metrics.rs

  1use collections::HashMap;
  2
  3type Counts = HashMap<String, usize>;
  4type CountsDelta = HashMap<String, isize>;
  5
  6#[derive(Default, Debug, Clone)]
  7struct ClassificationMetrics {
  8    true_positives: usize,
  9    false_positives: usize,
 10    false_negatives: usize,
 11}
 12
 13impl ClassificationMetrics {
 14    fn from_counts(expected: &Counts, actual: &Counts) -> ClassificationMetrics {
 15        let mut true_positives = 0;
 16        let mut false_positives = 0;
 17        let mut false_negatives = 0;
 18
 19        for (ngram, &expected_count) in expected {
 20            let actual_count = *actual.get(ngram).unwrap_or(&0);
 21            if actual_count > expected_count {
 22                false_positives += actual_count - expected_count;
 23            } else {
 24                false_negatives += expected_count - actual_count;
 25            }
 26            true_positives += expected_count.min(actual_count);
 27        }
 28
 29        for (ngram, &actual_count) in actual {
 30            if !expected.contains_key(ngram) {
 31                false_positives += actual_count;
 32            }
 33        }
 34
 35        ClassificationMetrics {
 36            true_positives,
 37            false_positives,
 38            false_negatives,
 39        }
 40    }
 41
 42    fn precision(&self) -> f64 {
 43        if self.true_positives + self.false_positives == 0 {
 44            0.0
 45        } else {
 46            self.true_positives as f64 / (self.true_positives + self.false_positives) as f64
 47        }
 48    }
 49
 50    fn recall(&self) -> f64 {
 51        if self.true_positives + self.false_negatives == 0 {
 52            0.0
 53        } else {
 54            self.true_positives as f64 / (self.true_positives + self.false_negatives) as f64
 55        }
 56    }
 57}
 58
 59enum ChrfWhitespace {
 60    #[allow(unused)]
 61    Unchanged,
 62    Ignore,
 63}
 64
 65const CHR_F_CHAR_ORDER: usize = 6;
 66const CHR_F_BETA: f64 = 2.0;
 67const CHR_F_WHITESPACE: ChrfWhitespace = ChrfWhitespace::Ignore;
 68
 69/// Computes a delta-chrF score that compares two sets of edits.
 70///
 71/// This metric works by:
 72/// 1. Computing n-gram count differences (deltas) between original→expected and original→actual
 73/// 2. Comparing these deltas to measure how well actual edits match expected edits
 74///
 75/// Returns a score from 0.0 to 100.0, where 100.0 means the actual edits perfectly match
 76/// the expected edits.
 77pub fn delta_chr_f(original: &str, expected: &str, actual: &str) -> f64 {
 78    // Edge case: if all texts are identical, the edits match perfectly
 79    if original == expected && expected == actual {
 80        return 100.0;
 81    }
 82
 83    let original_ngrams = chr_f_ngram_counts(original);
 84    let expected_ngrams = chr_f_ngram_counts(expected);
 85    let actual_ngrams = chr_f_ngram_counts(actual);
 86
 87    let mut total_precision = 0.0;
 88    let mut total_recall = 0.0;
 89
 90    for order in 0..CHR_F_CHAR_ORDER {
 91        let expected_delta = compute_ngram_delta(&expected_ngrams[order], &original_ngrams[order]);
 92        let actual_delta = compute_ngram_delta(&actual_ngrams[order], &original_ngrams[order]);
 93
 94        if expected_delta.is_empty() && actual_delta.is_empty() {
 95            total_precision += 1.0;
 96            total_recall += 1.0;
 97            continue;
 98        }
 99
100        let expected_counts = ngram_delta_to_counts(&expected_delta);
101        let actual_counts = ngram_delta_to_counts(&actual_delta);
102
103        let score = ClassificationMetrics::from_counts(&expected_counts, &actual_counts);
104        total_precision += score.precision();
105        total_recall += score.recall();
106    }
107
108    let prec = total_precision / CHR_F_CHAR_ORDER as f64;
109    let recall = total_recall / CHR_F_CHAR_ORDER as f64;
110    let f_score = if prec + recall == 0.0 {
111        0.0
112    } else {
113        (1.0 + CHR_F_BETA * CHR_F_BETA) * prec * recall / (CHR_F_BETA * CHR_F_BETA * prec + recall)
114    };
115
116    f_score * 100.0
117}
118
119fn chr_f_ngram_counts(text: &str) -> Vec<Counts> {
120    // Ignore whitespace. The original chrF implementation skips all
121    // whitespace. We should consider compressing multiple consecutive
122    // spaces into one -- this may reflect our task more closely.
