1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, Priority, PromptButton,
13 PromptLevel, Quad, Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams,
14 Replay, ResizeEdge, SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y,
15 ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style, SubscriberSet,
16 Subscription, SystemWindowTab, SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task,
17 TextStyle, TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle,
18 WindowAppearance, WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations,
19 WindowOptions, WindowParams, WindowTextSystem, point, prelude::*, px, rems, size,
20 transparent_black,
21};
22use anyhow::{Context as _, Result, anyhow};
23use collections::{FxHashMap, FxHashSet};
24#[cfg(target_os = "macos")]
25use core_video::pixel_buffer::CVPixelBuffer;
26use derive_more::{Deref, DerefMut};
27use futures::FutureExt;
28use futures::channel::oneshot;
29use itertools::FoldWhile::{Continue, Done};
30use itertools::Itertools;
31use parking_lot::RwLock;
32use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
33use refineable::Refineable;
34use slotmap::SlotMap;
35use smallvec::SmallVec;
36use std::{
37 any::{Any, TypeId},
38 borrow::Cow,
39 cell::{Cell, RefCell},
40 cmp,
41 fmt::{Debug, Display},
42 hash::{Hash, Hasher},
43 marker::PhantomData,
44 mem,
45 ops::{DerefMut, Range},
46 rc::Rc,
47 sync::{
48 Arc, Weak,
49 atomic::{AtomicUsize, Ordering::SeqCst},
50 },
51 time::{Duration, Instant},
52};
53use util::post_inc;
54use util::{ResultExt, measure};
55use uuid::Uuid;
56
57mod prompts;
58
59use crate::util::atomic_incr_if_not_zero;
60pub use prompts::*;
61
62pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
63
64/// A 6:5 aspect ratio minimum window size to be used for functional,
65/// additional-to-main-Zed windows, like the settings and rules library windows.
66pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
67 width: Pixels(900.),
68 height: Pixels(750.),
69};
70
71/// Represents the two different phases when dispatching events.
72#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
73pub enum DispatchPhase {
74 /// After the capture phase comes the bubble phase, in which mouse event listeners are
75 /// invoked front to back and keyboard event listeners are invoked from the focused element
76 /// to the root of the element tree. This is the phase you'll most commonly want to use when
77 /// registering event listeners.
78 #[default]
79 Bubble,
80 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
81 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
82 /// is used for special purposes such as clearing the "pressed" state for click events. If
83 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
84 /// outside of the immediate region may rely on detecting non-local events during this phase.
85 Capture,
86}
87
88impl DispatchPhase {
89 /// Returns true if this represents the "bubble" phase.
90 #[inline]
91 pub fn bubble(self) -> bool {
92 self == DispatchPhase::Bubble
93 }
94
95 /// Returns true if this represents the "capture" phase.
96 #[inline]
97 pub fn capture(self) -> bool {
98 self == DispatchPhase::Capture
99 }
100}
101
102struct WindowInvalidatorInner {
103 pub dirty: bool,
104 pub draw_phase: DrawPhase,
105 pub dirty_views: FxHashSet<EntityId>,
106}
107
108#[derive(Clone)]
109pub(crate) struct WindowInvalidator {
110 inner: Rc<RefCell<WindowInvalidatorInner>>,
111}
112
113impl WindowInvalidator {
114 pub fn new() -> Self {
115 WindowInvalidator {
116 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
117 dirty: true,
118 draw_phase: DrawPhase::None,
119 dirty_views: FxHashSet::default(),
120 })),
121 }
122 }
123
124 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
125 let mut inner = self.inner.borrow_mut();
126 inner.dirty_views.insert(entity);
127 if inner.draw_phase == DrawPhase::None {
128 inner.dirty = true;
129 cx.push_effect(Effect::Notify { emitter: entity });
130 true
131 } else {
132 false
133 }
134 }
135
136 pub fn is_dirty(&self) -> bool {
137 self.inner.borrow().dirty
138 }
139
140 pub fn set_dirty(&self, dirty: bool) {
141 self.inner.borrow_mut().dirty = dirty
142 }
143
144 pub fn set_phase(&self, phase: DrawPhase) {
145 self.inner.borrow_mut().draw_phase = phase
146 }
147
148 pub fn take_views(&self) -> FxHashSet<EntityId> {
149 mem::take(&mut self.inner.borrow_mut().dirty_views)
150 }
151
152 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
153 self.inner.borrow_mut().dirty_views = views;
154 }
155
156 pub fn not_drawing(&self) -> bool {
157 self.inner.borrow().draw_phase == DrawPhase::None
158 }
159
160 #[track_caller]
161 pub fn debug_assert_paint(&self) {
162 debug_assert!(
163 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
164 "this method can only be called during paint"
165 );
166 }
167
168 #[track_caller]
169 pub fn debug_assert_prepaint(&self) {
170 debug_assert!(
171 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
172 "this method can only be called during request_layout, or prepaint"
173 );
174 }
175
176 #[track_caller]
177 pub fn debug_assert_paint_or_prepaint(&self) {
178 debug_assert!(
179 matches!(
180 self.inner.borrow().draw_phase,
181 DrawPhase::Paint | DrawPhase::Prepaint
182 ),
183 "this method can only be called during request_layout, prepaint, or paint"
184 );
185 }
186}
187
188type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
189
190pub(crate) type AnyWindowFocusListener =
191 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
192
193pub(crate) struct WindowFocusEvent {
194 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
195 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
196}
197
198impl WindowFocusEvent {
199 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
200 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
201 }
202
203 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
204 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
205 }
206}
207
208/// This is provided when subscribing for `Context::on_focus_out` events.
209pub struct FocusOutEvent {
210 /// A weak focus handle representing what was blurred.
211 pub blurred: WeakFocusHandle,
212}
213
214slotmap::new_key_type! {
215 /// A globally unique identifier for a focusable element.
216 pub struct FocusId;
217}
218
219thread_local! {
220 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
221}
222
223/// Returned when the element arena has been used and so must be cleared before the next draw.
224#[must_use]
225pub struct ArenaClearNeeded;
226
227impl ArenaClearNeeded {
228 /// Clear the element arena.
229 pub fn clear(self) {
230 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
231 element_arena.clear();
232 });
233 }
234}
235
236pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
237pub(crate) struct FocusRef {
238 pub(crate) ref_count: AtomicUsize,
239 pub(crate) tab_index: isize,
240 pub(crate) tab_stop: bool,
241}
242
243impl FocusId {
244 /// Obtains whether the element associated with this handle is currently focused.
245 pub fn is_focused(&self, window: &Window) -> bool {
246 window.focus == Some(*self)
247 }
248
249 /// Obtains whether the element associated with this handle contains the focused
250 /// element or is itself focused.
251 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
252 window
253 .focused(cx)
254 .is_some_and(|focused| self.contains(focused.id, window))
255 }
256
257 /// Obtains whether the element associated with this handle is contained within the
258 /// focused element or is itself focused.
259 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
260 let focused = window.focused(cx);
261 focused.is_some_and(|focused| focused.id.contains(*self, window))
262 }
263
264 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
265 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
266 window
267 .rendered_frame
268 .dispatch_tree
269 .focus_contains(*self, other)
270 }
271}
272
273/// A handle which can be used to track and manipulate the focused element in a window.
274pub struct FocusHandle {
275 pub(crate) id: FocusId,
276 handles: Arc<FocusMap>,
277 /// The index of this element in the tab order.
278 pub tab_index: isize,
279 /// Whether this element can be focused by tab navigation.
280 pub tab_stop: bool,
281}
282
283impl std::fmt::Debug for FocusHandle {
284 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
285 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
286 }
287}
288
289impl FocusHandle {
290 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
291 let id = handles.write().insert(FocusRef {
292 ref_count: AtomicUsize::new(1),
293 tab_index: 0,
294 tab_stop: false,
295 });
296
297 Self {
298 id,
299 tab_index: 0,
300 tab_stop: false,
301 handles: handles.clone(),
302 }
303 }
304
305 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
306 let lock = handles.read();
307 let focus = lock.get(id)?;
308 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
309 return None;
310 }
311 Some(Self {
312 id,
313 tab_index: focus.tab_index,
314 tab_stop: focus.tab_stop,
315 handles: handles.clone(),
316 })
317 }
318
319 /// Sets the tab index of the element associated with this handle.
320 pub fn tab_index(mut self, index: isize) -> Self {
321 self.tab_index = index;
322 if let Some(focus) = self.handles.write().get_mut(self.id) {
323 focus.tab_index = index;
324 }
325 self
326 }
327
328 /// Sets whether the element associated with this handle is a tab stop.
329 ///
330 /// When `false`, the element will not be included in the tab order.
331 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
332 self.tab_stop = tab_stop;
333 if let Some(focus) = self.handles.write().get_mut(self.id) {
334 focus.tab_stop = tab_stop;
335 }
336 self
337 }
338
339 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
340 pub fn downgrade(&self) -> WeakFocusHandle {
341 WeakFocusHandle {
342 id: self.id,
343 handles: Arc::downgrade(&self.handles),
344 }
345 }
346
347 /// Moves the focus to the element associated with this handle.
348 pub fn focus(&self, window: &mut Window, cx: &mut App) {
349 window.focus(self, cx)
350 }
351
352 /// Obtains whether the element associated with this handle is currently focused.
353 pub fn is_focused(&self, window: &Window) -> bool {
354 self.id.is_focused(window)
355 }
356
357 /// Obtains whether the element associated with this handle contains the focused
358 /// element or is itself focused.
359 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
360 self.id.contains_focused(window, cx)
361 }
362
363 /// Obtains whether the element associated with this handle is contained within the
364 /// focused element or is itself focused.
365 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
366 self.id.within_focused(window, cx)
367 }
368
369 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
370 pub fn contains(&self, other: &Self, window: &Window) -> bool {
371 self.id.contains(other.id, window)
372 }
373
374 /// Dispatch an action on the element that rendered this focus handle
375 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
376 if let Some(node_id) = window
377 .rendered_frame
378 .dispatch_tree
379 .focusable_node_id(self.id)
380 {
381 window.dispatch_action_on_node(node_id, action, cx)
382 }
383 }
384}
385
386impl Clone for FocusHandle {
387 fn clone(&self) -> Self {
388 Self::for_id(self.id, &self.handles).unwrap()
389 }
390}
391
392impl PartialEq for FocusHandle {
393 fn eq(&self, other: &Self) -> bool {
394 self.id == other.id
395 }
396}
397
398impl Eq for FocusHandle {}
399
400impl Drop for FocusHandle {
401 fn drop(&mut self) {
402 self.handles
403 .read()
404 .get(self.id)
405 .unwrap()
406 .ref_count
407 .fetch_sub(1, SeqCst);
408 }
409}
410
411/// A weak reference to a focus handle.
412#[derive(Clone, Debug)]
413pub struct WeakFocusHandle {
414 pub(crate) id: FocusId,
415 pub(crate) handles: Weak<FocusMap>,
416}
417
418impl WeakFocusHandle {
419 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
420 pub fn upgrade(&self) -> Option<FocusHandle> {
421 let handles = self.handles.upgrade()?;
422 FocusHandle::for_id(self.id, &handles)
423 }
424}
425
426impl PartialEq for WeakFocusHandle {
427 fn eq(&self, other: &WeakFocusHandle) -> bool {
428 self.id == other.id
429 }
430}
431
432impl Eq for WeakFocusHandle {}
433
434impl PartialEq<FocusHandle> for WeakFocusHandle {
435 fn eq(&self, other: &FocusHandle) -> bool {
436 self.id == other.id
437 }
438}
439
440impl PartialEq<WeakFocusHandle> for FocusHandle {
441 fn eq(&self, other: &WeakFocusHandle) -> bool {
442 self.id == other.id
443 }
444}
445
446/// Focusable allows users of your view to easily
447/// focus it (using window.focus_view(cx, view))
448pub trait Focusable: 'static {
449 /// Returns the focus handle associated with this view.
450 fn focus_handle(&self, cx: &App) -> FocusHandle;
451}
452
453impl<V: Focusable> Focusable for Entity<V> {
454 fn focus_handle(&self, cx: &App) -> FocusHandle {
455 self.read(cx).focus_handle(cx)
456 }
457}
458
459/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
460/// where the lifecycle of the view is handled by another view.
461pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
462
463impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
464
465/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
466pub struct DismissEvent;
467
468type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
469
470pub(crate) type AnyMouseListener =
471 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
472
473#[derive(Clone)]
474pub(crate) struct CursorStyleRequest {
475 pub(crate) hitbox_id: Option<HitboxId>,
476 pub(crate) style: CursorStyle,
477}
478
479#[derive(Default, Eq, PartialEq)]
480pub(crate) struct HitTest {
481 pub(crate) ids: SmallVec<[HitboxId; 8]>,
482 pub(crate) hover_hitbox_count: usize,
483}
484
485/// A type of window control area that corresponds to the platform window.
486#[derive(Clone, Copy, Debug, Eq, PartialEq)]
487pub enum WindowControlArea {
488 /// An area that allows dragging of the platform window.
489 Drag,
490 /// An area that allows closing of the platform window.
491 Close,
492 /// An area that allows maximizing of the platform window.
493 Max,
494 /// An area that allows minimizing of the platform window.
495 Min,
496}
497
498/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
499#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
500pub struct HitboxId(u64);
501
502impl HitboxId {
503 /// Checks if the hitbox with this ID is currently hovered. Except when handling
504 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
505 /// events or paint hover styles.
506 ///
507 /// See [`Hitbox::is_hovered`] for details.
508 pub fn is_hovered(self, window: &Window) -> bool {
509 let hit_test = &window.mouse_hit_test;
510 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
511 if self == *id {
512 return true;
513 }
514 }
515 false
516 }
517
518 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
519 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
520 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
521 /// this distinction.
522 pub fn should_handle_scroll(self, window: &Window) -> bool {
523 window.mouse_hit_test.ids.contains(&self)
524 }
525
526 fn next(mut self) -> HitboxId {
527 HitboxId(self.0.wrapping_add(1))
528 }
529}
530
531/// A rectangular region that potentially blocks hitboxes inserted prior.
532/// See [Window::insert_hitbox] for more details.
533#[derive(Clone, Debug, Deref)]
534pub struct Hitbox {
535 /// A unique identifier for the hitbox.
536 pub id: HitboxId,
537 /// The bounds of the hitbox.
538 #[deref]
539 pub bounds: Bounds<Pixels>,
540 /// The content mask when the hitbox was inserted.
541 pub content_mask: ContentMask<Pixels>,
542 /// Flags that specify hitbox behavior.
543 pub behavior: HitboxBehavior,
544}
545
546impl Hitbox {
547 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
548 /// typically what you want when determining whether to handle mouse events or paint hover
549 /// styles.
550 ///
551 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
552 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
553 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
554 ///
555 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
556 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
557 /// non-interactive while still allowing scrolling. More abstractly, this is because
558 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
559 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
560 /// container.
561 pub fn is_hovered(&self, window: &Window) -> bool {
562 self.id.is_hovered(window)
563 }
564
565 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
566 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
567 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
568 ///
569 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
570 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
571 pub fn should_handle_scroll(&self, window: &Window) -> bool {
572 self.id.should_handle_scroll(window)
573 }
574}
575
576/// How the hitbox affects mouse behavior.
577#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
578pub enum HitboxBehavior {
579 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
580 #[default]
581 Normal,
582
583 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
584 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
585 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
586 /// [`InteractiveElement::occlude`].
587 ///
588 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
589 /// bubble-phase handler for every mouse event type:
590 ///
591 /// ```ignore
592 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
593 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
594 /// cx.stop_propagation();
595 /// }
596 /// })
597 /// ```
598 ///
599 /// This has effects beyond event handling - any use of hitbox checking, such as hover
600 /// styles and tooltips. These other behaviors are the main point of this mechanism. An
601 /// alternative might be to not affect mouse event handling - but this would allow
602 /// inconsistent UI where clicks and moves interact with elements that are not considered to
603 /// be hovered.
604 BlockMouse,
605
606 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
607 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
608 /// interaction except scroll events to be ignored - see the documentation of
609 /// [`Hitbox::is_hovered`] for details. This flag is set by
610 /// [`InteractiveElement::block_mouse_except_scroll`].
611 ///
612 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
613 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
614 ///
615 /// ```ignore
616 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
617 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
618 /// cx.stop_propagation();
619 /// }
620 /// })
621 /// ```
622 ///
623 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
624 /// handled differently than other mouse events. If also blocking these scroll events is
625 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
626 ///
627 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
628 /// hover styles and tooltips. These other behaviors are the main point of this mechanism.
629 /// An alternative might be to not affect mouse event handling - but this would allow
630 /// inconsistent UI where clicks and moves interact with elements that are not considered to
631 /// be hovered.
632 BlockMouseExceptScroll,
633}
634
635/// An identifier for a tooltip.
636#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
637pub struct TooltipId(usize);
638
639impl TooltipId {
640 /// Checks if the tooltip is currently hovered.
641 pub fn is_hovered(&self, window: &Window) -> bool {
642 window
643 .tooltip_bounds
644 .as_ref()
645 .is_some_and(|tooltip_bounds| {
646 tooltip_bounds.id == *self
647 && tooltip_bounds.bounds.contains(&window.mouse_position())
648 })
649 }
650}
651
652pub(crate) struct TooltipBounds {
653 id: TooltipId,
654 bounds: Bounds<Pixels>,
655}
656
657#[derive(Clone)]
658pub(crate) struct TooltipRequest {
659 id: TooltipId,
660 tooltip: AnyTooltip,
661}
662
663pub(crate) struct DeferredDraw {
664 current_view: EntityId,
665 priority: usize,
666 parent_node: DispatchNodeId,
667 element_id_stack: SmallVec<[ElementId; 32]>,
668 text_style_stack: Vec<TextStyleRefinement>,
669 element: Option<AnyElement>,
670 absolute_offset: Point<Pixels>,
671 prepaint_range: Range<PrepaintStateIndex>,
672 paint_range: Range<PaintIndex>,
673}
674
675pub(crate) struct Frame {
676 pub(crate) focus: Option<FocusId>,
677 pub(crate) window_active: bool,
678 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
679 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
680 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
681 pub(crate) dispatch_tree: DispatchTree,
682 pub(crate) scene: Scene,
683 pub(crate) hitboxes: Vec<Hitbox>,
684 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
685 pub(crate) deferred_draws: Vec<DeferredDraw>,
686 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
687 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
688 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
689 #[cfg(any(test, feature = "test-support"))]
690 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
691 #[cfg(any(feature = "inspector", debug_assertions))]
692 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
693 #[cfg(any(feature = "inspector", debug_assertions))]
694 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
695 pub(crate) tab_stops: TabStopMap,
696}
697
698#[derive(Clone, Default)]
699pub(crate) struct PrepaintStateIndex {
700 hitboxes_index: usize,
701 tooltips_index: usize,
702 deferred_draws_index: usize,
703 dispatch_tree_index: usize,
704 accessed_element_states_index: usize,
705 line_layout_index: LineLayoutIndex,
706}
707
708#[derive(Clone, Default)]
709pub(crate) struct PaintIndex {
710 scene_index: usize,
711 mouse_listeners_index: usize,
712 input_handlers_index: usize,
713 cursor_styles_index: usize,
714 accessed_element_states_index: usize,
715 tab_handle_index: usize,
716 line_layout_index: LineLayoutIndex,
717}
718
719impl Frame {
720 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
721 Frame {
722 focus: None,
723 window_active: false,
724 element_states: FxHashMap::default(),
725 accessed_element_states: Vec::new(),
726 mouse_listeners: Vec::new(),
727 dispatch_tree,
728 scene: Scene::default(),
729 hitboxes: Vec::new(),
730 window_control_hitboxes: Vec::new(),
731 deferred_draws: Vec::new(),
732 input_handlers: Vec::new(),
733 tooltip_requests: Vec::new(),
734 cursor_styles: Vec::new(),
735
736 #[cfg(any(test, feature = "test-support"))]
737 debug_bounds: FxHashMap::default(),
738
739 #[cfg(any(feature = "inspector", debug_assertions))]
740 next_inspector_instance_ids: FxHashMap::default(),
741
742 #[cfg(any(feature = "inspector", debug_assertions))]
743 inspector_hitboxes: FxHashMap::default(),
744 tab_stops: TabStopMap::default(),
745 }
746 }
747
748 pub(crate) fn clear(&mut self) {
749 self.element_states.clear();
750 self.accessed_element_states.clear();
751 self.mouse_listeners.clear();
752 self.dispatch_tree.clear();
753 self.scene.clear();
754 self.input_handlers.clear();
755 self.tooltip_requests.clear();
756 self.cursor_styles.clear();
757 self.hitboxes.clear();
758 self.window_control_hitboxes.clear();
759 self.deferred_draws.clear();
760 self.tab_stops.clear();
761 self.focus = None;
762
763 #[cfg(any(test, feature = "test-support"))]
764 {
765 self.debug_bounds.clear();
766 }
767
768 #[cfg(any(feature = "inspector", debug_assertions))]
769 {
770 self.next_inspector_instance_ids.clear();
771 self.inspector_hitboxes.clear();
772 }
773 }
774
775 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
776 self.cursor_styles
777 .iter()
778 .rev()
779 .fold_while(None, |style, request| match request.hitbox_id {
780 None => Done(Some(request.style)),
781 Some(hitbox_id) => Continue(
782 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
783 ),
784 })
785 .into_inner()
786 }
787
788 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
789 let mut set_hover_hitbox_count = false;
790 let mut hit_test = HitTest::default();
791 for hitbox in self.hitboxes.iter().rev() {
792 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
793 if bounds.contains(&position) {
794 hit_test.ids.push(hitbox.id);
795 if !set_hover_hitbox_count
796 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
797 {
798 hit_test.hover_hitbox_count = hit_test.ids.len();
799 set_hover_hitbox_count = true;
800 }
801 if hitbox.behavior == HitboxBehavior::BlockMouse {
802 break;
803 }
804 }
805 }
806 if !set_hover_hitbox_count {
807 hit_test.hover_hitbox_count = hit_test.ids.len();
808 }
809 hit_test
810 }
811
812 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
813 self.focus
814 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
815 .unwrap_or_default()
816 }
817
818 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
819 for element_state_key in &self.accessed_element_states {
820 if let Some((element_state_key, element_state)) =
821 prev_frame.element_states.remove_entry(element_state_key)
822 {
823 self.element_states.insert(element_state_key, element_state);
824 }
825 }
826
827 self.scene.finish();
828 }
829}
830
831#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
832enum InputModality {
833 Mouse,
834 Keyboard,
835}
836
837/// Holds the state for a specific window.
