A non-auto length that can be defined in pixels, rems, or percent of parent.
2724///
2725/// This enum represents lengths that have a specific value, as opposed to lengths that are automatically
2726/// determined by the context. It includes absolute lengths in pixels or rems, and relative lengths as a
2727/// fraction of the parent's size.
2728#[derive(Clone, Copy, Neg, PartialEq)]
2729pub enum DefiniteLength {
2730 /// An absolute length specified in pixels or rems.
2731 Absolute(AbsoluteLength),
2732 /// A relative length specified as a fraction of the parent's size, between 0 and 1.
2733 Fraction(f32),
2734}
2735
2736impl DefiniteLength {
2737 /// Converts the `DefiniteLength` to `Pixels` based on a given `base_size` and `rem_size`.
2738 ///
2739 /// If the `DefiniteLength` is an absolute length, it will be directly converted to `Pixels`.
2740 /// If it is a fraction, the fraction will be multiplied by the `base_size` to get the length in pixels.
2741 ///
2742 /// # Arguments
2743 ///
2744 /// * `base_size` - The base size in `AbsoluteLength` to which the fraction will be applied.
2745 /// * `rem_size` - The size of one rem in pixels, used to convert rems to pixels.
2746 ///
2747 /// # Returns
2748 ///
2749 /// Returns the `DefiniteLength` as `Pixels`.
2750 ///
2751 /// # Examples
2752 ///
2753 /// ```
2754 /// # use zed::{DefiniteLength, AbsoluteLength, Pixels, px, rems};
2755 /// let length_in_pixels = DefiniteLength::Absolute(AbsoluteLength::Pixels(px(42.0)));
2756 /// let length_in_rems = DefiniteLength::Absolute(AbsoluteLength::Rems(rems(2.0)));
2757 /// let length_as_fraction = DefiniteLength::Fraction(0.5);
2758 /// let base_size = AbsoluteLength::Pixels(px(100.0));
2759 /// let rem_size = px(16.0);
2760 ///
2761 /// assert_eq!(length_in_pixels.to_pixels(base_size, rem_size), Pixels(42.0));
2762 /// assert_eq!(length_in_rems.to_pixels(base_size, rem_size), Pixels(32.0));
2763 /// assert_eq!(length_as_fraction.to_pixels(base_size, rem_size), Pixels(50.0));
2764 /// ```
2765 pub fn to_pixels(&self, base_size: AbsoluteLength, rem_size: Pixels) -> Pixels {
2766 match self {
2767 DefiniteLength::Absolute(size) => size.to_pixels(rem_size),
2768 DefiniteLength::Fraction(fraction) => match base_size {
2769 AbsoluteLength::Pixels(px) => px * *fraction,
2770 AbsoluteLength::Rems(rems) => rems * rem_size * *fraction,
2771 },
2772 }
2773 }
2774}
2775
2776impl Debug for DefiniteLength {
2777 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2778 match self {
2779 DefiniteLength::Absolute(length) => Debug::fmt(length, f),
2780 DefiniteLength::Fraction(fract) => write!(f, "{}%", (fract * 100.0) as i32),
2781 }
2782 }
2783}
2784
2785impl From<Pixels> for DefiniteLength {
2786 fn from(pixels: Pixels) -> Self {
2787 Self::Absolute(pixels.into())
2788 }
2789}
2790
2791impl From<Rems> for DefiniteLength {
2792 fn from(rems: Rems) -> Self {
2793 Self::Absolute(rems.into())
2794 }
2795}
2796
2797impl From<AbsoluteLength> for DefiniteLength {
2798 fn from(length: AbsoluteLength) -> Self {
2799 Self::Absolute(length)
2800 }
2801}
2802
2803impl Default for DefiniteLength {
2804 fn default() -> Self {
2805 Self::Absolute(AbsoluteLength::default())
2806 }
2807}
2808
2809/// A length that can be defined in pixels, rems, percent of parent, or auto.
2810#[derive(Clone, Copy)]
2811pub enum Length {
2812 /// A definite length specified either in pixels, rems, or as a fraction of the parent's size.
2813 Definite(DefiniteLength),
2814 /// An automatic length that is determined by the context in which it is used.
2815 Auto,
2816}
2817
2818impl Debug for Length {
2819 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2820 match self {
2821 Length::Definite(definite_length) => write!(f, "{:?}", definite_length),
2822 Length::Auto => write!(f, "auto"),
2823 }
2824 }
2825}
2826
2827/// Constructs a `DefiniteLength` representing a relative fraction of a parent size.
2828///
2829/// This function creates a `DefiniteLength` that is a specified fraction of a parent's dimension.
2830/// The fraction should be a floating-point number between 0.0 and 1.0, where 1.0 represents 100% of the parent's size.
