window.rs

   1#[cfg(any(feature = "inspector", debug_assertions))]
   2use crate::Inspector;
   3use crate::{
   4    Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
   5    AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
   6    Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
   7    DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
   8    FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
   9    KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
  10    LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
  11    MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
  12    PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, Priority, PromptButton,
  13    PromptLevel, Quad, Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams,
  14    Replay, ResizeEdge, SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y,
  15    ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style, SubscriberSet,
  16    Subscription, SystemWindowTab, SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task,
  17    TextStyle, TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle,
  18    WindowAppearance, WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations,
  19    WindowOptions, WindowParams, WindowTextSystem, point, prelude::*, px, rems, size,
  20    transparent_black,
  21};
  22use anyhow::{Context as _, Result, anyhow};
  23use collections::{FxHashMap, FxHashSet};
  24#[cfg(target_os = "macos")]
  25use core_video::pixel_buffer::CVPixelBuffer;
  26use derive_more::{Deref, DerefMut};
  27use futures::FutureExt;
  28use futures::channel::oneshot;
  29use itertools::FoldWhile::{Continue, Done};
  30use itertools::Itertools;
  31use parking_lot::RwLock;
  32use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
  33use refineable::Refineable;
  34use slotmap::SlotMap;
  35use smallvec::SmallVec;
  36use std::{
  37    any::{Any, TypeId},
  38    borrow::Cow,
  39    cell::{Cell, RefCell},
  40    cmp,
  41    fmt::{Debug, Display},
  42    hash::{Hash, Hasher},
  43    marker::PhantomData,
  44    mem,
  45    ops::{DerefMut, Range},
  46    rc::Rc,
  47    sync::{
  48        Arc, Weak,
  49        atomic::{AtomicUsize, Ordering::SeqCst},
  50    },
  51    time::{Duration, Instant},
  52};
  53use util::post_inc;
  54use util::{ResultExt, measure};
  55use uuid::Uuid;
  56
  57mod prompts;
  58
  59use crate::util::atomic_incr_if_not_zero;
  60pub use prompts::*;
  61
  62pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
  63
  64/// A 6:5 aspect ratio minimum window size to be used for functional,
  65/// additional-to-main-Zed windows, like the settings and rules library windows.
  66pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
  67    width: Pixels(900.),
  68    height: Pixels(750.),
  69};
  70
  71/// Represents the two different phases when dispatching events.
  72#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
  73pub enum DispatchPhase {
  74    /// After the capture phase comes the bubble phase, in which mouse event listeners are
  75    /// invoked front to back and keyboard event listeners are invoked from the focused element
  76    /// to the root of the element tree. This is the phase you'll most commonly want to use when
  77    /// registering event listeners.
  78    #[default]
  79    Bubble,
  80    /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
  81    /// listeners are invoked from the root of the tree downward toward the focused element. This phase
  82    /// is used for special purposes such as clearing the "pressed" state for click events. If
  83    /// you stop event propagation during this phase, you need to know what you're doing. Handlers
  84    /// outside of the immediate region may rely on detecting non-local events during this phase.
  85    Capture,
  86}
  87
  88impl DispatchPhase {
  89    /// Returns true if this represents the "bubble" phase.
  90    #[inline]
  91    pub fn bubble(self) -> bool {
  92        self == DispatchPhase::Bubble
  93    }
  94
  95    /// Returns true if this represents the "capture" phase.
  96    #[inline]
  97    pub fn capture(self) -> bool {
  98        self == DispatchPhase::Capture
  99    }
 100}
 101
 102struct WindowInvalidatorInner {
 103    pub dirty: bool,
 104    pub draw_phase: DrawPhase,
 105    pub dirty_views: FxHashSet<EntityId>,
 106}
 107
 108#[derive(Clone)]
 109pub(crate) struct WindowInvalidator {
 110    inner: Rc<RefCell<WindowInvalidatorInner>>,
 111}
 112
 113impl WindowInvalidator {
 114    pub fn new() -> Self {
 115        WindowInvalidator {
 116            inner: Rc::new(RefCell::new(WindowInvalidatorInner {
 117                dirty: true,
 118                draw_phase: DrawPhase::None,
 119                dirty_views: FxHashSet::default(),
 120            })),
 121        }
 122    }
 123
 124    pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
 125        let mut inner = self.inner.borrow_mut();
 126        inner.dirty_views.insert(entity);
 127        if inner.draw_phase == DrawPhase::None {
 128            inner.dirty = true;
 129            cx.push_effect(Effect::Notify { emitter: entity });
 130            true
 131        } else {
 132            false
 133        }
 134    }
 135
 136    pub fn is_dirty(&self) -> bool {
 137        self.inner.borrow().dirty
 138    }
 139
 140    pub fn set_dirty(&self, dirty: bool) {
 141        self.inner.borrow_mut().dirty = dirty
 142    }
 143
 144    pub fn set_phase(&self, phase: DrawPhase) {
 145        self.inner.borrow_mut().draw_phase = phase
 146    }
 147
 148    pub fn take_views(&self) -> FxHashSet<EntityId> {
 149        mem::take(&mut self.inner.borrow_mut().dirty_views)
 150    }
 151
 152    pub fn replace_views(&self, views: FxHashSet<EntityId>) {
 153        self.inner.borrow_mut().dirty_views = views;
 154    }
 155
 156    pub fn not_drawing(&self) -> bool {
 157        self.inner.borrow().draw_phase == DrawPhase::None
 158    }
 159
 160    #[track_caller]
 161    pub fn debug_assert_paint(&self) {
 162        debug_assert!(
 163            matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
 164            "this method can only be called during paint"
 165        );
 166    }
 167
 168    #[track_caller]
 169    pub fn debug_assert_prepaint(&self) {
 170        debug_assert!(
 171            matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
 172            "this method can only be called during request_layout, or prepaint"
 173        );
 174    }
 175
 176    #[track_caller]
 177    pub fn debug_assert_paint_or_prepaint(&self) {
 178        debug_assert!(
 179            matches!(
 180                self.inner.borrow().draw_phase,
 181                DrawPhase::Paint | DrawPhase::Prepaint
 182            ),
 183            "this method can only be called during request_layout, prepaint, or paint"
 184        );
 185    }
 186}
 187
 188type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
 189
 190pub(crate) type AnyWindowFocusListener =
 191    Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
 192
 193pub(crate) struct WindowFocusEvent {
 194    pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
 195    pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
 196}
 197
 198impl WindowFocusEvent {
 199    pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
 200        !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
 201    }
 202
 203    pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
 204        self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
 205    }
 206}
 207
 208/// This is provided when subscribing for `Context::on_focus_out` events.
 209pub struct FocusOutEvent {
 210    /// A weak focus handle representing what was blurred.
 211    pub blurred: WeakFocusHandle,
 212}
 213
 214slotmap::new_key_type! {
 215    /// A globally unique identifier for a focusable element.
 216    pub struct FocusId;
 217}
 218
 219thread_local! {
 220    pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
 221}
 222
 223/// Returned when the element arena has been used and so must be cleared before the next draw.
 224#[must_use]
 225pub struct ArenaClearNeeded;
 226
 227impl ArenaClearNeeded {
 228    /// Clear the element arena.
 229    pub fn clear(self) {
 230        ELEMENT_ARENA.with_borrow_mut(|element_arena| {
 231            element_arena.clear();
 232        });
 233    }
 234}
 235
 236pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
 237pub(crate) struct FocusRef {
 238    pub(crate) ref_count: AtomicUsize,
 239    pub(crate) tab_index: isize,
 240    pub(crate) tab_stop: bool,
 241}
 242
 243impl FocusId {
 244    /// Obtains whether the element associated with this handle is currently focused.
 245    pub fn is_focused(&self, window: &Window) -> bool {
 246        window.focus == Some(*self)
 247    }
 248
 249    /// Obtains whether the element associated with this handle contains the focused
 250    /// element or is itself focused.
 251    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 252        window
 253            .focused(cx)
 254            .is_some_and(|focused| self.contains(focused.id, window))
 255    }
 256
 257    /// Obtains whether the element associated with this handle is contained within the
 258    /// focused element or is itself focused.
 259    pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
 260        let focused = window.focused(cx);
 261        focused.is_some_and(|focused| focused.id.contains(*self, window))
 262    }
 263
 264    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 265    pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
 266        window
 267            .rendered_frame
 268            .dispatch_tree
 269            .focus_contains(*self, other)
 270    }
 271}
 272
 273/// A handle which can be used to track and manipulate the focused element in a window.
 274pub struct FocusHandle {
 275    pub(crate) id: FocusId,
 276    handles: Arc<FocusMap>,
 277    /// The index of this element in the tab order.
 278    pub tab_index: isize,
 279    /// Whether this element can be focused by tab navigation.
 280    pub tab_stop: bool,
 281}
 282
 283impl std::fmt::Debug for FocusHandle {
 284    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 285        f.write_fmt(format_args!("FocusHandle({:?})", self.id))
 286    }
 287}
 288
 289impl FocusHandle {
 290    pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
 291        let id = handles.write().insert(FocusRef {
 292            ref_count: AtomicUsize::new(1),
 293            tab_index: 0,
 294            tab_stop: false,
 295        });
 296
 297        Self {
 298            id,
 299            tab_index: 0,
 300            tab_stop: false,
 301            handles: handles.clone(),
 302        }
 303    }
 304
 305    pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
 306        let lock = handles.read();
 307        let focus = lock.get(id)?;
 308        if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
 309            return None;
 310        }
 311        Some(Self {
 312            id,
 313            tab_index: focus.tab_index,
 314            tab_stop: focus.tab_stop,
 315            handles: handles.clone(),
 316        })
 317    }
 318
 319    /// Sets the tab index of the element associated with this handle.
 320    pub fn tab_index(mut self, index: isize) -> Self {
 321        self.tab_index = index;
 322        if let Some(focus) = self.handles.write().get_mut(self.id) {
 323            focus.tab_index = index;
 324        }
 325        self
 326    }
 327
 328    /// Sets whether the element associated with this handle is a tab stop.
 329    ///
 330    /// When `false`, the element will not be included in the tab order.
 331    pub fn tab_stop(mut self, tab_stop: bool) -> Self {
 332        self.tab_stop = tab_stop;
 333        if let Some(focus) = self.handles.write().get_mut(self.id) {
 334            focus.tab_stop = tab_stop;
 335        }
 336        self
 337    }
 338
 339    /// Converts this focus handle into a weak variant, which does not prevent it from being released.
 340    pub fn downgrade(&self) -> WeakFocusHandle {
 341        WeakFocusHandle {
 342            id: self.id,
 343            handles: Arc::downgrade(&self.handles),
 344        }
 345    }
 346
 347    /// Moves the focus to the element associated with this handle.
 348    pub fn focus(&self, window: &mut Window, cx: &mut App) {
 349        window.focus(self, cx)
 350    }
 351
 352    /// Obtains whether the element associated with this handle is currently focused.
 353    pub fn is_focused(&self, window: &Window) -> bool {
 354        self.id.is_focused(window)
 355    }
 356
 357    /// Obtains whether the element associated with this handle contains the focused
 358    /// element or is itself focused.
 359    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 360        self.id.contains_focused(window, cx)
 361    }
 362
 363    /// Obtains whether the element associated with this handle is contained within the
 364    /// focused element or is itself focused.
 365    pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
 366        self.id.within_focused(window, cx)
 367    }
 368
 369    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 370    pub fn contains(&self, other: &Self, window: &Window) -> bool {
 371        self.id.contains(other.id, window)
 372    }
 373
 374    /// Dispatch an action on the element that rendered this focus handle
 375    pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
 376        if let Some(node_id) = window
 377            .rendered_frame
 378            .dispatch_tree
 379            .focusable_node_id(self.id)
 380        {
 381            window.dispatch_action_on_node(node_id, action, cx)
 382        }
 383    }
 384}
 385
 386impl Clone for FocusHandle {
 387    fn clone(&self) -> Self {
 388        Self::for_id(self.id, &self.handles).unwrap()
 389    }
 390}
 391
 392impl PartialEq for FocusHandle {
 393    fn eq(&self, other: &Self) -> bool {
 394        self.id == other.id
 395    }
 396}
 397
 398impl Eq for FocusHandle {}
 399
 400impl Drop for FocusHandle {
 401    fn drop(&mut self) {
 402        self.handles
 403            .read()
 404            .get(self.id)
 405            .unwrap()
 406            .ref_count
 407            .fetch_sub(1, SeqCst);
 408    }
 409}
 410
 411/// A weak reference to a focus handle.
 412#[derive(Clone, Debug)]
 413pub struct WeakFocusHandle {
 414    pub(crate) id: FocusId,
 415    pub(crate) handles: Weak<FocusMap>,
 416}
 417
 418impl WeakFocusHandle {
 419    /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
 420    pub fn upgrade(&self) -> Option<FocusHandle> {
 421        let handles = self.handles.upgrade()?;
 422        FocusHandle::for_id(self.id, &handles)
 423    }
 424}
 425
 426impl PartialEq for WeakFocusHandle {
 427    fn eq(&self, other: &WeakFocusHandle) -> bool {
 428        self.id == other.id
 429    }
 430}
 431
 432impl Eq for WeakFocusHandle {}
 433
 434impl PartialEq<FocusHandle> for WeakFocusHandle {
 435    fn eq(&self, other: &FocusHandle) -> bool {
 436        self.id == other.id
 437    }
 438}
 439
 440impl PartialEq<WeakFocusHandle> for FocusHandle {
 441    fn eq(&self, other: &WeakFocusHandle) -> bool {
 442        self.id == other.id
 443    }
 444}
 445
 446/// Focusable allows users of your view to easily
 447/// focus it (using window.focus_view(cx, view))
 448pub trait Focusable: 'static {
 449    /// Returns the focus handle associated with this view.
 450    fn focus_handle(&self, cx: &App) -> FocusHandle;
 451}
 452
 453impl<V: Focusable> Focusable for Entity<V> {
 454    fn focus_handle(&self, cx: &App) -> FocusHandle {
 455        self.read(cx).focus_handle(cx)
 456    }
 457}
 458
 459/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
 460/// where the lifecycle of the view is handled by another view.
 461pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
 462
 463impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
 464
 465/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
 466pub struct DismissEvent;
 467
 468type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
 469
 470pub(crate) type AnyMouseListener =
 471    Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
 472
 473#[derive(Clone)]
 474pub(crate) struct CursorStyleRequest {
 475    pub(crate) hitbox_id: Option<HitboxId>,
 476    pub(crate) style: CursorStyle,
 477}
 478
 479#[derive(Default, Eq, PartialEq)]
 480pub(crate) struct HitTest {
 481    pub(crate) ids: SmallVec<[HitboxId; 8]>,
 482    pub(crate) hover_hitbox_count: usize,
 483}
 484
 485/// A type of window control area that corresponds to the platform window.
 486#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 487pub enum WindowControlArea {
 488    /// An area that allows dragging of the platform window.
 489    Drag,
 490    /// An area that allows closing of the platform window.
 491    Close,
 492    /// An area that allows maximizing of the platform window.
 493    Max,
 494    /// An area that allows minimizing of the platform window.
 495    Min,
 496}
 497
 498/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
 499#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
 500pub struct HitboxId(u64);
 501
 502impl HitboxId {
 503    /// Checks if the hitbox with this ID is currently hovered. Except when handling
 504    /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
 505    /// events or paint hover styles.
 506    ///
 507    /// See [`Hitbox::is_hovered`] for details.
 508    pub fn is_hovered(self, window: &Window) -> bool {
 509        let hit_test = &window.mouse_hit_test;
 510        for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
 511            if self == *id {
 512                return true;
 513            }
 514        }
 515        false
 516    }
 517
 518    /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
 519    /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
 520    /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
 521    /// this distinction.
 522    pub fn should_handle_scroll(self, window: &Window) -> bool {
 523        window.mouse_hit_test.ids.contains(&self)
 524    }
 525
 526    fn next(mut self) -> HitboxId {
 527        HitboxId(self.0.wrapping_add(1))
 528    }
 529}
 530
 531/// A rectangular region that potentially blocks hitboxes inserted prior.
 532/// See [Window::insert_hitbox] for more details.
 533#[derive(Clone, Debug, Deref)]
 534pub struct Hitbox {
 535    /// A unique identifier for the hitbox.
 536    pub id: HitboxId,
 537    /// The bounds of the hitbox.
 538    #[deref]
 539    pub bounds: Bounds<Pixels>,
 540    /// The content mask when the hitbox was inserted.
 541    pub content_mask: ContentMask<Pixels>,
 542    /// Flags that specify hitbox behavior.
 543    pub behavior: HitboxBehavior,
 544}
 545
 546impl Hitbox {
 547    /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
 548    /// typically what you want when determining whether to handle mouse events or paint hover
 549    /// styles.
 550    ///
 551    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 552    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
 553    /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
 554    ///
 555    /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
 556    /// Concretely, this is due to use-cases like overlays that cause the elements under to be
 557    /// non-interactive while still allowing scrolling. More abstractly, this is because
 558    /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
 559    /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
 560    /// container.
 561    pub fn is_hovered(&self, window: &Window) -> bool {
 562        self.id.is_hovered(window)
 563    }
 564
 565    /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
 566    /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
 567    /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
 568    ///
 569    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 570    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
 571    pub fn should_handle_scroll(&self, window: &Window) -> bool {
 572        self.id.should_handle_scroll(window)
 573    }
 574}
 575
 576/// How the hitbox affects mouse behavior.
 577#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
 578pub enum HitboxBehavior {
 579    /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
 580    #[default]
 581    Normal,
 582
 583    /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
 584    /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
 585    /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
 586    /// [`InteractiveElement::occlude`].
 587    ///
 588    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 589    /// bubble-phase handler for every mouse event type:
 590    ///
 591    /// ```ignore
 592    /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
 593    ///     if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
 594    ///         cx.stop_propagation();
 595    ///     }
 596    /// })
 597    /// ```
 598    ///
 599    /// This has effects beyond event handling - any use of hitbox checking, such as hover
 600    /// styles and tooltips. These other behaviors are the main point of this mechanism. An
 601    /// alternative might be to not affect mouse event handling - but this would allow
 602    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 603    /// be hovered.
 604    BlockMouse,
 605
 606    /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
 607    /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
 608    /// interaction except scroll events to be ignored - see the documentation of
 609    /// [`Hitbox::is_hovered`] for details. This flag is set by
 610    /// [`InteractiveElement::block_mouse_except_scroll`].
 611    ///
 612    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 613    /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
 614    ///
 615    /// ```ignore
 616    /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
 617    ///     if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
 618    ///         cx.stop_propagation();
 619    ///     }
 620    /// })
 621    /// ```
 622    ///
 623    /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
 624    /// handled differently than other mouse events. If also blocking these scroll events is
 625    /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
 626    ///
 627    /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
 628    /// hover styles and tooltips. These other behaviors are the main point of this mechanism.
 629    /// An alternative might be to not affect mouse event handling - but this would allow
 630    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 631    /// be hovered.
 632    BlockMouseExceptScroll,
 633}
 634
 635/// An identifier for a tooltip.
 636#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
 637pub struct TooltipId(usize);
 638
 639impl TooltipId {
 640    /// Checks if the tooltip is currently hovered.