838pub struct Window {
839 pub(crate) handle: AnyWindowHandle,
840 pub(crate) invalidator: WindowInvalidator,
841 pub(crate) removed: bool,
842 pub(crate) platform_window: Box<dyn PlatformWindow>,
843 display_id: Option<DisplayId>,
844 sprite_atlas: Arc<dyn PlatformAtlas>,
845 text_system: Arc<WindowTextSystem>,
846 rem_size: Pixels,
847 /// The stack of override values for the window's rem size.
848 ///
849 /// This is used by `with_rem_size` to allow rendering an element tree with
850 /// a given rem size.
851 rem_size_override_stack: SmallVec<[Pixels; 8]>,
852 pub(crate) viewport_size: Size<Pixels>,
853 layout_engine: Option<TaffyLayoutEngine>,
854 pub(crate) root: Option<AnyView>,
855 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
856 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
857 pub(crate) rendered_entity_stack: Vec<EntityId>,
858 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
859 pub(crate) element_opacity: f32,
860 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
861 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
862 pub(crate) image_cache_stack: Vec<AnyImageCache>,
863 pub(crate) rendered_frame: Frame,
864 pub(crate) next_frame: Frame,
865 next_hitbox_id: HitboxId,
866 pub(crate) next_tooltip_id: TooltipId,
867 pub(crate) tooltip_bounds: Option<TooltipBounds>,
868 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
869 pub(crate) dirty_views: FxHashSet<EntityId>,
870 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
871 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
872 default_prevented: bool,
873 mouse_position: Point<Pixels>,
874 mouse_hit_test: HitTest,
875 modifiers: Modifiers,
876 capslock: Capslock,
877 scale_factor: f32,
878 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
879 appearance: WindowAppearance,
880 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
881 active: Rc<Cell<bool>>,
882 hovered: Rc<Cell<bool>>,
883 pub(crate) needs_present: Rc<Cell<bool>>,
884 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
885 last_input_modality: InputModality,
886 pub(crate) refreshing: bool,
887 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
888 pub(crate) focus: Option<FocusId>,
889 focus_enabled: bool,
890 pending_input: Option<PendingInput>,
891 pending_modifier: ModifierState,
892 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
893 prompt: Option<RenderablePromptHandle>,
894 pub(crate) client_inset: Option<Pixels>,
895 #[cfg(any(feature = "inspector", debug_assertions))]
896 inspector: Option<Entity<Inspector>>,
897}
898
899#[derive(Clone, Debug, Default)]
900struct ModifierState {
901 modifiers: Modifiers,
902 saw_keystroke: bool,
903}
904
905#[derive(Clone, Copy, Debug, Eq, PartialEq)]
906pub(crate) enum DrawPhase {
907 None,
908 Prepaint,
909 Paint,
910 Focus,
911}
912
913#[derive(Default, Debug)]
914struct PendingInput {
915 keystrokes: SmallVec<[Keystroke; 1]>,
916 focus: Option<FocusId>,
917 timer: Option<Task<()>>,
918 needs_timeout: bool,
919}
920
921pub(crate) struct ElementStateBox {
922 pub(crate) inner: Box<dyn Any>,
923 #[cfg(debug_assertions)]
924 pub(crate) type_name: &'static str,
925}
926
927fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> WindowBounds {
928 // TODO, BUG: if you open a window with the currently active window
929 // on the stack, this will erroneously fallback to `None`
930 //
931 // TODO these should be the initial window bounds not considering maximized/fullscreen
932 let active_window_bounds = cx
933 .active_window()
934 .and_then(|w| w.update(cx, |_, window, _| window.window_bounds()).ok());
935
936 const CASCADE_OFFSET: f32 = 25.0;
937
938 let display = display_id
939 .map(|id| cx.find_display(id))
940 .unwrap_or_else(|| cx.primary_display());
941
942 let default_placement = || Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE);
943
944 // Use visible_bounds to exclude taskbar/dock areas
945 let display_bounds = display
946 .as_ref()
947 .map(|d| d.visible_bounds())
948 .unwrap_or_else(default_placement);
949
950 let (
951 Bounds {
952 origin: base_origin,
953 size: base_size,
954 },
955 window_bounds_ctor,
956 ): (_, fn(Bounds<Pixels>) -> WindowBounds) = match active_window_bounds {
957 Some(bounds) => match bounds {
958 WindowBounds::Windowed(bounds) => (bounds, WindowBounds::Windowed),
959 WindowBounds::Maximized(bounds) => (bounds, WindowBounds::Maximized),
960 WindowBounds::Fullscreen(bounds) => (bounds, WindowBounds::Fullscreen),
961 },
962 None => (
963 display
964 .as_ref()
965 .map(|d| d.default_bounds())
966 .unwrap_or_else(default_placement),
967 WindowBounds::Windowed,
968 ),
969 };
970
971 let cascade_offset = point(px(CASCADE_OFFSET), px(CASCADE_OFFSET));
972 let proposed_origin = base_origin + cascade_offset;
973 let proposed_bounds = Bounds::new(proposed_origin, base_size);
974
975 let display_right = display_bounds.origin.x + display_bounds.size.width;
976 let display_bottom = display_bounds.origin.y + display_bounds.size.height;
977 let window_right = proposed_bounds.origin.x + proposed_bounds.size.width;
978 let window_bottom = proposed_bounds.origin.y + proposed_bounds.size.height;
979
980 let fits_horizontally = window_right <= display_right;
981 let fits_vertically = window_bottom <= display_bottom;
982
983 let final_origin = match (fits_horizontally, fits_vertically) {
984 (true, true) => proposed_origin,
985 (false, true) => point(display_bounds.origin.x, base_origin.y),
986 (true, false) => point(base_origin.x, display_bounds.origin.y),
987 (false, false) => display_bounds.origin,
988 };
989 window_bounds_ctor(Bounds::new(final_origin, base_size))
990}
991
992impl Window {
993 pub(crate) fn new(
994 handle: AnyWindowHandle,
995 options: WindowOptions,
996 cx: &mut App,
997 ) -> Result<Self> {
998 let WindowOptions {
999 window_bounds,
1000 titlebar,
1001 focus,
1002 show,
1003 kind,
1004 is_movable,
1005 is_resizable,
1006 is_minimizable,
1007 display_id,
1008 window_background,
1009 app_id,
1010 window_min_size,
1011 window_decorations,
1012 #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
1013 tabbing_identifier,
1014 } = options;
1015
1016 let window_bounds = window_bounds.unwrap_or_else(|| default_bounds(display_id, cx));
1017 let mut platform_window = cx.platform.open_window(
1018 handle,
1019 WindowParams {
1020 bounds: window_bounds.get_bounds(),
1021 titlebar,
1022 kind,
1023 is_movable,
1024 is_resizable,
1025 is_minimizable,
1026 focus,
1027 show,
1028 display_id,
1029 window_min_size,
1030 #[cfg(target_os = "macos")]
1031 tabbing_identifier,
1032 },
1033 )?;
1034
1035 let tab_bar_visible = platform_window.tab_bar_visible();
1036 SystemWindowTabController::init_visible(cx, tab_bar_visible);
1037 if let Some(tabs) = platform_window.tabbed_windows() {
1038 SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
1039 }
1040
1041 let display_id = platform_window.display().map(|display| display.id());
1042 let sprite_atlas = platform_window.sprite_atlas();
1043 let mouse_position = platform_window.mouse_position();
1044 let modifiers = platform_window.modifiers();
1045 let capslock = platform_window.capslock();
1046 let content_size = platform_window.content_size();
1047 let scale_factor = platform_window.scale_factor();
1048 let appearance = platform_window.appearance();
1049 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
1050 let invalidator = WindowInvalidator::new();
1051 let active = Rc::new(Cell::new(platform_window.is_active()));
1052 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1053 let needs_present = Rc::new(Cell::new(false));
1054 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1055 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
1056
1057 platform_window
1058 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1059 platform_window.set_background_appearance(window_background);
1060
1061 match window_bounds {
1062 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1063 WindowBounds::Maximized(_) => platform_window.zoom(),
1064 WindowBounds::Windowed(_) => {}
1065 }
1066
1067 platform_window.on_close(Box::new({
1068 let window_id = handle.window_id();
1069 let mut cx = cx.to_async();
1070 move || {
1071 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1072 let _ = cx.update(|cx| {
1073 SystemWindowTabController::remove_tab(cx, window_id);
1074 });
1075 }
1076 }));
1077 platform_window.on_request_frame(Box::new({
1078 let mut cx = cx.to_async();
1079 let invalidator = invalidator.clone();
1080 let active = active.clone();
1081 let needs_present = needs_present.clone();
1082 let next_frame_callbacks = next_frame_callbacks.clone();
1083 let last_input_timestamp = last_input_timestamp.clone();
1084 move |request_frame_options| {
1085 let next_frame_callbacks = next_frame_callbacks.take();
1086 if !next_frame_callbacks.is_empty() {
1087 handle
1088 .update(&mut cx, |_, window, cx| {
1089 for callback in next_frame_callbacks {
1090 callback(window, cx);
1091 }
1092 })
1093 .log_err();
1094 }
1095
1096 // Keep presenting the current scene for 1 extra second since the
1097 // last input to prevent the display from underclocking the refresh rate.
1098 let needs_present = request_frame_options.require_presentation
1099 || needs_present.get()
1100 || (active.get()
1101 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1102
1103 if invalidator.is_dirty() || request_frame_options.force_render {
1104 measure("frame duration", || {
1105 handle
1106 .update(&mut cx, |_, window, cx| {
1107 let arena_clear_needed = window.draw(cx);
1108 window.present();
1109 // drop the arena elements after present to reduce latency
1110 arena_clear_needed.clear();
1111 })
1112 .log_err();
1113 })
1114 } else if needs_present {
1115 handle
1116 .update(&mut cx, |_, window, _| window.present())
1117 .log_err();
1118 }
1119
1120 handle
1121 .update(&mut cx, |_, window, _| {
1122 window.complete_frame();
1123 })
1124 .log_err();
1125 }
1126 }));
1127 platform_window.on_resize(Box::new({
1128 let mut cx = cx.to_async();
1129 move |_, _| {
1130 handle
1131 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1132 .log_err();
1133 }
1134 }));
1135 platform_window.on_moved(Box::new({
1136 let mut cx = cx.to_async();
1137 move || {
1138 handle
1139 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1140 .log_err();
1141 }
1142 }));
1143 platform_window.on_appearance_changed(Box::new({
1144 let mut cx = cx.to_async();
1145 move || {
1146 handle
1147 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1148 .log_err();
1149 }
1150 }));
1151 platform_window.on_active_status_change(Box::new({
1152 let mut cx = cx.to_async();
1153 move |active| {
1154 handle
1155 .update(&mut cx, |_, window, cx| {
1156 window.active.set(active);
1157 window.modifiers = window.platform_window.modifiers();
1158 window.capslock = window.platform_window.capslock();
1159 window
1160 .activation_observers
1161 .clone()
1162 .retain(&(), |callback| callback(window, cx));
1163
1164 window.bounds_changed(cx);
1165 window.refresh();
1166
1167 SystemWindowTabController::update_last_active(cx, window.handle.id);
1168 })
1169 .log_err();
1170 }
1171 }));
1172 platform_window.on_hover_status_change(Box::new({
1173 let mut cx = cx.to_async();
1174 move |active| {
1175 handle
1176 .update(&mut cx, |_, window, _| {
1177 window.hovered.set(active);
1178 window.refresh();
1179 })
1180 .log_err();
1181 }
1182 }));
1183 platform_window.on_input({
1184 let mut cx = cx.to_async();
1185 Box::new(move |event| {
1186 handle
1187 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1188 .log_err()
1189 .unwrap_or(DispatchEventResult::default())
1190 })
1191 });
1192 platform_window.on_hit_test_window_control({
1193 let mut cx = cx.to_async();
1194 Box::new(move || {
1195 handle
1196 .update(&mut cx, |_, window, _cx| {
1197 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1198 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1199 return Some(*area);
1200 }
1201 }
1202 None
1203 })
1204 .log_err()
1205 .unwrap_or(None)
1206 })
1207 });
1208 platform_window.on_move_tab_to_new_window({
1209 let mut cx = cx.to_async();
1210 Box::new(move || {
1211 handle
1212 .update(&mut cx, |_, _window, cx| {
1213 SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1214 })
1215 .log_err();
1216 })
1217 });
1218 platform_window.on_merge_all_windows({
1219 let mut cx = cx.to_async();
1220 Box::new(move || {
1221 handle
1222 .update(&mut cx, |_, _window, cx| {
1223 SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1224 })
1225 .log_err();
1226 })
1227 });
1228 platform_window.on_select_next_tab({
1229 let mut cx = cx.to_async();
1230 Box::new(move || {
1231 handle
1232 .update(&mut cx, |_, _window, cx| {
1233 SystemWindowTabController::select_next_tab(cx, handle.window_id());
1234 })
1235 .log_err();
1236 })
1237 });
1238 platform_window.on_select_previous_tab({
1239 let mut cx = cx.to_async();
1240 Box::new(move || {
1241 handle
1242 .update(&mut cx, |_, _window, cx| {
1243 SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1244 })
1245 .log_err();
1246 })
1247 });
1248 platform_window.on_toggle_tab_bar({
1249 let mut cx = cx.to_async();
1250 Box::new(move || {
1251 handle
1252 .update(&mut cx, |_, window, cx| {
1253 let tab_bar_visible = window.platform_window.tab_bar_visible();
1254 SystemWindowTabController::set_visible(cx, tab_bar_visible);
1255 })
1256 .log_err();
1257 })
1258 });
1259
1260 if let Some(app_id) = app_id {
1261 platform_window.set_app_id(&app_id);
1262 }
1263
1264 platform_window.map_window().unwrap();
1265
1266 Ok(Window {
1267 handle,
1268 invalidator,
1269 removed: false,
1270 platform_window,
1271 display_id,
1272 sprite_atlas,
1273 text_system,
1274 rem_size: px(16.),
1275 rem_size_override_stack: SmallVec::new(),
1276 viewport_size: content_size,
1277 layout_engine: Some(TaffyLayoutEngine::new()),
1278 root: None,
1279 element_id_stack: SmallVec::default(),
1280 text_style_stack: Vec::new(),
1281 rendered_entity_stack: Vec::new(),
1282 element_offset_stack: Vec::new(),
1283 content_mask_stack: Vec::new(),
1284 element_opacity: 1.0,
1285 requested_autoscroll: None,
1286 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1287 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1288 next_frame_callbacks,
1289 next_hitbox_id: HitboxId(0),
1290 next_tooltip_id: TooltipId::default(),
1291 tooltip_bounds: None,
1292 dirty_views: FxHashSet::default(),
1293 focus_listeners: SubscriberSet::new(),
1294 focus_lost_listeners: SubscriberSet::new(),
1295 default_prevented: true,
1296 mouse_position,
1297 mouse_hit_test: HitTest::default(),
1298 modifiers,
1299 capslock,
1300 scale_factor,
1301 bounds_observers: SubscriberSet::new(),
1302 appearance,
1303 appearance_observers: SubscriberSet::new(),
1304 active,
1305 hovered,
1306 needs_present,
1307 last_input_timestamp,
1308 last_input_modality: InputModality::Mouse,
1309 refreshing: false,
1310 activation_observers: SubscriberSet::new(),
1311 focus: None,
1312 focus_enabled: true,
1313 pending_input: None,
1314 pending_modifier: ModifierState::default(),
1315 pending_input_observers: SubscriberSet::new(),
1316 prompt: None,
1317 client_inset: None,
1318 image_cache_stack: Vec::new(),
1319 #[cfg(any(feature = "inspector", debug_assertions))]
1320 inspector: None,
1321 })
1322 }
1323
1324 pub(crate) fn new_focus_listener(
1325 &self,
1326 value: AnyWindowFocusListener,
1327 ) -> (Subscription, impl FnOnce() + use<>) {
1328 self.focus_listeners.insert((), value)
1329 }
1330}
1331
1332#[derive(Clone, Debug, Default, PartialEq, Eq)]
1333pub(crate) struct DispatchEventResult {
1334 pub propagate: bool,
1335 pub default_prevented: bool,
1336}
1337
1338/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1339/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1340/// to leave room to support more complex shapes in the future.
1341#[derive(Clone, Debug, Default, PartialEq, Eq)]
1342#[repr(C)]
1343pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1344 /// The bounds
1345 pub bounds: Bounds<P>,
1346}
1347
1348impl ContentMask<Pixels> {
1349 /// Scale the content mask's pixel units by the given scaling factor.
1350 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1351 ContentMask {
1352 bounds: self.bounds.scale(factor),
1353 }
1354 }
1355
1356 /// Intersect the content mask with the given content mask.
1357 pub fn intersect(&self, other: &Self) -> Self {
1358 let bounds = self.bounds.intersect(&other.bounds);
1359 ContentMask { bounds }
1360 }
1361}
1362
1363impl Window {
1364 fn mark_view_dirty(&mut self, view_id: EntityId) {
1365 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1366 // should already be dirty.
