1use super::{
2 auth,
3 db::{ChannelId, MessageId, UserId},
4 AppState,
5};
6use anyhow::anyhow;
7use async_std::{sync::RwLock, task};
8use async_tungstenite::{tungstenite::protocol::Role, WebSocketStream};
9use futures::{future::BoxFuture, FutureExt};
10use postage::{mpsc, prelude::Sink as _, prelude::Stream as _};
11use sha1::{Digest as _, Sha1};
12use std::{
13 any::TypeId,
14 collections::{hash_map, HashMap, HashSet},
15 future::Future,
16 mem,
17 sync::Arc,
18 time::Instant,
19};
20use surf::StatusCode;
21use tide::log;
22use tide::{
23 http::headers::{HeaderName, CONNECTION, UPGRADE},
24 Request, Response,
25};
26use time::OffsetDateTime;
27use zrpc::{
28 auth::random_token,
29 proto::{self, AnyTypedEnvelope, EnvelopedMessage},
30 Connection, ConnectionId, Peer, TypedEnvelope,
31};
32
33type ReplicaId = u16;
34
35type MessageHandler = Box<
36 dyn Send
37 + Sync
38 + Fn(Arc<Server>, Box<dyn AnyTypedEnvelope>) -> BoxFuture<'static, tide::Result<()>>,
39>;
40
41pub struct Server {
42 peer: Arc<Peer>,
43 state: RwLock<ServerState>,
44 app_state: Arc<AppState>,
45 handlers: HashMap<TypeId, MessageHandler>,
46 notifications: Option<mpsc::Sender<()>>,
47}
48
49#[derive(Default)]
50struct ServerState {
51 connections: HashMap<ConnectionId, ConnectionState>,
52 pub worktrees: HashMap<u64, Worktree>,
53 channels: HashMap<ChannelId, Channel>,
54 next_worktree_id: u64,
55}
56
57struct ConnectionState {
58 user_id: UserId,
59 worktrees: HashSet<u64>,
60 channels: HashSet<ChannelId>,
61}
62
63struct Worktree {
64 host_connection_id: Option<ConnectionId>,
65 guest_connection_ids: HashMap<ConnectionId, ReplicaId>,
66 active_replica_ids: HashSet<ReplicaId>,
67 access_token: String,
68 root_name: String,
69 entries: HashMap<u64, proto::Entry>,
70}
71
72#[derive(Default)]
73struct Channel {
74 connection_ids: HashSet<ConnectionId>,
75}
76
77const MESSAGE_COUNT_PER_PAGE: usize = 100;
78const MAX_MESSAGE_LEN: usize = 1024;
79
80impl Server {
81 pub fn new(
82 app_state: Arc<AppState>,
83 peer: Arc<Peer>,
84 notifications: Option<mpsc::Sender<()>>,
85 ) -> Arc<Self> {
86 let mut server = Self {
87 peer,
88 app_state,
89 state: Default::default(),
90 handlers: Default::default(),
91 notifications,
92 };
93
94 server
95 .add_handler(Server::ping)
96 .add_handler(Server::share_worktree)
97 .add_handler(Server::join_worktree)
98 .add_handler(Server::update_worktree)
99 .add_handler(Server::close_worktree)
100 .add_handler(Server::open_buffer)
101 .add_handler(Server::close_buffer)
102 .add_handler(Server::update_buffer)
103 .add_handler(Server::buffer_saved)
104 .add_handler(Server::save_buffer)
105 .add_handler(Server::get_channels)
106 .add_handler(Server::get_users)
107 .add_handler(Server::join_channel)
108 .add_handler(Server::leave_channel)
109 .add_handler(Server::send_channel_message)
110 .add_handler(Server::get_channel_messages);
111
112 Arc::new(server)
113 }
114
115 fn add_handler<F, Fut, M>(&mut self, handler: F) -> &mut Self
116 where
117 F: 'static + Send + Sync + Fn(Arc<Self>, TypedEnvelope<M>) -> Fut,