 641    pub fn is_hovered(&self, window: &Window) -> bool {
 642        window
 643            .tooltip_bounds
 644            .as_ref()
 645            .is_some_and(|tooltip_bounds| {
 646                tooltip_bounds.id == *self
 647                    && tooltip_bounds.bounds.contains(&window.mouse_position())
 648            })
 649    }
 650}
 651
 652pub(crate) struct TooltipBounds {
 653    id: TooltipId,
 654    bounds: Bounds<Pixels>,
 655}
 656
 657#[derive(Clone)]
 658pub(crate) struct TooltipRequest {
 659    id: TooltipId,
 660    tooltip: AnyTooltip,
 661}
 662
 663pub(crate) struct DeferredDraw {
 664    current_view: EntityId,
 665    priority: usize,
 666    parent_node: DispatchNodeId,
 667    element_id_stack: SmallVec<[ElementId; 32]>,
 668    text_style_stack: Vec<TextStyleRefinement>,
 669    element: Option<AnyElement>,
 670    absolute_offset: Point<Pixels>,
 671    prepaint_range: Range<PrepaintStateIndex>,
 672    paint_range: Range<PaintIndex>,
 673}
 674
 675pub(crate) struct Frame {
 676    pub(crate) focus: Option<FocusId>,
 677    pub(crate) window_active: bool,
 678    pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
 679    accessed_element_states: Vec<(GlobalElementId, TypeId)>,
 680    pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
 681    pub(crate) dispatch_tree: DispatchTree,
 682    pub(crate) scene: Scene,
 683    pub(crate) hitboxes: Vec<Hitbox>,
 684    pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
 685    pub(crate) deferred_draws: Vec<DeferredDraw>,
 686    pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
 687    pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
 688    pub(crate) cursor_styles: Vec<CursorStyleRequest>,
 689    #[cfg(any(test, feature = "test-support"))]
 690    pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
 691    #[cfg(any(feature = "inspector", debug_assertions))]
 692    pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
 693    #[cfg(any(feature = "inspector", debug_assertions))]
 694    pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
 695    pub(crate) tab_stops: TabStopMap,
 696}
 697
 698#[derive(Clone, Default)]
 699pub(crate) struct PrepaintStateIndex {
 700    hitboxes_index: usize,
 701    tooltips_index: usize,
 702    deferred_draws_index: usize,
 703    dispatch_tree_index: usize,
 704    accessed_element_states_index: usize,
 705    line_layout_index: LineLayoutIndex,
 706}
 707
 708#[derive(Clone, Default)]
 709pub(crate) struct PaintIndex {
 710    scene_index: usize,
 711    mouse_listeners_index: usize,
 712    input_handlers_index: usize,
 713    cursor_styles_index: usize,
 714    accessed_element_states_index: usize,
 715    tab_handle_index: usize,
 716    line_layout_index: LineLayoutIndex,
 717}
 718
 719impl Frame {
 720    pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
 721        Frame {
 722            focus: None,
 723            window_active: false,
 724            element_states: FxHashMap::default(),
 725            accessed_element_states: Vec::new(),
 726            mouse_listeners: Vec::new(),
 727            dispatch_tree,
 728            scene: Scene::default(),
 729            hitboxes: Vec::new(),
 730            window_control_hitboxes: Vec::new(),
 731            deferred_draws: Vec::new(),
 732            input_handlers: Vec::new(),
 733            tooltip_requests: Vec::new(),
 734            cursor_styles: Vec::new(),
 735
 736            #[cfg(any(test, feature = "test-support"))]
 737            debug_bounds: FxHashMap::default(),
 738
 739            #[cfg(any(feature = "inspector", debug_assertions))]
 740            next_inspector_instance_ids: FxHashMap::default(),
 741
 742            #[cfg(any(feature = "inspector", debug_assertions))]
 743            inspector_hitboxes: FxHashMap::default(),
 744            tab_stops: TabStopMap::default(),
 745        }
 746    }
 747
 748    pub(crate) fn clear(&mut self) {
 749        self.element_states.clear();
 750        self.accessed_element_states.clear();
 751        self.mouse_listeners.clear();
 752        self.dispatch_tree.clear();
 753        self.scene.clear();
 754        self.input_handlers.clear();
 755        self.tooltip_requests.clear();
 756        self.cursor_styles.clear();
 757        self.hitboxes.clear();
 758        self.window_control_hitboxes.clear();
 759        self.deferred_draws.clear();
 760        self.tab_stops.clear();
 761        self.focus = None;
 762
 763        #[cfg(any(feature = "inspector", debug_assertions))]
 764        {
 765            self.next_inspector_instance_ids.clear();
 766            self.inspector_hitboxes.clear();
 767        }
 768    }
 769
 770    pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
 771        self.cursor_styles
 772            .iter()
 773            .rev()
 774            .fold_while(None, |style, request| match request.hitbox_id {
 775                None => Done(Some(request.style)),
 776                Some(hitbox_id) => Continue(
 777                    style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
 778                ),
 779            })
 780            .into_inner()
 781    }
 782
 783    pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
 784        let mut set_hover_hitbox_count = false;
 785        let mut hit_test = HitTest::default();
 786        for hitbox in self.hitboxes.iter().rev() {
 787            let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
 788            if bounds.contains(&position) {
 789                hit_test.ids.push(hitbox.id);
 790                if !set_hover_hitbox_count
 791                    && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
 792                {
 793                    hit_test.hover_hitbox_count = hit_test.ids.len();
 794                    set_hover_hitbox_count = true;
 795                }
 796                if hitbox.behavior == HitboxBehavior::BlockMouse {
 797                    break;
 798                }
 799            }
 800        }
 801        if !set_hover_hitbox_count {
 802            hit_test.hover_hitbox_count = hit_test.ids.len();
 803        }
 804        hit_test
 805    }
 806
 807    pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
 808        self.focus
 809            .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
 810            .unwrap_or_default()
 811    }
 812
 813    pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
 814        for element_state_key in &self.accessed_element_states {
 815            if let Some((element_state_key, element_state)) =
 816                prev_frame.element_states.remove_entry(element_state_key)
 817            {
 818                self.element_states.insert(element_state_key, element_state);
 819            }
 820        }
 821
 822        self.scene.finish();
 823    }
 824}
 825
 826#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
 827enum InputModality {
 828    Mouse,
 829    Keyboard,
 830}
 831
 832/// Holds the state for a specific window.
 833pub struct Window {
 834    pub(crate) handle: AnyWindowHandle,
 835    pub(crate) invalidator: WindowInvalidator,
 836    pub(crate) removed: bool,
 837    pub(crate) platform_window: Box<dyn PlatformWindow>,
 838    display_id: Option<DisplayId>,
 839    sprite_atlas: Arc<dyn PlatformAtlas>,
 840    text_system: Arc<WindowTextSystem>,
 841    rem_size: Pixels,
 842    /// The stack of override values for the window's rem size.
 843    ///
 844    /// This is used by `with_rem_size` to allow rendering an element tree with
 845    /// a given rem size.
 846    rem_size_override_stack: SmallVec<[Pixels; 8]>,
 847    pub(crate) viewport_size: Size<Pixels>,
 848    layout_engine: Option<TaffyLayoutEngine>,
 849    pub(crate) root: Option<AnyView>,
 850    pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
 851    pub(crate) text_style_stack: Vec<TextStyleRefinement>,
 852    pub(crate) rendered_entity_stack: Vec<EntityId>,
 853    pub(crate) element_offset_stack: Vec<Point<Pixels>>,
 854    pub(crate) element_opacity: f32,
 855    pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
 856    pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
 857    pub(crate) image_cache_stack: Vec<AnyImageCache>,
 858    pub(crate) rendered_frame: Frame,
 859    pub(crate) next_frame: Frame,
 860    next_hitbox_id: HitboxId,
 861    pub(crate) next_tooltip_id: TooltipId,
 862    pub(crate) tooltip_bounds: Option<TooltipBounds>,
 863    next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
 864    pub(crate) dirty_views: FxHashSet<EntityId>,
 865    focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
 866    pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
 867    default_prevented: bool,
 868    mouse_position: Point<Pixels>,
 869    mouse_hit_test: HitTest,
 870    modifiers: Modifiers,
 871    capslock: Capslock,
 872    scale_factor: f32,
 873    pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
 874    appearance: WindowAppearance,
 875    pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
 876    active: Rc<Cell<bool>>,
 877    hovered: Rc<Cell<bool>>,
 878    pub(crate) needs_present: Rc<Cell<bool>>,
 879    pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
 880    last_input_modality: InputModality,
 881    pub(crate) refreshing: bool,
 882    pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
 883    pub(crate) focus: Option<FocusId>,
 884    focus_enabled: bool,
 885    pending_input: Option<PendingInput>,
 886    pending_modifier: ModifierState,
 887    pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
 888    prompt: Option<RenderablePromptHandle>,
 889    pub(crate) client_inset: Option<Pixels>,
 890    #[cfg(any(feature = "inspector", debug_assertions))]
 891    inspector: Option<Entity<Inspector>>,
 892}
 893
 894#[derive(Clone, Debug, Default)]
 895struct ModifierState {
 896    modifiers: Modifiers,
 897    saw_keystroke: bool,
 898}
 899
 900#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 901pub(crate) enum DrawPhase {
 902    None,
 903    Prepaint,
 904    Paint,
 905    Focus,
 906}
 907
 908#[derive(Default, Debug)]
 909struct PendingInput {
 910    keystrokes: SmallVec<[Keystroke; 1]>,
 911    focus: Option<FocusId>,
 912    timer: Option<Task<()>>,
 913    needs_timeout: bool,
 914}
 915
 916pub(crate) struct ElementStateBox {
 917    pub(crate) inner: Box<dyn Any>,
 918    #[cfg(debug_assertions)]
 919    pub(crate) type_name: &'static str,
 920}
 921
 922fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> WindowBounds {
 923    // TODO, BUG: if you open a window with the currently active window
 924    // on the stack, this will erroneously fallback to `None`
 925    //
 926    // TODO these should be the initial window bounds not considering maximized/fullscreen
 927    let active_window_bounds = cx
 928        .active_window()
 929        .and_then(|w| w.update(cx, |_, window, _| window.window_bounds()).ok());
 930
 931    const CASCADE_OFFSET: f32 = 25.0;
 932
 933    let display = display_id
 934        .map(|id| cx.find_display(id))
 935        .unwrap_or_else(|| cx.primary_display());
 936
 937    let default_placement = || Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE);
 938
 939    // Use visible_bounds to exclude taskbar/dock areas
 940    let display_bounds = display
 941        .as_ref()
 942        .map(|d| d.visible_bounds())
 943        .unwrap_or_else(default_placement);
 944
 945    let (
 946        Bounds {
 947            origin: base_origin,
 948            size: base_size,
 949        },
 950        window_bounds_ctor,
 951    ): (_, fn(Bounds<Pixels>) -> WindowBounds) = match active_window_bounds {
 952        Some(bounds) => match bounds {
 953            WindowBounds::Windowed(bounds) => (bounds, WindowBounds::Windowed),
 954            WindowBounds::Maximized(bounds) => (bounds, WindowBounds::Maximized),
 955            WindowBounds::Fullscreen(bounds) => (bounds, WindowBounds::Fullscreen),
 956        },
 957        None => (
 958            display
 959                .as_ref()
 960                .map(|d| d.default_bounds())
 961                .unwrap_or_else(default_placement),
 962            WindowBounds::Windowed,
 963        ),
 964    };
 965
 966    let cascade_offset = point(px(CASCADE_OFFSET), px(CASCADE_OFFSET));
 967    let proposed_origin = base_origin + cascade_offset;
 968    let proposed_bounds = Bounds::new(proposed_origin, base_size);
 969
 970    let display_right = display_bounds.origin.x + display_bounds.size.width;
 971    let display_bottom = display_bounds.origin.y + display_bounds.size.height;
 972    let window_right = proposed_bounds.origin.x + proposed_bounds.size.width;
 973    let window_bottom = proposed_bounds.origin.y + proposed_bounds.size.height;
 974
 975    let fits_horizontally = window_right <= display_right;
 976    let fits_vertically = window_bottom <= display_bottom;
 977
 978    let final_origin = match (fits_horizontally, fits_vertically) {
 979        (true, true) => proposed_origin,
 980        (false, true) => point(display_bounds.origin.x, base_origin.y),
 981        (true, false) => point(base_origin.x, display_bounds.origin.y),
 982        (false, false) => display_bounds.origin,
 983    };
 984    window_bounds_ctor(Bounds::new(final_origin, base_size))
 985}
 986
 987impl Window {
 988    pub(crate) fn new(
 989        handle: AnyWindowHandle,
 990        options: WindowOptions,
 991        cx: &mut App,
 992    ) -> Result<Self> {
 993        let WindowOptions {
 994            window_bounds,
 995            titlebar,
 996            focus,
 997            show,
 998            kind,
 999            is_movable,
1000            is_resizable,
1001            is_minimizable,
1002            display_id,
1003            window_background,
1004            app_id,
1005            window_min_size,
1006            window_decorations,
1007            #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
1008            tabbing_identifier,
1009        } = options;
1010
1011        let window_bounds = window_bounds.unwrap_or_else(|| default_bounds(display_id, cx));
1012        let mut platform_window = cx.platform.open_window(
1013            handle,
1014            WindowParams {
1015                bounds: window_bounds.get_bounds(),
1016                titlebar,
1017                kind,
1018                is_movable,
1019                is_resizable,
1020                is_minimizable,
1021                focus,
1022                show,
1023                display_id,
1024                window_min_size,
1025                #[cfg(target_os = "macos")]
1026                tabbing_identifier,
1027            },
1028        )?;
1029
1030        let tab_bar_visible = platform_window.tab_bar_visible();
1031        SystemWindowTabController::init_visible(cx, tab_bar_visible);
1032        if let Some(tabs) = platform_window.tabbed_windows() {
1033            SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
1034        }
1035
1036        let display_id = platform_window.display().map(|display| display.id());
1037        let sprite_atlas = platform_window.sprite_atlas();
1038        let mouse_position = platform_window.mouse_position();
1039        let modifiers = platform_window.modifiers();
1040        let capslock = platform_window.capslock();
1041        let content_size = platform_window.content_size();
1042        let scale_factor = platform_window.scale_factor();
1043        let appearance = platform_window.appearance();
1044        let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
1045        let invalidator = WindowInvalidator::new();
1046        let active = Rc::new(Cell::new(platform_window.is_active()));
1047        let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1048        let needs_present = Rc::new(Cell::new(false));
1049        let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1050        let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
1051
1052        platform_window
1053            .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1054        platform_window.set_background_appearance(window_background);
1055
1056        match window_bounds {
1057            WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1058            WindowBounds::Maximized(_) => platform_window.zoom(),
1059            WindowBounds::Windowed(_) => {}
1060        }
1061
1062        platform_window.on_close(Box::new({
1063            let window_id = handle.window_id();
1064            let mut cx = cx.to_async();
1065            move || {
1066                let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1067                let _ = cx.update(|cx| {
1068                    SystemWindowTabController::remove_tab(cx, window_id);
1069                });
1070            }
1071        }));
1072        platform_window.on_request_frame(Box::new({
1073            let mut cx = cx.to_async();
1074            let invalidator = invalidator.clone();
1075            let active = active.clone();
1076            let needs_present = needs_present.clone();
1077            let next_frame_callbacks = next_frame_callbacks.clone();
1078            let last_input_timestamp = last_input_timestamp.clone();
1079            move |request_frame_options| {
1080                let next_frame_callbacks = next_frame_callbacks.take();
1081                if !next_frame_callbacks.is_empty() {
1082                    handle
1083                        .update(&mut cx, |_, window, cx| {
1084                            for callback in next_frame_callbacks {
1085                                callback(window, cx);
1086                            }
1087                        })
1088                        .log_err();
1089                }
1090
1091                // Keep presenting the current scene for 1 extra second since the
1092                // last input to prevent the display from underclocking the refresh rate.
1093                let needs_present = request_frame_options.require_presentation
1094                    || needs_present.get()
1095                    || (active.get()
1096                        && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1097
1098                if invalidator.is_dirty() || request_frame_options.force_render {
1099                    measure("frame duration", || {
1100                        handle
1101                            .update(&mut cx, |_, window, cx| {
1102                                let arena_clear_needed = window.draw(cx);
1103                                window.present();
1104                                // drop the arena elements after present to reduce latency
1105                                arena_clear_needed.clear();
1106                            })
1107                            .log_err();
1108                    })
1109                } else if needs_present {
1110                    handle
1111                        .update(&mut cx, |_, window, _| window.present())
1112                        .log_err();
1113                }
1114
1115                handle
1116                    .update(&mut cx, |_, window, _| {
1117                        window.complete_frame();
1118                    })
1119                    .log_err();
1120            }
1121        }));
1122        platform_window.on_resize(Box::new({
1123            let mut cx = cx.to_async();
1124            move |_, _| {
1125                handle
1126                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1127                    .log_err();
1128            }
1129        }));
1130        platform_window.on_moved(Box::new({
1131            let mut cx = cx.to_async();
1132            move || {
1133                handle
1134                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1135                    .log_err();
1136            }
1137        }));
1138        platform_window.on_appearance_changed(Box::new({
1139            let mut cx = cx.to_async();
1140            move || {
1141                handle
1142                    .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1143                    .log_err();
1144            }
1145        }));
1146        platform_window.on_active_status_change(Box::new({
1147            let mut cx = cx.to_async();
1148            move |active| {
1149                handle
1150                    .update(&mut cx, |_, window, cx| {
1151                        window.active.set(active);
1152                        window.modifiers = window.platform_window.modifiers();
1153                        window.capslock = window.platform_window.capslock();
1154                        window
1155                            .activation_observers
1156                            .clone()
1157                            .retain(&(), |callback| callback(window, cx));
1158
1159                        window.bounds_changed(cx);
1160                        window.refresh();
1161
1162                        SystemWindowTabController::update_last_active(cx, window.handle.id);
1163                    })
1164                    .log_err();
1165            }
1166        }));
1167        platform_window.on_hover_status_change(Box::new({
1168            let mut cx = cx.to_async();
1169            move |active| {
1170                handle
1171                    .update(&mut cx, |_, window, _| {
1172                        window.hovered.set(active);
1173                        window.refresh();
1174                    })
1175                    .log_err();
1176            }
1177        }));
1178        platform_window.on_input({
1179            let mut cx = cx.to_async();
1180            Box::new(move |event| {
1181                handle
1182                    .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1183                    .log_err()
1184                    .unwrap_or(DispatchEventResult::default())
1185            })
1186        });
1187        platform_window.on_hit_test_window_control({
1188            let mut cx = cx.to_async();
1189            Box::new(move || {
1190                handle
1191                    .update(&mut cx, |_, window, _cx| {
1192                        for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1193                            if window.mouse_hit_test.ids.contains(&hitbox.id) {
1194                                return Some(*area);
1195                            }
1196                        }
1197                        None
1198                    })
1199                    .log_err()
1200                    .unwrap_or(None)
1201            })
1202        });
1203        platform_window.on_move_tab_to_new_window({
1204            let mut cx = cx.to_async();
1205            Box::new(move || {
1206                handle
1207                    .update(&mut cx, |_, _window, cx| {
1208                        SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1209                    })
1210                    .log_err();
1211            })
1212        });
1213        platform_window.on_merge_all_windows({
1214            let mut cx = cx.to_async();
1215            Box::new(move || {
1216                handle
1217                    .update(&mut cx, |_, _window, cx| {
1218                        SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1219                    })
1220                    .log_err();
1221            })
1222        });
1223        platform_window.on_select_next_tab({
1224            let mut cx = cx.to_async();
1225            Box::new(move || {
1226                handle
1227                    .update(&mut cx, |_, _window, cx| {
1228                        SystemWindowTabController::select_next_tab(cx, handle.window_id());
1229                    })
1230                    .log_err();
1231            })
1232        });
1233        platform_window.on_select_previous_tab({
1234            let mut cx = cx.to_async();
1235            Box::new(move || {
1236                handle
1237                    .update(&mut cx, |_, _window, cx| {
1238                        SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1239                    })
1240                    .log_err();
1241            })
1242        });
1243        platform_window.on_toggle_tab_bar({
1244            let mut cx = cx.to_async();
1245            Box::new(move || {
1246                handle
1247                    .update(&mut cx, |_, window, cx| {
1248                        let tab_bar_visible = window.platform_window.tab_bar_visible();
1249                        SystemWindowTabController::set_visible(cx, tab_bar_visible);
1250                    })
1251                    .log_err();
1252            })
1253        });
1254
1255        if let Some(app_id) = app_id {
1256            platform_window.set_app_id(&app_id);
1257        }
1258
1259        platform_window.map_window().unwrap();
1260
1261        Ok(Window {
1262            handle,
1263            invalidator,
1264            removed: false,
1265            platform_window,
1266            display_id,
1267            sprite_atlas,
1268            text_system,
1269            rem_size: px(16.),
1270            rem_size_override_stack: SmallVec::new(),
1271            viewport_size: content_size,
1272            layout_engine: Some(TaffyLayoutEngine::new()),
1273            root: None,
1274            element_id_stack: SmallVec::default(),
1275            text_style_stack: Vec::new(),
1276            rendered_entity_stack: Vec::new(),
1277            element_offset_stack: Vec::new(),
1278            content_mask_stack: Vec::new(),
1279            element_opacity: 1.0,
1280            requested_autoscroll: None,
1281            rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1282            next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1283            next_frame_callbacks,
1284            next_hitbox_id: HitboxId(0),
1285            next_tooltip_id: TooltipId::default(),
1286            tooltip_bounds: None,
1287            dirty_views: FxHashSet::default(),
1288            focus_listeners: SubscriberSet::new(),
1289            focus_lost_listeners: SubscriberSet::new(),
1290            default_prevented: true,
1291            mouse_position,
1292            mouse_hit_test: HitTest::default(),
1293            modifiers,
1294            capslock,
1295            scale_factor,
1296            bounds_observers: SubscriberSet::new(),
1297            appearance,
1298            appearance_observers: SubscriberSet::new(),
1299            active,
1300            hovered,
1301            needs_present,
1302            last_input_timestamp,
1303            last_input_modality: InputModality::Mouse,
1304            refreshing: false,
1305            activation_observers: SubscriberSet::new(),
1306            focus: None,
1307            focus_enabled: true,
1308            pending_input: None,
1309            pending_modifier: ModifierState::default(),
1310            pending_input_observers: SubscriberSet::new(),
1311            prompt: None,
1312            client_inset: None,
1313            image_cache_stack: Vec::new(),
1314            #[cfg(any(feature = "inspector", debug_assertions))]
1315            inspector: None,
1316        })
1317    }
1318
1319    pub(crate) fn new_focus_listener(
1320        &self,
1321        value: AnyWindowFocusListener,
1322    ) -> (Subscription, impl FnOnce() + use<>) {
1323        self.focus_listeners.insert((), value)
1324    }
1325}
1326
1327#[derive(Clone, Debug, Default, PartialEq, Eq)]
1328pub(crate) struct DispatchEventResult {
1329    pub propagate: bool,
1330    pub default_prevented: bool,
1331}
1332
1333/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1334/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1335/// to leave room to support more complex shapes in the future.