1367 for view_id in self
1368 .rendered_frame
1369 .dispatch_tree
1370 .view_path_reversed(view_id)
1371 {
1372 if !self.dirty_views.insert(view_id) {
1373 break;
1374 }
1375 }
1376 }
1377
1378 /// Registers a callback to be invoked when the window appearance changes.
1379 pub fn observe_window_appearance(
1380 &self,
1381 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1382 ) -> Subscription {
1383 let (subscription, activate) = self.appearance_observers.insert(
1384 (),
1385 Box::new(move |window, cx| {
1386 callback(window, cx);
1387 true
1388 }),
1389 );
1390 activate();
1391 subscription
1392 }
1393
1394 /// Replaces the root entity of the window with a new one.
1395 pub fn replace_root<E>(
1396 &mut self,
1397 cx: &mut App,
1398 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1399 ) -> Entity<E>
1400 where
1401 E: 'static + Render,
1402 {
1403 let view = cx.new(|cx| build_view(self, cx));
1404 self.root = Some(view.clone().into());
1405 self.refresh();
1406 view
1407 }
1408
1409 /// Returns the root entity of the window, if it has one.
1410 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1411 where
1412 E: 'static + Render,
1413 {
1414 self.root
1415 .as_ref()
1416 .map(|view| view.clone().downcast::<E>().ok())
1417 }
1418
1419 /// Obtain a handle to the window that belongs to this context.
1420 pub fn window_handle(&self) -> AnyWindowHandle {
1421 self.handle
1422 }
1423
1424 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1425 pub fn refresh(&mut self) {
1426 if self.invalidator.not_drawing() {
1427 self.refreshing = true;
1428 self.invalidator.set_dirty(true);
1429 }
1430 }
1431
1432 /// Close this window.
1433 pub fn remove_window(&mut self) {
1434 self.removed = true;
1435 }
1436
1437 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1438 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1439 self.focus
1440 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1441 }
1442
1443 /// Move focus to the element associated with the given [`FocusHandle`].
1444 pub fn focus(&mut self, handle: &FocusHandle, cx: &mut App) {
1445 if !self.focus_enabled || self.focus == Some(handle.id) {
1446 return;
1447 }
1448
1449 self.focus = Some(handle.id);
1450 self.clear_pending_keystrokes();
1451
1452 // Avoid re-entrant entity updates by deferring observer notifications to the end of the
1453 // current effect cycle, and only for this window.
1454 let window_handle = self.handle;
1455 cx.defer(move |cx| {
1456 window_handle
1457 .update(cx, |_, window, cx| {
1458 window.pending_input_changed(cx);
1459 })
1460 .ok();
1461 });
1462
1463 self.refresh();
1464 }
1465
1466 /// Remove focus from all elements within this context's window.
1467 pub fn blur(&mut self) {
1468 if !self.focus_enabled {
1469 return;
1470 }
1471
1472 self.focus = None;
1473 self.refresh();
1474 }
1475
1476 /// Blur the window and don't allow anything in it to be focused again.
1477 pub fn disable_focus(&mut self) {
1478 self.blur();
1479 self.focus_enabled = false;
1480 }
1481
1482 /// Move focus to next tab stop.
1483 pub fn focus_next(&mut self, cx: &mut App) {
1484 if !self.focus_enabled {
1485 return;
1486 }
1487
1488 if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1489 self.focus(&handle, cx)
1490 }
1491 }
1492
1493 /// Move focus to previous tab stop.
1494 pub fn focus_prev(&mut self, cx: &mut App) {
1495 if !self.focus_enabled {
1496 return;
1497 }
1498
1499 if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1500 self.focus(&handle, cx)
1501 }
1502 }
1503
1504 /// Accessor for the text system.
1505 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1506 &self.text_system
1507 }
1508
1509 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1510 pub fn text_style(&self) -> TextStyle {
1511 let mut style = TextStyle::default();
1512 for refinement in &self.text_style_stack {
1513 style.refine(refinement);
1514 }
1515 style
1516 }
1517
1518 /// Check if the platform window is maximized.
1519 ///
1520 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1521 pub fn is_maximized(&self) -> bool {
1522 self.platform_window.is_maximized()
1523 }
1524
1525 /// request a certain window decoration (Wayland)
1526 pub fn request_decorations(&self, decorations: WindowDecorations) {
1527 self.platform_window.request_decorations(decorations);
1528 }
1529
1530 /// Start a window resize operation (Wayland)
1531 pub fn start_window_resize(&self, edge: ResizeEdge) {
1532 self.platform_window.start_window_resize(edge);
1533 }
1534
1535 /// Return the `WindowBounds` to indicate that how a window should be opened
1536 /// after it has been closed
1537 pub fn window_bounds(&self) -> WindowBounds {
1538 self.platform_window.window_bounds()
1539 }
1540
1541 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1542 pub fn inner_window_bounds(&self) -> WindowBounds {
1543 self.platform_window.inner_window_bounds()
1544 }
1545
1546 /// Dispatch the given action on the currently focused element.
1547 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1548 let focus_id = self.focused(cx).map(|handle| handle.id);
1549
1550 let window = self.handle;
1551 cx.defer(move |cx| {
1552 window
1553 .update(cx, |_, window, cx| {
1554 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1555 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1556 })
1557 .log_err();
1558 })
1559 }
1560
1561 pub(crate) fn dispatch_keystroke_observers(
1562 &mut self,
1563 event: &dyn Any,
1564 action: Option<Box<dyn Action>>,
1565 context_stack: Vec<KeyContext>,
1566 cx: &mut App,
1567 ) {
1568 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1569 return;
1570 };
1571
1572 cx.keystroke_observers.clone().retain(&(), move |callback| {
1573 (callback)(
1574 &KeystrokeEvent {
1575 keystroke: key_down_event.keystroke.clone(),
1576 action: action.as_ref().map(|action| action.boxed_clone()),
1577 context_stack: context_stack.clone(),
1578 },
1579 self,
1580 cx,
1581 )
1582 });
1583 }
1584
1585 pub(crate) fn dispatch_keystroke_interceptors(
1586 &mut self,
1587 event: &dyn Any,
1588 context_stack: Vec<KeyContext>,
1589 cx: &mut App,
1590 ) {
1591 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1592 return;
1593 };
1594
1595 cx.keystroke_interceptors
1596 .clone()
1597 .retain(&(), move |callback| {
1598 (callback)(
1599 &KeystrokeEvent {
1600 keystroke: key_down_event.keystroke.clone(),
1601 action: None,
1602 context_stack: context_stack.clone(),
1603 },
1604 self,
1605 cx,
1606 )
1607 });
1608 }
1609
1610 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1611 /// that are currently on the stack to be returned to the app.
1612 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1613 let handle = self.handle;
1614 cx.defer(move |cx| {
1615 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1616 });
1617 }
1618
1619 /// Subscribe to events emitted by a entity.
1620 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1621 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1622 pub fn observe<T: 'static>(
1623 &mut self,
1624 observed: &Entity<T>,
1625 cx: &mut App,
1626 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1627 ) -> Subscription {
1628 let entity_id = observed.entity_id();
1629 let observed = observed.downgrade();
1630 let window_handle = self.handle;
1631 cx.new_observer(
1632 entity_id,
1633 Box::new(move |cx| {
1634 window_handle
1635 .update(cx, |_, window, cx| {
1636 if let Some(handle) = observed.upgrade() {
1637 on_notify(handle, window, cx);
1638 true
1639 } else {
1640 false
1641 }
1642 })
1643 .unwrap_or(false)
1644 }),
1645 )
1646 }
1647
1648 /// Subscribe to events emitted by a entity.
1649 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1650 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1651 pub fn subscribe<Emitter, Evt>(
1652 &mut self,
1653 entity: &Entity<Emitter>,
1654 cx: &mut App,
1655 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1656 ) -> Subscription
1657 where
1658 Emitter: EventEmitter<Evt>,
1659 Evt: 'static,
1660 {
1661 let entity_id = entity.entity_id();
1662 let handle = entity.downgrade();
1663 let window_handle = self.handle;
1664 cx.new_subscription(
1665 entity_id,
1666 (
1667 TypeId::of::<Evt>(),
1668 Box::new(move |event, cx| {
1669 window_handle
1670 .update(cx, |_, window, cx| {
1671 if let Some(entity) = handle.upgrade() {
1672 let event = event.downcast_ref().expect("invalid event type");
1673 on_event(entity, event, window, cx);
1674 true
1675 } else {
1676 false
1677 }
1678 })
1679 .unwrap_or(false)
1680 }),
1681 ),
1682 )
1683 }
1684
1685 /// Register a callback to be invoked when the given `Entity` is released.
1686 pub fn observe_release<T>(
1687 &self,
1688 entity: &Entity<T>,
1689 cx: &mut App,
1690 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1691 ) -> Subscription
1692 where
1693 T: 'static,
1694 {
1695 let entity_id = entity.entity_id();
1696 let window_handle = self.handle;
1697 let (subscription, activate) = cx.release_listeners.insert(
1698 entity_id,
1699 Box::new(move |entity, cx| {
1700 let entity = entity.downcast_mut().expect("invalid entity type");
1701 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1702 }),
1703 );
1704 activate();
1705 subscription
1706 }
1707
1708 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1709 /// await points in async code.
1710 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1711 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1712 }
1713
1714 /// Schedule the given closure to be run directly after the current frame is rendered.
1715 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1716 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1717 }
1718
1719 /// Schedule a frame to be drawn on the next animation frame.
1720 ///
1721 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1722 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1723 ///
1724 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1725 pub fn request_animation_frame(&self) {
1726 let entity = self.current_view();
1727 self.on_next_frame(move |_, cx| cx.notify(entity));
1728 }
1729
1730 /// Spawn the future returned by the given closure on the application thread pool.
1731 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1732 /// use within your future.
1733 #[track_caller]
1734 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1735 where
1736 R: 'static,
1737 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1738 {
1739 let handle = self.handle;
1740 cx.spawn(async move |app| {
1741 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1742 f(&mut async_window_cx).await
1743 })
1744 }
1745
1746 /// Spawn the future returned by the given closure on the application thread
1747 /// pool, with the given priority. The closure is provided a handle to the
1748 /// current window and an `AsyncWindowContext` for use within your future.
1749 #[track_caller]
1750 pub fn spawn_with_priority<AsyncFn, R>(
1751 &self,
1752 priority: Priority,
1753 cx: &App,
1754 f: AsyncFn,
1755 ) -> Task<R>
1756 where
1757 R: 'static,
1758 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1759 {
1760 let handle = self.handle;
1761 cx.spawn_with_priority(priority, async move |app| {
1762 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1763 f(&mut async_window_cx).await
1764 })
1765 }
1766
1767 fn bounds_changed(&mut self, cx: &mut App) {
1768 self.scale_factor = self.platform_window.scale_factor();
1769 self.viewport_size = self.platform_window.content_size();
1770 self.display_id = self.platform_window.display().map(|display| display.id());
1771
1772 self.refresh();
1773
1774 self.bounds_observers
1775 .clone()
1776 .retain(&(), |callback| callback(self, cx));
1777 }
1778
1779 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1780 pub fn bounds(&self) -> Bounds<Pixels> {
1781 self.platform_window.bounds()
1782 }
1783
1784 /// Set the content size of the window.
1785 pub fn resize(&mut self, size: Size<Pixels>) {
1786 self.platform_window.resize(size);
1787 }
1788
1789 /// Returns whether or not the window is currently fullscreen
1790 pub fn is_fullscreen(&self) -> bool {
1791 self.platform_window.is_fullscreen()
1792 }
1793
1794 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1795 self.appearance = self.platform_window.appearance();
1796
1797 self.appearance_observers
1798 .clone()
1799 .retain(&(), |callback| callback(self, cx));
1800 }
1801
1802 /// Returns the appearance of the current window.
1803 pub fn appearance(&self) -> WindowAppearance {
1804 self.appearance
1805 }
1806
1807 /// Returns the size of the drawable area within the window.
1808 pub fn viewport_size(&self) -> Size<Pixels> {
1809 self.viewport_size
1810 }
1811
1812 /// Returns whether this window is focused by the operating system (receiving key events).
1813 pub fn is_window_active(&self) -> bool {
1814 self.active.get()
1815 }
1816
1817 /// Returns whether this window is considered to be the window
1818 /// that currently owns the mouse cursor.
1819 /// On mac, this is equivalent to `is_window_active`.
1820 pub fn is_window_hovered(&self) -> bool {
1821 if cfg!(any(
1822 target_os = "windows",
1823 target_os = "linux",
1824 target_os = "freebsd"
1825 )) {
1826 self.hovered.get()
1827 } else {
1828 self.is_window_active()
1829 }
1830 }
1831
1832 /// Toggle zoom on the window.
1833 pub fn zoom_window(&self) {
1834 self.platform_window.zoom();
1835 }
1836
1837 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1838 pub fn show_window_menu(&self, position: Point<Pixels>) {
1839 self.platform_window.show_window_menu(position)
1840 }
1841
1842 /// Handle window movement for Linux and macOS.
1843 /// Tells the compositor to take control of window movement (Wayland and X11)
1844 ///
1845 /// Events may not be received during a move operation.
1846 pub fn start_window_move(&self) {
1847 self.platform_window.start_window_move()
1848 }
1849
1850 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1851 pub fn set_client_inset(&mut self, inset: Pixels) {
1852 self.client_inset = Some(inset);
1853 self.platform_window.set_client_inset(inset);
1854 }
1855
1856 /// Returns the client_inset value by [`Self::set_client_inset`].
1857 pub fn client_inset(&self) -> Option<Pixels> {
1858 self.client_inset
1859 }
1860
1861 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1862 pub fn window_decorations(&self) -> Decorations {
1863 self.platform_window.window_decorations()
1864 }
1865
1866 /// Returns which window controls are currently visible (Wayland)
1867 pub fn window_controls(&self) -> WindowControls {
1868 self.platform_window.window_controls()
1869 }
1870
1871 /// Updates the window's title at the platform level.
1872 pub fn set_window_title(&mut self, title: &str) {
1873 self.platform_window.set_title(title);
1874 }
1875
1876 /// Sets the application identifier.
1877 pub fn set_app_id(&mut self, app_id: &str) {
1878 self.platform_window.set_app_id(app_id);
1879 }
1880
1881 /// Sets the window background appearance.
1882 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1883 self.platform_window
1884 .set_background_appearance(background_appearance);
1885 }
1886
1887 /// Mark the window as dirty at the platform level.
1888 pub fn set_window_edited(&mut self, edited: bool) {
1889 self.platform_window.set_edited(edited);
1890 }
1891
1892 /// Determine the display on which the window is visible.
1893 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1894 cx.platform
1895 .displays()
1896 .into_iter()
1897 .find(|display| Some(display.id()) == self.display_id)
1898 }
1899
1900 /// Show the platform character palette.
1901 pub fn show_character_palette(&self) {
1902 self.platform_window.show_character_palette();
1903 }
1904
1905 /// The scale factor of the display associated with the window. For example, it could
1906 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1907 /// be rendered as two pixels on screen.
1908 pub fn scale_factor(&self) -> f32 {
1909 self.scale_factor
1910 }
1911
1912 /// The size of an em for the base font of the application. Adjusting this value allows the
1913 /// UI to scale, just like zooming a web page.
1914 pub fn rem_size(&self) -> Pixels {
1915 self.rem_size_override_stack
1916 .last()
1917 .copied()
1918 .unwrap_or(self.rem_size)
1919 }
1920
1921 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1922 /// UI to scale, just like zooming a web page.
1923 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1924 self.rem_size = rem_size.into();
1925 }
1926
1927 /// Acquire a globally unique identifier for the given ElementId.
1928 /// Only valid for the duration of the provided closure.
1929 pub fn with_global_id<R>(
1930 &mut self,
1931 element_id: ElementId,
1932 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1933 ) -> R {
1934 self.element_id_stack.push(element_id);
1935 let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
1936
1937 let result = f(&global_id, self);
1938 self.element_id_stack.pop();
1939 result
1940 }
1941
1942 /// Executes the provided function with the specified rem size.
1943 ///
1944 /// This method must only be called as part of element drawing.
1945 // This function is called in a highly recursive manner in editor
1946 // prepainting, make sure its inlined to reduce the stack burden
1947 #[inline]
1948 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1949 where
1950 F: FnOnce(&mut Self) -> R,
1951 {
1952 self.invalidator.debug_assert_paint_or_prepaint();
1953
1954 if let Some(rem_size) = rem_size {
1955 self.rem_size_override_stack.push(rem_size.into());
1956 let result = f(self);
1957 self.rem_size_override_stack.pop();
1958 result
1959 } else {
1960 f(self)
1961 }
1962 }
1963
1964 /// The line height associated with the current text style.
1965 pub fn line_height(&self) -> Pixels {
1966 self.text_style().line_height_in_pixels(self.rem_size())
1967 }
1968
1969 /// Call to prevent the default action of an event. Currently only used to prevent
1970 /// parent elements from becoming focused on mouse down.
1971 pub fn prevent_default(&mut self) {
1972 self.default_prevented = true;
1973 }
1974
1975 /// Obtain whether default has been prevented for the event currently being dispatched.
1976 pub fn default_prevented(&self) -> bool {
1977 self.default_prevented
1978 }
1979
1980 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1981 pub fn is_action_available(&self, action: &dyn Action, cx: &App) -> bool {
1982 let node_id =
1983 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1984 self.rendered_frame
1985 .dispatch_tree
1986 .is_action_available(action, node_id)
1987 }
1988
1989 /// Determine whether the given action is available along the dispatch path to the given focus_handle.
1990 pub fn is_action_available_in(&self, action: &dyn Action, focus_handle: &FocusHandle) -> bool {
1991 let node_id = self.focus_node_id_in_rendered_frame(Some(focus_handle.id));
1992 self.rendered_frame
1993 .dispatch_tree
1994 .is_action_available(action, node_id)
1995 }
1996
1997 /// The position of the mouse relative to the window.
1998 pub fn mouse_position(&self) -> Point<Pixels> {
1999 self.mouse_position
2000 }
2001
2002 /// The current state of the keyboard's modifiers
2003 pub fn modifiers(&self) -> Modifiers {
2004 self.modifiers
2005 }
2006
2007 /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
2008 /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
2009 pub fn last_input_was_keyboard(&self) -> bool {
2010 self.last_input_modality == InputModality::Keyboard
2011 }
2012
2013 /// The current state of the keyboard's capslock
2014 pub fn capslock(&self) -> Capslock {
2015 self.capslock
2016 }
2017
2018 fn complete_frame(&self) {
2019 self.platform_window.completed_frame();
2020 }
2021
2022 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
2023 /// the contents of the new [`Scene`], use [`Self::present`].
2024 #[profiling::function]
2025 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
2026 self.invalidate_entities();
2027 cx.entities.clear_accessed();
2028 debug_assert!(self.rendered_entity_stack.is_empty());
2029 self.invalidator.set_dirty(false);
2030 self.requested_autoscroll = None;
2031
2032 // Restore the previously-used input handler.
2033 if let Some(input_handler) = self.platform_window.take_input_handler() {
2034 self.rendered_frame.input_handlers.push(Some(input_handler));
2035 }
2036 if !cx.mode.skip_drawing() {
2037 self.draw_roots(cx);
2038 }
2039 self.dirty_views.clear();
2040 self.next_frame.window_active = self.active.get();
2041
2042 // Register requested input handler with the platform window.