2831///
2832/// # Arguments
2833///
2834/// * `fraction` - The fraction of the parent's size, between 0.0 and 1.0.
2835///
2836/// # Returns
2837///
2838/// A `DefiniteLength` representing the relative length as a fraction of the parent's size.
2839pub fn relative(fraction: f32) -> DefiniteLength {
2840 DefiniteLength::Fraction(fraction)
2841}
2842
2843/// Returns the Golden Ratio, i.e. `~(1.0 + sqrt(5.0)) / 2.0`.
2844pub fn phi() -> DefiniteLength {
2845 relative(1.618_034)
2846}
2847
2848/// Constructs a `Rems` value representing a length in rems.
2849///
2850/// # Arguments
2851///
2852/// * `rems` - The number of rems for the length.
2853///
2854/// # Returns
2855///
2856/// A `Rems` representing the specified number of rems.
2857pub fn rems(rems: f32) -> Rems {
2858 Rems(rems)
2859}
2860
2861/// Constructs a `Pixels` value representing a length in pixels.
2862///
2863/// # Arguments
2864///
2865/// * `pixels` - The number of pixels for the length.
2866///
2867/// # Returns
2868///
2869/// A `Pixels` representing the specified number of pixels.
2870pub const fn px(pixels: f32) -> Pixels {
2871 Pixels(pixels)
2872}
2873
2874/// Returns a `Length` representing an automatic length.
2875///
2876/// The `auto` length is often used in layout calculations where the length should be determined
2877/// by the layout context itself rather than being explicitly set. This is commonly used in CSS
2878/// for properties like `width`, `height`, `margin`, `padding`, etc., where `auto` can be used
2879/// to instruct the layout engine to calculate the size based on other factors like the size of the
2880/// container or the intrinsic size of the content.
2881///
2882/// # Returns
2883///
2884/// A `Length` variant set to `Auto`.
2885pub fn auto() -> Length {
2886 Length::Auto
2887}
2888
2889impl From<Pixels> for Length {
2890 fn from(pixels: Pixels) -> Self {
2891 Self::Definite(pixels.into())
2892 }
2893}
2894
2895impl From<Rems> for Length {
2896 fn from(rems: Rems) -> Self {
2897 Self::Definite(rems.into())
2898 }
2899}
2900
2901impl From<DefiniteLength> for Length {
2902 fn from(length: DefiniteLength) -> Self {
2903 Self::Definite(length)
2904 }
2905}
2906
2907impl From<AbsoluteLength> for Length {
2908 fn from(length: AbsoluteLength) -> Self {
2909 Self::Definite(length.into())
2910 }
2911}
2912
2913impl Default for Length {
2914 fn default() -> Self {
2915 Self::Definite(DefiniteLength::default())
2916 }
2917}
2918
2919impl From<()> for Length {
2920 fn from(_: ()) -> Self {
2921 Self::Definite(DefiniteLength::default())
2922 }
2923}
2924
2925/// Provides a trait for types that can calculate half of their value.
2926///
2927/// The `Half` trait is used for types that can be evenly divided, returning a new instance of the same type
2928/// representing half of the original value. This is commonly used for types that represent measurements or sizes,
2929/// such as lengths or pixels, where halving is a frequent operation during layout calculations or animations.
2930pub trait Half {
2931 /// Returns half of the current value.
2932 ///
2933 /// # Returns
2934 ///
2935 /// A new instance of the implementing type, representing half of the original value.
2936 fn half(&self) -> Self;
2937}
2938
2939impl Half for i32 {
2940 fn half(&self) -> Self {
2941 self / 2
2942 }
2943}
2944
2945impl Half for f32 {
2946 fn half(&self) -> Self {
2947 self / 2.
2948 }
2949}
2950
2951impl Half for DevicePixels {
2952 fn half(&self) -> Self {
2953 Self(self.0 / 2)
2954 }
2955}
2956
2957impl Half for ScaledPixels {
2958 fn half(&self) -> Self {
2959 Self(self.0 / 2.)
2960 }
2961}
2962
2963impl Half for Pixels {
2964 fn half(&self) -> Self {
2965 Self(self.0 / 2.)
2966 }
2967}
2968
2969impl Half for Rems {
2970 fn half(&self) -> Self {
2971 Self(self.0 / 2.)
2972 }
2973}
2974
2975/// Provides a trait for types that can negate their values.