1336#[derive(Clone, Debug, Default, PartialEq, Eq)]
1337#[repr(C)]
1338pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1339    /// The bounds
1340    pub bounds: Bounds<P>,
1341}
1342
1343impl ContentMask<Pixels> {
1344    /// Scale the content mask's pixel units by the given scaling factor.
1345    pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1346        ContentMask {
1347            bounds: self.bounds.scale(factor),
1348        }
1349    }
1350
1351    /// Intersect the content mask with the given content mask.
1352    pub fn intersect(&self, other: &Self) -> Self {
1353        let bounds = self.bounds.intersect(&other.bounds);
1354        ContentMask { bounds }
1355    }
1356}
1357
1358impl Window {
1359    fn mark_view_dirty(&mut self, view_id: EntityId) {
1360        // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1361        // should already be dirty.
1362        for view_id in self
1363            .rendered_frame
1364            .dispatch_tree
1365            .view_path_reversed(view_id)
1366        {
1367            if !self.dirty_views.insert(view_id) {
1368                break;
1369            }
1370        }
1371    }
1372
1373    /// Registers a callback to be invoked when the window appearance changes.
1374    pub fn observe_window_appearance(
1375        &self,
1376        mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1377    ) -> Subscription {
1378        let (subscription, activate) = self.appearance_observers.insert(
1379            (),
1380            Box::new(move |window, cx| {
1381                callback(window, cx);
1382                true
1383            }),
1384        );
1385        activate();
1386        subscription
1387    }
1388
1389    /// Replaces the root entity of the window with a new one.
1390    pub fn replace_root<E>(
1391        &mut self,
1392        cx: &mut App,
1393        build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1394    ) -> Entity<E>
1395    where
1396        E: 'static + Render,
1397    {
1398        let view = cx.new(|cx| build_view(self, cx));
1399        self.root = Some(view.clone().into());
1400        self.refresh();
1401        view
1402    }
1403
1404    /// Returns the root entity of the window, if it has one.
1405    pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1406    where
1407        E: 'static + Render,
1408    {
1409        self.root
1410            .as_ref()
1411            .map(|view| view.clone().downcast::<E>().ok())
1412    }
1413
1414    /// Obtain a handle to the window that belongs to this context.
1415    pub fn window_handle(&self) -> AnyWindowHandle {
1416        self.handle
1417    }
1418
1419    /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1420    pub fn refresh(&mut self) {
1421        if self.invalidator.not_drawing() {
1422            self.refreshing = true;
1423            self.invalidator.set_dirty(true);
1424        }
1425    }
1426
1427    /// Close this window.
1428    pub fn remove_window(&mut self) {
1429        self.removed = true;
1430    }
1431
1432    /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1433    pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1434        self.focus
1435            .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1436    }
1437
1438    /// Move focus to the element associated with the given [`FocusHandle`].
1439    pub fn focus(&mut self, handle: &FocusHandle, cx: &mut App) {
1440        if !self.focus_enabled || self.focus == Some(handle.id) {
1441            return;
1442        }
1443
1444        self.focus = Some(handle.id);
1445        self.clear_pending_keystrokes();
1446
1447        // Avoid re-entrant entity updates by deferring observer notifications to the end of the
1448        // current effect cycle, and only for this window.
1449        let window_handle = self.handle;
1450        cx.defer(move |cx| {
1451            window_handle
1452                .update(cx, |_, window, cx| {
1453                    window.pending_input_changed(cx);
1454                })
1455                .ok();
1456        });
1457
1458        self.refresh();
1459    }
1460
1461    /// Remove focus from all elements within this context's window.
1462    pub fn blur(&mut self) {
1463        if !self.focus_enabled {
1464            return;
1465        }
1466
1467        self.focus = None;
1468        self.refresh();
1469    }
1470
1471    /// Blur the window and don't allow anything in it to be focused again.
1472    pub fn disable_focus(&mut self) {
1473        self.blur();
1474        self.focus_enabled = false;
1475    }
1476
1477    /// Move focus to next tab stop.
1478    pub fn focus_next(&mut self, cx: &mut App) {
1479        if !self.focus_enabled {
1480            return;
1481        }
1482
1483        if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1484            self.focus(&handle, cx)
1485        }
1486    }
1487
1488    /// Move focus to previous tab stop.
1489    pub fn focus_prev(&mut self, cx: &mut App) {
1490        if !self.focus_enabled {
1491            return;
1492        }
1493
1494        if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1495            self.focus(&handle, cx)
1496        }
1497    }
1498
1499    /// Accessor for the text system.
1500    pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1501        &self.text_system
1502    }
1503
1504    /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1505    pub fn text_style(&self) -> TextStyle {
1506        let mut style = TextStyle::default();
1507        for refinement in &self.text_style_stack {
1508            style.refine(refinement);
1509        }
1510        style
1511    }
1512
1513    /// Check if the platform window is maximized.
1514    ///
1515    /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1516    pub fn is_maximized(&self) -> bool {
1517        self.platform_window.is_maximized()
1518    }
1519
1520    /// request a certain window decoration (Wayland)
1521    pub fn request_decorations(&self, decorations: WindowDecorations) {
1522        self.platform_window.request_decorations(decorations);
1523    }
1524
1525    /// Start a window resize operation (Wayland)
1526    pub fn start_window_resize(&self, edge: ResizeEdge) {
1527        self.platform_window.start_window_resize(edge);
1528    }
1529
1530    /// Return the `WindowBounds` to indicate that how a window should be opened
1531    /// after it has been closed
1532    pub fn window_bounds(&self) -> WindowBounds {
1533        self.platform_window.window_bounds()
1534    }
1535
1536    /// Return the `WindowBounds` excluding insets (Wayland and X11)
1537    pub fn inner_window_bounds(&self) -> WindowBounds {
1538        self.platform_window.inner_window_bounds()
1539    }
1540
1541    /// Dispatch the given action on the currently focused element.
1542    pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1543        let focus_id = self.focused(cx).map(|handle| handle.id);
1544
1545        let window = self.handle;
1546        cx.defer(move |cx| {
1547            window
1548                .update(cx, |_, window, cx| {
1549                    let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1550                    window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1551                })
1552                .log_err();
1553        })
1554    }
1555
1556    pub(crate) fn dispatch_keystroke_observers(
1557        &mut self,
1558        event: &dyn Any,
1559        action: Option<Box<dyn Action>>,
1560        context_stack: Vec<KeyContext>,
1561        cx: &mut App,
1562    ) {
1563        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1564            return;
1565        };
1566
1567        cx.keystroke_observers.clone().retain(&(), move |callback| {
1568            (callback)(
1569                &KeystrokeEvent {
1570                    keystroke: key_down_event.keystroke.clone(),
1571                    action: action.as_ref().map(|action| action.boxed_clone()),
1572                    context_stack: context_stack.clone(),
1573                },
1574                self,
1575                cx,
1576            )
1577        });
1578    }
1579
1580    pub(crate) fn dispatch_keystroke_interceptors(
1581        &mut self,
1582        event: &dyn Any,
1583        context_stack: Vec<KeyContext>,
1584        cx: &mut App,
1585    ) {
1586        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1587            return;
1588        };
1589
1590        cx.keystroke_interceptors
1591            .clone()
1592            .retain(&(), move |callback| {
1593                (callback)(
1594                    &KeystrokeEvent {
1595                        keystroke: key_down_event.keystroke.clone(),
1596                        action: None,
1597                        context_stack: context_stack.clone(),
1598                    },
1599                    self,
1600                    cx,
1601                )
1602            });
1603    }
1604
1605    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1606    /// that are currently on the stack to be returned to the app.
1607    pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1608        let handle = self.handle;
1609        cx.defer(move |cx| {
1610            handle.update(cx, |_, window, cx| f(window, cx)).ok();
1611        });
1612    }
1613
1614    /// Subscribe to events emitted by a entity.
1615    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1616    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1617    pub fn observe<T: 'static>(
1618        &mut self,
1619        observed: &Entity<T>,
1620        cx: &mut App,
1621        mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1622    ) -> Subscription {
1623        let entity_id = observed.entity_id();
1624        let observed = observed.downgrade();
1625        let window_handle = self.handle;
1626        cx.new_observer(
1627            entity_id,
1628            Box::new(move |cx| {
1629                window_handle
1630                    .update(cx, |_, window, cx| {
1631                        if let Some(handle) = observed.upgrade() {
1632                            on_notify(handle, window, cx);
1633                            true
1634                        } else {
1635                            false
1636                        }
1637                    })
1638                    .unwrap_or(false)
1639            }),
1640        )
1641    }
1642
1643    /// Subscribe to events emitted by a entity.
1644    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1645    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1646    pub fn subscribe<Emitter, Evt>(
1647        &mut self,
1648        entity: &Entity<Emitter>,
1649        cx: &mut App,
1650        mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1651    ) -> Subscription
1652    where
1653        Emitter: EventEmitter<Evt>,
1654        Evt: 'static,
1655    {
1656        let entity_id = entity.entity_id();
1657        let handle = entity.downgrade();
1658        let window_handle = self.handle;
1659        cx.new_subscription(
1660            entity_id,
1661            (
1662                TypeId::of::<Evt>(),
1663                Box::new(move |event, cx| {
1664                    window_handle
1665                        .update(cx, |_, window, cx| {
1666                            if let Some(entity) = handle.upgrade() {
1667                                let event = event.downcast_ref().expect("invalid event type");
1668                                on_event(entity, event, window, cx);
1669                                true
1670                            } else {
1671                                false
1672                            }
1673                        })
1674                        .unwrap_or(false)
1675                }),
1676            ),
1677        )
1678    }
1679
1680    /// Register a callback to be invoked when the given `Entity` is released.
1681    pub fn observe_release<T>(
1682        &self,
1683        entity: &Entity<T>,
1684        cx: &mut App,
1685        mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1686    ) -> Subscription
1687    where
1688        T: 'static,
1689    {
1690        let entity_id = entity.entity_id();
1691        let window_handle = self.handle;
1692        let (subscription, activate) = cx.release_listeners.insert(
1693            entity_id,
1694            Box::new(move |entity, cx| {
1695                let entity = entity.downcast_mut().expect("invalid entity type");
1696                let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1697            }),
1698        );
1699        activate();
1700        subscription
1701    }
1702
1703    /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1704    /// await points in async code.
1705    pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1706        AsyncWindowContext::new_context(cx.to_async(), self.handle)
1707    }
1708
1709    /// Schedule the given closure to be run directly after the current frame is rendered.
1710    pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1711        RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1712    }
1713
1714    /// Schedule a frame to be drawn on the next animation frame.
1715    ///
1716    /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1717    /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1718    ///
1719    /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1720    pub fn request_animation_frame(&self) {
1721        let entity = self.current_view();
1722        self.on_next_frame(move |_, cx| cx.notify(entity));
1723    }
1724
1725    /// Spawn the future returned by the given closure on the application thread pool.
1726    /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1727    /// use within your future.
1728    #[track_caller]
1729    pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1730    where
1731        R: 'static,
1732        AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1733    {
1734        let handle = self.handle;
1735        cx.spawn(async move |app| {
1736            let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1737            f(&mut async_window_cx).await
1738        })
1739    }
1740
1741    /// Spawn the future returned by the given closure on the application thread
1742    /// pool, with the given priority. The closure is provided a handle to the
1743    /// current window and an `AsyncWindowContext` for use within your future.
1744    #[track_caller]
1745    pub fn spawn_with_priority<AsyncFn, R>(
1746        &self,
1747        priority: Priority,
1748        cx: &App,
1749        f: AsyncFn,
1750    ) -> Task<R>
1751    where
1752        R: 'static,
1753        AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1754    {
1755        let handle = self.handle;
1756        cx.spawn_with_priority(priority, async move |app| {
1757            let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1758            f(&mut async_window_cx).await
1759        })
1760    }
1761
1762    fn bounds_changed(&mut self, cx: &mut App) {
1763        self.scale_factor = self.platform_window.scale_factor();
1764        self.viewport_size = self.platform_window.content_size();
1765        self.display_id = self.platform_window.display().map(|display| display.id());
1766
1767        self.refresh();
1768
1769        self.bounds_observers
1770            .clone()
1771            .retain(&(), |callback| callback(self, cx));
1772    }
1773
1774    /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1775    pub fn bounds(&self) -> Bounds<Pixels> {
1776        self.platform_window.bounds()
1777    }
1778
1779    /// Set the content size of the window.
1780    pub fn resize(&mut self, size: Size<Pixels>) {
1781        self.platform_window.resize(size);
1782    }
1783
1784    /// Returns whether or not the window is currently fullscreen
1785    pub fn is_fullscreen(&self) -> bool {
1786        self.platform_window.is_fullscreen()
1787    }
1788
1789    pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1790        self.appearance = self.platform_window.appearance();
1791
1792        self.appearance_observers
1793            .clone()
1794            .retain(&(), |callback| callback(self, cx));
1795    }
1796
1797    /// Returns the appearance of the current window.
1798    pub fn appearance(&self) -> WindowAppearance {
1799        self.appearance
1800    }
1801
1802    /// Returns the size of the drawable area within the window.
1803    pub fn viewport_size(&self) -> Size<Pixels> {
1804        self.viewport_size
1805    }
1806
1807    /// Returns whether this window is focused by the operating system (receiving key events).
1808    pub fn is_window_active(&self) -> bool {
1809        self.active.get()
1810    }
1811
1812    /// Returns whether this window is considered to be the window
1813    /// that currently owns the mouse cursor.
1814    /// On mac, this is equivalent to `is_window_active`.
1815    pub fn is_window_hovered(&self) -> bool {
1816        if cfg!(any(
1817            target_os = "windows",
1818            target_os = "linux",
1819            target_os = "freebsd"
1820        )) {
1821            self.hovered.get()
1822        } else {
1823            self.is_window_active()
1824        }
1825    }
1826
1827    /// Toggle zoom on the window.
1828    pub fn zoom_window(&self) {
1829        self.platform_window.zoom();
1830    }
1831
1832    /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1833    pub fn show_window_menu(&self, position: Point<Pixels>) {
1834        self.platform_window.show_window_menu(position)
1835    }
1836
1837    /// Handle window movement for Linux and macOS.
1838    /// Tells the compositor to take control of window movement (Wayland and X11)
1839    ///
1840    /// Events may not be received during a move operation.
1841    pub fn start_window_move(&self) {
1842        self.platform_window.start_window_move()
1843    }
1844
1845    /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1846    pub fn set_client_inset(&mut self, inset: Pixels) {
1847        self.client_inset = Some(inset);
1848        self.platform_window.set_client_inset(inset);
1849    }
1850
1851    /// Returns the client_inset value by [`Self::set_client_inset`].
1852    pub fn client_inset(&self) -> Option<Pixels> {
1853        self.client_inset
1854    }
1855
1856    /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1857    pub fn window_decorations(&self) -> Decorations {
1858        self.platform_window.window_decorations()
1859    }
1860
1861    /// Returns which window controls are currently visible (Wayland)
1862    pub fn window_controls(&self) -> WindowControls {
1863        self.platform_window.window_controls()
1864    }
1865
1866    /// Updates the window's title at the platform level.
1867    pub fn set_window_title(&mut self, title: &str) {
1868        self.platform_window.set_title(title);
1869    }
1870
1871    /// Sets the application identifier.
1872    pub fn set_app_id(&mut self, app_id: &str) {
1873        self.platform_window.set_app_id(app_id);
1874    }
1875
1876    /// Sets the window background appearance.
1877    pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1878        self.platform_window
1879            .set_background_appearance(background_appearance);
1880    }
1881
1882    /// Mark the window as dirty at the platform level.
1883    pub fn set_window_edited(&mut self, edited: bool) {
1884        self.platform_window.set_edited(edited);
1885    }
1886
1887    /// Determine the display on which the window is visible.
1888    pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1889        cx.platform
1890            .displays()
1891            .into_iter()
1892            .find(|display| Some(display.id()) == self.display_id)
1893    }
1894
1895    /// Show the platform character palette.
1896    pub fn show_character_palette(&self) {
1897        self.platform_window.show_character_palette();
1898    }
1899
1900    /// The scale factor of the display associated with the window. For example, it could
1901    /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1902    /// be rendered as two pixels on screen.
1903    pub fn scale_factor(&self) -> f32 {
1904        self.scale_factor
1905    }
1906
1907    /// The size of an em for the base font of the application. Adjusting this value allows the
1908    /// UI to scale, just like zooming a web page.
1909    pub fn rem_size(&self) -> Pixels {
1910        self.rem_size_override_stack
1911            .last()
1912            .copied()
1913            .unwrap_or(self.rem_size)
1914    }
1915
1916    /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1917    /// UI to scale, just like zooming a web page.
1918    pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1919        self.rem_size = rem_size.into();
1920    }
1921
1922    /// Acquire a globally unique identifier for the given ElementId.
1923    /// Only valid for the duration of the provided closure.
1924    pub fn with_global_id<R>(
1925        &mut self,
1926        element_id: ElementId,
1927        f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1928    ) -> R {
1929        self.element_id_stack.push(element_id);
1930        let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
1931
1932        let result = f(&global_id, self);
1933        self.element_id_stack.pop();
1934        result
1935    }
1936
1937    /// Executes the provided function with the specified rem size.
1938    ///
1939    /// This method must only be called as part of element drawing.
1940    // This function is called in a highly recursive manner in editor
1941    // prepainting, make sure its inlined to reduce the stack burden
1942    #[inline]
1943    pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1944    where
1945        F: FnOnce(&mut Self) -> R,
1946    {
1947        self.invalidator.debug_assert_paint_or_prepaint();
1948
1949        if let Some(rem_size) = rem_size {
1950            self.rem_size_override_stack.push(rem_size.into());
1951            let result = f(self);
1952            self.rem_size_override_stack.pop();
1953            result
1954        } else {
1955            f(self)
1956        }
1957    }
1958
1959    /// The line height associated with the current text style.
1960    pub fn line_height(&self) -> Pixels {
1961        self.text_style().line_height_in_pixels(self.rem_size())
1962    }
1963
1964    /// Call to prevent the default action of an event. Currently only used to prevent
1965    /// parent elements from becoming focused on mouse down.
1966    pub fn prevent_default(&mut self) {
1967        self.default_prevented = true;
1968    }
1969
1970    /// Obtain whether default has been prevented for the event currently being dispatched.
1971    pub fn default_prevented(&self) -> bool {
1972        self.default_prevented
1973    }
1974
1975    /// Determine whether the given action is available along the dispatch path to the currently focused element.
1976    pub fn is_action_available(&self, action: &dyn Action, cx: &App) -> bool {
1977        let node_id =
1978            self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1979        self.rendered_frame
1980            .dispatch_tree
1981            .is_action_available(action, node_id)
1982    }
1983
1984    /// Determine whether the given action is available along the dispatch path to the given focus_handle.
1985    pub fn is_action_available_in(&self, action: &dyn Action, focus_handle: &FocusHandle) -> bool {
1986        let node_id = self.focus_node_id_in_rendered_frame(Some(focus_handle.id));
1987        self.rendered_frame
1988            .dispatch_tree
1989            .is_action_available(action, node_id)
1990    }
1991
1992    /// The position of the mouse relative to the window.