2043 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
2044 self.platform_window
2045 .set_input_handler(input_handler.unwrap());
2046 }
2047
2048 self.layout_engine.as_mut().unwrap().clear();
2049 self.text_system().finish_frame();
2050 self.next_frame.finish(&mut self.rendered_frame);
2051
2052 self.invalidator.set_phase(DrawPhase::Focus);
2053 let previous_focus_path = self.rendered_frame.focus_path();
2054 let previous_window_active = self.rendered_frame.window_active;
2055 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
2056 self.next_frame.clear();
2057 let current_focus_path = self.rendered_frame.focus_path();
2058 let current_window_active = self.rendered_frame.window_active;
2059
2060 if previous_focus_path != current_focus_path
2061 || previous_window_active != current_window_active
2062 {
2063 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
2064 self.focus_lost_listeners
2065 .clone()
2066 .retain(&(), |listener| listener(self, cx));
2067 }
2068
2069 let event = WindowFocusEvent {
2070 previous_focus_path: if previous_window_active {
2071 previous_focus_path
2072 } else {
2073 Default::default()
2074 },
2075 current_focus_path: if current_window_active {
2076 current_focus_path
2077 } else {
2078 Default::default()
2079 },
2080 };
2081 self.focus_listeners
2082 .clone()
2083 .retain(&(), |listener| listener(&event, self, cx));
2084 }
2085
2086 debug_assert!(self.rendered_entity_stack.is_empty());
2087 self.record_entities_accessed(cx);
2088 self.reset_cursor_style(cx);
2089 self.refreshing = false;
2090 self.invalidator.set_phase(DrawPhase::None);
2091 self.needs_present.set(true);
2092
2093 ArenaClearNeeded
2094 }
2095
2096 fn record_entities_accessed(&mut self, cx: &mut App) {
2097 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2098 let mut entities = mem::take(entities_ref.deref_mut());
2099 drop(entities_ref);
2100 let handle = self.handle;
2101 cx.record_entities_accessed(
2102 handle,
2103 // Try moving window invalidator into the Window
2104 self.invalidator.clone(),
2105 &entities,
2106 );
2107 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2108 mem::swap(&mut entities, entities_ref.deref_mut());
2109 }
2110
2111 fn invalidate_entities(&mut self) {
2112 let mut views = self.invalidator.take_views();
2113 for entity in views.drain() {
2114 self.mark_view_dirty(entity);
2115 }
2116 self.invalidator.replace_views(views);
2117 }
2118
2119 #[profiling::function]
2120 fn present(&self) {
2121 self.platform_window.draw(&self.rendered_frame.scene);
2122 self.needs_present.set(false);
2123 profiling::finish_frame!();
2124 }
2125
2126 fn draw_roots(&mut self, cx: &mut App) {
2127 self.invalidator.set_phase(DrawPhase::Prepaint);
2128 self.tooltip_bounds.take();
2129
2130 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2131 let root_size = {
2132 #[cfg(any(feature = "inspector", debug_assertions))]
2133 {
2134 if self.inspector.is_some() {
2135 let mut size = self.viewport_size;
2136 size.width = (size.width - _inspector_width).max(px(0.0));
2137 size
2138 } else {
2139 self.viewport_size
2140 }
2141 }
2142 #[cfg(not(any(feature = "inspector", debug_assertions)))]
2143 {
2144 self.viewport_size
2145 }
2146 };
2147
2148 // Layout all root elements.
2149 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2150 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2151
2152 #[cfg(any(feature = "inspector", debug_assertions))]
2153 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2154
2155 let mut sorted_deferred_draws =
2156 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2157 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2158 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2159
2160 let mut prompt_element = None;
2161 let mut active_drag_element = None;
2162 let mut tooltip_element = None;
2163 if let Some(prompt) = self.prompt.take() {
2164 let mut element = prompt.view.any_view().into_any();
2165 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2166 prompt_element = Some(element);
2167 self.prompt = Some(prompt);
2168 } else if let Some(active_drag) = cx.active_drag.take() {
2169 let mut element = active_drag.view.clone().into_any();
2170 let offset = self.mouse_position() - active_drag.cursor_offset;
2171 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2172 active_drag_element = Some(element);
2173 cx.active_drag = Some(active_drag);
2174 } else {
2175 tooltip_element = self.prepaint_tooltip(cx);
2176 }
2177
2178 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2179
2180 // Now actually paint the elements.
2181 self.invalidator.set_phase(DrawPhase::Paint);
2182 root_element.paint(self, cx);
2183
2184 #[cfg(any(feature = "inspector", debug_assertions))]
2185 self.paint_inspector(inspector_element, cx);
2186
2187 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2188
2189 if let Some(mut prompt_element) = prompt_element {
2190 prompt_element.paint(self, cx);
2191 } else if let Some(mut drag_element) = active_drag_element {
2192 drag_element.paint(self, cx);
2193 } else if let Some(mut tooltip_element) = tooltip_element {
2194 tooltip_element.paint(self, cx);
2195 }
2196
2197 #[cfg(any(feature = "inspector", debug_assertions))]
2198 self.paint_inspector_hitbox(cx);
2199 }
2200
2201 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2202 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2203 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2204 let Some(Some(tooltip_request)) = self
2205 .next_frame
2206 .tooltip_requests
2207 .get(tooltip_request_index)
2208 .cloned()
2209 else {
2210 log::error!("Unexpectedly absent TooltipRequest");
2211 continue;
2212 };
2213 let mut element = tooltip_request.tooltip.view.clone().into_any();
2214 let mouse_position = tooltip_request.tooltip.mouse_position;
2215 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2216
2217 let mut tooltip_bounds =
2218 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2219 let window_bounds = Bounds {
2220 origin: Point::default(),
2221 size: self.viewport_size(),
2222 };
2223
2224 if tooltip_bounds.right() > window_bounds.right() {
2225 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2226 if new_x >= Pixels::ZERO {
2227 tooltip_bounds.origin.x = new_x;
2228 } else {
2229 tooltip_bounds.origin.x = cmp::max(
2230 Pixels::ZERO,
2231 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2232 );
2233 }
2234 }
2235
2236 if tooltip_bounds.bottom() > window_bounds.bottom() {
2237 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2238 if new_y >= Pixels::ZERO {
2239 tooltip_bounds.origin.y = new_y;
2240 } else {
2241 tooltip_bounds.origin.y = cmp::max(
2242 Pixels::ZERO,
2243 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2244 );
2245 }
2246 }
2247
2248 // It's possible for an element to have an active tooltip while not being painted (e.g.
2249 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2250 // case, instead update the tooltip's visibility here.
2251 let is_visible =
2252 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2253 if !is_visible {
2254 continue;
2255 }
2256
2257 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2258 element.prepaint(window, cx)
2259 });
2260
2261 self.tooltip_bounds = Some(TooltipBounds {
2262 id: tooltip_request.id,
2263 bounds: tooltip_bounds,
2264 });
2265 return Some(element);
2266 }
2267 None
2268 }
2269
2270 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2271 assert_eq!(self.element_id_stack.len(), 0);
2272
2273 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2274 for deferred_draw_ix in deferred_draw_indices {
2275 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2276 self.element_id_stack
2277 .clone_from(&deferred_draw.element_id_stack);
2278 self.text_style_stack
2279 .clone_from(&deferred_draw.text_style_stack);
2280 self.next_frame
2281 .dispatch_tree
2282 .set_active_node(deferred_draw.parent_node);
2283
2284 let prepaint_start = self.prepaint_index();
2285 if let Some(element) = deferred_draw.element.as_mut() {
2286 self.with_rendered_view(deferred_draw.current_view, |window| {
2287 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2288 element.prepaint(window, cx)
2289 });
2290 })
2291 } else {
2292 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2293 }
2294 let prepaint_end = self.prepaint_index();
2295 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2296 }
2297 assert_eq!(
2298 self.next_frame.deferred_draws.len(),
2299 0,
2300 "cannot call defer_draw during deferred drawing"
2301 );
2302 self.next_frame.deferred_draws = deferred_draws;
2303 self.element_id_stack.clear();
2304 self.text_style_stack.clear();
2305 }
2306
2307 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2308 assert_eq!(self.element_id_stack.len(), 0);
2309
2310 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2311 for deferred_draw_ix in deferred_draw_indices {
2312 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2313 self.element_id_stack
2314 .clone_from(&deferred_draw.element_id_stack);
2315 self.next_frame
2316 .dispatch_tree
2317 .set_active_node(deferred_draw.parent_node);
2318
2319 let paint_start = self.paint_index();
2320 if let Some(element) = deferred_draw.element.as_mut() {
2321 self.with_rendered_view(deferred_draw.current_view, |window| {
2322 element.paint(window, cx);
2323 })
2324 } else {
2325 self.reuse_paint(deferred_draw.paint_range.clone());
2326 }
2327 let paint_end = self.paint_index();
2328 deferred_draw.paint_range = paint_start..paint_end;
2329 }
2330 self.next_frame.deferred_draws = deferred_draws;
2331 self.element_id_stack.clear();
2332 }
2333
2334 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2335 PrepaintStateIndex {
2336 hitboxes_index: self.next_frame.hitboxes.len(),
2337 tooltips_index: self.next_frame.tooltip_requests.len(),
2338 deferred_draws_index: self.next_frame.deferred_draws.len(),
2339 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2340 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2341 line_layout_index: self.text_system.layout_index(),
2342 }
2343 }
2344
2345 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2346 self.next_frame.hitboxes.extend(
2347 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2348 .iter()
2349 .cloned(),
2350 );
2351 self.next_frame.tooltip_requests.extend(
2352 self.rendered_frame.tooltip_requests
2353 [range.start.tooltips_index..range.end.tooltips_index]
2354 .iter_mut()
2355 .map(|request| request.take()),
2356 );
2357 self.next_frame.accessed_element_states.extend(
2358 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2359 ..range.end.accessed_element_states_index]
2360 .iter()
2361 .map(|(id, type_id)| (id.clone(), *type_id)),
2362 );
2363 self.text_system
2364 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2365
2366 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2367 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2368 &mut self.rendered_frame.dispatch_tree,
2369 self.focus,
2370 );
2371
2372 if reused_subtree.contains_focus() {
2373 self.next_frame.focus = self.focus;
2374 }
2375
2376 self.next_frame.deferred_draws.extend(
2377 self.rendered_frame.deferred_draws
2378 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2379 .iter()
2380 .map(|deferred_draw| DeferredDraw {
2381 current_view: deferred_draw.current_view,
2382 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2383 element_id_stack: deferred_draw.element_id_stack.clone(),
2384 text_style_stack: deferred_draw.text_style_stack.clone(),
2385 priority: deferred_draw.priority,
2386 element: None,
2387 absolute_offset: deferred_draw.absolute_offset,
2388 prepaint_range: deferred_draw.prepaint_range.clone(),
2389 paint_range: deferred_draw.paint_range.clone(),
2390 }),
2391 );
2392 }
2393
2394 pub(crate) fn paint_index(&self) -> PaintIndex {
2395 PaintIndex {
2396 scene_index: self.next_frame.scene.len(),
2397 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2398 input_handlers_index: self.next_frame.input_handlers.len(),
2399 cursor_styles_index: self.next_frame.cursor_styles.len(),
2400 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2401 tab_handle_index: self.next_frame.tab_stops.paint_index(),
2402 line_layout_index: self.text_system.layout_index(),
2403 }
2404 }
2405
2406 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2407 self.next_frame.cursor_styles.extend(
2408 self.rendered_frame.cursor_styles
2409 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2410 .iter()
2411 .cloned(),
2412 );
2413 self.next_frame.input_handlers.extend(
2414 self.rendered_frame.input_handlers
2415 [range.start.input_handlers_index..range.end.input_handlers_index]
2416 .iter_mut()
2417 .map(|handler| handler.take()),
2418 );
2419 self.next_frame.mouse_listeners.extend(
2420 self.rendered_frame.mouse_listeners
2421 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2422 .iter_mut()
2423 .map(|listener| listener.take()),
2424 );
2425 self.next_frame.accessed_element_states.extend(
2426 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2427 ..range.end.accessed_element_states_index]
2428 .iter()
2429 .map(|(id, type_id)| (id.clone(), *type_id)),
2430 );
2431 self.next_frame.tab_stops.replay(
2432 &self.rendered_frame.tab_stops.insertion_history
2433 [range.start.tab_handle_index..range.end.tab_handle_index],
2434 );
2435
2436 self.text_system
2437 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2438 self.next_frame.scene.replay(
2439 range.start.scene_index..range.end.scene_index,
2440 &self.rendered_frame.scene,
2441 );
2442 }
2443
2444 /// Push a text style onto the stack, and call a function with that style active.
2445 /// Use [`Window::text_style`] to get the current, combined text style. This method
2446 /// should only be called as part of element drawing.
2447 // This function is called in a highly recursive manner in editor
2448 // prepainting, make sure its inlined to reduce the stack burden
2449 #[inline]
2450 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2451 where
2452 F: FnOnce(&mut Self) -> R,
2453 {
2454 self.invalidator.debug_assert_paint_or_prepaint();
2455 if let Some(style) = style {
2456 self.text_style_stack.push(style);
2457 let result = f(self);
2458 self.text_style_stack.pop();
2459 result
2460 } else {
2461 f(self)
2462 }
2463 }
2464
2465 /// Updates the cursor style at the platform level. This method should only be called
2466 /// during the paint phase of element drawing.
2467 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2468 self.invalidator.debug_assert_paint();
2469 self.next_frame.cursor_styles.push(CursorStyleRequest {
2470 hitbox_id: Some(hitbox.id),
2471 style,
2472 });
2473 }
2474
2475 /// Updates the cursor style for the entire window at the platform level. A cursor
2476 /// style using this method will have precedence over any cursor style set using
2477 /// `set_cursor_style`. This method should only be called during the paint
2478 /// phase of element drawing.
2479 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2480 self.invalidator.debug_assert_paint();
2481 self.next_frame.cursor_styles.push(CursorStyleRequest {
2482 hitbox_id: None,
2483 style,
2484 })
2485 }
2486
2487 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2488 /// during the paint phase of element drawing.
2489 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2490 self.invalidator.debug_assert_prepaint();
2491 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2492 self.next_frame
2493 .tooltip_requests
2494 .push(Some(TooltipRequest { id, tooltip }));
2495 id
2496 }
2497
2498 /// Invoke the given function with the given content mask after intersecting it
2499 /// with the current mask. This method should only be called during element drawing.
2500 // This function is called in a highly recursive manner in editor
2501 // prepainting, make sure its inlined to reduce the stack burden
2502 #[inline]
2503 pub fn with_content_mask<R>(
2504 &mut self,
2505 mask: Option<ContentMask<Pixels>>,
2506 f: impl FnOnce(&mut Self) -> R,
2507 ) -> R {
2508 self.invalidator.debug_assert_paint_or_prepaint();
2509 if let Some(mask) = mask {
2510 let mask = mask.intersect(&self.content_mask());
2511 self.content_mask_stack.push(mask);
2512 let result = f(self);
2513 self.content_mask_stack.pop();
2514 result
2515 } else {
2516 f(self)
2517 }
2518 }
2519
2520 /// Updates the global element offset relative to the current offset. This is used to implement
2521 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2522 pub fn with_element_offset<R>(
2523 &mut self,
2524 offset: Point<Pixels>,
2525 f: impl FnOnce(&mut Self) -> R,
2526 ) -> R {
2527 self.invalidator.debug_assert_prepaint();
2528
2529 if offset.is_zero() {
2530 return f(self);
2531 };
2532
2533 let abs_offset = self.element_offset() + offset;
2534 self.with_absolute_element_offset(abs_offset, f)
2535 }
2536
2537 /// Updates the global element offset based on the given offset. This is used to implement
2538 /// drag handles and other manual painting of elements. This method should only be called during
2539 /// the prepaint phase of element drawing.
2540 pub fn with_absolute_element_offset<R>(
2541 &mut self,
2542 offset: Point<Pixels>,
2543 f: impl FnOnce(&mut Self) -> R,
2544 ) -> R {
2545 self.invalidator.debug_assert_prepaint();
2546 self.element_offset_stack.push(offset);
2547 let result = f(self);
2548 self.element_offset_stack.pop();
2549 result
2550 }
2551
2552 pub(crate) fn with_element_opacity<R>(
2553 &mut self,
2554 opacity: Option<f32>,
2555 f: impl FnOnce(&mut Self) -> R,
2556 ) -> R {
2557 self.invalidator.debug_assert_paint_or_prepaint();
2558
2559 let Some(opacity) = opacity else {
2560 return f(self);
2561 };
2562
2563 let previous_opacity = self.element_opacity;
2564 self.element_opacity = previous_opacity * opacity;
2565 let result = f(self);
2566 self.element_opacity = previous_opacity;
2567 result
2568 }
2569
2570 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2571 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2572 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2573 /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2574 /// called during the prepaint phase of element drawing.
2575 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2576 self.invalidator.debug_assert_prepaint();
2577 let index = self.prepaint_index();
2578 let result = f(self);
2579 if result.is_err() {
2580 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2581 self.next_frame
2582 .tooltip_requests
2583 .truncate(index.tooltips_index);
2584 self.next_frame
2585 .deferred_draws
2586 .truncate(index.deferred_draws_index);
2587 self.next_frame
2588 .dispatch_tree
2589 .truncate(index.dispatch_tree_index);
2590 self.next_frame
2591 .accessed_element_states
2592 .truncate(index.accessed_element_states_index);
2593 self.text_system.truncate_layouts(index.line_layout_index);
2594 }
2595 result
2596 }
2597
2598 /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2599 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2600 /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2601 /// that supports this method being called on the elements it contains. This method should only be
2602 /// called during the prepaint phase of element drawing.
2603 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2604 self.invalidator.debug_assert_prepaint();
2605 self.requested_autoscroll = Some(bounds);
2606 }
2607
2608 /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2609 /// described in [`Self::request_autoscroll`].
2610 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2611 self.invalidator.debug_assert_prepaint();
2612 self.requested_autoscroll.take()
2613 }
2614
2615 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2616 /// Your view will be re-drawn once the asset has finished loading.
2617 ///
2618 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2619 /// time.
2620 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2621 let (task, is_first) = cx.fetch_asset::<A>(source);
2622 task.clone().now_or_never().or_else(|| {
2623 if is_first {
2624 let entity_id = self.current_view();
2625 self.spawn(cx, {
2626 let task = task.clone();
2627 async move |cx| {
2628 task.await;
2629
2630 cx.on_next_frame(move |_, cx| {
2631 cx.notify(entity_id);
2632 });
2633 }
2634 })
2635 .detach();
2636 }
2637
2638 None
2639 })
2640 }
2641
2642 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2643 /// Your view will not be re-drawn once the asset has finished loading.
2644 ///
2645 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2646 /// time.
2647 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2648 let (task, _) = cx.fetch_asset::<A>(source);
2649 task.now_or_never()
2650 }
2651 /// Obtain the current element offset. This method should only be called during the
2652 /// prepaint phase of element drawing.
2653 pub fn element_offset(&self) -> Point<Pixels> {
2654 self.invalidator.debug_assert_prepaint();
2655 self.element_offset_stack
2656 .last()
2657 .copied()
2658 .unwrap_or_default()
2659 }
2660
2661 /// Obtain the current element opacity. This method should only be called during the
2662 /// prepaint phase of element drawing.
2663 #[inline]
2664 pub(crate) fn element_opacity(&self) -> f32 {
2665 self.invalidator.debug_assert_paint_or_prepaint();
2666 self.element_opacity
2667 }
2668
2669 /// Obtain the current content mask. This method should only be called during element drawing.
2670 pub fn content_mask(&self) -> ContentMask<Pixels> {
2671 self.invalidator.debug_assert_paint_or_prepaint();
2672 self.content_mask_stack
2673 .last()
2674 .cloned()
2675 .unwrap_or_else(|| ContentMask {
2676 bounds: Bounds {
2677 origin: Point::default(),
2678 size: self.viewport_size,
2679 },
2680 })
2681 }
2682
2683 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2684 /// This can be used within a custom element to distinguish multiple sets of child elements.