118 Fut: 'static + Send + Future<Output = tide::Result<()>>,
119 M: EnvelopedMessage,
120 {
121 let prev_handler = self.handlers.insert(
122 TypeId::of::<M>(),
123 Box::new(move |server, envelope| {
124 let envelope = envelope.into_any().downcast::<TypedEnvelope<M>>().unwrap();
125 (handler)(server, *envelope).boxed()
126 }),
127 );
128 if prev_handler.is_some() {
129 panic!("registered a handler for the same message twice");
130 }
131 self
132 }
133
134 pub fn handle_connection(
135 self: &Arc<Self>,
136 connection: Connection,
137 addr: String,
138 user_id: UserId,
139 ) -> impl Future<Output = ()> {
140 let this = self.clone();
141 async move {
142 let (connection_id, handle_io, mut incoming_rx) =
143 this.peer.add_connection(connection).await;
144 this.add_connection(connection_id, user_id).await;
145
146 let handle_io = handle_io.fuse();
147 futures::pin_mut!(handle_io);
148 loop {
149 let next_message = incoming_rx.recv().fuse();
150 futures::pin_mut!(next_message);
151 futures::select_biased! {
152 message = next_message => {
153 if let Some(message) = message {
154 let start_time = Instant::now();
155 log::info!("RPC message received: {}", message.payload_type_name());
156 if let Some(handler) = this.handlers.get(&message.payload_type_id()) {
157 if let Err(err) = (handler)(this.clone(), message).await {
158 log::error!("error handling message: {:?}", err);
159 } else {
160 log::info!("RPC message handled. duration:{:?}", start_time.elapsed());
161 }
162
163 if let Some(mut notifications) = this.notifications.clone() {
164 let _ = notifications.send(()).await;
165 }
166 } else {
167 log::warn!("unhandled message: {}", message.payload_type_name());
168 }
169 } else {
170 log::info!("rpc connection closed {:?}", addr);
171 break;
172 }
173 }
174 handle_io = handle_io => {
175 if let Err(err) = handle_io {
176 log::error!("error handling rpc connection {:?} - {:?}", addr, err);
177 }
178 break;
179 }
180 }
181 }
182
183 if let Err(err) = this.sign_out(connection_id).await {
184 log::error!("error signing out connection {:?} - {:?}", addr, err);
185 }
186 }
187 }
188
189 async fn sign_out(self: &Arc<Self>, connection_id: zrpc::ConnectionId) -> tide::Result<()> {
190 self.peer.disconnect(connection_id).await;
191 let worktree_ids = self.remove_connection(connection_id).await;
192 for worktree_id in worktree_ids {
193 let state = self.state.read().await;
194 if let Some(worktree) = state.worktrees.get(&worktree_id) {
195 broadcast(connection_id, worktree.connection_ids(), |conn_id| {
196 self.peer.send(
197 conn_id,
198 proto::RemovePeer {
199 worktree_id,
200 peer_id: connection_id.0,
201 },
202 )
203 })
204 .await?;
205 }
206 }
207 Ok(())
208 }
209
210 // Add a new connection associated with a given user.
211 async fn add_connection(&self, connection_id: ConnectionId, user_id: UserId) {
212 self.state.write().await.connections.insert(
213 connection_id,
214 ConnectionState {
215 user_id,
216 worktrees: Default::default(),
217 channels: Default::default(),
218 },
219 );
220 }
221
222 // Remove the given connection and its association with any worktrees.