2976pub trait Negate {
2977 /// Returns the negation of the given value
2978 fn negate(self) -> Self;
2979}
2980
2981impl Negate for i32 {
2982 fn negate(self) -> Self {
2983 -self
2984 }
2985}
2986
2987impl Negate for f32 {
2988 fn negate(self) -> Self {
2989 -self
2990 }
2991}
2992
2993impl Negate for DevicePixels {
2994 fn negate(self) -> Self {
2995 Self(-self.0)
2996 }
2997}
2998
2999impl Negate for ScaledPixels {
3000 fn negate(self) -> Self {
3001 Self(-self.0)
3002 }
3003}
3004
3005impl Negate for Pixels {
3006 fn negate(self) -> Self {
3007 Self(-self.0)
3008 }
3009}
3010
3011impl Negate for Rems {
3012 fn negate(self) -> Self {
3013 Self(-self.0)
3014 }
3015}
3016
3017/// A trait for checking if a value is zero.
3018///
3019/// This trait provides a method to determine if a value is considered to be zero.
3020/// It is implemented for various numeric and length-related types where the concept
3021/// of zero is applicable. This can be useful for comparisons, optimizations, or
3022/// determining if an operation has a neutral effect.
3023pub trait IsZero {
3024 /// Determines if the value is zero.
3025 ///
3026 /// # Returns
3027 ///
3028 /// Returns `true` if the value is zero, `false` otherwise.
3029 fn is_zero(&self) -> bool;
3030}
3031
3032impl IsZero for DevicePixels {
3033 fn is_zero(&self) -> bool {
3034 self.0 == 0
3035 }
3036}
3037
3038impl IsZero for ScaledPixels {
3039 fn is_zero(&self) -> bool {
3040 self.0 == 0.
3041 }
3042}
3043
3044impl IsZero for Pixels {
3045 fn is_zero(&self) -> bool {
3046 self.0 == 0.
3047 }
3048}
3049
3050impl IsZero for Rems {
3051 fn is_zero(&self) -> bool {
3052 self.0 == 0.
3053 }
3054}
3055
3056impl IsZero for AbsoluteLength {
3057 fn is_zero(&self) -> bool {
3058 match self {
3059 AbsoluteLength::Pixels(pixels) => pixels.is_zero(),
3060 AbsoluteLength::Rems(rems) => rems.is_zero(),
3061 }
3062 }
3063}
3064
3065impl IsZero for DefiniteLength {
3066 fn is_zero(&self) -> bool {
3067 match self {
3068 DefiniteLength::Absolute(length) => length.is_zero(),
3069 DefiniteLength::Fraction(fraction) => *fraction == 0.,
3070 }
3071 }
3072}
3073
3074impl IsZero for Length {
3075 fn is_zero(&self) -> bool {
3076 match self {
3077 Length::Definite(length) => length.is_zero(),
3078 Length::Auto => false,
3079 }
3080 }
3081}
3082
3083impl<T: IsZero + Debug + Clone + Default> IsZero for Point<T> {
3084 fn is_zero(&self) -> bool {
3085 self.x.is_zero() && self.y.is_zero()
3086 }
3087}
3088
3089impl<T> IsZero for Size<T>
3090where
3091 T: IsZero + Default + Debug + Clone,
3092{
3093 fn is_zero(&self) -> bool {
3094 self.width.is_zero() || self.height.is_zero()
3095 }
3096}
3097
3098impl<T: IsZero + Debug + Clone + Default> IsZero for Bounds<T> {
3099 fn is_zero(&self) -> bool {
3100 self.size.is_zero()
3101 }
3102}
3103
3104impl<T> IsZero for Corners<T>
3105where
3106 T: IsZero + Clone + Default + Debug,
3107{
3108 fn is_zero(&self) -> bool {
3109 self.top_left.is_zero()
3110 && self.top_right.is_zero()
3111 && self.bottom_right.is_zero()
3112 && self.bottom_left.is_zero()
3113 }
3114}
3115
3116#[cfg(test)]
3117mod tests {
3118 use super::*;
3119
3120 #[test]
3121 fn test_bounds_intersects() {
3122 let bounds1 = Bounds {
3123 origin: Point { x: 0.0, y: 0.0 },
3124 size: Size {
3125 width: 5.0,
3126 height: 5.0,
3127 },
3128 };
3129 let bounds2 = Bounds {
3130 origin: Point { x: 4.0, y: 4.0 },
3131 size: Size {
3132 width: 5.0,
3133 height: 5.0,
3134 },
3135 };
3136 let bounds3 = Bounds {
3137 origin: Point { x: 10.0, y: 10.0 },
3138 size: Size {
3139 width: 5.0,
3140 height: 5.0,
3141 },
3142 };
3143
3144 // Test Case 1: Intersecting bounds
3145 assert!(bounds1.intersects(&bounds2));
3146
3147 // Test Case 2: Non-Intersecting bounds
3148 assert!(!bounds1.intersects(&bounds3));
3149
3150 // Test Case 3: Bounds intersecting with themselves
3151 assert!(bounds1.intersects(&bounds1));
3152 }
3153}