2685 pub fn with_element_namespace<R>(
2686 &mut self,
2687 element_id: impl Into<ElementId>,
2688 f: impl FnOnce(&mut Self) -> R,
2689 ) -> R {
2690 self.element_id_stack.push(element_id.into());
2691 let result = f(self);
2692 self.element_id_stack.pop();
2693 result
2694 }
2695
2696 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2697 pub fn use_keyed_state<S: 'static>(
2698 &mut self,
2699 key: impl Into<ElementId>,
2700 cx: &mut App,
2701 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2702 ) -> Entity<S> {
2703 let current_view = self.current_view();
2704 self.with_global_id(key.into(), |global_id, window| {
2705 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2706 if let Some(state) = state {
2707 (state.clone(), state)
2708 } else {
2709 let new_state = cx.new(|cx| init(window, cx));
2710 cx.observe(&new_state, move |_, cx| {
2711 cx.notify(current_view);
2712 })
2713 .detach();
2714 (new_state.clone(), new_state)
2715 }
2716 })
2717 })
2718 }
2719
2720 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2721 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2722 self.with_global_id(id.into(), |_, window| f(window))
2723 }
2724
2725 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2726 ///
2727 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2728 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2729 /// you can provide a custom ElementID using the `use_keyed_state` method.
2730 #[track_caller]
2731 pub fn use_state<S: 'static>(
2732 &mut self,
2733 cx: &mut App,
2734 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2735 ) -> Entity<S> {
2736 self.use_keyed_state(
2737 ElementId::CodeLocation(*core::panic::Location::caller()),
2738 cx,
2739 init,
2740 )
2741 }
2742
2743 /// Updates or initializes state for an element with the given id that lives across multiple
2744 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2745 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2746 /// when drawing the next frame. This method should only be called as part of element drawing.
2747 pub fn with_element_state<S, R>(
2748 &mut self,
2749 global_id: &GlobalElementId,
2750 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2751 ) -> R
2752 where
2753 S: 'static,
2754 {
2755 self.invalidator.debug_assert_paint_or_prepaint();
2756
2757 let key = (global_id.clone(), TypeId::of::<S>());
2758 self.next_frame.accessed_element_states.push(key.clone());
2759
2760 if let Some(any) = self
2761 .next_frame
2762 .element_states
2763 .remove(&key)
2764 .or_else(|| self.rendered_frame.element_states.remove(&key))
2765 {
2766 let ElementStateBox {
2767 inner,
2768 #[cfg(debug_assertions)]
2769 type_name,
2770 } = any;
2771 // Using the extra inner option to avoid needing to reallocate a new box.
2772 let mut state_box = inner
2773 .downcast::<Option<S>>()
2774 .map_err(|_| {
2775 #[cfg(debug_assertions)]
2776 {
2777 anyhow::anyhow!(
2778 "invalid element state type for id, requested {:?}, actual: {:?}",
2779 std::any::type_name::<S>(),
2780 type_name
2781 )
2782 }
2783
2784 #[cfg(not(debug_assertions))]
2785 {
2786 anyhow::anyhow!(
2787 "invalid element state type for id, requested {:?}",
2788 std::any::type_name::<S>(),
2789 )
2790 }
2791 })
2792 .unwrap();
2793
2794 let state = state_box.take().expect(
2795 "reentrant call to with_element_state for the same state type and element id",
2796 );
2797 let (result, state) = f(Some(state), self);
2798 state_box.replace(state);
2799 self.next_frame.element_states.insert(
2800 key,
2801 ElementStateBox {
2802 inner: state_box,
2803 #[cfg(debug_assertions)]
2804 type_name,
2805 },
2806 );
2807 result
2808 } else {
2809 let (result, state) = f(None, self);
2810 self.next_frame.element_states.insert(
2811 key,
2812 ElementStateBox {
2813 inner: Box::new(Some(state)),
2814 #[cfg(debug_assertions)]
2815 type_name: std::any::type_name::<S>(),
2816 },
2817 );
2818 result
2819 }
2820 }
2821
2822 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2823 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2824 /// when the element is guaranteed to have an id.
2825 ///
2826 /// The first option means 'no ID provided'
2827 /// The second option means 'not yet initialized'
2828 pub fn with_optional_element_state<S, R>(
2829 &mut self,
2830 global_id: Option<&GlobalElementId>,
2831 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2832 ) -> R
2833 where
2834 S: 'static,
2835 {
2836 self.invalidator.debug_assert_paint_or_prepaint();
2837
2838 if let Some(global_id) = global_id {
2839 self.with_element_state(global_id, |state, cx| {
2840 let (result, state) = f(Some(state), cx);
2841 let state =
2842 state.expect("you must return some state when you pass some element id");
2843 (result, state)
2844 })
2845 } else {
2846 let (result, state) = f(None, self);
2847 debug_assert!(
2848 state.is_none(),
2849 "you must not return an element state when passing None for the global id"
2850 );
2851 result
2852 }
2853 }
2854
2855 /// Executes the given closure within the context of a tab group.
2856 #[inline]
2857 pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2858 if let Some(index) = index {
2859 self.next_frame.tab_stops.begin_group(index);
2860 let result = f(self);
2861 self.next_frame.tab_stops.end_group();
2862 result
2863 } else {
2864 f(self)
2865 }
2866 }
2867
2868 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2869 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2870 /// with higher values being drawn on top.
2871 ///
2872 /// This method should only be called as part of the prepaint phase of element drawing.
2873 pub fn defer_draw(
2874 &mut self,
2875 element: AnyElement,
2876 absolute_offset: Point<Pixels>,
2877 priority: usize,
2878 ) {
2879 self.invalidator.debug_assert_prepaint();
2880 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2881 self.next_frame.deferred_draws.push(DeferredDraw {
2882 current_view: self.current_view(),
2883 parent_node,
2884 element_id_stack: self.element_id_stack.clone(),
2885 text_style_stack: self.text_style_stack.clone(),
2886 priority,
2887 element: Some(element),
2888 absolute_offset,
2889 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2890 paint_range: PaintIndex::default()..PaintIndex::default(),
2891 });
2892 }
2893
2894 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2895 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2896 /// for performance reasons.
2897 ///
2898 /// This method should only be called as part of the paint phase of element drawing.
2899 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2900 self.invalidator.debug_assert_paint();
2901
2902 let scale_factor = self.scale_factor();
2903 let content_mask = self.content_mask();
2904 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2905 if !clipped_bounds.is_empty() {
2906 self.next_frame
2907 .scene
2908 .push_layer(clipped_bounds.scale(scale_factor));
2909 }
2910
2911 let result = f(self);
2912
2913 if !clipped_bounds.is_empty() {
2914 self.next_frame.scene.pop_layer();
2915 }
2916
2917 result
2918 }
2919
2920 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2921 ///
2922 /// This method should only be called as part of the paint phase of element drawing.
2923 pub fn paint_shadows(
2924 &mut self,
2925 bounds: Bounds<Pixels>,
2926 corner_radii: Corners<Pixels>,
2927 shadows: &[BoxShadow],
2928 ) {
2929 self.invalidator.debug_assert_paint();
2930
2931 let scale_factor = self.scale_factor();
2932 let content_mask = self.content_mask();
2933 let opacity = self.element_opacity();
2934 for shadow in shadows {
2935 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2936 self.next_frame.scene.insert_primitive(Shadow {
2937 order: 0,
2938 blur_radius: shadow.blur_radius.scale(scale_factor),
2939 bounds: shadow_bounds.scale(scale_factor),
2940 content_mask: content_mask.scale(scale_factor),
2941 corner_radii: corner_radii.scale(scale_factor),
2942 color: shadow.color.opacity(opacity),
2943 });
2944 }
2945 }
2946
2947 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2948 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2949 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2950 ///
2951 /// This method should only be called as part of the paint phase of element drawing.
2952 ///
2953 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2954 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2955 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2956 pub fn paint_quad(&mut self, quad: PaintQuad) {
2957 self.invalidator.debug_assert_paint();
2958
2959 let scale_factor = self.scale_factor();
2960 let content_mask = self.content_mask();
2961 let opacity = self.element_opacity();
2962 self.next_frame.scene.insert_primitive(Quad {
2963 order: 0,
2964 bounds: quad.bounds.scale(scale_factor),
2965 content_mask: content_mask.scale(scale_factor),
2966 background: quad.background.opacity(opacity),
2967 border_color: quad.border_color.opacity(opacity),
2968 corner_radii: quad.corner_radii.scale(scale_factor),
2969 border_widths: quad.border_widths.scale(scale_factor),
2970 border_style: quad.border_style,
2971 });
2972 }
2973
2974 #[cfg(any(test, feature = "test-support"))]
2975 /// Record a named diagnostic quad for test/debug snapshots.
2976 ///
2977 /// This is intended for debugging and asserting against imperative painting logic. The
2978 /// recorded quad does not affect rendering; it is captured alongside the rendered scene and
2979 /// exposed via `scene_snapshot()`.
2980 pub fn record_diagnostic_quad(
2981 &mut self,
2982 name: impl Into<SharedString>,
2983 bounds: Bounds<Pixels>,
2984 color: Option<Hsla>,
2985 ) {
2986 self.invalidator.debug_assert_paint();
2987
2988 let scale_factor = self.scale_factor();
2989 self.next_frame.scene.diagnostic_quads.push(crate::test_scene::DiagnosticQuad {
2990 name: name.into(),
2991 bounds: bounds.scale(scale_factor),
2992 color,
2993 });
2994 }
2995
2996 #[cfg(not(any(test, feature = "test-support")))]
2997 #[inline]
2998 /// Record a named diagnostic quad for test/debug snapshots.
2999 ///
3000 /// This is a no-op unless tests or the `test-support` feature are enabled.
3001 pub fn record_diagnostic_quad(
3002 &mut self,
3003 _name: impl Into<SharedString>,
3004 _bounds: Bounds<Pixels>,
3005 _color: Option<Hsla>,
3006 ) {
3007 }
3008
3009 /// Paint the given `Path` into the scene for the next frame at the current z-index.
3010 ///
3011 /// This method should only be called as part of the paint phase of element drawing.
3012 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
3013 self.invalidator.debug_assert_paint();
3014
3015 let scale_factor = self.scale_factor();
3016 let content_mask = self.content_mask();
3017 let opacity = self.element_opacity();
3018 path.content_mask = content_mask;
3019 let color: Background = color.into();
3020 path.color = color.opacity(opacity);
3021 self.next_frame
3022 .scene
3023 .insert_primitive(path.scale(scale_factor));
3024 }
3025
3026 /// Paint an underline into the scene for the next frame at the current z-index.
3027 ///
3028 /// This method should only be called as part of the paint phase of element drawing.
3029 pub fn paint_underline(
3030 &mut self,
3031 origin: Point<Pixels>,
3032 width: Pixels,
3033 style: &UnderlineStyle,
3034 ) {
3035 self.invalidator.debug_assert_paint();
3036
3037 let scale_factor = self.scale_factor();
3038 let height = if style.wavy {
3039 style.thickness * 3.
3040 } else {
3041 style.thickness
3042 };
3043 let bounds = Bounds {
3044 origin,
3045 size: size(width, height),
3046 };
3047 let content_mask = self.content_mask();
3048 let element_opacity = self.element_opacity();
3049
3050 self.next_frame.scene.insert_primitive(Underline {
3051 order: 0,
3052 pad: 0,
3053 bounds: bounds.scale(scale_factor),
3054 content_mask: content_mask.scale(scale_factor),
3055 color: style.color.unwrap_or_default().opacity(element_opacity),
3056 thickness: style.thickness.scale(scale_factor),
3057 wavy: if style.wavy { 1 } else { 0 },
3058 });
3059 }
3060
3061 /// Paint a strikethrough into the scene for the next frame at the current z-index.
3062 ///
3063 /// This method should only be called as part of the paint phase of element drawing.
3064 pub fn paint_strikethrough(
3065 &mut self,
3066 origin: Point<Pixels>,
3067 width: Pixels,
3068 style: &StrikethroughStyle,
3069 ) {
3070 self.invalidator.debug_assert_paint();
3071
3072 let scale_factor = self.scale_factor();
3073 let height = style.thickness;
3074 let bounds = Bounds {
3075 origin,
3076 size: size(width, height),
3077 };
3078 let content_mask = self.content_mask();
3079 let opacity = self.element_opacity();
3080
3081 self.next_frame.scene.insert_primitive(Underline {
3082 order: 0,
3083 pad: 0,
3084 bounds: bounds.scale(scale_factor),
3085 content_mask: content_mask.scale(scale_factor),
3086 thickness: style.thickness.scale(scale_factor),
3087 color: style.color.unwrap_or_default().opacity(opacity),
3088 wavy: 0,
3089 });
3090 }
3091
3092 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
3093 ///
3094 /// The y component of the origin is the baseline of the glyph.
3095 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3096 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3097 /// This method is only useful if you need to paint a single glyph that has already been shaped.
3098 ///
3099 /// This method should only be called as part of the paint phase of element drawing.
3100 pub fn paint_glyph(
3101 &mut self,
3102 origin: Point<Pixels>,
3103 font_id: FontId,
3104 glyph_id: GlyphId,
3105 font_size: Pixels,
3106 color: Hsla,
3107 ) -> Result<()> {
3108 self.invalidator.debug_assert_paint();
3109
3110 let element_opacity = self.element_opacity();
3111 let scale_factor = self.scale_factor();
3112 let glyph_origin = origin.scale(scale_factor);
3113
3114 let subpixel_variant = Point {
3115 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
3116 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
3117 };
3118 let params = RenderGlyphParams {
3119 font_id,
3120 glyph_id,
3121 font_size,
3122 subpixel_variant,
3123 scale_factor,
3124 is_emoji: false,
3125 };
3126
3127 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3128 if !raster_bounds.is_zero() {
3129 let tile = self
3130 .sprite_atlas
3131 .get_or_insert_with(¶ms.clone().into(), &mut || {
3132 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3133 Ok(Some((size, Cow::Owned(bytes))))
3134 })?
3135 .expect("Callback above only errors or returns Some");
3136 let bounds = Bounds {
3137 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3138 size: tile.bounds.size.map(Into::into),
3139 };
3140 let content_mask = self.content_mask().scale(scale_factor);
3141 self.next_frame.scene.insert_primitive(MonochromeSprite {
3142 order: 0,
3143 pad: 0,
3144 bounds,
3145 content_mask,
3146 color: color.opacity(element_opacity),
3147 tile,
3148 transformation: TransformationMatrix::unit(),
3149 });
3150 }
3151 Ok(())
3152 }
3153
3154 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3155 ///
3156 /// The y component of the origin is the baseline of the glyph.
3157 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3158 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3159 /// This method is only useful if you need to paint a single emoji that has already been shaped.
3160 ///
3161 /// This method should only be called as part of the paint phase of element drawing.
3162 pub fn paint_emoji(
3163 &mut self,
3164 origin: Point<Pixels>,
3165 font_id: FontId,
3166 glyph_id: GlyphId,
3167 font_size: Pixels,
3168 ) -> Result<()> {
3169 self.invalidator.debug_assert_paint();
3170
3171 let scale_factor = self.scale_factor();
3172 let glyph_origin = origin.scale(scale_factor);
3173 let params = RenderGlyphParams {
3174 font_id,
3175 glyph_id,
3176 font_size,
3177 // We don't render emojis with subpixel variants.
3178 subpixel_variant: Default::default(),
3179 scale_factor,
3180 is_emoji: true,
3181 };
3182
3183 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3184 if !raster_bounds.is_zero() {
3185 let tile = self
3186 .sprite_atlas
3187 .get_or_insert_with(¶ms.clone().into(), &mut || {
3188 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3189 Ok(Some((size, Cow::Owned(bytes))))
3190 })?
3191 .expect("Callback above only errors or returns Some");
3192
3193 let bounds = Bounds {
3194 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3195 size: tile.bounds.size.map(Into::into),
3196 };
3197 let content_mask = self.content_mask().scale(scale_factor);
3198 let opacity = self.element_opacity();
3199
3200 self.next_frame.scene.insert_primitive(PolychromeSprite {
3201 order: 0,
3202 pad: 0,
3203 grayscale: false,
3204 bounds,
3205 corner_radii: Default::default(),
3206 content_mask,
3207 tile,
3208 opacity,
3209 });
3210 }
3211 Ok(())
3212 }
3213
3214 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3215 ///
3216 /// This method should only be called as part of the paint phase of element drawing.
3217 pub fn paint_svg(
3218 &mut self,
3219 bounds: Bounds<Pixels>,
3220 path: SharedString,
3221 mut data: Option<&[u8]>,
3222 transformation: TransformationMatrix,
3223 color: Hsla,
3224 cx: &App,
3225 ) -> Result<()> {
3226 self.invalidator.debug_assert_paint();
3227
3228 let element_opacity = self.element_opacity();
3229 let scale_factor = self.scale_factor();
3230
3231 let bounds = bounds.scale(scale_factor);
3232 let params = RenderSvgParams {
3233 path,
3234 size: bounds.size.map(|pixels| {
3235 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3236 }),
3237 };
3238
3239 let Some(tile) =
3240 self.sprite_atlas
3241 .get_or_insert_with(¶ms.clone().into(), &mut || {
3242 let Some((size, bytes)) = cx.svg_renderer.render_alpha_mask(¶ms, data)?
3243 else {
3244 return Ok(None);
3245 };
3246 Ok(Some((size, Cow::Owned(bytes))))
3247 })?
3248 else {
3249 return Ok(());
3250 };
3251 let content_mask = self.content_mask().scale(scale_factor);
3252 let svg_bounds = Bounds {
3253 origin: bounds.center()
3254 - Point::new(
3255 ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3256 ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3257 ),
3258 size: tile
3259 .bounds
3260 .size
3261 .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3262 };
3263
3264 self.next_frame.scene.insert_primitive(MonochromeSprite {
3265 order: 0,
3266 pad: 0,
3267 bounds: svg_bounds
3268 .map_origin(|origin| origin.round())
3269 .map_size(|size| size.ceil()),
3270 content_mask,
3271 color: color.opacity(element_opacity),
3272 tile,
3273 transformation,
3274 });
3275
3276 Ok(())
3277 }
3278
3279 /// Paint an image into the scene for the next frame at the current z-index.
3280 /// This method will panic if the frame_index is not valid
3281 ///
3282 /// This method should only be called as part of the paint phase of element drawing.
3283 pub fn paint_image(
3284 &mut self,
3285 bounds: Bounds<Pixels>,
3286 corner_radii: Corners<Pixels>,
3287 data: Arc<RenderImage>,
3288 frame_index: usize,
3289 grayscale: bool,
3290 ) -> Result<()> {
3291 self.invalidator.debug_assert_paint();
3292
3293 let scale_factor = self.scale_factor();
3294 let bounds = bounds.scale(scale_factor);
3295 let params = RenderImageParams {
3296 image_id: data.id,
3297 frame_index,
3298 };
3299
3300 let tile = self
3301 .sprite_atlas
3302 .get_or_insert_with(¶ms.into(), &mut || {
3303 Ok(Some((
3304 data.size(frame_index),
3305 Cow::Borrowed(
3306 data.as_bytes(frame_index)
3307 .expect("It's the caller's job to pass a valid frame index"),
3308 ),
3309 )))
3310 })?
3311 .expect("Callback above only returns Some");
3312 let content_mask = self.content_mask().scale(scale_factor);
3313 let corner_radii = corner_radii.scale(scale_factor);
3314 let opacity = self.element_opacity();
3315
3316 self.next_frame.scene.insert_primitive(PolychromeSprite {
3317 order: 0,
3318 pad: 0,
3319 grayscale,
3320 bounds: bounds
3321 .map_origin(|origin| origin.floor())
3322 .map_size(|size| size.ceil()),
3323 content_mask,
3324 corner_radii,
3325 tile,
3326 opacity,
3327 });
3328 Ok(())
3329 }
3330
3331 /// Paint a surface into the scene for the next frame at the current z-index.