1993    pub fn mouse_position(&self) -> Point<Pixels> {
1994        self.mouse_position
1995    }
1996
1997    /// The current state of the keyboard's modifiers
1998    pub fn modifiers(&self) -> Modifiers {
1999        self.modifiers
2000    }
2001
2002    /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
2003    /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
2004    pub fn last_input_was_keyboard(&self) -> bool {
2005        self.last_input_modality == InputModality::Keyboard
2006    }
2007
2008    /// The current state of the keyboard's capslock
2009    pub fn capslock(&self) -> Capslock {
2010        self.capslock
2011    }
2012
2013    fn complete_frame(&self) {
2014        self.platform_window.completed_frame();
2015    }
2016
2017    /// Produces a new frame and assigns it to `rendered_frame`. To actually show
2018    /// the contents of the new [`Scene`], use [`Self::present`].
2019    #[profiling::function]
2020    pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
2021        self.invalidate_entities();
2022        cx.entities.clear_accessed();
2023        debug_assert!(self.rendered_entity_stack.is_empty());
2024        self.invalidator.set_dirty(false);
2025        self.requested_autoscroll = None;
2026
2027        // Restore the previously-used input handler.
2028        if let Some(input_handler) = self.platform_window.take_input_handler() {
2029            self.rendered_frame.input_handlers.push(Some(input_handler));
2030        }
2031        if !cx.mode.skip_drawing() {
2032            self.draw_roots(cx);
2033        }
2034        self.dirty_views.clear();
2035        self.next_frame.window_active = self.active.get();
2036
2037        // Register requested input handler with the platform window.
2038        if let Some(input_handler) = self.next_frame.input_handlers.pop() {
2039            self.platform_window
2040                .set_input_handler(input_handler.unwrap());
2041        }
2042
2043        self.layout_engine.as_mut().unwrap().clear();
2044        self.text_system().finish_frame();
2045        self.next_frame.finish(&mut self.rendered_frame);
2046
2047        self.invalidator.set_phase(DrawPhase::Focus);
2048        let previous_focus_path = self.rendered_frame.focus_path();
2049        let previous_window_active = self.rendered_frame.window_active;
2050        mem::swap(&mut self.rendered_frame, &mut self.next_frame);
2051        self.next_frame.clear();
2052        let current_focus_path = self.rendered_frame.focus_path();
2053        let current_window_active = self.rendered_frame.window_active;
2054
2055        if previous_focus_path != current_focus_path
2056            || previous_window_active != current_window_active
2057        {
2058            if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
2059                self.focus_lost_listeners
2060                    .clone()
2061                    .retain(&(), |listener| listener(self, cx));
2062            }
2063
2064            let event = WindowFocusEvent {
2065                previous_focus_path: if previous_window_active {
2066                    previous_focus_path
2067                } else {
2068                    Default::default()
2069                },
2070                current_focus_path: if current_window_active {
2071                    current_focus_path
2072                } else {
2073                    Default::default()
2074                },
2075            };
2076            self.focus_listeners
2077                .clone()
2078                .retain(&(), |listener| listener(&event, self, cx));
2079        }
2080
2081        debug_assert!(self.rendered_entity_stack.is_empty());
2082        self.record_entities_accessed(cx);
2083        self.reset_cursor_style(cx);
2084        self.refreshing = false;
2085        self.invalidator.set_phase(DrawPhase::None);
2086        self.needs_present.set(true);
2087
2088        ArenaClearNeeded
2089    }
2090
2091    fn record_entities_accessed(&mut self, cx: &mut App) {
2092        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2093        let mut entities = mem::take(entities_ref.deref_mut());
2094        drop(entities_ref);
2095        let handle = self.handle;
2096        cx.record_entities_accessed(
2097            handle,
2098            // Try moving window invalidator into the Window
2099            self.invalidator.clone(),
2100            &entities,
2101        );
2102        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2103        mem::swap(&mut entities, entities_ref.deref_mut());
2104    }
2105
2106    fn invalidate_entities(&mut self) {
2107        let mut views = self.invalidator.take_views();
2108        for entity in views.drain() {
2109            self.mark_view_dirty(entity);
2110        }
2111        self.invalidator.replace_views(views);
2112    }
2113
2114    #[profiling::function]
2115    fn present(&self) {
2116        self.platform_window.draw(&self.rendered_frame.scene);
2117        self.needs_present.set(false);
2118        profiling::finish_frame!();
2119    }
2120
2121    fn draw_roots(&mut self, cx: &mut App) {
2122        self.invalidator.set_phase(DrawPhase::Prepaint);
2123        self.tooltip_bounds.take();
2124
2125        let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2126        let root_size = {
2127            #[cfg(any(feature = "inspector", debug_assertions))]
2128            {
2129                if self.inspector.is_some() {
2130                    let mut size = self.viewport_size;
2131                    size.width = (size.width - _inspector_width).max(px(0.0));
2132                    size
2133                } else {
2134                    self.viewport_size
2135                }
2136            }
2137            #[cfg(not(any(feature = "inspector", debug_assertions)))]
2138            {
2139                self.viewport_size
2140            }
2141        };
2142
2143        // Layout all root elements.
2144        let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2145        root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2146
2147        #[cfg(any(feature = "inspector", debug_assertions))]
2148        let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2149
2150        let mut sorted_deferred_draws =
2151            (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2152        sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2153        self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2154
2155        let mut prompt_element = None;
2156        let mut active_drag_element = None;
2157        let mut tooltip_element = None;
2158        if let Some(prompt) = self.prompt.take() {
2159            let mut element = prompt.view.any_view().into_any();
2160            element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2161            prompt_element = Some(element);
2162            self.prompt = Some(prompt);
2163        } else if let Some(active_drag) = cx.active_drag.take() {
2164            let mut element = active_drag.view.clone().into_any();
2165            let offset = self.mouse_position() - active_drag.cursor_offset;
2166            element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2167            active_drag_element = Some(element);
2168            cx.active_drag = Some(active_drag);
2169        } else {
2170            tooltip_element = self.prepaint_tooltip(cx);
2171        }
2172
2173        self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2174
2175        // Now actually paint the elements.
2176        self.invalidator.set_phase(DrawPhase::Paint);
2177        root_element.paint(self, cx);
2178
2179        #[cfg(any(feature = "inspector", debug_assertions))]
2180        self.paint_inspector(inspector_element, cx);
2181
2182        self.paint_deferred_draws(&sorted_deferred_draws, cx);
2183
2184        if let Some(mut prompt_element) = prompt_element {
2185            prompt_element.paint(self, cx);
2186        } else if let Some(mut drag_element) = active_drag_element {
2187            drag_element.paint(self, cx);
2188        } else if let Some(mut tooltip_element) = tooltip_element {
2189            tooltip_element.paint(self, cx);
2190        }
2191
2192        #[cfg(any(feature = "inspector", debug_assertions))]
2193        self.paint_inspector_hitbox(cx);
2194    }
2195
2196    fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2197        // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2198        for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2199            let Some(Some(tooltip_request)) = self
2200                .next_frame
2201                .tooltip_requests
2202                .get(tooltip_request_index)
2203                .cloned()
2204            else {
2205                log::error!("Unexpectedly absent TooltipRequest");
2206                continue;
2207            };
2208            let mut element = tooltip_request.tooltip.view.clone().into_any();
2209            let mouse_position = tooltip_request.tooltip.mouse_position;
2210            let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2211
2212            let mut tooltip_bounds =
2213                Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2214            let window_bounds = Bounds {
2215                origin: Point::default(),
2216                size: self.viewport_size(),
2217            };
2218
2219            if tooltip_bounds.right() > window_bounds.right() {
2220                let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2221                if new_x >= Pixels::ZERO {
2222                    tooltip_bounds.origin.x = new_x;
2223                } else {
2224                    tooltip_bounds.origin.x = cmp::max(
2225                        Pixels::ZERO,
2226                        tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2227                    );
2228                }
2229            }
2230
2231            if tooltip_bounds.bottom() > window_bounds.bottom() {
2232                let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2233                if new_y >= Pixels::ZERO {
2234                    tooltip_bounds.origin.y = new_y;
2235                } else {
2236                    tooltip_bounds.origin.y = cmp::max(
2237                        Pixels::ZERO,
2238                        tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2239                    );
2240                }
2241            }
2242
2243            // It's possible for an element to have an active tooltip while not being painted (e.g.
2244            // via the `visible_on_hover` method). Since mouse listeners are not active in this
2245            // case, instead update the tooltip's visibility here.
2246            let is_visible =
2247                (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2248            if !is_visible {
2249                continue;
2250            }
2251
2252            self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2253                element.prepaint(window, cx)
2254            });
2255
2256            self.tooltip_bounds = Some(TooltipBounds {
2257                id: tooltip_request.id,
2258                bounds: tooltip_bounds,
2259            });
2260            return Some(element);
2261        }
2262        None
2263    }
2264
2265    fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2266        assert_eq!(self.element_id_stack.len(), 0);
2267
2268        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2269        for deferred_draw_ix in deferred_draw_indices {
2270            let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2271            self.element_id_stack
2272                .clone_from(&deferred_draw.element_id_stack);
2273            self.text_style_stack
2274                .clone_from(&deferred_draw.text_style_stack);
2275            self.next_frame
2276                .dispatch_tree
2277                .set_active_node(deferred_draw.parent_node);
2278
2279            let prepaint_start = self.prepaint_index();
2280            if let Some(element) = deferred_draw.element.as_mut() {
2281                self.with_rendered_view(deferred_draw.current_view, |window| {
2282                    window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2283                        element.prepaint(window, cx)
2284                    });
2285                })
2286            } else {
2287                self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2288            }
2289            let prepaint_end = self.prepaint_index();
2290            deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2291        }
2292        assert_eq!(
2293            self.next_frame.deferred_draws.len(),
2294            0,
2295            "cannot call defer_draw during deferred drawing"
2296        );
2297        self.next_frame.deferred_draws = deferred_draws;
2298        self.element_id_stack.clear();
2299        self.text_style_stack.clear();
2300    }
2301
2302    fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2303        assert_eq!(self.element_id_stack.len(), 0);
2304
2305        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2306        for deferred_draw_ix in deferred_draw_indices {
2307            let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2308            self.element_id_stack
2309                .clone_from(&deferred_draw.element_id_stack);
2310            self.next_frame
2311                .dispatch_tree
2312                .set_active_node(deferred_draw.parent_node);
2313
2314            let paint_start = self.paint_index();
2315            if let Some(element) = deferred_draw.element.as_mut() {
2316                self.with_rendered_view(deferred_draw.current_view, |window| {
2317                    element.paint(window, cx);
2318                })
2319            } else {
2320                self.reuse_paint(deferred_draw.paint_range.clone());
2321            }
2322            let paint_end = self.paint_index();
2323            deferred_draw.paint_range = paint_start..paint_end;
2324        }
2325        self.next_frame.deferred_draws = deferred_draws;
2326        self.element_id_stack.clear();
2327    }
2328
2329    pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2330        PrepaintStateIndex {
2331            hitboxes_index: self.next_frame.hitboxes.len(),
2332            tooltips_index: self.next_frame.tooltip_requests.len(),
2333            deferred_draws_index: self.next_frame.deferred_draws.len(),
2334            dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2335            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2336            line_layout_index: self.text_system.layout_index(),
2337        }
2338    }
2339
2340    pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2341        self.next_frame.hitboxes.extend(
2342            self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2343                .iter()
2344                .cloned(),
2345        );
2346        self.next_frame.tooltip_requests.extend(
2347            self.rendered_frame.tooltip_requests
2348                [range.start.tooltips_index..range.end.tooltips_index]
2349                .iter_mut()
2350                .map(|request| request.take()),
2351        );
2352        self.next_frame.accessed_element_states.extend(
2353            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2354                ..range.end.accessed_element_states_index]
2355                .iter()
2356                .map(|(id, type_id)| (id.clone(), *type_id)),
2357        );
2358        self.text_system
2359            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2360
2361        let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2362            range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2363            &mut self.rendered_frame.dispatch_tree,
2364            self.focus,
2365        );
2366
2367        if reused_subtree.contains_focus() {
2368            self.next_frame.focus = self.focus;
2369        }
2370
2371        self.next_frame.deferred_draws.extend(
2372            self.rendered_frame.deferred_draws
2373                [range.start.deferred_draws_index..range.end.deferred_draws_index]
2374                .iter()
2375                .map(|deferred_draw| DeferredDraw {
2376                    current_view: deferred_draw.current_view,
2377                    parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2378                    element_id_stack: deferred_draw.element_id_stack.clone(),
2379                    text_style_stack: deferred_draw.text_style_stack.clone(),
2380                    priority: deferred_draw.priority,
2381                    element: None,
2382                    absolute_offset: deferred_draw.absolute_offset,
2383                    prepaint_range: deferred_draw.prepaint_range.clone(),
2384                    paint_range: deferred_draw.paint_range.clone(),
2385                }),
2386        );
2387    }
2388
2389    pub(crate) fn paint_index(&self) -> PaintIndex {
2390        PaintIndex {
2391            scene_index: self.next_frame.scene.len(),
2392            mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2393            input_handlers_index: self.next_frame.input_handlers.len(),
2394            cursor_styles_index: self.next_frame.cursor_styles.len(),
2395            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2396            tab_handle_index: self.next_frame.tab_stops.paint_index(),
2397            line_layout_index: self.text_system.layout_index(),
2398        }
2399    }
2400
2401    pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2402        self.next_frame.cursor_styles.extend(
2403            self.rendered_frame.cursor_styles
2404                [range.start.cursor_styles_index..range.end.cursor_styles_index]
2405                .iter()
2406                .cloned(),
2407        );
2408        self.next_frame.input_handlers.extend(
2409            self.rendered_frame.input_handlers
2410                [range.start.input_handlers_index..range.end.input_handlers_index]
2411                .iter_mut()
2412                .map(|handler| handler.take()),
2413        );
2414        self.next_frame.mouse_listeners.extend(
2415            self.rendered_frame.mouse_listeners
2416                [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2417                .iter_mut()
2418                .map(|listener| listener.take()),
2419        );
2420        self.next_frame.accessed_element_states.extend(
2421            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2422                ..range.end.accessed_element_states_index]
2423                .iter()
2424                .map(|(id, type_id)| (id.clone(), *type_id)),
2425        );
2426        self.next_frame.tab_stops.replay(
2427            &self.rendered_frame.tab_stops.insertion_history
2428                [range.start.tab_handle_index..range.end.tab_handle_index],
2429        );
2430
2431        self.text_system
2432            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2433        self.next_frame.scene.replay(
2434            range.start.scene_index..range.end.scene_index,
2435            &self.rendered_frame.scene,
2436        );
2437    }
2438
2439    /// Push a text style onto the stack, and call a function with that style active.
2440    /// Use [`Window::text_style`] to get the current, combined text style. This method
2441    /// should only be called as part of element drawing.
2442    // This function is called in a highly recursive manner in editor
2443    // prepainting, make sure its inlined to reduce the stack burden
2444    #[inline]
2445    pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2446    where
2447        F: FnOnce(&mut Self) -> R,
2448    {
2449        self.invalidator.debug_assert_paint_or_prepaint();
2450        if let Some(style) = style {
2451            self.text_style_stack.push(style);
2452            let result = f(self);
2453            self.text_style_stack.pop();
2454            result
2455        } else {
2456            f(self)
2457        }
2458    }
2459
2460    /// Updates the cursor style at the platform level. This method should only be called
2461    /// during the paint phase of element drawing.
2462    pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2463        self.invalidator.debug_assert_paint();
2464        self.next_frame.cursor_styles.push(CursorStyleRequest {
2465            hitbox_id: Some(hitbox.id),
2466            style,
2467        });
2468    }
2469
2470    /// Updates the cursor style for the entire window at the platform level. A cursor
2471    /// style using this method will have precedence over any cursor style set using
2472    /// `set_cursor_style`. This method should only be called during the paint
2473    /// phase of element drawing.
2474    pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2475        self.invalidator.debug_assert_paint();
2476        self.next_frame.cursor_styles.push(CursorStyleRequest {
2477            hitbox_id: None,
2478            style,
2479        })
2480    }
2481
2482    /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2483    /// during the paint phase of element drawing.
2484    pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2485        self.invalidator.debug_assert_prepaint();
2486        let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2487        self.next_frame
2488            .tooltip_requests
2489            .push(Some(TooltipRequest { id, tooltip }));
2490        id
2491    }
2492
2493    /// Invoke the given function with the given content mask after intersecting it
2494    /// with the current mask. This method should only be called during element drawing.
2495    // This function is called in a highly recursive manner in editor
2496    // prepainting, make sure its inlined to reduce the stack burden
2497    #[inline]
2498    pub fn with_content_mask<R>(
2499        &mut self,
2500        mask: Option<ContentMask<Pixels>>,
2501        f: impl FnOnce(&mut Self) -> R,
2502    ) -> R {
2503        self.invalidator.debug_assert_paint_or_prepaint();
2504        if let Some(mask) = mask {
2505            let mask = mask.intersect(&self.content_mask());
2506            self.content_mask_stack.push(mask);
2507            let result = f(self);
2508            self.content_mask_stack.pop();
2509            result
2510        } else {
2511            f(self)
2512        }
2513    }
2514
2515    /// Updates the global element offset relative to the current offset. This is used to implement
2516    /// scrolling. This method should only be called during the prepaint phase of element drawing.
2517    pub fn with_element_offset<R>(
2518        &mut self,
2519        offset: Point<Pixels>,
2520        f: impl FnOnce(&mut Self) -> R,
2521    ) -> R {
2522        self.invalidator.debug_assert_prepaint();
2523
2524        if offset.is_zero() {
2525            return f(self);
2526        };
2527
2528        let abs_offset = self.element_offset() + offset;
2529        self.with_absolute_element_offset(abs_offset, f)
2530    }
2531
2532    /// Updates the global element offset based on the given offset. This is used to implement
2533    /// drag handles and other manual painting of elements. This method should only be called during
2534    /// the prepaint phase of element drawing.
2535    pub fn with_absolute_element_offset<R>(
2536        &mut self,
2537        offset: Point<Pixels>,
2538        f: impl FnOnce(&mut Self) -> R,
2539    ) -> R {
2540        self.invalidator.debug_assert_prepaint();
2541        self.element_offset_stack.push(offset);
2542        let result = f(self);
2543        self.element_offset_stack.pop();
2544        result
2545    }
2546
2547    pub(crate) fn with_element_opacity<R>(
2548        &mut self,
2549        opacity: Option<f32>,
2550        f: impl FnOnce(&mut Self) -> R,
2551    ) -> R {
2552        self.invalidator.debug_assert_paint_or_prepaint();
2553
2554        let Some(opacity) = opacity else {
2555            return f(self);
2556        };
2557
2558        let previous_opacity = self.element_opacity;
2559        self.element_opacity = previous_opacity * opacity;
2560        let result = f(self);
2561        self.element_opacity = previous_opacity;
2562        result
2563    }
2564
2565    /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2566    /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2567    /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2568    /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2569    /// called during the prepaint phase of element drawing.
2570    pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2571        self.invalidator.debug_assert_prepaint();
2572        let index = self.prepaint_index();
2573        let result = f(self);
2574        if result.is_err() {
2575            self.next_frame.hitboxes.truncate(index.hitboxes_index);
2576            self.next_frame
2577                .tooltip_requests
2578                .truncate(index.tooltips_index);
2579            self.next_frame
2580                .deferred_draws
2581                .truncate(index.deferred_draws_index);
2582            self.next_frame
2583                .dispatch_tree
2584                .truncate(index.dispatch_tree_index);
2585            self.next_frame
2586                .accessed_element_states
2587                .truncate(index.accessed_element_states_index);
2588            self.text_system.truncate_layouts(index.line_layout_index);
2589        }
2590        result
2591    }
2592
2593    /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2594    /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2595    /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2596    /// that supports this method being called on the elements it contains. This method should only be
2597    /// called during the prepaint phase of element drawing.
2598    pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2599        self.invalidator.debug_assert_prepaint();
2600        self.requested_autoscroll = Some(bounds);
2601    }
2602
2603    /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2604    /// described in [`Self::request_autoscroll`].
2605    pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2606        self.invalidator.debug_assert_prepaint();
2607        self.requested_autoscroll.take()
2608    }
2609
2610    /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2611    /// Your view will be re-drawn once the asset has finished loading.
2612    ///
2613    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2614    /// time.