223 async fn remove_connection(&self, connection_id: ConnectionId) -> Vec<u64> {
224 let mut worktree_ids = Vec::new();
225 let mut state = self.state.write().await;
226 if let Some(connection) = state.connections.remove(&connection_id) {
227 for channel_id in connection.channels {
228 if let Some(channel) = state.channels.get_mut(&channel_id) {
229 channel.connection_ids.remove(&connection_id);
230 }
231 }
232 for worktree_id in connection.worktrees {
233 if let Some(worktree) = state.worktrees.get_mut(&worktree_id) {
234 if worktree.host_connection_id == Some(connection_id) {
235 worktree_ids.push(worktree_id);
236 } else if let Some(replica_id) =
237 worktree.guest_connection_ids.remove(&connection_id)
238 {
239 worktree.active_replica_ids.remove(&replica_id);
240 worktree_ids.push(worktree_id);
241 }
242 }
243 }
244 }
245 worktree_ids
246 }
247
248 async fn ping(self: Arc<Server>, request: TypedEnvelope<proto::Ping>) -> tide::Result<()> {
249 self.peer.respond(request.receipt(), proto::Ack {}).await?;
250 Ok(())
251 }
252
253 async fn share_worktree(
254 self: Arc<Server>,
255 mut request: TypedEnvelope<proto::ShareWorktree>,
256 ) -> tide::Result<()> {
257 let mut state = self.state.write().await;
258 let worktree_id = state.next_worktree_id;
259 state.next_worktree_id += 1;
260 let access_token = random_token();
261 let worktree = request
262 .payload
263 .worktree
264 .as_mut()
265 .ok_or_else(|| anyhow!("missing worktree"))?;
266 let entries = mem::take(&mut worktree.entries)
267 .into_iter()
268 .map(|entry| (entry.id, entry))
269 .collect();
270 state.worktrees.insert(
271 worktree_id,
272 Worktree {
273 host_connection_id: Some(request.sender_id),
274 guest_connection_ids: Default::default(),
275 active_replica_ids: Default::default(),
276 access_token: access_token.clone(),
277 root_name: mem::take(&mut worktree.root_name),
278 entries,
279 },
280 );
281
282 self.peer
283 .respond(
284 request.receipt(),
285 proto::ShareWorktreeResponse {
286 worktree_id,
287 access_token,
288 },
289 )
290 .await?;
291 Ok(())
292 }
293
294 async fn join_worktree(
295 self: Arc<Server>,
296 request: TypedEnvelope<proto::OpenWorktree>,
297 ) -> tide::Result<()> {
298 let worktree_id = request.payload.worktree_id;
299 let access_token = &request.payload.access_token;
300
301 let mut state = self.state.write().await;
302 if let Some((peer_replica_id, worktree)) =
303 state.join_worktree(request.sender_id, worktree_id, access_token)
304 {
305 let mut peers = Vec::new();
306 if let Some(host_connection_id) = worktree.host_connection_id {
307 peers.push(proto::Peer {
308 peer_id: host_connection_id.0,
309 replica_id: 0,
310 });
311 }
312 for (peer_conn_id, peer_replica_id) in &worktree.guest_connection_ids {
313 if *peer_conn_id != request.sender_id {
314 peers.push(proto::Peer {
315 peer_id: peer_conn_id.0,
316 replica_id: *peer_replica_id as u32,
317 });
318 }
319 }
320
321 broadcast(request.sender_id, worktree.connection_ids(), |conn_id| {
322 self.peer.send(
323 conn_id,
324 proto::AddPeer {
325 worktree_id,
326 peer: Some(proto::Peer {
327 peer_id: request.sender_id.0,
328 replica_id: peer_replica_id as u32,
329 }),
330 },
331 )
332 })
333 .await?;
334 self.peer
335 .respond(
336 request.receipt(),
337 proto::OpenWorktreeResponse {
338 worktree_id,
339 worktree: Some(proto::Worktree {
340 root_name: worktree.root_name.clone(),
341 entries: worktree.entries.values().cloned().collect(),
342 }),
343 replica_id: peer_replica_id as u32,
344 peers,
345 },
346 )
347 .await?;
348 } else {
349 self.peer
350 .respond(
351 request.receipt(),
352 proto::OpenWorktreeResponse {
353 worktree_id,
354 worktree: None,
355 replica_id: 0,
356 peers: Vec::new(),
357 },
358 )
359 .await?;
360 }
361
362 Ok(())
363 }
364
365 async fn update_worktree(
366 self: Arc<Server>,
367 request: TypedEnvelope<proto::UpdateWorktree>,
368 ) -> tide::Result<()> {
369 {
370 let mut state = self.state.write().await;
371 let worktree = state.write_worktree(request.payload.worktree_id, request.sender_id)?;
372 for entry_id in &request.payload.removed_entries {
373 worktree.entries.remove(&entry_id);
374 }
375
376 for entry in &request.payload.updated_entries {
377 worktree.entries.insert(entry.id, entry.clone());
378 }
379 }
380
381 self.broadcast_in_worktree(request.payload.worktree_id, &request)
382 .await?;
383 Ok(())
384 }
385
386 async fn close_worktree(
387 self: Arc<Server>,
388 request: TypedEnvelope<proto::CloseWorktree>,
389 ) -> tide::Result<()> {
390 let connection_ids;
391 {
392 let mut state = self.state.write().await;
393 let worktree = state.write_worktree(request.payload.worktree_id, request.sender_id)?;
394 connection_ids = worktree.connection_ids();
395 if worktree.host_connection_id == Some(request.sender_id) {
396 worktree.host_connection_id = None;
397 } else if let Some(replica_id) =
398 worktree.guest_connection_ids.remove(&request.sender_id)
399 {
400 worktree.active_replica_ids.remove(&replica_id);
401 }
402 }
403
404 broadcast(request.sender_id, connection_ids, |conn_id| {
405 self.peer.send(
406 conn_id,
407 proto::RemovePeer {
408 worktree_id: request.payload.worktree_id,
409 peer_id: request.sender_id.0,
410 },
411 )
412 })
413 .await?;
414
415 Ok(())
416 }
417
418 async fn open_buffer(
419 self: Arc<Server>,
420 request: TypedEnvelope<proto::OpenBuffer>,
421 ) -> tide::Result<()> {
422 let receipt = request.receipt();
423 let worktree_id = request.payload.worktree_id;
424 let host_connection_id = self
425 .state
426 .read()
427 .await
428 .read_worktree(worktree_id, request.sender_id)?