3332 ///
3333 /// This method should only be called as part of the paint phase of element drawing.
3334 #[cfg(target_os = "macos")]
3335 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3336 use crate::PaintSurface;
3337
3338 self.invalidator.debug_assert_paint();
3339
3340 let scale_factor = self.scale_factor();
3341 let bounds = bounds.scale(scale_factor);
3342 let content_mask = self.content_mask().scale(scale_factor);
3343 self.next_frame.scene.insert_primitive(PaintSurface {
3344 order: 0,
3345 bounds,
3346 content_mask,
3347 image_buffer,
3348 });
3349 }
3350
3351 /// Removes an image from the sprite atlas.
3352 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3353 for frame_index in 0..data.frame_count() {
3354 let params = RenderImageParams {
3355 image_id: data.id,
3356 frame_index,
3357 };
3358
3359 self.sprite_atlas.remove(¶ms.clone().into());
3360 }
3361
3362 Ok(())
3363 }
3364
3365 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3366 /// layout is being requested, along with the layout ids of any children. This method is called during
3367 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3368 ///
3369 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3370 #[must_use]
3371 pub fn request_layout(
3372 &mut self,
3373 style: Style,
3374 children: impl IntoIterator<Item = LayoutId>,
3375 cx: &mut App,
3376 ) -> LayoutId {
3377 self.invalidator.debug_assert_prepaint();
3378
3379 cx.layout_id_buffer.clear();
3380 cx.layout_id_buffer.extend(children);
3381 let rem_size = self.rem_size();
3382 let scale_factor = self.scale_factor();
3383
3384 self.layout_engine.as_mut().unwrap().request_layout(
3385 style,
3386 rem_size,
3387 scale_factor,
3388 &cx.layout_id_buffer,
3389 )
3390 }
3391
3392 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3393 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3394 /// determine the element's size. One place this is used internally is when measuring text.
3395 ///
3396 /// The given closure is invoked at layout time with the known dimensions and available space and
3397 /// returns a `Size`.
3398 ///
3399 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3400 pub fn request_measured_layout<F>(&mut self, style: Style, measure: F) -> LayoutId
3401 where
3402 F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3403 + 'static,
3404 {
3405 self.invalidator.debug_assert_prepaint();
3406
3407 let rem_size = self.rem_size();
3408 let scale_factor = self.scale_factor();
3409 self.layout_engine
3410 .as_mut()
3411 .unwrap()
3412 .request_measured_layout(style, rem_size, scale_factor, measure)
3413 }
3414
3415 /// Compute the layout for the given id within the given available space.
3416 /// This method is called for its side effect, typically by the framework prior to painting.
3417 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3418 ///
3419 /// This method should only be called as part of the prepaint phase of element drawing.
3420 pub fn compute_layout(
3421 &mut self,
3422 layout_id: LayoutId,
3423 available_space: Size<AvailableSpace>,
3424 cx: &mut App,
3425 ) {
3426 self.invalidator.debug_assert_prepaint();
3427
3428 let mut layout_engine = self.layout_engine.take().unwrap();
3429 layout_engine.compute_layout(layout_id, available_space, self, cx);
3430 self.layout_engine = Some(layout_engine);
3431 }
3432
3433 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3434 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3435 ///
3436 /// This method should only be called as part of element drawing.
3437 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3438 self.invalidator.debug_assert_prepaint();
3439
3440 let scale_factor = self.scale_factor();
3441 let mut bounds = self
3442 .layout_engine
3443 .as_mut()
3444 .unwrap()
3445 .layout_bounds(layout_id, scale_factor)
3446 .map(Into::into);
3447 bounds.origin += self.element_offset();
3448 bounds
3449 }
3450
3451 /// This method should be called during `prepaint`. You can use
3452 /// the returned [Hitbox] during `paint` or in an event handler
3453 /// to determine whether the inserted hitbox was the topmost.
3454 ///
3455 /// This method should only be called as part of the prepaint phase of element drawing.
3456 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3457 self.invalidator.debug_assert_prepaint();
3458
3459 let content_mask = self.content_mask();
3460 let mut id = self.next_hitbox_id;
3461 self.next_hitbox_id = self.next_hitbox_id.next();
3462 let hitbox = Hitbox {
3463 id,
3464 bounds,
3465 content_mask,
3466 behavior,
3467 };
3468 self.next_frame.hitboxes.push(hitbox.clone());
3469 hitbox
3470 }
3471
3472 /// Set a hitbox which will act as a control area of the platform window.
3473 ///
3474 /// This method should only be called as part of the paint phase of element drawing.
3475 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3476 self.invalidator.debug_assert_paint();
3477 self.next_frame.window_control_hitboxes.push((area, hitbox));
3478 }
3479
3480 /// Sets the key context for the current element. This context will be used to translate
3481 /// keybindings into actions.
3482 ///
3483 /// This method should only be called as part of the paint phase of element drawing.
3484 pub fn set_key_context(&mut self, context: KeyContext) {
3485 self.invalidator.debug_assert_paint();
3486 self.next_frame.dispatch_tree.set_key_context(context);
3487 }
3488
3489 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3490 /// and keyboard event dispatch for the element.
3491 ///
3492 /// This method should only be called as part of the prepaint phase of element drawing.
3493 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3494 self.invalidator.debug_assert_prepaint();
3495 if focus_handle.is_focused(self) {
3496 self.next_frame.focus = Some(focus_handle.id);
3497 }
3498 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3499 }
3500
3501 /// Sets the view id for the current element, which will be used to manage view caching.
3502 ///
3503 /// This method should only be called as part of element prepaint. We plan on removing this
3504 /// method eventually when we solve some issues that require us to construct editor elements
3505 /// directly instead of always using editors via views.
3506 pub fn set_view_id(&mut self, view_id: EntityId) {
3507 self.invalidator.debug_assert_prepaint();
3508 self.next_frame.dispatch_tree.set_view_id(view_id);
3509 }
3510
3511 /// Get the entity ID for the currently rendering view
3512 pub fn current_view(&self) -> EntityId {
3513 self.invalidator.debug_assert_paint_or_prepaint();
3514 self.rendered_entity_stack.last().copied().unwrap()
3515 }
3516
3517 pub(crate) fn with_rendered_view<R>(
3518 &mut self,
3519 id: EntityId,
3520 f: impl FnOnce(&mut Self) -> R,
3521 ) -> R {
3522 self.rendered_entity_stack.push(id);
3523 let result = f(self);
3524 self.rendered_entity_stack.pop();
3525 result
3526 }
3527
3528 /// Executes the provided function with the specified image cache.
3529 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3530 where
3531 F: FnOnce(&mut Self) -> R,
3532 {
3533 if let Some(image_cache) = image_cache {
3534 self.image_cache_stack.push(image_cache);
3535 let result = f(self);
3536 self.image_cache_stack.pop();
3537 result
3538 } else {
3539 f(self)
3540 }
3541 }
3542
3543 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3544 /// platform to receive textual input with proper integration with concerns such
3545 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3546 /// rendered.
3547 ///
3548 /// This method should only be called as part of the paint phase of element drawing.
3549 ///
3550 /// [element_input_handler]: crate::ElementInputHandler
3551 pub fn handle_input(
3552 &mut self,
3553 focus_handle: &FocusHandle,
3554 input_handler: impl InputHandler,
3555 cx: &App,
3556 ) {
3557 self.invalidator.debug_assert_paint();
3558
3559 if focus_handle.is_focused(self) {
3560 let cx = self.to_async(cx);
3561 self.next_frame
3562 .input_handlers
3563 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3564 }
3565 }
3566
3567 /// Register a mouse event listener on the window for the next frame. The type of event
3568 /// is determined by the first parameter of the given listener. When the next frame is rendered
3569 /// the listener will be cleared.
3570 ///
3571 /// This method should only be called as part of the paint phase of element drawing.
3572 pub fn on_mouse_event<Event: MouseEvent>(
3573 &mut self,
3574 mut listener: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3575 ) {
3576 self.invalidator.debug_assert_paint();
3577
3578 self.next_frame.mouse_listeners.push(Some(Box::new(
3579 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3580 if let Some(event) = event.downcast_ref() {
3581 listener(event, phase, window, cx)
3582 }
3583 },
3584 )));
3585 }
3586
3587 /// Register a key event listener on this node for the next frame. The type of event
3588 /// is determined by the first parameter of the given listener. When the next frame is rendered
3589 /// the listener will be cleared.
3590 ///
3591 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3592 /// a specific need to register a listener yourself.
3593 ///
3594 /// This method should only be called as part of the paint phase of element drawing.
3595 pub fn on_key_event<Event: KeyEvent>(
3596 &mut self,
3597 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3598 ) {
3599 self.invalidator.debug_assert_paint();
3600
3601 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3602 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3603 if let Some(event) = event.downcast_ref::<Event>() {
3604 listener(event, phase, window, cx)
3605 }
3606 },
3607 ));
3608 }
3609
3610 /// Register a modifiers changed event listener on the window for the next frame.
3611 ///
3612 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3613 /// a specific need to register a global listener.
3614 ///
3615 /// This method should only be called as part of the paint phase of element drawing.
3616 pub fn on_modifiers_changed(
3617 &mut self,
3618 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3619 ) {
3620 self.invalidator.debug_assert_paint();
3621
3622 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3623 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3624 listener(event, window, cx)
3625 },
3626 ));
3627 }
3628
3629 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3630 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3631 /// Returns a subscription and persists until the subscription is dropped.
3632 pub fn on_focus_in(
3633 &mut self,
3634 handle: &FocusHandle,
3635 cx: &mut App,
3636 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3637 ) -> Subscription {
3638 let focus_id = handle.id;
3639 let (subscription, activate) =
3640 self.new_focus_listener(Box::new(move |event, window, cx| {
3641 if event.is_focus_in(focus_id) {
3642 listener(window, cx);
3643 }
3644 true
3645 }));
3646 cx.defer(move |_| activate());
3647 subscription
3648 }
3649
3650 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3651 /// Returns a subscription and persists until the subscription is dropped.
3652 pub fn on_focus_out(
3653 &mut self,
3654 handle: &FocusHandle,
3655 cx: &mut App,
3656 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3657 ) -> Subscription {
3658 let focus_id = handle.id;
3659 let (subscription, activate) =
3660 self.new_focus_listener(Box::new(move |event, window, cx| {
3661 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3662 && event.is_focus_out(focus_id)
3663 {
3664 let event = FocusOutEvent {
3665 blurred: WeakFocusHandle {
3666 id: blurred_id,
3667 handles: Arc::downgrade(&cx.focus_handles),
3668 },
3669 };
3670 listener(event, window, cx)
3671 }
3672 true
3673 }));
3674 cx.defer(move |_| activate());
3675 subscription
3676 }
3677
3678 fn reset_cursor_style(&self, cx: &mut App) {
3679 // Set the cursor only if we're the active window.
3680 if self.is_window_hovered() {
3681 let style = self
3682 .rendered_frame
3683 .cursor_style(self)
3684 .unwrap_or(CursorStyle::Arrow);
3685 cx.platform.set_cursor_style(style);
3686 }
3687 }
3688
3689 /// Dispatch a given keystroke as though the user had typed it.
3690 /// You can create a keystroke with Keystroke::parse("").
3691 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3692 let keystroke = keystroke.with_simulated_ime();
3693 let result = self.dispatch_event(
3694 PlatformInput::KeyDown(KeyDownEvent {
3695 keystroke: keystroke.clone(),
3696 is_held: false,
3697 prefer_character_input: false,
3698 }),
3699 cx,
3700 );
3701 if !result.propagate {
3702 return true;
3703 }
3704
3705 if let Some(input) = keystroke.key_char
3706 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3707 {
3708 input_handler.dispatch_input(&input, self, cx);
3709 self.platform_window.set_input_handler(input_handler);
3710 return true;
3711 }
3712
3713 false
3714 }
3715
3716 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3717 /// binding for the action (last binding added to the keymap).
3718 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3719 self.highest_precedence_binding_for_action(action)
3720 .map(|binding| {
3721 binding
3722 .keystrokes()
3723 .iter()
3724 .map(ToString::to_string)
3725 .collect::<Vec<_>>()
3726 .join(" ")
3727 })
3728 .unwrap_or_else(|| action.name().to_string())
3729 }
3730
3731 /// Dispatch a mouse or keyboard event on the window.
3732 #[profiling::function]
3733 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3734 self.last_input_timestamp.set(Instant::now());
3735
3736 // Track whether this input was keyboard-based for focus-visible styling
3737 self.last_input_modality = match &event {
3738 PlatformInput::KeyDown(_) | PlatformInput::ModifiersChanged(_) => {
3739 InputModality::Keyboard
3740 }
3741 PlatformInput::MouseDown(e) if e.is_focusing() => InputModality::Mouse,
3742 _ => self.last_input_modality,
3743 };
3744
3745 // Handlers may set this to false by calling `stop_propagation`.
3746 cx.propagate_event = true;
3747 // Handlers may set this to true by calling `prevent_default`.
3748 self.default_prevented = false;
3749
3750 let event = match event {
3751 // Track the mouse position with our own state, since accessing the platform
3752 // API for the mouse position can only occur on the main thread.
3753 PlatformInput::MouseMove(mouse_move) => {
3754 self.mouse_position = mouse_move.position;
3755 self.modifiers = mouse_move.modifiers;
3756 PlatformInput::MouseMove(mouse_move)
3757 }
3758 PlatformInput::MouseDown(mouse_down) => {
3759 self.mouse_position = mouse_down.position;
3760 self.modifiers = mouse_down.modifiers;
3761 PlatformInput::MouseDown(mouse_down)
3762 }
3763 PlatformInput::MouseUp(mouse_up) => {
3764 self.mouse_position = mouse_up.position;
3765 self.modifiers = mouse_up.modifiers;
3766 PlatformInput::MouseUp(mouse_up)
3767 }
3768 PlatformInput::MousePressure(mouse_pressure) => {
3769 PlatformInput::MousePressure(mouse_pressure)
3770 }
3771 PlatformInput::MouseExited(mouse_exited) => {
3772 self.modifiers = mouse_exited.modifiers;
3773 PlatformInput::MouseExited(mouse_exited)
3774 }
3775 PlatformInput::ModifiersChanged(modifiers_changed) => {
3776 self.modifiers = modifiers_changed.modifiers;
3777 self.capslock = modifiers_changed.capslock;
3778 PlatformInput::ModifiersChanged(modifiers_changed)
3779 }
3780 PlatformInput::ScrollWheel(scroll_wheel) => {
3781 self.mouse_position = scroll_wheel.position;
3782 self.modifiers = scroll_wheel.modifiers;
3783 PlatformInput::ScrollWheel(scroll_wheel)
3784 }
3785 // Translate dragging and dropping of external files from the operating system
3786 // to internal drag and drop events.
3787 PlatformInput::FileDrop(file_drop) => match file_drop {
3788 FileDropEvent::Entered { position, paths } => {
3789 self.mouse_position = position;
3790 if cx.active_drag.is_none() {
3791 cx.active_drag = Some(AnyDrag {
3792 value: Arc::new(paths.clone()),
3793 view: cx.new(|_| paths).into(),
3794 cursor_offset: position,
3795 cursor_style: None,
3796 });
3797 }
3798 PlatformInput::MouseMove(MouseMoveEvent {
3799 position,
3800 pressed_button: Some(MouseButton::Left),
3801 modifiers: Modifiers::default(),
3802 })
3803 }
3804 FileDropEvent::Pending { position } => {
3805 self.mouse_position = position;
3806 PlatformInput::MouseMove(MouseMoveEvent {
3807 position,
3808 pressed_button: Some(MouseButton::Left),
3809 modifiers: Modifiers::default(),
3810 })
3811 }
3812 FileDropEvent::Submit { position } => {
3813 cx.activate(true);
3814 self.mouse_position = position;
3815 PlatformInput::MouseUp(MouseUpEvent {
3816 button: MouseButton::Left,
3817 position,
3818 modifiers: Modifiers::default(),
3819 click_count: 1,
3820 })
3821 }
3822 FileDropEvent::Exited => {
3823 cx.active_drag.take();
3824 PlatformInput::FileDrop(FileDropEvent::Exited)
3825 }
3826 },
3827 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3828 };
3829
3830 if let Some(any_mouse_event) = event.mouse_event() {
3831 self.dispatch_mouse_event(any_mouse_event, cx);
3832 } else if let Some(any_key_event) = event.keyboard_event() {
3833 self.dispatch_key_event(any_key_event, cx);
3834 }
3835
3836 DispatchEventResult {
3837 propagate: cx.propagate_event,
3838 default_prevented: self.default_prevented,
3839 }
3840 }
3841
3842 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3843 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3844 if hit_test != self.mouse_hit_test {
3845 self.mouse_hit_test = hit_test;
3846 self.reset_cursor_style(cx);
3847 }
3848
3849 #[cfg(any(feature = "inspector", debug_assertions))]
3850 if self.is_inspector_picking(cx) {
3851 self.handle_inspector_mouse_event(event, cx);
3852 // When inspector is picking, all other mouse handling is skipped.
3853 return;
3854 }
3855
3856 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3857
3858 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3859 // special purposes, such as detecting events outside of a given Bounds.
3860 for listener in &mut mouse_listeners {
3861 let listener = listener.as_mut().unwrap();
3862 listener(event, DispatchPhase::Capture, self, cx);
3863 if !cx.propagate_event {
3864 break;
3865 }
3866 }
3867
3868 // Bubble phase, where most normal handlers do their work.
3869 if cx.propagate_event {
3870 for listener in mouse_listeners.iter_mut().rev() {
3871 let listener = listener.as_mut().unwrap();
3872 listener(event, DispatchPhase::Bubble, self, cx);
3873 if !cx.propagate_event {
3874 break;
3875 }
3876 }
3877 }
3878
3879 self.rendered_frame.mouse_listeners = mouse_listeners;
3880
3881 if cx.has_active_drag() {
3882 if event.is::<MouseMoveEvent>() {
3883 // If this was a mouse move event, redraw the window so that the
3884 // active drag can follow the mouse cursor.
3885 self.refresh();
3886 } else if event.is::<MouseUpEvent>() {
3887 // If this was a mouse up event, cancel the active drag and redraw
3888 // the window.