2615    pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2616        let (task, is_first) = cx.fetch_asset::<A>(source);
2617        task.clone().now_or_never().or_else(|| {
2618            if is_first {
2619                let entity_id = self.current_view();
2620                self.spawn(cx, {
2621                    let task = task.clone();
2622                    async move |cx| {
2623                        task.await;
2624
2625                        cx.on_next_frame(move |_, cx| {
2626                            cx.notify(entity_id);
2627                        });
2628                    }
2629                })
2630                .detach();
2631            }
2632
2633            None
2634        })
2635    }
2636
2637    /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2638    /// Your view will not be re-drawn once the asset has finished loading.
2639    ///
2640    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2641    /// time.
2642    pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2643        let (task, _) = cx.fetch_asset::<A>(source);
2644        task.now_or_never()
2645    }
2646    /// Obtain the current element offset. This method should only be called during the
2647    /// prepaint phase of element drawing.
2648    pub fn element_offset(&self) -> Point<Pixels> {
2649        self.invalidator.debug_assert_prepaint();
2650        self.element_offset_stack
2651            .last()
2652            .copied()
2653            .unwrap_or_default()
2654    }
2655
2656    /// Obtain the current element opacity. This method should only be called during the
2657    /// prepaint phase of element drawing.
2658    #[inline]
2659    pub(crate) fn element_opacity(&self) -> f32 {
2660        self.invalidator.debug_assert_paint_or_prepaint();
2661        self.element_opacity
2662    }
2663
2664    /// Obtain the current content mask. This method should only be called during element drawing.
2665    pub fn content_mask(&self) -> ContentMask<Pixels> {
2666        self.invalidator.debug_assert_paint_or_prepaint();
2667        self.content_mask_stack
2668            .last()
2669            .cloned()
2670            .unwrap_or_else(|| ContentMask {
2671                bounds: Bounds {
2672                    origin: Point::default(),
2673                    size: self.viewport_size,
2674                },
2675            })
2676    }
2677
2678    /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2679    /// This can be used within a custom element to distinguish multiple sets of child elements.
2680    pub fn with_element_namespace<R>(
2681        &mut self,
2682        element_id: impl Into<ElementId>,
2683        f: impl FnOnce(&mut Self) -> R,
2684    ) -> R {
2685        self.element_id_stack.push(element_id.into());
2686        let result = f(self);
2687        self.element_id_stack.pop();
2688        result
2689    }
2690
2691    /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2692    pub fn use_keyed_state<S: 'static>(
2693        &mut self,
2694        key: impl Into<ElementId>,
2695        cx: &mut App,
2696        init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2697    ) -> Entity<S> {
2698        let current_view = self.current_view();
2699        self.with_global_id(key.into(), |global_id, window| {
2700            window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2701                if let Some(state) = state {
2702                    (state.clone(), state)
2703                } else {
2704                    let new_state = cx.new(|cx| init(window, cx));
2705                    cx.observe(&new_state, move |_, cx| {
2706                        cx.notify(current_view);
2707                    })
2708                    .detach();
2709                    (new_state.clone(), new_state)
2710                }
2711            })
2712        })
2713    }
2714
2715    /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2716    pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2717        self.with_global_id(id.into(), |_, window| f(window))
2718    }
2719
2720    /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2721    ///
2722    /// NOTE: This method uses the location of the caller to generate an ID for this state.
2723    ///       If this is not sufficient to identify your state (e.g. you're rendering a list item),
2724    ///       you can provide a custom ElementID using the `use_keyed_state` method.
2725    #[track_caller]
2726    pub fn use_state<S: 'static>(
2727        &mut self,
2728        cx: &mut App,
2729        init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2730    ) -> Entity<S> {
2731        self.use_keyed_state(
2732            ElementId::CodeLocation(*core::panic::Location::caller()),
2733            cx,
2734            init,
2735        )
2736    }
2737
2738    /// Updates or initializes state for an element with the given id that lives across multiple
2739    /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2740    /// to the given closure. The state returned by the closure will be stored so it can be referenced
2741    /// when drawing the next frame. This method should only be called as part of element drawing.
2742    pub fn with_element_state<S, R>(
2743        &mut self,
2744        global_id: &GlobalElementId,
2745        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2746    ) -> R
2747    where
2748        S: 'static,
2749    {
2750        self.invalidator.debug_assert_paint_or_prepaint();
2751
2752        let key = (global_id.clone(), TypeId::of::<S>());
2753        self.next_frame.accessed_element_states.push(key.clone());
2754
2755        if let Some(any) = self
2756            .next_frame
2757            .element_states
2758            .remove(&key)
2759            .or_else(|| self.rendered_frame.element_states.remove(&key))
2760        {
2761            let ElementStateBox {
2762                inner,
2763                #[cfg(debug_assertions)]
2764                type_name,
2765            } = any;
2766            // Using the extra inner option to avoid needing to reallocate a new box.
2767            let mut state_box = inner
2768                .downcast::<Option<S>>()
2769                .map_err(|_| {
2770                    #[cfg(debug_assertions)]
2771                    {
2772                        anyhow::anyhow!(
2773                            "invalid element state type for id, requested {:?}, actual: {:?}",
2774                            std::any::type_name::<S>(),
2775                            type_name
2776                        )
2777                    }
2778
2779                    #[cfg(not(debug_assertions))]
2780                    {
2781                        anyhow::anyhow!(
2782                            "invalid element state type for id, requested {:?}",
2783                            std::any::type_name::<S>(),
2784                        )
2785                    }
2786                })
2787                .unwrap();
2788
2789            let state = state_box.take().expect(
2790                "reentrant call to with_element_state for the same state type and element id",
2791            );
2792            let (result, state) = f(Some(state), self);
2793            state_box.replace(state);
2794            self.next_frame.element_states.insert(
2795                key,
2796                ElementStateBox {
2797                    inner: state_box,
2798                    #[cfg(debug_assertions)]
2799                    type_name,
2800                },
2801            );
2802            result
2803        } else {
2804            let (result, state) = f(None, self);
2805            self.next_frame.element_states.insert(
2806                key,
2807                ElementStateBox {
2808                    inner: Box::new(Some(state)),
2809                    #[cfg(debug_assertions)]
2810                    type_name: std::any::type_name::<S>(),
2811                },
2812            );
2813            result
2814        }
2815    }
2816
2817    /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2818    /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2819    /// when the element is guaranteed to have an id.
2820    ///
2821    /// The first option means 'no ID provided'
2822    /// The second option means 'not yet initialized'
2823    pub fn with_optional_element_state<S, R>(
2824        &mut self,
2825        global_id: Option<&GlobalElementId>,
2826        f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2827    ) -> R
2828    where
2829        S: 'static,
2830    {
2831        self.invalidator.debug_assert_paint_or_prepaint();
2832
2833        if let Some(global_id) = global_id {
2834            self.with_element_state(global_id, |state, cx| {
2835                let (result, state) = f(Some(state), cx);
2836                let state =
2837                    state.expect("you must return some state when you pass some element id");
2838                (result, state)
2839            })
2840        } else {
2841            let (result, state) = f(None, self);
2842            debug_assert!(
2843                state.is_none(),
2844                "you must not return an element state when passing None for the global id"
2845            );
2846            result
2847        }
2848    }
2849
2850    /// Executes the given closure within the context of a tab group.
2851    #[inline]
2852    pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2853        if let Some(index) = index {
2854            self.next_frame.tab_stops.begin_group(index);
2855            let result = f(self);
2856            self.next_frame.tab_stops.end_group();
2857            result
2858        } else {
2859            f(self)
2860        }
2861    }
2862
2863    /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2864    /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2865    /// with higher values being drawn on top.
2866    ///
2867    /// This method should only be called as part of the prepaint phase of element drawing.
2868    pub fn defer_draw(
2869        &mut self,
2870        element: AnyElement,
2871        absolute_offset: Point<Pixels>,
2872        priority: usize,
2873    ) {
2874        self.invalidator.debug_assert_prepaint();
2875        let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2876        self.next_frame.deferred_draws.push(DeferredDraw {
2877            current_view: self.current_view(),
2878            parent_node,
2879            element_id_stack: self.element_id_stack.clone(),
2880            text_style_stack: self.text_style_stack.clone(),
2881            priority,
2882            element: Some(element),
2883            absolute_offset,
2884            prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2885            paint_range: PaintIndex::default()..PaintIndex::default(),
2886        });
2887    }
2888
2889    /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2890    /// of geometry that are non-overlapping and have the same draw order. This is typically used
2891    /// for performance reasons.
2892    ///
2893    /// This method should only be called as part of the paint phase of element drawing.
2894    pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2895        self.invalidator.debug_assert_paint();
2896
2897        let scale_factor = self.scale_factor();
2898        let content_mask = self.content_mask();
2899        let clipped_bounds = bounds.intersect(&content_mask.bounds);
2900        if !clipped_bounds.is_empty() {
2901            self.next_frame
2902                .scene
2903                .push_layer(clipped_bounds.scale(scale_factor));
2904        }
2905
2906        let result = f(self);
2907
2908        if !clipped_bounds.is_empty() {
2909            self.next_frame.scene.pop_layer();
2910        }
2911
2912        result
2913    }
2914
2915    /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2916    ///
2917    /// This method should only be called as part of the paint phase of element drawing.
2918    pub fn paint_shadows(
2919        &mut self,
2920        bounds: Bounds<Pixels>,
2921        corner_radii: Corners<Pixels>,
2922        shadows: &[BoxShadow],
2923    ) {
2924        self.invalidator.debug_assert_paint();
2925
2926        let scale_factor = self.scale_factor();
2927        let content_mask = self.content_mask();
2928        let opacity = self.element_opacity();
2929        for shadow in shadows {
2930            let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2931            self.next_frame.scene.insert_primitive(Shadow {
2932                order: 0,
2933                blur_radius: shadow.blur_radius.scale(scale_factor),
2934                bounds: shadow_bounds.scale(scale_factor),
2935                content_mask: content_mask.scale(scale_factor),
2936                corner_radii: corner_radii.scale(scale_factor),
2937                color: shadow.color.opacity(opacity),
2938            });
2939        }
2940    }
2941
2942    /// Paint one or more quads into the scene for the next frame at the current stacking context.
2943    /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2944    /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2945    ///
2946    /// This method should only be called as part of the paint phase of element drawing.
2947    ///
2948    /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2949    /// where the circular arcs meet. This will not display well when combined with dashed borders.
2950    /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2951    pub fn paint_quad(&mut self, quad: PaintQuad) {
2952        self.invalidator.debug_assert_paint();
2953
2954        let scale_factor = self.scale_factor();
2955        let content_mask = self.content_mask();
2956        let opacity = self.element_opacity();
2957        self.next_frame.scene.insert_primitive(Quad {
2958            order: 0,
2959            bounds: quad.bounds.scale(scale_factor),
2960            content_mask: content_mask.scale(scale_factor),
2961            background: quad.background.opacity(opacity),
2962            border_color: quad.border_color.opacity(opacity),
2963            corner_radii: quad.corner_radii.scale(scale_factor),
2964            border_widths: quad.border_widths.scale(scale_factor),
2965            border_style: quad.border_style,
2966        });
2967    }
2968
2969    /// Paint the given `Path` into the scene for the next frame at the current z-index.
2970    ///
2971    /// This method should only be called as part of the paint phase of element drawing.
2972    pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2973        self.invalidator.debug_assert_paint();
2974
2975        let scale_factor = self.scale_factor();
2976        let content_mask = self.content_mask();
2977        let opacity = self.element_opacity();
2978        path.content_mask = content_mask;
2979        let color: Background = color.into();
2980        path.color = color.opacity(opacity);
2981        self.next_frame
2982            .scene
2983            .insert_primitive(path.scale(scale_factor));
2984    }
2985
2986    /// Paint an underline into the scene for the next frame at the current z-index.
2987    ///
2988    /// This method should only be called as part of the paint phase of element drawing.
2989    pub fn paint_underline(
2990        &mut self,
2991        origin: Point<Pixels>,
2992        width: Pixels,
2993        style: &UnderlineStyle,
2994    ) {
2995        self.invalidator.debug_assert_paint();
2996
2997        let scale_factor = self.scale_factor();
2998        let height = if style.wavy {
2999            style.thickness * 3.
3000        } else {
3001            style.thickness
3002        };
3003        let bounds = Bounds {
3004            origin,
3005            size: size(width, height),
3006        };
3007        let content_mask = self.content_mask();
3008        let element_opacity = self.element_opacity();
3009
3010        self.next_frame.scene.insert_primitive(Underline {
3011            order: 0,
3012            pad: 0,
3013            bounds: bounds.scale(scale_factor),
3014            content_mask: content_mask.scale(scale_factor),
3015            color: style.color.unwrap_or_default().opacity(element_opacity),
3016            thickness: style.thickness.scale(scale_factor),
3017            wavy: if style.wavy { 1 } else { 0 },
3018        });
3019    }
3020
3021    /// Paint a strikethrough into the scene for the next frame at the current z-index.
3022    ///
3023    /// This method should only be called as part of the paint phase of element drawing.
3024    pub fn paint_strikethrough(
3025        &mut self,
3026        origin: Point<Pixels>,
3027        width: Pixels,
3028        style: &StrikethroughStyle,
3029    ) {
3030        self.invalidator.debug_assert_paint();
3031
3032        let scale_factor = self.scale_factor();
3033        let height = style.thickness;
3034        let bounds = Bounds {
3035            origin,
3036            size: size(width, height),
3037        };
3038        let content_mask = self.content_mask();
3039        let opacity = self.element_opacity();
3040
3041        self.next_frame.scene.insert_primitive(Underline {
3042            order: 0,
3043            pad: 0,
3044            bounds: bounds.scale(scale_factor),
3045            content_mask: content_mask.scale(scale_factor),
3046            thickness: style.thickness.scale(scale_factor),
3047            color: style.color.unwrap_or_default().opacity(opacity),
3048            wavy: 0,
3049        });
3050    }
3051
3052    /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
3053    ///
3054    /// The y component of the origin is the baseline of the glyph.
3055    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3056    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3057    /// This method is only useful if you need to paint a single glyph that has already been shaped.
3058    ///
3059    /// This method should only be called as part of the paint phase of element drawing.
3060    pub fn paint_glyph(
3061        &mut self,
3062        origin: Point<Pixels>,
3063        font_id: FontId,
3064        glyph_id: GlyphId,
3065        font_size: Pixels,
3066        color: Hsla,
3067    ) -> Result<()> {
3068        self.invalidator.debug_assert_paint();
3069
3070        let element_opacity = self.element_opacity();
3071        let scale_factor = self.scale_factor();
3072        let glyph_origin = origin.scale(scale_factor);
3073
3074        let subpixel_variant = Point {
3075            x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
3076            y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
3077        };
3078        let params = RenderGlyphParams {
3079            font_id,
3080            glyph_id,
3081            font_size,
3082            subpixel_variant,
3083            scale_factor,
3084            is_emoji: false,
3085        };
3086
3087        let raster_bounds = self.text_system().raster_bounds(&params)?;
3088        if !raster_bounds.is_zero() {
3089            let tile = self
3090                .sprite_atlas
3091                .get_or_insert_with(&params.clone().into(), &mut || {
3092                    let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
3093                    Ok(Some((size, Cow::Owned(bytes))))
3094                })?
3095                .expect("Callback above only errors or returns Some");
3096            let bounds = Bounds {
3097                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3098                size: tile.bounds.size.map(Into::into),
3099            };
3100            let content_mask = self.content_mask().scale(scale_factor);
3101            self.next_frame.scene.insert_primitive(MonochromeSprite {
3102                order: 0,
3103                pad: 0,
3104                bounds,
3105                content_mask,
3106                color: color.opacity(element_opacity),
3107                tile,
3108                transformation: TransformationMatrix::unit(),
3109            });
3110        }
3111        Ok(())
3112    }
3113
3114    /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3115    ///
3116    /// The y component of the origin is the baseline of the glyph.
3117    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3118    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3119    /// This method is only useful if you need to paint a single emoji that has already been shaped.
3120    ///
3121    /// This method should only be called as part of the paint phase of element drawing.
3122    pub fn paint_emoji(
3123        &mut self,
3124        origin: Point<Pixels>,
3125        font_id: FontId,
3126        glyph_id: GlyphId,
3127        font_size: Pixels,
3128    ) -> Result<()> {
3129        self.invalidator.debug_assert_paint();
3130
3131        let scale_factor = self.scale_factor();
3132        let glyph_origin = origin.scale(scale_factor);
3133        let params = RenderGlyphParams {
3134            font_id,
3135            glyph_id,
3136            font_size,
3137            // We don't render emojis with subpixel variants.
3138            subpixel_variant: Default::default(),
3139            scale_factor,
3140            is_emoji: true,
3141        };
3142
3143        let raster_bounds = self.text_system().raster_bounds(&params)?;
3144        if !raster_bounds.is_zero() {
3145            let tile = self
3146                .sprite_atlas
3147                .get_or_insert_with(&params.clone().into(), &mut || {
3148                    let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
3149                    Ok(Some((size, Cow::Owned(bytes))))
3150                })?
3151                .expect("Callback above only errors or returns Some");
3152
3153            let bounds = Bounds {
3154                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3155                size: tile.bounds.size.map(Into::into),
3156            };
3157            let content_mask = self.content_mask().scale(scale_factor);
3158            let opacity = self.element_opacity();
3159
3160            self.next_frame.scene.insert_primitive(PolychromeSprite {
3161                order: 0,
3162                pad: 0,
3163                grayscale: false,
3164                bounds,
3165                corner_radii: Default::default(),
3166                content_mask,
3167                tile,
3168                opacity,
3169            });
3170        }
3171        Ok(())
3172    }
3173
3174    /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3175    ///
3176    /// This method should only be called as part of the paint phase of element drawing.
3177    pub fn paint_svg(
3178        &mut self,
3179        bounds: Bounds<Pixels>,
3180        path: SharedString,
3181        mut data: Option<&[u8]>,
3182        transformation: TransformationMatrix,
3183        color: Hsla,
3184        cx: &App,
3185    ) -> Result<()> {
3186        self.invalidator.debug_assert_paint();
3187
3188        let element_opacity = self.element_opacity();
3189        let scale_factor = self.scale_factor();
3190
3191        let bounds = bounds.scale(scale_factor);
3192        let params = RenderSvgParams {
3193            path,
3194            size: bounds.size.map(|pixels| {
3195                DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3196            }),
3197        };
3198
3199        let Some(tile) =
3200            self.sprite_atlas
3201                .get_or_insert_with(&params.clone().into(), &mut || {
3202                    let Some((size, bytes)) = cx.svg_renderer.render_alpha_mask(&params, data)?
3203                    else {
3204                        return Ok(None);
3205                    };
3206                    Ok(Some((size, Cow::Owned(bytes))))
3207                })?
3208        else {
3209            return Ok(());
3210        };
3211        let content_mask = self.content_mask().scale(scale_factor);
3212        let svg_bounds = Bounds {
3213            origin: bounds.center()
3214                - Point::new(
3215                    ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3216                    ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3217                ),
3218            size: tile
3219                .bounds
3220                .size
3221                .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3222        };
3223
3224        self.next_frame.scene.insert_primitive(MonochromeSprite {
3225            order: 0,
3226            pad: 0,
3227            bounds: svg_bounds
3228                .map_origin(|origin| origin.round())
3229                .map_size(|size| size.ceil()),
3230            content_mask,
3231            color: color.opacity(element_opacity),
3232            tile,
3233            transformation,
3234        });
3235
3236        Ok(())
3237    }
3238
3239    /// Paint an image into the scene for the next frame at the current z-index.
3240    /// This method will panic if the frame_index is not valid
3241    ///
3242    /// This method should only be called as part of the paint phase of element drawing.
3243    pub fn paint_image(
3244        &mut self,
3245        bounds: Bounds<Pixels>,
3246        corner_radii: Corners<Pixels>,
3247        data: Arc<RenderImage>,
3248        frame_index: usize,
3249        grayscale: bool,
3250    ) -> Result<()> {
3251        self.invalidator.debug_assert_paint();
3252
3253        let scale_factor = self.scale_factor();
3254        let bounds = bounds.scale(scale_factor);
3255        let params = RenderImageParams {
3256            image_id: data.id,
3257            frame_index,
3258        };
3259
3260        let tile = self
3261            .sprite_atlas
3262            .get_or_insert_with(&params.into(), &mut || {
3263                Ok(Some((
3264                    data.size(frame_index),
3265                    Cow::Borrowed(
3266                        data.as_bytes(frame_index)
3267                            .expect("It's the caller's job to pass a valid frame index"),
3268                    ),
3269                )))
3270            })?