123    let text = match CHR_F_WHITESPACE {
124        ChrfWhitespace::Unchanged => text.to_string(),
125        ChrfWhitespace::Ignore => text
126            .chars()
127            .filter(|c| !c.is_whitespace())
128            .collect::<String>(),
129    };
130
131    (1..=CHR_F_CHAR_ORDER)
132        .map(|order| count_ngrams(&text, order))
133        .collect()
134}
135
136fn compute_ngram_delta(after: &Counts, before: &Counts) -> CountsDelta {
137    let mut delta = CountsDelta::default();
138
139    for (ngram, &before_count) in before {
140        let after_count = *after.get(ngram).unwrap_or(&0);
141        delta.insert(ngram.clone(), after_count as isize - before_count as isize);
142    }
143
144    for (ngram, &after_count) in after {
145        if !before.contains_key(ngram) {
146            delta.insert(ngram.clone(), after_count as isize);
147        }
148    }
149
150    delta
151}
152
153/// Convert negative counts to special deletion tokens.
154/// For example, if expected delta is {"foo": -1} and actual delta is {"bar": -1},
155/// we convert it to {"¬foo": +1} and {"¬bar": +1}. This way _not_ deleting "foo"
156/// will result in a false negative, and mistakenly deleting "bar" will result in a false positive.
157fn ngram_delta_to_counts(delta: &CountsDelta) -> Counts {
158    let mut counts = Counts::default();
159
160    for (ngram, &delta) in delta {
161        if delta > 0 {
162            counts.insert(ngram.clone(), delta as usize);
163        } else {
164            counts.insert(format!("¬{ngram}"), delta.unsigned_abs());
165        }
166    }
167
168    counts
169}
170
171fn count_ngrams(text: &str, n: usize) -> Counts {
172    let chars: Vec<char> = text.chars().collect();
173    let mut counts = Counts::default();
174
175    for window in chars.windows(n) {
176        let ngram: String = window.iter().collect();
177        *counts.entry(ngram).or_insert(0) += 1;
178    }
179
180    counts
181}
182
183#[cfg(test)]
184mod test {
185    use super::*;
186
187    #[test]
188    fn test_delta_chr_f_perfect_match() {
189        let original = "fn main() {    println!(\"Hello\");}";
190        let expected = "fn main() {    println!(\"Hello, World!\");}";
191
192        let score = delta_chr_f(original, expected, expected);
193        assert!((score - 100.0).abs() < 1e-2);
194    }
195
196    #[test]
197    fn test_delta_chr_f_wrong_edit() {
198        // When the edit is wrong
199        let original = "one two three";
200        let expected = "one three"; // deleted "two "
201        let actual = "one two four"; // deleted "three", added "four"
202
203        // Then the score should be low
204        let score = delta_chr_f(original, expected, actual);
205        assert!(score > 20.0 && score < 40.0);
206    }
207
208    #[test]
209    fn test_delta_chr_f_partial_match() {
210        let original = "let x = 42;";
211        let expected = "let x = 100;";
212        let actual = "let x = 99;";
213
214        // We got the edit location right, but the replacement text is wrong.
215        // Deleted ngrams will match, bringing the score somewhere in the middle.
216        let score = delta_chr_f(original, expected, actual);
217        assert!(score > 40.0 && score < 60.0);
218    }
219
220    #[test]
221    fn test_delta_chr_f_missed_edit() {
222        // When predictions makes no changes
223        let original = "prefix old suffix";
224        let expected = "prefix new suffix";
225        let actual = "prefix old suffix"; // no change
226
227        // Then the score should be low (all expected changes are false negatives)
228        let score = delta_chr_f(original, expected, actual);
229        assert!(score < 20.0);
230    }
231
232    #[test]
233    fn test_delta_chr_f_extra_edit() {
234        // When adding unexpected content
235        let original = "helloworld";
236        let expected = "helloworld"; // no change expected
237        let actual = "helloextraworld"; // added "extra"
238
239        // Then the score should be low (all actual changes are false positives)
240        let score = delta_chr_f(original, expected, actual);
241        assert!(score < 20.0);
242    }
243
244    #[test]
245    fn test_delta_chr_f_no_changes() {
246        let text = "unchanged text";
247        let score = delta_chr_f(text, text, text);
248        assert!((score - 100.0).abs() < 1e-2);
249    }
250}