3889 cx.active_drag = None;
3890 self.refresh();
3891 }
3892 }
3893 }
3894
3895 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3896 if self.invalidator.is_dirty() {
3897 self.draw(cx).clear();
3898 }
3899
3900 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3901 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3902
3903 let mut keystroke: Option<Keystroke> = None;
3904
3905 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3906 if event.modifiers.number_of_modifiers() == 0
3907 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3908 && !self.pending_modifier.saw_keystroke
3909 {
3910 let key = match self.pending_modifier.modifiers {
3911 modifiers if modifiers.shift => Some("shift"),
3912 modifiers if modifiers.control => Some("control"),
3913 modifiers if modifiers.alt => Some("alt"),
3914 modifiers if modifiers.platform => Some("platform"),
3915 modifiers if modifiers.function => Some("function"),
3916 _ => None,
3917 };
3918 if let Some(key) = key {
3919 keystroke = Some(Keystroke {
3920 key: key.to_string(),
3921 key_char: None,
3922 modifiers: Modifiers::default(),
3923 });
3924 }
3925 }
3926
3927 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3928 && event.modifiers.number_of_modifiers() == 1
3929 {
3930 self.pending_modifier.saw_keystroke = false
3931 }
3932 self.pending_modifier.modifiers = event.modifiers
3933 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3934 self.pending_modifier.saw_keystroke = true;
3935 keystroke = Some(key_down_event.keystroke.clone());
3936 }
3937
3938 let Some(keystroke) = keystroke else {
3939 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3940 return;
3941 };
3942
3943 cx.propagate_event = true;
3944 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3945 if !cx.propagate_event {
3946 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3947 return;
3948 }
3949
3950 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3951 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3952 currently_pending = PendingInput::default();
3953 }
3954
3955 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3956 currently_pending.keystrokes,
3957 keystroke,
3958 &dispatch_path,
3959 );
3960
3961 if !match_result.to_replay.is_empty() {
3962 self.replay_pending_input(match_result.to_replay, cx);
3963 cx.propagate_event = true;
3964 }
3965
3966 if !match_result.pending.is_empty() {
3967 currently_pending.timer.take();
3968 currently_pending.keystrokes = match_result.pending;
3969 currently_pending.focus = self.focus;
3970
3971 let text_input_requires_timeout = event
3972 .downcast_ref::<KeyDownEvent>()
3973 .filter(|key_down| key_down.keystroke.key_char.is_some())
3974 .and_then(|_| self.platform_window.take_input_handler())
3975 .map_or(false, |mut input_handler| {
3976 let accepts = input_handler.accepts_text_input(self, cx);
3977 self.platform_window.set_input_handler(input_handler);
3978 accepts
3979 });
3980
3981 currently_pending.needs_timeout |=
3982 match_result.pending_has_binding || text_input_requires_timeout;
3983
3984 if currently_pending.needs_timeout {
3985 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3986 cx.background_executor.timer(Duration::from_secs(1)).await;
3987 cx.update(move |window, cx| {
3988 let Some(currently_pending) = window
3989 .pending_input
3990 .take()
3991 .filter(|pending| pending.focus == window.focus)
3992 else {
3993 return;
3994 };
3995
3996 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3997 let dispatch_path =
3998 window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3999
4000 let to_replay = window
4001 .rendered_frame
4002 .dispatch_tree
4003 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
4004
4005 window.pending_input_changed(cx);
4006 window.replay_pending_input(to_replay, cx)
4007 })
4008 .log_err();
4009 }));
4010 } else {
4011 currently_pending.timer = None;
4012 }
4013 self.pending_input = Some(currently_pending);
4014 self.pending_input_changed(cx);
4015 cx.propagate_event = false;
4016 return;
4017 }
4018
4019 let skip_bindings = event
4020 .downcast_ref::<KeyDownEvent>()
4021 .filter(|key_down_event| key_down_event.prefer_character_input)
4022 .map(|_| {
4023 self.platform_window
4024 .take_input_handler()
4025 .map_or(false, |mut input_handler| {
4026 let accepts = input_handler.accepts_text_input(self, cx);
4027 self.platform_window.set_input_handler(input_handler);
4028 // If modifiers are not excessive (e.g. AltGr), and the input handler is accepting text input,
4029 // we prefer the text input over bindings.
4030 accepts
4031 })
4032 })
4033 .unwrap_or(false);
4034
4035 if !skip_bindings {
4036 for binding in match_result.bindings {
4037 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4038 if !cx.propagate_event {
4039 self.dispatch_keystroke_observers(
4040 event,
4041 Some(binding.action),
4042 match_result.context_stack,
4043 cx,
4044 );
4045 self.pending_input_changed(cx);
4046 return;
4047 }
4048 }
4049 }
4050
4051 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
4052 self.pending_input_changed(cx);
4053 }
4054
4055 fn finish_dispatch_key_event(
4056 &mut self,
4057 event: &dyn Any,
4058 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
4059 context_stack: Vec<KeyContext>,
4060 cx: &mut App,
4061 ) {
4062 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
4063 if !cx.propagate_event {
4064 return;
4065 }
4066
4067 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
4068 if !cx.propagate_event {
4069 return;
4070 }
4071
4072 self.dispatch_keystroke_observers(event, None, context_stack, cx);
4073 }
4074
4075 pub(crate) fn pending_input_changed(&mut self, cx: &mut App) {
4076 self.pending_input_observers
4077 .clone()
4078 .retain(&(), |callback| callback(self, cx));
4079 }
4080
4081 fn dispatch_key_down_up_event(
4082 &mut self,
4083 event: &dyn Any,
4084 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4085 cx: &mut App,
4086 ) {
4087 // Capture phase
4088 for node_id in dispatch_path {
4089 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4090
4091 for key_listener in node.key_listeners.clone() {
4092 key_listener(event, DispatchPhase::Capture, self, cx);
4093 if !cx.propagate_event {
4094 return;
4095 }
4096 }
4097 }
4098
4099 // Bubble phase
4100 for node_id in dispatch_path.iter().rev() {
4101 // Handle low level key events
4102 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4103 for key_listener in node.key_listeners.clone() {
4104 key_listener(event, DispatchPhase::Bubble, self, cx);
4105 if !cx.propagate_event {
4106 return;
4107 }
4108 }
4109 }
4110 }
4111
4112 fn dispatch_modifiers_changed_event(
4113 &mut self,
4114 event: &dyn Any,
4115 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4116 cx: &mut App,
4117 ) {
4118 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
4119 return;
4120 };
4121 for node_id in dispatch_path.iter().rev() {
4122 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4123 for listener in node.modifiers_changed_listeners.clone() {
4124 listener(event, self, cx);
4125 if !cx.propagate_event {
4126 return;
4127 }
4128 }
4129 }
4130 }
4131
4132 /// Determine whether a potential multi-stroke key binding is in progress on this window.
4133 pub fn has_pending_keystrokes(&self) -> bool {
4134 self.pending_input.is_some()
4135 }
4136
4137 pub(crate) fn clear_pending_keystrokes(&mut self) {
4138 self.pending_input.take();
4139 }
4140
4141 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
4142 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
4143 self.pending_input
4144 .as_ref()
4145 .map(|pending_input| pending_input.keystrokes.as_slice())
4146 }
4147
4148 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
4149 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4150 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4151
4152 'replay: for replay in replays {
4153 let event = KeyDownEvent {
4154 keystroke: replay.keystroke.clone(),
4155 is_held: false,
4156 prefer_character_input: true,
4157 };
4158
4159 cx.propagate_event = true;
4160 for binding in replay.bindings {
4161 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4162 if !cx.propagate_event {
4163 self.dispatch_keystroke_observers(
4164 &event,
4165 Some(binding.action),
4166 Vec::default(),
4167 cx,
4168 );
4169 continue 'replay;
4170 }
4171 }
4172
4173 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
4174 if !cx.propagate_event {
4175 continue 'replay;
4176 }
4177 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
4178 && let Some(mut input_handler) = self.platform_window.take_input_handler()
4179 {
4180 input_handler.dispatch_input(&input, self, cx);
4181 self.platform_window.set_input_handler(input_handler)
4182 }
4183 }
4184 }
4185
4186 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4187 focus_id
4188 .and_then(|focus_id| {
4189 self.rendered_frame
4190 .dispatch_tree
4191 .focusable_node_id(focus_id)
4192 })
4193 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4194 }
4195
4196 fn dispatch_action_on_node(
4197 &mut self,
4198 node_id: DispatchNodeId,
4199 action: &dyn Action,
4200 cx: &mut App,
4201 ) {
4202 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4203
4204 // Capture phase for global actions.
4205 cx.propagate_event = true;
4206 if let Some(mut global_listeners) = cx
4207 .global_action_listeners
4208 .remove(&action.as_any().type_id())
4209 {
4210 for listener in &global_listeners {
4211 listener(action.as_any(), DispatchPhase::Capture, cx);
4212 if !cx.propagate_event {
4213 break;
4214 }
4215 }
4216
4217 global_listeners.extend(
4218 cx.global_action_listeners
4219 .remove(&action.as_any().type_id())
4220 .unwrap_or_default(),
4221 );
4222
4223 cx.global_action_listeners
4224 .insert(action.as_any().type_id(), global_listeners);
4225 }
4226
4227 if !cx.propagate_event {
4228 return;
4229 }
4230
4231 // Capture phase for window actions.
4232 for node_id in &dispatch_path {
4233 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4234 for DispatchActionListener {
4235 action_type,
4236 listener,
4237 } in node.action_listeners.clone()
4238 {
4239 let any_action = action.as_any();
4240 if action_type == any_action.type_id() {
4241 listener(any_action, DispatchPhase::Capture, self, cx);
4242
4243 if !cx.propagate_event {
4244 return;
4245 }
4246 }
4247 }
4248 }
4249
4250 // Bubble phase for window actions.
4251 for node_id in dispatch_path.iter().rev() {
4252 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4253 for DispatchActionListener {
4254 action_type,
4255 listener,
4256 } in node.action_listeners.clone()
4257 {
4258 let any_action = action.as_any();
4259 if action_type == any_action.type_id() {
4260 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4261 listener(any_action, DispatchPhase::Bubble, self, cx);
4262
4263 if !cx.propagate_event {
4264 return;
4265 }
4266 }
4267 }
4268 }
4269
4270 // Bubble phase for global actions.
4271 if let Some(mut global_listeners) = cx
4272 .global_action_listeners
4273 .remove(&action.as_any().type_id())
4274 {
4275 for listener in global_listeners.iter().rev() {
4276 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4277
4278 listener(action.as_any(), DispatchPhase::Bubble, cx);
4279 if !cx.propagate_event {
4280 break;
4281 }
4282 }
4283
4284 global_listeners.extend(
4285 cx.global_action_listeners
4286 .remove(&action.as_any().type_id())
4287 .unwrap_or_default(),
4288 );
4289
4290 cx.global_action_listeners
4291 .insert(action.as_any().type_id(), global_listeners);
4292 }
4293 }
4294
4295 /// Register the given handler to be invoked whenever the global of the given type
4296 /// is updated.
4297 pub fn observe_global<G: Global>(
4298 &mut self,
4299 cx: &mut App,
4300 f: impl Fn(&mut Window, &mut App) + 'static,
4301 ) -> Subscription {
4302 let window_handle = self.handle;
4303 let (subscription, activate) = cx.global_observers.insert(
4304 TypeId::of::<G>(),
4305 Box::new(move |cx| {
4306 window_handle
4307 .update(cx, |_, window, cx| f(window, cx))
4308 .is_ok()
4309 }),
4310 );
4311 cx.defer(move |_| activate());
4312 subscription
4313 }
4314
4315 /// Focus the current window and bring it to the foreground at the platform level.
4316 pub fn activate_window(&self) {
4317 self.platform_window.activate();
4318 }
4319
4320 /// Minimize the current window at the platform level.
4321 pub fn minimize_window(&self) {
4322 self.platform_window.minimize();
4323 }
4324
4325 /// Toggle full screen status on the current window at the platform level.
4326 pub fn toggle_fullscreen(&self) {
4327 self.platform_window.toggle_fullscreen();
4328 }
4329
4330 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4331 pub fn invalidate_character_coordinates(&self) {
4332 self.on_next_frame(|window, cx| {
4333 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4334 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4335 window.platform_window.update_ime_position(bounds);
4336 }
4337 window.platform_window.set_input_handler(input_handler);
4338 }
4339 });
4340 }
4341
4342 /// Present a platform dialog.
4343 /// The provided message will be presented, along with buttons for each answer.
4344 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4345 pub fn prompt<T>(
4346 &mut self,
4347 level: PromptLevel,
4348 message: &str,
4349 detail: Option<&str>,
4350 answers: &[T],
4351 cx: &mut App,
4352 ) -> oneshot::Receiver<usize>
4353 where
4354 T: Clone + Into<PromptButton>,
4355 {
4356 let prompt_builder = cx.prompt_builder.take();
4357 let Some(prompt_builder) = prompt_builder else {
4358 unreachable!("Re-entrant window prompting is not supported by GPUI");
4359 };
4360
4361 let answers = answers
4362 .iter()
4363 .map(|answer| answer.clone().into())
4364 .collect::<Vec<_>>();
4365
4366 let receiver = match &prompt_builder {
4367 PromptBuilder::Default => self
4368 .platform_window
4369 .prompt(level, message, detail, &answers)
4370 .unwrap_or_else(|| {
4371 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4372 }),
4373 PromptBuilder::Custom(_) => {
4374 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4375 }
4376 };
4377
4378 cx.prompt_builder = Some(prompt_builder);
4379
4380 receiver
4381 }
4382
4383 fn build_custom_prompt(
4384 &mut self,
4385 prompt_builder: &PromptBuilder,
4386 level: PromptLevel,
4387 message: &str,
4388 detail: Option<&str>,
4389 answers: &[PromptButton],
4390 cx: &mut App,
4391 ) -> oneshot::Receiver<usize> {
4392 let (sender, receiver) = oneshot::channel();
4393 let handle = PromptHandle::new(sender);
4394 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4395 self.prompt = Some(handle);
4396 receiver
4397 }
4398
4399 /// Returns the current context stack.
4400 pub fn context_stack(&self) -> Vec<KeyContext> {
4401 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4402 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4403 dispatch_tree
4404 .dispatch_path(node_id)
4405 .iter()
4406 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4407 .collect()
4408 }
4409
4410 /// Returns all available actions for the focused element.
4411 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4412 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4413 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4414 for action_type in cx.global_action_listeners.keys() {
4415 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4416 let action = cx.actions.build_action_type(action_type).ok();
4417 if let Some(action) = action {
4418 actions.insert(ix, action);
4419 }
4420 }
4421 }
4422 actions
4423 }
4424
4425 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4426 /// returned in the order they were added. For display, the last binding should take precedence.
4427 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4428 self.rendered_frame
4429 .dispatch_tree
4430 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4431 }
4432
4433 /// Returns the highest precedence key binding that invokes an action on the currently focused
4434 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4435 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4436 self.rendered_frame
4437 .dispatch_tree
4438 .highest_precedence_binding_for_action(
4439 action,
4440 &self.rendered_frame.dispatch_tree.context_stack,
4441 )
4442 }
4443
4444 /// Returns the key bindings for an action in a context.
4445 pub fn bindings_for_action_in_context(
4446 &self,
4447 action: &dyn Action,
4448 context: KeyContext,
4449 ) -> Vec<KeyBinding> {
4450 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4451 dispatch_tree.bindings_for_action(action, &[context])
4452 }
4453
4454 /// Returns the highest precedence key binding for an action in a context. This is more
4455 /// efficient than getting the last result of `bindings_for_action_in_context`.
4456 pub fn highest_precedence_binding_for_action_in_context(
4457 &self,
4458 action: &dyn Action,
4459 context: KeyContext,
4460 ) -> Option<KeyBinding> {
4461 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4462 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4463 }
4464
4465 /// Returns any bindings that would invoke an action on the given focus handle if it were
4466 /// focused. Bindings are returned in the order they were added. For display, the last binding
4467 /// should take precedence.
4468 pub fn bindings_for_action_in(
4469 &self,
4470 action: &dyn Action,
4471 focus_handle: &FocusHandle,
4472 ) -> Vec<KeyBinding> {
4473 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4474 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4475 return vec![];
4476 };
4477 dispatch_tree.bindings_for_action(action, &context_stack)
4478 }
4479
4480 /// Returns the highest precedence key binding that would invoke an action on the given focus
4481 /// handle if it were focused. This is more efficient than getting the last result of
4482 /// `bindings_for_action_in`.
4483 pub fn highest_precedence_binding_for_action_in(
4484 &self,
4485 action: &dyn Action,
4486 focus_handle: &FocusHandle,
4487 ) -> Option<KeyBinding> {
4488 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4489 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4490 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4491 }
4492
4493 /// Find the bindings that can follow the current input sequence for the current context stack.
4494 pub fn possible_bindings_for_input(&self, input: &[Keystroke]) -> Vec<KeyBinding> {
4495 self.rendered_frame
4496 .dispatch_tree
4497 .possible_next_bindings_for_input(input, &self.context_stack())
4498 }
4499
4500 fn context_stack_for_focus_handle(
4501 &self,
4502 focus_handle: &FocusHandle,
4503 ) -> Option<Vec<KeyContext>> {
4504 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4505 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4506 let context_stack: Vec<_> = dispatch_tree
4507 .dispatch_path(node_id)
4508 .into_iter()
4509 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4510 .collect();
4511 Some(context_stack)
4512 }
4513
4514 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4515 pub fn listener_for<T: 'static, E>(
4516 &self,
4517 view: &Entity<T>,
4518 f: impl Fn(&mut T, &E, &mut Window, &mut Context<T>) + 'static,
4519 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4520 let view = view.downgrade();
4521 move |e: &E, window: &mut Window, cx: &mut App| {
4522 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4523 }
4524 }
4525
4526 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4527 pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4528 &self,
4529 entity: &Entity<E>,
4530 f: Callback,
4531 ) -> impl Fn(&mut Window, &mut App) + 'static {
4532 let entity = entity.downgrade();
4533 move |window: &mut Window, cx: &mut App| {
4534 entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4535 }
4536 }
4537
4538 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4539 /// If the callback returns false, the window won't be closed.
4540 pub fn on_window_should_close(
4541 &self,
4542 cx: &App,
4543 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4544 ) {
4545 let mut cx = self.to_async(cx);
4546 self.platform_window.on_should_close(Box::new(move || {
4547 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4548 }))
4549 }
4550
4551 /// Register an action listener on this node for the next frame. The type of action
4552 /// is determined by the first parameter of the given listener. When the next frame is rendered
4553 /// the listener will be cleared.
4554 ///
4555 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4556 /// a specific need to register a listener yourself.
4557 ///
4558 /// This method should only be called as part of the paint phase of element drawing.
4559 pub fn on_action(
4560 &mut self,
4561 action_type: TypeId,
4562 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4563 ) {
4564 self.invalidator.debug_assert_paint();
4565
4566 self.next_frame
4567 .dispatch_tree
4568 .on_action(action_type, Rc::new(listener));
4569 }
4570
4571 /// Register a capturing action listener on this node for the next frame if the condition is true.
4572 /// The type of action is determined by the first parameter of the given listener. When the next
4573 /// frame is rendered the listener will be cleared.
4574 ///
4575 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4576 /// a specific need to register a listener yourself.
4577 ///
4578 /// This method should only be called as part of the paint phase of element drawing.
4579 pub fn on_action_when(
4580 &mut self,
4581 condition: bool,
4582 action_type: TypeId,
4583 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4584 ) {
4585 self.invalidator.debug_assert_paint();
4586
4587 if condition {
4588 self.next_frame
4589 .dispatch_tree
4590 .on_action(action_type, Rc::new(listener));
4591 }
4592 }
4593
4594 /// Read information about the GPU backing this window.
4595 /// Currently returns None on Mac and Windows.
4596 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4597 self.platform_window.gpu_specs()
4598 }
4599
4600 /// Perform titlebar double-click action.
4601 /// This is macOS specific.
4602 pub fn titlebar_double_click(&self) {
4603 self.platform_window.titlebar_double_click();
4604 }
4605
4606 /// Gets the window's title at the platform level.
4607 /// This is macOS specific.
4608 pub fn window_title(&self) -> String {
4609 self.platform_window.get_title()
4610 }
4611
4612 /// Returns a list of all tabbed windows and their titles.
4613 /// This is macOS specific.
4614 pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4615 self.platform_window.tabbed_windows()
4616 }
4617
4618 /// Returns the tab bar visibility.
4619 /// This is macOS specific.
4620 pub fn tab_bar_visible(&self) -> bool {
4621 self.platform_window.tab_bar_visible()
4622 }
4623
4624 /// Merges all open windows into a single tabbed window.
4625 /// This is macOS specific.
4626 pub fn merge_all_windows(&self) {
4627 self.platform_window.merge_all_windows()
4628 }
4629
4630 /// Moves the tab to a new containing window.
4631 /// This is macOS specific.
4632 pub fn move_tab_to_new_window(&self) {
4633 self.platform_window.move_tab_to_new_window()
4634 }
4635
4636 /// Shows or hides the window tab overview.
4637 /// This is macOS specific.
4638 pub fn toggle_window_tab_overview(&self) {
4639 self.platform_window.toggle_window_tab_overview()
4640 }
4641
4642 /// Sets the tabbing identifier for the window.
4643 /// This is macOS specific.