3271            .expect("Callback above only returns Some");
3272        let content_mask = self.content_mask().scale(scale_factor);
3273        let corner_radii = corner_radii.scale(scale_factor);
3274        let opacity = self.element_opacity();
3275
3276        self.next_frame.scene.insert_primitive(PolychromeSprite {
3277            order: 0,
3278            pad: 0,
3279            grayscale,
3280            bounds: bounds
3281                .map_origin(|origin| origin.floor())
3282                .map_size(|size| size.ceil()),
3283            content_mask,
3284            corner_radii,
3285            tile,
3286            opacity,
3287        });
3288        Ok(())
3289    }
3290
3291    /// Paint a surface into the scene for the next frame at the current z-index.
3292    ///
3293    /// This method should only be called as part of the paint phase of element drawing.
3294    #[cfg(target_os = "macos")]
3295    pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3296        use crate::PaintSurface;
3297
3298        self.invalidator.debug_assert_paint();
3299
3300        let scale_factor = self.scale_factor();
3301        let bounds = bounds.scale(scale_factor);
3302        let content_mask = self.content_mask().scale(scale_factor);
3303        self.next_frame.scene.insert_primitive(PaintSurface {
3304            order: 0,
3305            bounds,
3306            content_mask,
3307            image_buffer,
3308        });
3309    }
3310
3311    /// Removes an image from the sprite atlas.
3312    pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3313        for frame_index in 0..data.frame_count() {
3314            let params = RenderImageParams {
3315                image_id: data.id,
3316                frame_index,
3317            };
3318
3319            self.sprite_atlas.remove(&params.clone().into());
3320        }
3321
3322        Ok(())
3323    }
3324
3325    /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3326    /// layout is being requested, along with the layout ids of any children. This method is called during
3327    /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3328    ///
3329    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3330    #[must_use]
3331    pub fn request_layout(
3332        &mut self,
3333        style: Style,
3334        children: impl IntoIterator<Item = LayoutId>,
3335        cx: &mut App,
3336    ) -> LayoutId {
3337        self.invalidator.debug_assert_prepaint();
3338
3339        cx.layout_id_buffer.clear();
3340        cx.layout_id_buffer.extend(children);
3341        let rem_size = self.rem_size();
3342        let scale_factor = self.scale_factor();
3343
3344        self.layout_engine.as_mut().unwrap().request_layout(
3345            style,
3346            rem_size,
3347            scale_factor,
3348            &cx.layout_id_buffer,
3349        )
3350    }
3351
3352    /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3353    /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3354    /// determine the element's size. One place this is used internally is when measuring text.
3355    ///
3356    /// The given closure is invoked at layout time with the known dimensions and available space and
3357    /// returns a `Size`.
3358    ///
3359    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3360    pub fn request_measured_layout<F>(&mut self, style: Style, measure: F) -> LayoutId
3361    where
3362        F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3363            + 'static,
3364    {
3365        self.invalidator.debug_assert_prepaint();
3366
3367        let rem_size = self.rem_size();
3368        let scale_factor = self.scale_factor();
3369        self.layout_engine
3370            .as_mut()
3371            .unwrap()
3372            .request_measured_layout(style, rem_size, scale_factor, measure)
3373    }
3374
3375    /// Compute the layout for the given id within the given available space.
3376    /// This method is called for its side effect, typically by the framework prior to painting.
3377    /// After calling it, you can request the bounds of the given layout node id or any descendant.
3378    ///
3379    /// This method should only be called as part of the prepaint phase of element drawing.
3380    pub fn compute_layout(
3381        &mut self,
3382        layout_id: LayoutId,
3383        available_space: Size<AvailableSpace>,
3384        cx: &mut App,
3385    ) {
3386        self.invalidator.debug_assert_prepaint();
3387
3388        let mut layout_engine = self.layout_engine.take().unwrap();
3389        layout_engine.compute_layout(layout_id, available_space, self, cx);
3390        self.layout_engine = Some(layout_engine);
3391    }
3392
3393    /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3394    /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3395    ///
3396    /// This method should only be called as part of element drawing.
3397    pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3398        self.invalidator.debug_assert_prepaint();
3399
3400        let scale_factor = self.scale_factor();
3401        let mut bounds = self
3402            .layout_engine
3403            .as_mut()
3404            .unwrap()
3405            .layout_bounds(layout_id, scale_factor)
3406            .map(Into::into);
3407        bounds.origin += self.element_offset();
3408        bounds
3409    }
3410
3411    /// This method should be called during `prepaint`. You can use
3412    /// the returned [Hitbox] during `paint` or in an event handler
3413    /// to determine whether the inserted hitbox was the topmost.
3414    ///
3415    /// This method should only be called as part of the prepaint phase of element drawing.
3416    pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3417        self.invalidator.debug_assert_prepaint();
3418
3419        let content_mask = self.content_mask();
3420        let mut id = self.next_hitbox_id;
3421        self.next_hitbox_id = self.next_hitbox_id.next();
3422        let hitbox = Hitbox {
3423            id,
3424            bounds,
3425            content_mask,
3426            behavior,
3427        };
3428        self.next_frame.hitboxes.push(hitbox.clone());
3429        hitbox
3430    }
3431
3432    /// Set a hitbox which will act as a control area of the platform window.
3433    ///
3434    /// This method should only be called as part of the paint phase of element drawing.
3435    pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3436        self.invalidator.debug_assert_paint();
3437        self.next_frame.window_control_hitboxes.push((area, hitbox));
3438    }
3439
3440    /// Sets the key context for the current element. This context will be used to translate
3441    /// keybindings into actions.
3442    ///
3443    /// This method should only be called as part of the paint phase of element drawing.
3444    pub fn set_key_context(&mut self, context: KeyContext) {
3445        self.invalidator.debug_assert_paint();
3446        self.next_frame.dispatch_tree.set_key_context(context);
3447    }
3448
3449    /// Sets the focus handle for the current element. This handle will be used to manage focus state
3450    /// and keyboard event dispatch for the element.
3451    ///
3452    /// This method should only be called as part of the prepaint phase of element drawing.
3453    pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3454        self.invalidator.debug_assert_prepaint();
3455        if focus_handle.is_focused(self) {
3456            self.next_frame.focus = Some(focus_handle.id);
3457        }
3458        self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3459    }
3460
3461    /// Sets the view id for the current element, which will be used to manage view caching.
3462    ///
3463    /// This method should only be called as part of element prepaint. We plan on removing this
3464    /// method eventually when we solve some issues that require us to construct editor elements
3465    /// directly instead of always using editors via views.
3466    pub fn set_view_id(&mut self, view_id: EntityId) {
3467        self.invalidator.debug_assert_prepaint();
3468        self.next_frame.dispatch_tree.set_view_id(view_id);
3469    }
3470
3471    /// Get the entity ID for the currently rendering view
3472    pub fn current_view(&self) -> EntityId {
3473        self.invalidator.debug_assert_paint_or_prepaint();
3474        self.rendered_entity_stack.last().copied().unwrap()
3475    }
3476
3477    pub(crate) fn with_rendered_view<R>(
3478        &mut self,
3479        id: EntityId,
3480        f: impl FnOnce(&mut Self) -> R,
3481    ) -> R {
3482        self.rendered_entity_stack.push(id);
3483        let result = f(self);
3484        self.rendered_entity_stack.pop();
3485        result
3486    }
3487
3488    /// Executes the provided function with the specified image cache.
3489    pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3490    where
3491        F: FnOnce(&mut Self) -> R,
3492    {
3493        if let Some(image_cache) = image_cache {
3494            self.image_cache_stack.push(image_cache);
3495            let result = f(self);
3496            self.image_cache_stack.pop();
3497            result
3498        } else {
3499            f(self)
3500        }
3501    }
3502
3503    /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3504    /// platform to receive textual input with proper integration with concerns such
3505    /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3506    /// rendered.
3507    ///
3508    /// This method should only be called as part of the paint phase of element drawing.
3509    ///
3510    /// [element_input_handler]: crate::ElementInputHandler
3511    pub fn handle_input(
3512        &mut self,
3513        focus_handle: &FocusHandle,
3514        input_handler: impl InputHandler,
3515        cx: &App,
3516    ) {
3517        self.invalidator.debug_assert_paint();
3518
3519        if focus_handle.is_focused(self) {
3520            let cx = self.to_async(cx);
3521            self.next_frame
3522                .input_handlers
3523                .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3524        }
3525    }
3526
3527    /// Register a mouse event listener on the window for the next frame. The type of event
3528    /// is determined by the first parameter of the given listener. When the next frame is rendered
3529    /// the listener will be cleared.
3530    ///
3531    /// This method should only be called as part of the paint phase of element drawing.
3532    pub fn on_mouse_event<Event: MouseEvent>(
3533        &mut self,
3534        mut listener: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3535    ) {
3536        self.invalidator.debug_assert_paint();
3537
3538        self.next_frame.mouse_listeners.push(Some(Box::new(
3539            move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3540                if let Some(event) = event.downcast_ref() {
3541                    listener(event, phase, window, cx)
3542                }
3543            },
3544        )));
3545    }
3546
3547    /// Register a key event listener on this node for the next frame. The type of event
3548    /// is determined by the first parameter of the given listener. When the next frame is rendered
3549    /// the listener will be cleared.
3550    ///
3551    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3552    /// a specific need to register a listener yourself.
3553    ///
3554    /// This method should only be called as part of the paint phase of element drawing.
3555    pub fn on_key_event<Event: KeyEvent>(
3556        &mut self,
3557        listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3558    ) {
3559        self.invalidator.debug_assert_paint();
3560
3561        self.next_frame.dispatch_tree.on_key_event(Rc::new(
3562            move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3563                if let Some(event) = event.downcast_ref::<Event>() {
3564                    listener(event, phase, window, cx)
3565                }
3566            },
3567        ));
3568    }
3569
3570    /// Register a modifiers changed event listener on the window for the next frame.
3571    ///
3572    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3573    /// a specific need to register a global listener.
3574    ///
3575    /// This method should only be called as part of the paint phase of element drawing.
3576    pub fn on_modifiers_changed(
3577        &mut self,
3578        listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3579    ) {
3580        self.invalidator.debug_assert_paint();
3581
3582        self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3583            move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3584                listener(event, window, cx)
3585            },
3586        ));
3587    }
3588
3589    /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3590    /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3591    /// Returns a subscription and persists until the subscription is dropped.
3592    pub fn on_focus_in(
3593        &mut self,
3594        handle: &FocusHandle,
3595        cx: &mut App,
3596        mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3597    ) -> Subscription {
3598        let focus_id = handle.id;
3599        let (subscription, activate) =
3600            self.new_focus_listener(Box::new(move |event, window, cx| {
3601                if event.is_focus_in(focus_id) {
3602                    listener(window, cx);
3603                }
3604                true
3605            }));
3606        cx.defer(move |_| activate());
3607        subscription
3608    }
3609
3610    /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3611    /// Returns a subscription and persists until the subscription is dropped.
3612    pub fn on_focus_out(
3613        &mut self,
3614        handle: &FocusHandle,
3615        cx: &mut App,
3616        mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3617    ) -> Subscription {
3618        let focus_id = handle.id;
3619        let (subscription, activate) =
3620            self.new_focus_listener(Box::new(move |event, window, cx| {
3621                if let Some(blurred_id) = event.previous_focus_path.last().copied()
3622                    && event.is_focus_out(focus_id)
3623                {
3624                    let event = FocusOutEvent {
3625                        blurred: WeakFocusHandle {
3626                            id: blurred_id,
3627                            handles: Arc::downgrade(&cx.focus_handles),
3628                        },
3629                    };
3630                    listener(event, window, cx)
3631                }
3632                true
3633            }));
3634        cx.defer(move |_| activate());
3635        subscription
3636    }
3637
3638    fn reset_cursor_style(&self, cx: &mut App) {
3639        // Set the cursor only if we're the active window.
3640        if self.is_window_hovered() {
3641            let style = self
3642                .rendered_frame
3643                .cursor_style(self)
3644                .unwrap_or(CursorStyle::Arrow);
3645            cx.platform.set_cursor_style(style);
3646        }
3647    }
3648
3649    /// Dispatch a given keystroke as though the user had typed it.
3650    /// You can create a keystroke with Keystroke::parse("").
3651    pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3652        let keystroke = keystroke.with_simulated_ime();
3653        let result = self.dispatch_event(
3654            PlatformInput::KeyDown(KeyDownEvent {
3655                keystroke: keystroke.clone(),
3656                is_held: false,
3657                prefer_character_input: false,
3658            }),
3659            cx,
3660        );
3661        if !result.propagate {
3662            return true;
3663        }
3664
3665        if let Some(input) = keystroke.key_char
3666            && let Some(mut input_handler) = self.platform_window.take_input_handler()
3667        {
3668            input_handler.dispatch_input(&input, self, cx);
3669            self.platform_window.set_input_handler(input_handler);
3670            return true;
3671        }
3672
3673        false
3674    }
3675
3676    /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3677    /// binding for the action (last binding added to the keymap).
3678    pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3679        self.highest_precedence_binding_for_action(action)
3680            .map(|binding| {
3681                binding
3682                    .keystrokes()
3683                    .iter()
3684                    .map(ToString::to_string)
3685                    .collect::<Vec<_>>()
3686                    .join(" ")
3687            })
3688            .unwrap_or_else(|| action.name().to_string())
3689    }
3690
3691    /// Dispatch a mouse or keyboard event on the window.
3692    #[profiling::function]
3693    pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3694        self.last_input_timestamp.set(Instant::now());
3695
3696        // Track whether this input was keyboard-based for focus-visible styling
3697        self.last_input_modality = match &event {
3698            PlatformInput::KeyDown(_) | PlatformInput::ModifiersChanged(_) => {
3699                InputModality::Keyboard
3700            }
3701            PlatformInput::MouseDown(e) if e.is_focusing() => InputModality::Mouse,
3702            _ => self.last_input_modality,
3703        };
3704
3705        // Handlers may set this to false by calling `stop_propagation`.
3706        cx.propagate_event = true;
3707        // Handlers may set this to true by calling `prevent_default`.
3708        self.default_prevented = false;
3709
3710        let event = match event {
3711            // Track the mouse position with our own state, since accessing the platform
3712            // API for the mouse position can only occur on the main thread.
3713            PlatformInput::MouseMove(mouse_move) => {
3714                self.mouse_position = mouse_move.position;
3715                self.modifiers = mouse_move.modifiers;
3716                PlatformInput::MouseMove(mouse_move)
3717            }
3718            PlatformInput::MouseDown(mouse_down) => {
3719                self.mouse_position = mouse_down.position;
3720                self.modifiers = mouse_down.modifiers;
3721                PlatformInput::MouseDown(mouse_down)
3722            }
3723            PlatformInput::MouseUp(mouse_up) => {
3724                self.mouse_position = mouse_up.position;
3725                self.modifiers = mouse_up.modifiers;
3726                PlatformInput::MouseUp(mouse_up)
3727            }
3728            PlatformInput::MousePressure(mouse_pressure) => {
3729                PlatformInput::MousePressure(mouse_pressure)
3730            }
3731            PlatformInput::MouseExited(mouse_exited) => {
3732                self.modifiers = mouse_exited.modifiers;
3733                PlatformInput::MouseExited(mouse_exited)
3734            }
3735            PlatformInput::ModifiersChanged(modifiers_changed) => {
3736                self.modifiers = modifiers_changed.modifiers;
3737                self.capslock = modifiers_changed.capslock;
3738                PlatformInput::ModifiersChanged(modifiers_changed)
3739            }
3740            PlatformInput::ScrollWheel(scroll_wheel) => {
3741                self.mouse_position = scroll_wheel.position;
3742                self.modifiers = scroll_wheel.modifiers;
3743                PlatformInput::ScrollWheel(scroll_wheel)
3744            }
3745            // Translate dragging and dropping of external files from the operating system
3746            // to internal drag and drop events.
3747            PlatformInput::FileDrop(file_drop) => match file_drop {
3748                FileDropEvent::Entered { position, paths } => {
3749                    self.mouse_position = position;
3750                    if cx.active_drag.is_none() {
3751                        cx.active_drag = Some(AnyDrag {
3752                            value: Arc::new(paths.clone()),
3753                            view: cx.new(|_| paths).into(),
3754                            cursor_offset: position,
3755                            cursor_style: None,
3756                        });
3757                    }
3758                    PlatformInput::MouseMove(MouseMoveEvent {
3759                        position,
3760                        pressed_button: Some(MouseButton::Left),
3761                        modifiers: Modifiers::default(),
3762                    })
3763                }
3764                FileDropEvent::Pending { position } => {
3765                    self.mouse_position = position;
3766                    PlatformInput::MouseMove(MouseMoveEvent {
3767                        position,
3768                        pressed_button: Some(MouseButton::Left),
3769                        modifiers: Modifiers::default(),
3770                    })
3771                }
3772                FileDropEvent::Submit { position } => {
3773                    cx.activate(true);
3774                    self.mouse_position = position;
3775                    PlatformInput::MouseUp(MouseUpEvent {
3776                        button: MouseButton::Left,
3777                        position,
3778                        modifiers: Modifiers::default(),
3779                        click_count: 1,
3780                    })
3781                }
3782                FileDropEvent::Exited => {
3783                    cx.active_drag.take();
3784                    PlatformInput::FileDrop(FileDropEvent::Exited)
3785                }
3786            },
3787            PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3788        };
3789
3790        if let Some(any_mouse_event) = event.mouse_event() {
3791            self.dispatch_mouse_event(any_mouse_event, cx);
3792        } else if let Some(any_key_event) = event.keyboard_event() {
3793            self.dispatch_key_event(any_key_event, cx);
3794        }
3795
3796        DispatchEventResult {
3797            propagate: cx.propagate_event,
3798            default_prevented: self.default_prevented,
3799        }
3800    }
3801
3802    fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3803        let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3804        if hit_test != self.mouse_hit_test {
3805            self.mouse_hit_test = hit_test;
3806            self.reset_cursor_style(cx);
3807        }
3808
3809        #[cfg(any(feature = "inspector", debug_assertions))]
3810        if self.is_inspector_picking(cx) {
3811            self.handle_inspector_mouse_event(event, cx);
3812            // When inspector is picking, all other mouse handling is skipped.
3813            return;
3814        }
3815
3816        let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3817
3818        // Capture phase, events bubble from back to front. Handlers for this phase are used for
3819        // special purposes, such as detecting events outside of a given Bounds.
3820        for listener in &mut mouse_listeners {
3821            let listener = listener.as_mut().unwrap();
3822            listener(event, DispatchPhase::Capture, self, cx);
3823            if !cx.propagate_event {
3824                break;
3825            }
3826        }
3827
3828        // Bubble phase, where most normal handlers do their work.
3829        if cx.propagate_event {
3830            for listener in mouse_listeners.iter_mut().rev() {
3831                let listener = listener.as_mut().unwrap();
3832                listener(event, DispatchPhase::Bubble, self, cx);
3833                if !cx.propagate_event {
3834                    break;
3835                }
3836            }
3837        }
3838
3839        self.rendered_frame.mouse_listeners = mouse_listeners;
3840
3841        if cx.has_active_drag() {
3842            if event.is::<MouseMoveEvent>() {
3843                // If this was a mouse move event, redraw the window so that the
3844                // active drag can follow the mouse cursor.
3845                self.refresh();
3846            } else if event.is::<MouseUpEvent>() {
3847                // If this was a mouse up event, cancel the active drag and redraw
3848                // the window.
3849                cx.active_drag = None;
3850                self.refresh();
3851            }
3852        }
3853    }
3854
3855    fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3856        if self.invalidator.is_dirty() {
3857            self.draw(cx).clear();
3858        }
3859
3860        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3861        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3862
3863        let mut keystroke: Option<Keystroke> = None;
3864
3865        if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3866            if event.modifiers.number_of_modifiers() == 0
3867                && self.pending_modifier.modifiers.number_of_modifiers() == 1
3868                && !self.pending_modifier.saw_keystroke
3869            {
3870                let key = match self.pending_modifier.modifiers {
3871                    modifiers if modifiers.shift => Some("shift"),
3872                    modifiers if modifiers.control => Some("control"),
3873                    modifiers if modifiers.alt => Some("alt"),
3874                    modifiers if modifiers.platform => Some("platform"),
3875                    modifiers if modifiers.function => Some("function"),
3876                    _ => None,
3877                };
3878                if let Some(key) = key {
3879                    keystroke = Some(Keystroke {
3880                        key: key.to_string(),
3881                        key_char: None,
3882                        modifiers: Modifiers::default(),
3883                    });
3884                }
3885            }
3886
3887            if self.pending_modifier.modifiers.number_of_modifiers() == 0
3888                && event.modifiers.number_of_modifiers() == 1
3889            {
3890                self.pending_modifier.saw_keystroke = false
3891            }
3892            self.pending_modifier.modifiers = event.modifiers
3893        } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3894            self.pending_modifier.saw_keystroke = true;
3895            keystroke = Some(key_down_event.keystroke.clone());
3896        }
3897
3898        let Some(keystroke) = keystroke else {
3899            self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3900            return;
3901        };
3902
3903        cx.propagate_event = true;
3904        self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3905        if !cx.propagate_event {
3906            self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3907            return;
3908        }
3909
3910        let mut currently_pending = self.pending_input.take().unwrap_or_default();
3911        if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3912            currently_pending = PendingInput::default();
3913        }
3914
3915        let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3916            currently_pending.keystrokes,
3917            keystroke,
3918            &dispatch_path,
3919        );
3920
3921        if !match_result.to_replay.is_empty() {
3922            self.replay_pending_input(match_result.to_replay, cx);
3923            cx.propagate_event = true;
3924        }
3925
3926        if !match_result.pending.is_empty() {
3927            currently_pending.timer.take();
3928            currently_pending.keystrokes = match_result.pending;
3929            currently_pending.focus = self.focus;
3930
3931            let text_input_requires_timeout = event
3932                .downcast_ref::<KeyDownEvent>()
3933                .filter(|key_down| key_down.keystroke.key_char.is_some())
3934                .and_then(|_| self.platform_window.take_input_handler())
3935                .map_or(false, |mut input_handler| {
3936                    let accepts = input_handler.accepts_text_input(self, cx);
3937                    self.platform_window.set_input_handler(input_handler);
3938                    accepts
3939                });
3940
3941            currently_pending.needs_timeout |=
3942                match_result.pending_has_binding || text_input_requires_timeout;
3943
3944            if currently_pending.needs_timeout {
3945                currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3946                    cx.background_executor.timer(Duration::from_secs(1)).await;
3947                    cx.update(move |window, cx| {
3948                        let Some(currently_pending) = window
3949                            .pending_input
3950                            .take()
3951                            .filter(|pending| pending.focus == window.focus)
3952                        else {
3953                            return;
3954                        };
3955
3956                        let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3957                        let dispatch_path =
3958                            window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3959
3960                        let to_replay = window
3961                            .rendered_frame
3962                            .dispatch_tree
3963                            .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3964
3965                        window.pending_input_changed(cx);
3966                        window.replay_pending_input(to_replay, cx)
3967                    })
3968                    .log_err();
3969                }));
3970            } else {
3971                currently_pending.timer = None;
3972            }
3973            self.pending_input = Some(currently_pending);
3974            self.pending_input_changed(cx);
3975            cx.propagate_event = false;
3976            return;
3977        }
3978
3979        let skip_bindings = event
3980            .downcast_ref::<KeyDownEvent>()
3981            .filter(|key_down_event| key_down_event.prefer_character_input)
3982            .map(|_| {
3983                self.platform_window
3984                    .take_input_handler()
3985                    .map_or(false, |mut input_handler| {
3986                        let accepts = input_handler.accepts_text_input(self, cx);
3987                        self.platform_window.set_input_handler(input_handler);
3988                        // If modifiers are not excessive (e.g. AltGr), and the input handler is accepting text input,
3989                        // we prefer the text input over bindings.
3990                        accepts
3991                    })
3992            })
3993            .unwrap_or(false);
3994
3995        if !skip_bindings {
3996            for binding in match_result.bindings {
3997                self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3998                if !cx.propagate_event {
3999                    self.dispatch_keystroke_observers(
4000                        event,
4001                        Some(binding.action),
4002                        match_result.context_stack,
4003                        cx,
4004                    );
4005                    self.pending_input_changed(cx);
4006                    return;
4007                }
4008            }
4009        }
4010
4011        self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
4012        self.pending_input_changed(cx);
4013    }
4014
4015    fn finish_dispatch_key_event(
4016        &mut self,
4017        event: &dyn Any,
4018        dispatch_path: SmallVec<[DispatchNodeId; 32]>,
4019        context_stack: Vec<KeyContext>,
4020        cx: &mut App,
4021    ) {
4022        self.dispatch_key_down_up_event(event, &dispatch_path, cx);
4023        if !cx.propagate_event {
4024            return;
4025        }
4026
4027        self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
4028        if !cx.propagate_event {
4029            return;
4030        }
4031
4032        self.dispatch_keystroke_observers(event, None, context_stack, cx);
4033    }
4034
4035    pub(crate) fn pending_input_changed(&mut self, cx: &mut App) {
4036        self.pending_input_observers
4037            .clone()
4038            .retain(&(), |callback| callback(self, cx));
4039    }
4040
4041    fn dispatch_key_down_up_event(
4042        &mut self,
4043        event: &dyn Any,
4044        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4045        cx: &mut App,
4046    ) {
4047        // Capture phase
4048        for node_id in dispatch_path {
4049            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4050
4051            for key_listener in node.key_listeners.clone() {
4052                key_listener(event, DispatchPhase::Capture, self, cx);
4053                if !cx.propagate_event {
4054                    return;
4055                }
4056            }
4057        }
4058
4059        // Bubble phase
4060        for node_id in dispatch_path.iter().rev() {
4061            // Handle low level key events
4062            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4063            for key_listener in node.key_listeners.clone() {
4064                key_listener(event, DispatchPhase::Bubble, self, cx);
4065                if !cx.propagate_event {
4066                    return;
4067                }
4068            }
4069        }
4070    }
4071
4072    fn dispatch_modifiers_changed_event(
4073        &mut self,
4074        event: &dyn Any,
4075        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4076        cx: &mut App,
4077    ) {
4078        let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
4079            return;
4080        };
4081        for node_id in dispatch_path.iter().rev() {
4082            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4083            for listener in node.modifiers_changed_listeners.clone() {
4084                listener(event, self, cx);
4085                if !cx.propagate_event {
4086                    return;
4087                }
4088            }
4089        }
4090    }
4091
4092    /// Determine whether a potential multi-stroke key binding is in progress on this window.
4093    pub fn has_pending_keystrokes(&self) -> bool {
4094        self.pending_input.is_some()
4095    }
4096
4097    pub(crate) fn clear_pending_keystrokes(&mut self) {
4098        self.pending_input.take();
4099    }
4100
4101    /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
4102    pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
4103        self.pending_input
4104            .as_ref()
4105            .map(|pending_input| pending_input.keystrokes.as_slice())
4106    }
4107
4108    fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
4109        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4110        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4111
4112        'replay: for replay in replays {
4113            let event = KeyDownEvent {
4114                keystroke: replay.keystroke.clone(),
4115                is_held: false,
4116                prefer_character_input: true,
4117            };
4118
4119            cx.propagate_event = true;
4120            for binding in replay.bindings {
4121                self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4122                if !cx.propagate_event {
4123                    self.dispatch_keystroke_observers(
4124                        &event,
4125                        Some(binding.action),
4126                        Vec::default(),
4127                        cx,
4128                    );
4129                    continue 'replay;
4130                }
4131            }
4132
4133            self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
4134            if !cx.propagate_event {
4135                continue 'replay;
4136            }
4137            if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
4138                && let Some(mut input_handler) = self.platform_window.take_input_handler()
4139            {
4140                input_handler.dispatch_input(&input, self, cx);
4141                self.platform_window.set_input_handler(input_handler)
4142            }
4143        }
4144    }
4145
4146    fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4147        focus_id
4148            .and_then(|focus_id| {
4149                self.rendered_frame
4150                    .dispatch_tree
4151                    .focusable_node_id(focus_id)
4152            })
4153            .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4154    }
4155
4156    fn dispatch_action_on_node(
4157        &mut self,
4158        node_id: DispatchNodeId,
4159        action: &dyn Action,
4160        cx: &mut App,
4161    ) {
4162        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4163
4164        // Capture phase for global actions.
4165        cx.propagate_event = true;
4166        if let Some(mut global_listeners) = cx
4167            .global_action_listeners
4168            .remove(&action.as_any().type_id())
4169        {
4170            for listener in &global_listeners {
4171                listener(action.as_any(), DispatchPhase::Capture, cx);
4172                if !cx.propagate_event {
4173                    break;
4174                }
4175            }
4176
4177            global_listeners.extend(
4178                cx.global_action_listeners
4179                    .remove(&action.as_any().type_id())
4180                    .unwrap_or_default(),
4181            );
4182
4183            cx.global_action_listeners
4184                .insert(action.as_any().type_id(), global_listeners);
4185        }
4186
4187        if !cx.propagate_event {
4188            return;
4189        }
4190
4191        // Capture phase for window actions.
4192        for node_id in &dispatch_path {
4193            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4194            for DispatchActionListener {
4195                action_type,
4196                listener,
4197            } in node.action_listeners.clone()
4198            {
4199                let any_action = action.as_any();
4200                if action_type == any_action.type_id() {
4201                    listener(any_action, DispatchPhase::Capture, self, cx);
4202
4203                    if !cx.propagate_event {
4204                        return;
4205                    }
4206                }
4207            }
4208        }
4209
4210        // Bubble phase for window actions.
4211        for node_id in dispatch_path.iter().rev() {
4212            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4213            for DispatchActionListener {
4214                action_type,
4215                listener,
4216            } in node.action_listeners.clone()
4217            {
4218                let any_action = action.as_any();
4219                if action_type == any_action.type_id() {
4220                    cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4221                    listener(any_action, DispatchPhase::Bubble, self, cx);
4222
4223                    if !cx.propagate_event {
4224                        return;
4225                    }
4226                }
4227            }
4228        }
4229
4230        // Bubble phase for global actions.
4231        if let Some(mut global_listeners) = cx
4232            .global_action_listeners
4233            .remove(&action.as_any().type_id())
4234        {
4235            for listener in global_listeners.iter().rev() {
4236                cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4237
4238                listener(action.as_any(), DispatchPhase::Bubble, cx);
4239                if !cx.propagate_event {
4240                    break;
4241                }
4242            }
4243
4244            global_listeners.extend(
4245                cx.global_action_listeners
4246                    .remove(&action.as_any().type_id())
4247                    .unwrap_or_default(),
4248            );
4249
4250            cx.global_action_listeners
4251                .insert(action.as_any().type_id(), global_listeners);
4252        }
4253    }
4254
4255    /// Register the given handler to be invoked whenever the global of the given type
4256    /// is updated.
4257    pub fn observe_global<G: Global>(
4258        &mut self,
4259        cx: &mut App,
4260        f: impl Fn(&mut Window, &mut App) + 'static,
4261    ) -> Subscription {
4262        let window_handle = self.handle;
4263        let (subscription, activate) = cx.global_observers.insert(
4264            TypeId::of::<G>(),
4265            Box::new(move |cx| {
4266                window_handle
4267                    .update(cx, |_, window, cx| f(window, cx))
4268                    .is_ok()
4269            }),
4270        );
4271        cx.defer(move |_| activate());
4272        subscription
4273    }
4274
4275    /// Focus the current window and bring it to the foreground at the platform level.
4276    pub fn activate_window(&self) {
4277        self.platform_window.activate();
4278    }
4279
4280    /// Minimize the current window at the platform level.
4281    pub fn minimize_window(&self) {
4282        self.platform_window.minimize();
4283    }
4284
4285    /// Toggle full screen status on the current window at the platform level.
4286    pub fn toggle_fullscreen(&self) {
4287        self.platform_window.toggle_fullscreen();
4288    }
4289
4290    /// Updates the IME panel position suggestions for languages like japanese, chinese.
4291    pub fn invalidate_character_coordinates(&self) {
4292        self.on_next_frame(|window, cx| {
4293            if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4294                if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4295                    window.platform_window.update_ime_position(bounds);
4296                }
4297                window.platform_window.set_input_handler(input_handler);
4298            }
4299        });
4300    }
4301
4302    /// Present a platform dialog.
4303    /// The provided message will be presented, along with buttons for each answer.
4304    /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4305    pub fn prompt<T>(
4306        &mut self,
4307        level: PromptLevel,
4308        message: &str,
4309        detail: Option<&str>,
4310        answers: &[T],
4311        cx: &mut App,
4312    ) -> oneshot::Receiver<usize>
4313    where
4314        T: Clone + Into<PromptButton>,
4315    {
4316        let prompt_builder = cx.prompt_builder.take();
4317        let Some(prompt_builder) = prompt_builder else {
4318            unreachable!("Re-entrant window prompting is not supported by GPUI");
4319        };
4320
4321        let answers = answers
4322            .iter()
4323            .map(|answer| answer.clone().into())
4324            .collect::<Vec<_>>();
4325
4326        let receiver = match &prompt_builder {
4327            PromptBuilder::Default => self
4328                .platform_window
4329                .prompt(level, message, detail, &answers)
4330                .unwrap_or_else(|| {
4331                    self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4332                }),
4333            PromptBuilder::Custom(_) => {
4334                self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4335            }
4336        };
4337
4338        cx.prompt_builder = Some(prompt_builder);
4339
4340        receiver
4341    }
4342
4343    fn build_custom_prompt(
4344        &mut self,
4345        prompt_builder: &PromptBuilder,
4346        level: PromptLevel,
4347        message: &str,
4348        detail: Option<&str>,
4349        answers: &[PromptButton],
4350        cx: &mut App,
4351    ) -> oneshot::Receiver<usize> {
4352        let (sender, receiver) = oneshot::channel();
4353        let handle = PromptHandle::new(sender);
4354        let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4355        self.prompt = Some(handle);
4356        receiver
4357    }
4358
4359    /// Returns the current context stack.
4360    pub fn context_stack(&self) -> Vec<KeyContext> {
4361        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4362        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4363        dispatch_tree
4364            .dispatch_path(node_id)
4365            .iter()
4366            .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4367            .collect()
4368    }
4369
4370    /// Returns all available actions for the focused element.
4371    pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4372        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4373        let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4374        for action_type in cx.global_action_listeners.keys() {
4375            if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4376                let action = cx.actions.build_action_type(action_type).ok();
4377                if let Some(action) = action {
4378                    actions.insert(ix, action);
4379                }
4380            }
4381        }
4382        actions
4383    }
4384
4385    /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4386    /// returned in the order they were added. For display, the last binding should take precedence.
4387    pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4388        self.rendered_frame
4389            .dispatch_tree
4390            .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4391    }
4392
4393    /// Returns the highest precedence key binding that invokes an action on the currently focused
4394    /// element. This is more efficient than getting the last result of `bindings_for_action`.
4395    pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4396        self.rendered_frame
4397            .dispatch_tree
4398            .highest_precedence_binding_for_action(
4399                action,
4400                &self.rendered_frame.dispatch_tree.context_stack,
4401            )
4402    }
4403
4404    /// Returns the key bindings for an action in a context.
4405    pub fn bindings_for_action_in_context(
4406        &self,
4407        action: &dyn Action,
4408        context: KeyContext,
4409    ) -> Vec<KeyBinding> {
4410        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4411        dispatch_tree.bindings_for_action(action, &[context])
4412    }
4413
4414    /// Returns the highest precedence key binding for an action in a context. This is more
4415    /// efficient than getting the last result of `bindings_for_action_in_context`.
4416    pub fn highest_precedence_binding_for_action_in_context(
4417        &self,
4418        action: &dyn Action,
4419        context: KeyContext,
4420    ) -> Option<KeyBinding> {
4421        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4422        dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4423    }
4424
4425    /// Returns any bindings that would invoke an action on the given focus handle if it were
4426    /// focused. Bindings are returned in the order they were added. For display, the last binding
4427    /// should take precedence.
4428    pub fn bindings_for_action_in(
4429        &self,
4430        action: &dyn Action,
4431        focus_handle: &FocusHandle,
4432    ) -> Vec<KeyBinding> {
4433        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4434        let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4435            return vec![];
4436        };
4437        dispatch_tree.bindings_for_action(action, &context_stack)
4438    }
4439
4440    /// Returns the highest precedence key binding that would invoke an action on the given focus
4441    /// handle if it were focused. This is more efficient than getting the last result of
4442    /// `bindings_for_action_in`.
4443    pub fn highest_precedence_binding_for_action_in(
4444        &self,
4445        action: &dyn Action,
4446        focus_handle: &FocusHandle,
4447    ) -> Option<KeyBinding> {
4448        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4449        let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4450        dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4451    }
4452
4453    fn context_stack_for_focus_handle(
4454        &self,
4455        focus_handle: &FocusHandle,
4456    ) -> Option<Vec<KeyContext>> {
4457        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4458        let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4459        let context_stack: Vec<_> = dispatch_tree
4460            .dispatch_path(node_id)
4461            .into_iter()
4462            .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4463            .collect();
4464        Some(context_stack)
4465    }
4466
4467    /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4468    pub fn listener_for<T: 'static, E>(
4469        &self,
4470        view: &Entity<T>,
4471        f: impl Fn(&mut T, &E, &mut Window, &mut Context<T>) + 'static,
4472    ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4473        let view = view.downgrade();
4474        move |e: &E, window: &mut Window, cx: &mut App| {
4475            view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4476        }
4477    }
4478
4479    /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4480    pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4481        &self,
4482        entity: &Entity<E>,
4483        f: Callback,
4484    ) -> impl Fn(&mut Window, &mut App) + 'static {
4485        let entity = entity.downgrade();
4486        move |window: &mut Window, cx: &mut App| {
4487            entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4488        }
4489    }
4490
4491    /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4492    /// If the callback returns false, the window won't be closed.
4493    pub fn on_window_should_close(
4494        &self,
4495        cx: &App,
4496        f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4497    ) {
4498        let mut cx = self.to_async(cx);
4499        self.platform_window.on_should_close(Box::new(move || {
4500            cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4501        }))
4502    }
4503
4504    /// Register an action listener on this node for the next frame. The type of action
4505    /// is determined by the first parameter of the given listener. When the next frame is rendered
4506    /// the listener will be cleared.
4507    ///
4508    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4509    /// a specific need to register a listener yourself.
4510    ///
4511    /// This method should only be called as part of the paint phase of element drawing.
4512    pub fn on_action(
4513        &mut self,
4514        action_type: TypeId,
4515        listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4516    ) {
4517        self.invalidator.debug_assert_paint();
4518
4519        self.next_frame
4520            .dispatch_tree
4521            .on_action(action_type, Rc::new(listener));
4522    }
4523
4524    /// Register a capturing action listener on this node for the next frame if the condition is true.
4525    /// The type of action is determined by the first parameter of the given listener. When the next
4526    /// frame is rendered the listener will be cleared.
4527    ///
4528    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4529    /// a specific need to register a listener yourself.
4530    ///
4531    /// This method should only be called as part of the paint phase of element drawing.
4532    pub fn on_action_when(
4533        &mut self,
4534        condition: bool,
4535        action_type: TypeId,
4536        listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4537    ) {
4538        self.invalidator.debug_assert_paint();
4539
4540        if condition {
4541            self.next_frame
4542                .dispatch_tree
4543                .on_action(action_type, Rc::new(listener));
4544        }
4545    }
4546
4547    /// Read information about the GPU backing this window.
4548    /// Currently returns None on Mac and Windows.
4549    pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4550        self.platform_window.gpu_specs()
4551    }
4552
4553    /// Perform titlebar double-click action.
4554    /// This is macOS specific.
4555    pub fn titlebar_double_click(&self) {
4556        self.platform_window.titlebar_double_click();
4557    }
4558
4559    /// Gets the window's title at the platform level.
4560    /// This is macOS specific.
4561    pub fn window_title(&self) -> String {
4562        self.platform_window.get_title()
4563    }
4564
4565    /// Returns a list of all tabbed windows and their titles.
4566    /// This is macOS specific.
4567    pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4568        self.platform_window.tabbed_windows()
4569    }
4570
4571    /// Returns the tab bar visibility.
4572    /// This is macOS specific.
4573    pub fn tab_bar_visible(&self) -> bool {
4574        self.platform_window.tab_bar_visible()
4575    }
4576
4577    /// Merges all open windows into a single tabbed window.
4578    /// This is macOS specific.
4579    pub fn merge_all_windows(&self) {
4580        self.platform_window.merge_all_windows()
4581    }
4582
4583    /// Moves the tab to a new containing window.
4584    /// This is macOS specific.
4585    pub fn move_tab_to_new_window(&self) {
4586        self.platform_window.move_tab_to_new_window()
4587    }
4588
4589    /// Shows or hides the window tab overview.
4590    /// This is macOS specific.
4591    pub fn toggle_window_tab_overview(&self) {
4592        self.platform_window.toggle_window_tab_overview()
4593    }
4594
4595    /// Sets the tabbing identifier for the window.