4644 pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4645 self.platform_window
4646 .set_tabbing_identifier(tabbing_identifier)
4647 }
4648
4649 /// Toggles the inspector mode on this window.
4650 #[cfg(any(feature = "inspector", debug_assertions))]
4651 pub fn toggle_inspector(&mut self, cx: &mut App) {
4652 self.inspector = match self.inspector {
4653 None => Some(cx.new(|_| Inspector::new())),
4654 Some(_) => None,
4655 };
4656 self.refresh();
4657 }
4658
4659 /// Returns true if the window is in inspector mode.
4660 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4661 #[cfg(any(feature = "inspector", debug_assertions))]
4662 {
4663 if let Some(inspector) = &self.inspector {
4664 return inspector.read(_cx).is_picking();
4665 }
4666 }
4667 false
4668 }
4669
4670 /// Executes the provided function with mutable access to an inspector state.
4671 #[cfg(any(feature = "inspector", debug_assertions))]
4672 pub fn with_inspector_state<T: 'static, R>(
4673 &mut self,
4674 _inspector_id: Option<&crate::InspectorElementId>,
4675 cx: &mut App,
4676 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4677 ) -> R {
4678 if let Some(inspector_id) = _inspector_id
4679 && let Some(inspector) = &self.inspector
4680 {
4681 let inspector = inspector.clone();
4682 let active_element_id = inspector.read(cx).active_element_id();
4683 if Some(inspector_id) == active_element_id {
4684 return inspector.update(cx, |inspector, _cx| {
4685 inspector.with_active_element_state(self, f)
4686 });
4687 }
4688 }
4689 f(&mut None, self)
4690 }
4691
4692 #[cfg(any(feature = "inspector", debug_assertions))]
4693 pub(crate) fn build_inspector_element_id(
4694 &mut self,
4695 path: crate::InspectorElementPath,
4696 ) -> crate::InspectorElementId {
4697 self.invalidator.debug_assert_paint_or_prepaint();
4698 let path = Rc::new(path);
4699 let next_instance_id = self
4700 .next_frame
4701 .next_inspector_instance_ids
4702 .entry(path.clone())
4703 .or_insert(0);
4704 let instance_id = *next_instance_id;
4705 *next_instance_id += 1;
4706 crate::InspectorElementId { path, instance_id }
4707 }
4708
4709 #[cfg(any(feature = "inspector", debug_assertions))]
4710 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4711 if let Some(inspector) = self.inspector.take() {
4712 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4713 inspector_element.prepaint_as_root(
4714 point(self.viewport_size.width - inspector_width, px(0.0)),
4715 size(inspector_width, self.viewport_size.height).into(),
4716 self,
4717 cx,
4718 );
4719 self.inspector = Some(inspector);
4720 Some(inspector_element)
4721 } else {
4722 None
4723 }
4724 }
4725
4726 #[cfg(any(feature = "inspector", debug_assertions))]
4727 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4728 if let Some(mut inspector_element) = inspector_element {
4729 inspector_element.paint(self, cx);
4730 };
4731 }
4732
4733 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4734 /// inspect UI elements by clicking on them.
4735 #[cfg(any(feature = "inspector", debug_assertions))]
4736 pub fn insert_inspector_hitbox(
4737 &mut self,
4738 hitbox_id: HitboxId,
4739 inspector_id: Option<&crate::InspectorElementId>,
4740 cx: &App,
4741 ) {
4742 self.invalidator.debug_assert_paint_or_prepaint();
4743 if !self.is_inspector_picking(cx) {
4744 return;
4745 }
4746 if let Some(inspector_id) = inspector_id {
4747 self.next_frame
4748 .inspector_hitboxes
4749 .insert(hitbox_id, inspector_id.clone());
4750 }
4751 }
4752
4753 #[cfg(any(feature = "inspector", debug_assertions))]
4754 fn paint_inspector_hitbox(&mut self, cx: &App) {
4755 if let Some(inspector) = self.inspector.as_ref() {
4756 let inspector = inspector.read(cx);
4757 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4758 && let Some(hitbox) = self
4759 .next_frame
4760 .hitboxes
4761 .iter()
4762 .find(|hitbox| hitbox.id == hitbox_id)
4763 {
4764 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4765 }
4766 }
4767 }
4768
4769 #[cfg(any(feature = "inspector", debug_assertions))]
4770 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4771 let Some(inspector) = self.inspector.clone() else {
4772 return;
4773 };
4774 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4775 inspector.update(cx, |inspector, _cx| {
4776 if let Some((_, inspector_id)) =
4777 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4778 {
4779 inspector.hover(inspector_id, self);
4780 }
4781 });
4782 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4783 inspector.update(cx, |inspector, _cx| {
4784 if let Some((_, inspector_id)) =
4785 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4786 {
4787 inspector.select(inspector_id, self);
4788 }
4789 });
4790 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4791 // This should be kept in sync with SCROLL_LINES in x11 platform.
4792 const SCROLL_LINES: f32 = 3.0;
4793 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4794 let delta_y = event
4795 .delta
4796 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4797 .y;
4798 if let Some(inspector) = self.inspector.clone() {
4799 inspector.update(cx, |inspector, _cx| {
4800 if let Some(depth) = inspector.pick_depth.as_mut() {
4801 *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4802 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4803 if *depth < 0.0 {
4804 *depth = 0.0;
4805 } else if *depth > max_depth {
4806 *depth = max_depth;
4807 }
4808 if let Some((_, inspector_id)) =
4809 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4810 {
4811 inspector.set_active_element_id(inspector_id, self);
4812 }
4813 }
4814 });
4815 }
4816 }
4817 }
4818
4819 #[cfg(any(feature = "inspector", debug_assertions))]
4820 fn hovered_inspector_hitbox(
4821 &self,
4822 inspector: &Inspector,
4823 frame: &Frame,
4824 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4825 if let Some(pick_depth) = inspector.pick_depth {
4826 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4827 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4828 let skip_count = (depth as usize).min(max_skipped);
4829 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4830 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4831 return Some((*hitbox_id, inspector_id.clone()));
4832 }
4833 }
4834 }
4835 None
4836 }
4837
4838 /// For testing: set the current modifier keys state.
4839 /// This does not generate any events.
4840 #[cfg(any(test, feature = "test-support"))]
4841 pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4842 self.modifiers = modifiers;
4843 }
4844}
4845
4846// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4847slotmap::new_key_type! {
4848 /// A unique identifier for a window.
4849 pub struct WindowId;
4850}
4851
4852impl WindowId {
4853 /// Converts this window ID to a `u64`.
4854 pub fn as_u64(&self) -> u64 {
4855 self.0.as_ffi()
4856 }
4857}
4858
4859impl From<u64> for WindowId {
4860 fn from(value: u64) -> Self {
4861 WindowId(slotmap::KeyData::from_ffi(value))
4862 }
4863}
4864
4865/// A handle to a window with a specific root view type.
4866/// Note that this does not keep the window alive on its own.
4867#[derive(Deref, DerefMut)]
4868pub struct WindowHandle<V> {
4869 #[deref]
4870 #[deref_mut]
4871 pub(crate) any_handle: AnyWindowHandle,
4872 state_type: PhantomData<fn(V) -> V>,
4873}
4874
4875impl<V> Debug for WindowHandle<V> {
4876 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4877 f.debug_struct("WindowHandle")
4878 .field("any_handle", &self.any_handle.id.as_u64())
4879 .finish()
4880 }
4881}
4882
4883impl<V: 'static + Render> WindowHandle<V> {
4884 /// Creates a new handle from a window ID.
4885 /// This does not check if the root type of the window is `V`.
4886 pub fn new(id: WindowId) -> Self {
4887 WindowHandle {
4888 any_handle: AnyWindowHandle {
4889 id,
4890 state_type: TypeId::of::<V>(),
4891 },
4892 state_type: PhantomData,
4893 }
4894 }
4895
4896 /// Get the root view out of this window.
4897 ///
4898 /// This will fail if the window is closed or if the root view's type does not match `V`.
4899 #[cfg(any(test, feature = "test-support"))]
4900 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4901 where
4902 C: AppContext,
4903 {
4904 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4905 root_view
4906 .downcast::<V>()
4907 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4908 }))
4909 }
4910
4911 /// Updates the root view of this window.
4912 ///
4913 /// This will fail if the window has been closed or if the root view's type does not match
4914 pub fn update<C, R>(
4915 &self,
4916 cx: &mut C,
4917 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4918 ) -> Result<R>
4919 where
4920 C: AppContext,
4921 {
4922 cx.update_window(self.any_handle, |root_view, window, cx| {
4923 let view = root_view
4924 .downcast::<V>()
4925 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4926
4927 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4928 })?
4929 }
4930
4931 /// Read the root view out of this window.
4932 ///
4933 /// This will fail if the window is closed or if the root view's type does not match `V`.
4934 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4935 let x = cx
4936 .windows
4937 .get(self.id)
4938 .and_then(|window| {
4939 window
4940 .as_deref()
4941 .and_then(|window| window.root.clone())
4942 .map(|root_view| root_view.downcast::<V>())
4943 })
4944 .context("window not found")?
4945 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4946
4947 Ok(x.read(cx))
4948 }
4949
4950 /// Read the root view out of this window, with a callback
4951 ///
4952 /// This will fail if the window is closed or if the root view's type does not match `V`.
4953 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4954 where
4955 C: AppContext,
4956 {
4957 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4958 }
4959
4960 /// Read the root view pointer off of this window.
4961 ///
4962 /// This will fail if the window is closed or if the root view's type does not match `V`.
4963 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4964 where
4965 C: AppContext,
4966 {
4967 cx.read_window(self, |root_view, _cx| root_view)
4968 }
4969
4970 /// Check if this window is 'active'.
4971 ///
4972 /// Will return `None` if the window is closed or currently
4973 /// borrowed.
4974 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4975 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4976 .ok()
4977 }
4978}
4979
4980impl<V> Copy for WindowHandle<V> {}
4981
4982impl<V> Clone for WindowHandle<V> {
4983 fn clone(&self) -> Self {
4984 *self
4985 }
4986}
4987
4988impl<V> PartialEq for WindowHandle<V> {
4989 fn eq(&self, other: &Self) -> bool {
4990 self.any_handle == other.any_handle
4991 }
4992}
4993
4994impl<V> Eq for WindowHandle<V> {}
4995
4996impl<V> Hash for WindowHandle<V> {
4997 fn hash<H: Hasher>(&self, state: &mut H) {
4998 self.any_handle.hash(state);
4999 }
5000}
5001
5002impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
5003 fn from(val: WindowHandle<V>) -> Self {
5004 val.any_handle
5005 }
5006}
5007
5008/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
5009#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
5010pub struct AnyWindowHandle {
5011 pub(crate) id: WindowId,
5012 state_type: TypeId,
5013}
5014
5015impl AnyWindowHandle {
5016 /// Get the ID of this window.
5017 pub fn window_id(&self) -> WindowId {
5018 self.id
5019 }
5020
5021 /// Attempt to convert this handle to a window handle with a specific root view type.
5022 /// If the types do not match, this will return `None`.
5023 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
5024 if TypeId::of::<T>() == self.state_type {
5025 Some(WindowHandle {
5026 any_handle: *self,
5027 state_type: PhantomData,
5028 })
5029 } else {
5030 None
5031 }
5032 }
5033
5034 /// Updates the state of the root view of this window.
5035 ///
5036 /// This will fail if the window has been closed.
5037 pub fn update<C, R>(
5038 self,
5039 cx: &mut C,
5040 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
5041 ) -> Result<R>
5042 where
5043 C: AppContext,
5044 {
5045 cx.update_window(self, update)
5046 }
5047
5048 /// Read the state of the root view of this window.
5049 ///
5050 /// This will fail if the window has been closed.
5051 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
5052 where
5053 C: AppContext,
5054 T: 'static,
5055 {
5056 let view = self
5057 .downcast::<T>()
5058 .context("the type of the window's root view has changed")?;
5059
5060 cx.read_window(&view, read)
5061 }
5062}
5063
5064impl HasWindowHandle for Window {
5065 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
5066 self.platform_window.window_handle()
5067 }
5068}
5069
5070impl HasDisplayHandle for Window {
5071 fn display_handle(
5072 &self,
5073 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
5074 self.platform_window.display_handle()
5075 }
5076}
5077
5078/// An identifier for an [`Element`].
5079///
5080/// Can be constructed with a string, a number, or both, as well
5081/// as other internal representations.
5082#[derive(Clone, Debug, Eq, PartialEq, Hash)]
5083pub enum ElementId {
5084 /// The ID of a View element
5085 View(EntityId),
5086 /// An integer ID.
5087 Integer(u64),
5088 /// A string based ID.
5089 Name(SharedString),
5090 /// A UUID.
5091 Uuid(Uuid),
5092 /// An ID that's equated with a focus handle.
5093 FocusHandle(FocusId),
5094 /// A combination of a name and an integer.
5095 NamedInteger(SharedString, u64),
5096 /// A path.
5097 Path(Arc<std::path::Path>),
5098 /// A code location.
5099 CodeLocation(core::panic::Location<'static>),
5100 /// A labeled child of an element.
5101 NamedChild(Arc<ElementId>, SharedString),
5102}
5103
5104impl ElementId {
5105 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
5106 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
5107 Self::NamedInteger(name.into(), integer as u64)
5108 }
5109}
5110
5111impl Display for ElementId {
5112 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
5113 match self {
5114 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
5115 ElementId::Integer(ix) => write!(f, "{}", ix)?,
5116 ElementId::Name(name) => write!(f, "{}", name)?,
5117 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
5118 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
5119 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
5120 ElementId::Path(path) => write!(f, "{}", path.display())?,
5121 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
5122 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
5123 }
5124
5125 Ok(())
5126 }
5127}
5128
5129impl TryInto<SharedString> for ElementId {
5130 type Error = anyhow::Error;
5131
5132 fn try_into(self) -> anyhow::Result<SharedString> {
5133 if let ElementId::Name(name) = self {
5134 Ok(name)
5135 } else {
5136 anyhow::bail!("element id is not string")
5137 }
5138 }
5139}
5140
5141impl From<usize> for ElementId {
5142 fn from(id: usize) -> Self {
5143 ElementId::Integer(id as u64)
5144 }
5145}
5146
5147impl From<i32> for ElementId {
5148 fn from(id: i32) -> Self {
5149 Self::Integer(id as u64)
5150 }
5151}
5152
5153impl From<SharedString> for ElementId {
5154 fn from(name: SharedString) -> Self {
5155 ElementId::Name(name)
5156 }
5157}
5158
5159impl From<String> for ElementId {
5160 fn from(name: String) -> Self {
5161 ElementId::Name(name.into())
5162 }
5163}
5164
5165impl From<Arc<str>> for ElementId {
5166 fn from(name: Arc<str>) -> Self {
5167 ElementId::Name(name.into())
5168 }
5169}
5170
5171impl From<Arc<std::path::Path>> for ElementId {
5172 fn from(path: Arc<std::path::Path>) -> Self {
5173 ElementId::Path(path)
5174 }
5175}
5176
5177impl From<&'static str> for ElementId {
5178 fn from(name: &'static str) -> Self {
5179 ElementId::Name(name.into())
5180 }
5181}
5182
5183impl<'a> From<&'a FocusHandle> for ElementId {
5184 fn from(handle: &'a FocusHandle) -> Self {
5185 ElementId::FocusHandle(handle.id)
5186 }
5187}
5188
5189impl From<(&'static str, EntityId)> for ElementId {
5190 fn from((name, id): (&'static str, EntityId)) -> Self {
5191 ElementId::NamedInteger(name.into(), id.as_u64())
5192 }
5193}
5194
5195impl From<(&'static str, usize)> for ElementId {
5196 fn from((name, id): (&'static str, usize)) -> Self {
5197 ElementId::NamedInteger(name.into(), id as u64)
5198 }
5199}
5200
5201impl From<(SharedString, usize)> for ElementId {
5202 fn from((name, id): (SharedString, usize)) -> Self {
5203 ElementId::NamedInteger(name, id as u64)
5204 }
5205}
5206
5207impl From<(&'static str, u64)> for ElementId {
5208 fn from((name, id): (&'static str, u64)) -> Self {
5209 ElementId::NamedInteger(name.into(), id)
5210 }
5211}
5212
5213impl From<Uuid> for ElementId {
5214 fn from(value: Uuid) -> Self {
5215 Self::Uuid(value)
5216 }
5217}
5218
5219impl From<(&'static str, u32)> for ElementId {
5220 fn from((name, id): (&'static str, u32)) -> Self {
5221 ElementId::NamedInteger(name.into(), id.into())
5222 }
5223}
5224
5225impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5226 fn from((id, name): (ElementId, T)) -> Self {
5227 ElementId::NamedChild(Arc::new(id), name.into())
5228 }
5229}
5230
5231impl From<&'static core::panic::Location<'static>> for ElementId {
5232 fn from(location: &'static core::panic::Location<'static>) -> Self {
5233 ElementId::CodeLocation(*location)
5234 }
5235}
5236
5237/// A rectangle to be rendered in the window at the given position and size.
5238/// Passed as an argument [`Window::paint_quad`].
5239#[derive(Clone)]
5240pub struct PaintQuad {
5241 /// The bounds of the quad within the window.
5242 pub bounds: Bounds<Pixels>,
5243 /// The radii of the quad's corners.
5244 pub corner_radii: Corners<Pixels>,
5245 /// The background color of the quad.
5246 pub background: Background,
5247 /// The widths of the quad's borders.
5248 pub border_widths: Edges<Pixels>,
5249 /// The color of the quad's borders.
5250 pub border_color: Hsla,
5251 /// The style of the quad's borders.
5252 pub border_style: BorderStyle,
5253}
5254
5255impl PaintQuad {
5256 /// Sets the corner radii of the quad.
5257 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5258 PaintQuad {
5259 corner_radii: corner_radii.into(),
5260 ..self
5261 }
5262 }
5263
5264 /// Sets the border widths of the quad.
5265 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5266 PaintQuad {
5267 border_widths: border_widths.into(),
5268 ..self
5269 }
5270 }
5271
5272 /// Sets the border color of the quad.
5273 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5274 PaintQuad {
5275 border_color: border_color.into(),
5276 ..self
5277 }
5278 }
5279
5280 /// Sets the background color of the quad.
5281 pub fn background(self, background: impl Into<Background>) -> Self {
5282 PaintQuad {
5283 background: background.into(),
5284 ..self
5285 }
5286 }
5287}
5288
5289/// Creates a quad with the given parameters.
5290pub fn quad(
5291 bounds: Bounds<Pixels>,
5292 corner_radii: impl Into<Corners<Pixels>>,
5293 background: impl Into<Background>,
5294 border_widths: impl Into<Edges<Pixels>>,
5295 border_color: impl Into<Hsla>,
5296 border_style: BorderStyle,
5297) -> PaintQuad {
5298 PaintQuad {
5299 bounds,
5300 corner_radii: corner_radii.into(),
5301 background: background.into(),
5302 border_widths: border_widths.into(),
5303 border_color: border_color.into(),
5304 border_style,
5305 }
5306}
5307
5308/// Creates a filled quad with the given bounds and background color.
5309pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5310 PaintQuad {
5311 bounds: bounds.into(),
5312 corner_radii: (0.).into(),
5313 background: background.into(),
5314 border_widths: (0.).into(),
5315 border_color: transparent_black(),
5316 border_style: BorderStyle::default(),
5317 }
5318}
5319
5320/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5321pub fn outline(
5322 bounds: impl Into<Bounds<Pixels>>,
5323 border_color: impl Into<Hsla>,
5324 border_style: BorderStyle,
5325) -> PaintQuad {
5326 PaintQuad {
5327 bounds: bounds.into(),
5328 corner_radii: (0.).into(),
5329 background: transparent_black().into(),
5330 border_widths: (1.).into(),
5331 border_color: border_color.into(),
5332 border_style,
5333 }
5334}