4596    /// This is macOS specific.
4597    pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4598        self.platform_window
4599            .set_tabbing_identifier(tabbing_identifier)
4600    }
4601
4602    /// Toggles the inspector mode on this window.
4603    #[cfg(any(feature = "inspector", debug_assertions))]
4604    pub fn toggle_inspector(&mut self, cx: &mut App) {
4605        self.inspector = match self.inspector {
4606            None => Some(cx.new(|_| Inspector::new())),
4607            Some(_) => None,
4608        };
4609        self.refresh();
4610    }
4611
4612    /// Returns true if the window is in inspector mode.
4613    pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4614        #[cfg(any(feature = "inspector", debug_assertions))]
4615        {
4616            if let Some(inspector) = &self.inspector {
4617                return inspector.read(_cx).is_picking();
4618            }
4619        }
4620        false
4621    }
4622
4623    /// Executes the provided function with mutable access to an inspector state.
4624    #[cfg(any(feature = "inspector", debug_assertions))]
4625    pub fn with_inspector_state<T: 'static, R>(
4626        &mut self,
4627        _inspector_id: Option<&crate::InspectorElementId>,
4628        cx: &mut App,
4629        f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4630    ) -> R {
4631        if let Some(inspector_id) = _inspector_id
4632            && let Some(inspector) = &self.inspector
4633        {
4634            let inspector = inspector.clone();
4635            let active_element_id = inspector.read(cx).active_element_id();
4636            if Some(inspector_id) == active_element_id {
4637                return inspector.update(cx, |inspector, _cx| {
4638                    inspector.with_active_element_state(self, f)
4639                });
4640            }
4641        }
4642        f(&mut None, self)
4643    }
4644
4645    #[cfg(any(feature = "inspector", debug_assertions))]
4646    pub(crate) fn build_inspector_element_id(
4647        &mut self,
4648        path: crate::InspectorElementPath,
4649    ) -> crate::InspectorElementId {
4650        self.invalidator.debug_assert_paint_or_prepaint();
4651        let path = Rc::new(path);
4652        let next_instance_id = self
4653            .next_frame
4654            .next_inspector_instance_ids
4655            .entry(path.clone())
4656            .or_insert(0);
4657        let instance_id = *next_instance_id;
4658        *next_instance_id += 1;
4659        crate::InspectorElementId { path, instance_id }
4660    }
4661
4662    #[cfg(any(feature = "inspector", debug_assertions))]
4663    fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4664        if let Some(inspector) = self.inspector.take() {
4665            let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4666            inspector_element.prepaint_as_root(
4667                point(self.viewport_size.width - inspector_width, px(0.0)),
4668                size(inspector_width, self.viewport_size.height).into(),
4669                self,
4670                cx,
4671            );
4672            self.inspector = Some(inspector);
4673            Some(inspector_element)
4674        } else {
4675            None
4676        }
4677    }
4678
4679    #[cfg(any(feature = "inspector", debug_assertions))]
4680    fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4681        if let Some(mut inspector_element) = inspector_element {
4682            inspector_element.paint(self, cx);
4683        };
4684    }
4685
4686    /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4687    /// inspect UI elements by clicking on them.
4688    #[cfg(any(feature = "inspector", debug_assertions))]
4689    pub fn insert_inspector_hitbox(
4690        &mut self,
4691        hitbox_id: HitboxId,
4692        inspector_id: Option<&crate::InspectorElementId>,
4693        cx: &App,
4694    ) {
4695        self.invalidator.debug_assert_paint_or_prepaint();
4696        if !self.is_inspector_picking(cx) {
4697            return;
4698        }
4699        if let Some(inspector_id) = inspector_id {
4700            self.next_frame
4701                .inspector_hitboxes
4702                .insert(hitbox_id, inspector_id.clone());
4703        }
4704    }
4705
4706    #[cfg(any(feature = "inspector", debug_assertions))]
4707    fn paint_inspector_hitbox(&mut self, cx: &App) {
4708        if let Some(inspector) = self.inspector.as_ref() {
4709            let inspector = inspector.read(cx);
4710            if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4711                && let Some(hitbox) = self
4712                    .next_frame
4713                    .hitboxes
4714                    .iter()
4715                    .find(|hitbox| hitbox.id == hitbox_id)
4716            {
4717                self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4718            }
4719        }
4720    }
4721
4722    #[cfg(any(feature = "inspector", debug_assertions))]
4723    fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4724        let Some(inspector) = self.inspector.clone() else {
4725            return;
4726        };
4727        if event.downcast_ref::<MouseMoveEvent>().is_some() {
4728            inspector.update(cx, |inspector, _cx| {
4729                if let Some((_, inspector_id)) =
4730                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4731                {
4732                    inspector.hover(inspector_id, self);
4733                }
4734            });
4735        } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4736            inspector.update(cx, |inspector, _cx| {
4737                if let Some((_, inspector_id)) =
4738                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4739                {
4740                    inspector.select(inspector_id, self);
4741                }
4742            });
4743        } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4744            // This should be kept in sync with SCROLL_LINES in x11 platform.
4745            const SCROLL_LINES: f32 = 3.0;
4746            const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4747            let delta_y = event
4748                .delta
4749                .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4750                .y;
4751            if let Some(inspector) = self.inspector.clone() {
4752                inspector.update(cx, |inspector, _cx| {
4753                    if let Some(depth) = inspector.pick_depth.as_mut() {
4754                        *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4755                        let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4756                        if *depth < 0.0 {
4757                            *depth = 0.0;
4758                        } else if *depth > max_depth {
4759                            *depth = max_depth;
4760                        }
4761                        if let Some((_, inspector_id)) =
4762                            self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4763                        {
4764                            inspector.set_active_element_id(inspector_id, self);
4765                        }
4766                    }
4767                });
4768            }
4769        }
4770    }
4771
4772    #[cfg(any(feature = "inspector", debug_assertions))]
4773    fn hovered_inspector_hitbox(
4774        &self,
4775        inspector: &Inspector,
4776        frame: &Frame,
4777    ) -> Option<(HitboxId, crate::InspectorElementId)> {
4778        if let Some(pick_depth) = inspector.pick_depth {
4779            let depth = (pick_depth as i64).try_into().unwrap_or(0);
4780            let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4781            let skip_count = (depth as usize).min(max_skipped);
4782            for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4783                if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4784                    return Some((*hitbox_id, inspector_id.clone()));
4785                }
4786            }
4787        }
4788        None
4789    }
4790
4791    /// For testing: set the current modifier keys state.
4792    /// This does not generate any events.
4793    #[cfg(any(test, feature = "test-support"))]
4794    pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4795        self.modifiers = modifiers;
4796    }
4797}
4798
4799// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4800slotmap::new_key_type! {
4801    /// A unique identifier for a window.
4802    pub struct WindowId;
4803}
4804
4805impl WindowId {
4806    /// Converts this window ID to a `u64`.
4807    pub fn as_u64(&self) -> u64 {
4808        self.0.as_ffi()
4809    }
4810}
4811
4812impl From<u64> for WindowId {
4813    fn from(value: u64) -> Self {
4814        WindowId(slotmap::KeyData::from_ffi(value))
4815    }
4816}
4817
4818/// A handle to a window with a specific root view type.
4819/// Note that this does not keep the window alive on its own.
4820#[derive(Deref, DerefMut)]
4821pub struct WindowHandle<V> {
4822    #[deref]
4823    #[deref_mut]
4824    pub(crate) any_handle: AnyWindowHandle,
4825    state_type: PhantomData<fn(V) -> V>,
4826}
4827
4828impl<V> Debug for WindowHandle<V> {
4829    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4830        f.debug_struct("WindowHandle")
4831            .field("any_handle", &self.any_handle.id.as_u64())
4832            .finish()
4833    }
4834}
4835
4836impl<V: 'static + Render> WindowHandle<V> {
4837    /// Creates a new handle from a window ID.
4838    /// This does not check if the root type of the window is `V`.
4839    pub fn new(id: WindowId) -> Self {
4840        WindowHandle {
4841            any_handle: AnyWindowHandle {
4842                id,
4843                state_type: TypeId::of::<V>(),
4844            },
4845            state_type: PhantomData,
4846        }
4847    }
4848
4849    /// Get the root view out of this window.
4850    ///
4851    /// This will fail if the window is closed or if the root view's type does not match `V`.
4852    #[cfg(any(test, feature = "test-support"))]
4853    pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4854    where
4855        C: AppContext,
4856    {
4857        crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4858            root_view
4859                .downcast::<V>()
4860                .map_err(|_| anyhow!("the type of the window's root view has changed"))
4861        }))
4862    }
4863
4864    /// Updates the root view of this window.
4865    ///
4866    /// This will fail if the window has been closed or if the root view's type does not match
4867    pub fn update<C, R>(
4868        &self,
4869        cx: &mut C,
4870        update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4871    ) -> Result<R>
4872    where
4873        C: AppContext,
4874    {
4875        cx.update_window(self.any_handle, |root_view, window, cx| {
4876            let view = root_view
4877                .downcast::<V>()
4878                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4879
4880            Ok(view.update(cx, |view, cx| update(view, window, cx)))
4881        })?
4882    }
4883
4884    /// Read the root view out of this window.
4885    ///
4886    /// This will fail if the window is closed or if the root view's type does not match `V`.
4887    pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4888        let x = cx
4889            .windows
4890            .get(self.id)
4891            .and_then(|window| {
4892                window
4893                    .as_deref()
4894                    .and_then(|window| window.root.clone())
4895                    .map(|root_view| root_view.downcast::<V>())
4896            })
4897            .context("window not found")?
4898            .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4899
4900        Ok(x.read(cx))
4901    }
4902
4903    /// Read the root view out of this window, with a callback
4904    ///
4905    /// This will fail if the window is closed or if the root view's type does not match `V`.
4906    pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4907    where
4908        C: AppContext,
4909    {
4910        cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4911    }
4912
4913    /// Read the root view pointer off of this window.
4914    ///
4915    /// This will fail if the window is closed or if the root view's type does not match `V`.
4916    pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4917    where
4918        C: AppContext,
4919    {
4920        cx.read_window(self, |root_view, _cx| root_view)
4921    }
4922
4923    /// Check if this window is 'active'.
4924    ///
4925    /// Will return `None` if the window is closed or currently
4926    /// borrowed.
4927    pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4928        cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4929            .ok()
4930    }
4931}
4932
4933impl<V> Copy for WindowHandle<V> {}
4934
4935impl<V> Clone for WindowHandle<V> {
4936    fn clone(&self) -> Self {
4937        *self
4938    }
4939}
4940
4941impl<V> PartialEq for WindowHandle<V> {
4942    fn eq(&self, other: &Self) -> bool {
4943        self.any_handle == other.any_handle
4944    }
4945}
4946
4947impl<V> Eq for WindowHandle<V> {}
4948
4949impl<V> Hash for WindowHandle<V> {
4950    fn hash<H: Hasher>(&self, state: &mut H) {
4951        self.any_handle.hash(state);
4952    }
4953}
4954
4955impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4956    fn from(val: WindowHandle<V>) -> Self {
4957        val.any_handle
4958    }
4959}
4960
4961/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4962#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4963pub struct AnyWindowHandle {
4964    pub(crate) id: WindowId,
4965    state_type: TypeId,
4966}
4967
4968impl AnyWindowHandle {
4969    /// Get the ID of this window.
4970    pub fn window_id(&self) -> WindowId {
4971        self.id
4972    }
4973
4974    /// Attempt to convert this handle to a window handle with a specific root view type.
4975    /// If the types do not match, this will return `None`.
4976    pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4977        if TypeId::of::<T>() == self.state_type {
4978            Some(WindowHandle {
4979                any_handle: *self,
4980                state_type: PhantomData,
4981            })
4982        } else {
4983            None
4984        }
4985    }
4986
4987    /// Updates the state of the root view of this window.
4988    ///
4989    /// This will fail if the window has been closed.
4990    pub fn update<C, R>(
4991        self,
4992        cx: &mut C,
4993        update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4994    ) -> Result<R>
4995    where
4996        C: AppContext,
4997    {
4998        cx.update_window(self, update)
4999    }
5000
5001    /// Read the state of the root view of this window.
5002    ///
5003    /// This will fail if the window has been closed.
5004    pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
5005    where
5006        C: AppContext,
5007        T: 'static,
5008    {
5009        let view = self
5010            .downcast::<T>()
5011            .context("the type of the window's root view has changed")?;
5012
5013        cx.read_window(&view, read)
5014    }
5015}
5016
5017impl HasWindowHandle for Window {
5018    fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
5019        self.platform_window.window_handle()
5020    }
5021}
5022
5023impl HasDisplayHandle for Window {
5024    fn display_handle(
5025        &self,
5026    ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
5027        self.platform_window.display_handle()
5028    }
5029}
5030
5031/// An identifier for an [`Element`].
5032///
5033/// Can be constructed with a string, a number, or both, as well
5034/// as other internal representations.
5035#[derive(Clone, Debug, Eq, PartialEq, Hash)]
5036pub enum ElementId {
5037    /// The ID of a View element
5038    View(EntityId),
5039    /// An integer ID.
5040    Integer(u64),
5041    /// A string based ID.
5042    Name(SharedString),
5043    /// A UUID.
5044    Uuid(Uuid),
5045    /// An ID that's equated with a focus handle.
5046    FocusHandle(FocusId),
5047    /// A combination of a name and an integer.
5048    NamedInteger(SharedString, u64),
5049    /// A path.
5050    Path(Arc<std::path::Path>),
5051    /// A code location.
5052    CodeLocation(core::panic::Location<'static>),
5053    /// A labeled child of an element.
5054    NamedChild(Arc<ElementId>, SharedString),
5055}
5056
5057impl ElementId {
5058    /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
5059    pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
5060        Self::NamedInteger(name.into(), integer as u64)
5061    }
5062}
5063
5064impl Display for ElementId {
5065    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
5066        match self {
5067            ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
5068            ElementId::Integer(ix) => write!(f, "{}", ix)?,
5069            ElementId::Name(name) => write!(f, "{}", name)?,
5070            ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
5071            ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
5072            ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
5073            ElementId::Path(path) => write!(f, "{}", path.display())?,
5074            ElementId::CodeLocation(location) => write!(f, "{}", location)?,
5075            ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
5076        }
5077
5078        Ok(())
5079    }
5080}
5081
5082impl TryInto<SharedString> for ElementId {
5083    type Error = anyhow::Error;
5084
5085    fn try_into(self) -> anyhow::Result<SharedString> {
5086        if let ElementId::Name(name) = self {
5087            Ok(name)
5088        } else {
5089            anyhow::bail!("element id is not string")
5090        }
5091    }
5092}
5093
5094impl From<usize> for ElementId {
5095    fn from(id: usize) -> Self {
5096        ElementId::Integer(id as u64)
5097    }
5098}
5099
5100impl From<i32> for ElementId {
5101    fn from(id: i32) -> Self {
5102        Self::Integer(id as u64)
5103    }
5104}
5105
5106impl From<SharedString> for ElementId {
5107    fn from(name: SharedString) -> Self {
5108        ElementId::Name(name)
5109    }
5110}
5111
5112impl From<String> for ElementId {
5113    fn from(name: String) -> Self {
5114        ElementId::Name(name.into())
5115    }
5116}
5117
5118impl From<Arc<str>> for ElementId {
5119    fn from(name: Arc<str>) -> Self {
5120        ElementId::Name(name.into())
5121    }
5122}
5123
5124impl From<Arc<std::path::Path>> for ElementId {
5125    fn from(path: Arc<std::path::Path>) -> Self {
5126        ElementId::Path(path)
5127    }
5128}
5129
5130impl From<&'static str> for ElementId {
5131    fn from(name: &'static str) -> Self {
5132        ElementId::Name(name.into())
5133    }
5134}
5135
5136impl<'a> From<&'a FocusHandle> for ElementId {
5137    fn from(handle: &'a FocusHandle) -> Self {
5138        ElementId::FocusHandle(handle.id)
5139    }
5140}
5141
5142impl From<(&'static str, EntityId)> for ElementId {
5143    fn from((name, id): (&'static str, EntityId)) -> Self {
5144        ElementId::NamedInteger(name.into(), id.as_u64())
5145    }
5146}
5147
5148impl From<(&'static str, usize)> for ElementId {
5149    fn from((name, id): (&'static str, usize)) -> Self {
5150        ElementId::NamedInteger(name.into(), id as u64)
5151    }
5152}
5153
5154impl From<(SharedString, usize)> for ElementId {
5155    fn from((name, id): (SharedString, usize)) -> Self {
5156        ElementId::NamedInteger(name, id as u64)
5157    }
5158}
5159
5160impl From<(&'static str, u64)> for ElementId {
5161    fn from((name, id): (&'static str, u64)) -> Self {
5162        ElementId::NamedInteger(name.into(), id)
5163    }
5164}
5165
5166impl From<Uuid> for ElementId {
5167    fn from(value: Uuid) -> Self {
5168        Self::Uuid(value)
5169    }
5170}
5171
5172impl From<(&'static str, u32)> for ElementId {
5173    fn from((name, id): (&'static str, u32)) -> Self {
5174        ElementId::NamedInteger(name.into(), id.into())
5175    }
5176}
5177
5178impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5179    fn from((id, name): (ElementId, T)) -> Self {
5180        ElementId::NamedChild(Arc::new(id), name.into())
5181    }
5182}
5183
5184impl From<&'static core::panic::Location<'static>> for ElementId {
5185    fn from(location: &'static core::panic::Location<'static>) -> Self {
5186        ElementId::CodeLocation(*location)
5187    }
5188}
5189
5190/// A rectangle to be rendered in the window at the given position and size.
5191/// Passed as an argument [`Window::paint_quad`].
5192#[derive(Clone)]
5193pub struct PaintQuad {
5194    /// The bounds of the quad within the window.
5195    pub bounds: Bounds<Pixels>,
5196    /// The radii of the quad's corners.
5197    pub corner_radii: Corners<Pixels>,
5198    /// The background color of the quad.
5199    pub background: Background,
5200    /// The widths of the quad's borders.
5201    pub border_widths: Edges<Pixels>,
5202    /// The color of the quad's borders.
5203    pub border_color: Hsla,
5204    /// The style of the quad's borders.
5205    pub border_style: BorderStyle,
5206}
5207
5208impl PaintQuad {
5209    /// Sets the corner radii of the quad.
5210    pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5211        PaintQuad {
5212            corner_radii: corner_radii.into(),
5213            ..self
5214        }
5215    }
5216
5217    /// Sets the border widths of the quad.
5218    pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5219        PaintQuad {
5220            border_widths: border_widths.into(),
5221            ..self
5222        }
5223    }
5224
5225    /// Sets the border color of the quad.
5226    pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5227        PaintQuad {
5228            border_color: border_color.into(),
5229            ..self
5230        }
5231    }
5232
5233    /// Sets the background color of the quad.
5234    pub fn background(self, background: impl Into<Background>) -> Self {
5235        PaintQuad {
5236            background: background.into(),
5237            ..self
5238        }
5239    }
5240}
5241
5242/// Creates a quad with the given parameters.
5243pub fn quad(
5244    bounds: Bounds<Pixels>,
5245    corner_radii: impl Into<Corners<Pixels>>,
5246    background: impl Into<Background>,
5247    border_widths: impl Into<Edges<Pixels>>,
5248    border_color: impl Into<Hsla>,
5249    border_style: BorderStyle,
5250) -> PaintQuad {
5251    PaintQuad {
5252        bounds,
5253        corner_radii: corner_radii.into(),
5254        background: background.into(),
5255        border_widths: border_widths.into(),
5256        border_color: border_color.into(),
5257        border_style,
5258    }
5259}
5260
5261/// Creates a filled quad with the given bounds and background color.
5262pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5263    PaintQuad {
5264        bounds: bounds.into(),
5265        corner_radii: (0.).into(),
5266        background: background.into(),
5267        border_widths: (0.).into(),
5268        border_color: transparent_black(),
5269        border_style: BorderStyle::default(),
5270    }
5271}
5272
5273/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5274pub fn outline(
5275    bounds: impl Into<Bounds<Pixels>>,
5276    border_color: impl Into<Hsla>,
5277    border_style: BorderStyle,
5278) -> PaintQuad {
5279    PaintQuad {
5280        bounds: bounds.into(),
5281        corner_radii: (0.).into(),
5282        background: transparent_black().into(),
5283        border_widths: (1.).into(),
5284        border_color: border_color.into(),
5285        border_style,
5286    }
5287}