429 .host_connection_id()?;
430
431 let response = self
432 .peer
433 .forward_request(request.sender_id, host_connection_id, request.payload)
434 .await?;
435 self.peer.respond(receipt, response).await?;
436 Ok(())
437 }
438
439 async fn close_buffer(
440 self: Arc<Server>,
441 request: TypedEnvelope<proto::CloseBuffer>,
442 ) -> tide::Result<()> {
443 let host_connection_id = self
444 .state
445 .read()
446 .await
447 .read_worktree(request.payload.worktree_id, request.sender_id)?
448 .host_connection_id()?;
449
450 self.peer
451 .forward_send(request.sender_id, host_connection_id, request.payload)
452 .await?;
453
454 Ok(())
455 }
456
457 async fn save_buffer(
458 self: Arc<Server>,
459 request: TypedEnvelope<proto::SaveBuffer>,
460 ) -> tide::Result<()> {
461 let host;
462 let guests;
463 {
464 let state = self.state.read().await;
465 let worktree = state.read_worktree(request.payload.worktree_id, request.sender_id)?;
466 host = worktree.host_connection_id()?;
467 guests = worktree
468 .guest_connection_ids
469 .keys()
470 .copied()
471 .collect::<Vec<_>>();
472 }
473
474 let sender = request.sender_id;
475 let receipt = request.receipt();
476 let response = self
477 .peer
478 .forward_request(sender, host, request.payload.clone())
479 .await?;
480
481 broadcast(host, guests, |conn_id| {
482 let response = response.clone();
483 let peer = &self.peer;
484 async move {
485 if conn_id == sender {
486 peer.respond(receipt, response).await
487 } else {
488 peer.forward_send(host, conn_id, response).await
489 }
490 }
491 })
492 .await?;
493
494 Ok(())
495 }
496
497 async fn update_buffer(
498 self: Arc<Server>,
499 request: TypedEnvelope<proto::UpdateBuffer>,
500 ) -> tide::Result<()> {
501 self.broadcast_in_worktree(request.payload.worktree_id, &request)
502 .await?;
503 self.peer.respond(request.receipt(), proto::Ack {}).await?;
504 Ok(())
505 }
506
507 async fn buffer_saved(
508 self: Arc<Server>,
509 request: TypedEnvelope<proto::BufferSaved>,
510 ) -> tide::Result<()> {
511 self.broadcast_in_worktree(request.payload.worktree_id, &request)
512 .await
513 }
514
515 async fn get_channels(
516 self: Arc<Server>,
517 request: TypedEnvelope<proto::GetChannels>,
518 ) -> tide::Result<()> {
519 let user_id = self
520 .state
521 .read()
522 .await
523 .user_id_for_connection(request.sender_id)?;
524 let channels = self.app_state.db.get_accessible_channels(user_id).await?;
525 self.peer
526 .respond(
527 request.receipt(),
528 proto::GetChannelsResponse {
529 channels: channels
530 .into_iter()
531 .map(|chan| proto::Channel {
532 id: chan.id.to_proto(),
533 name: chan.name,
534 })
535 .collect(),
536 },
537 )
538 .await?;
539 Ok(())
540 }
541
542 async fn get_users(
543 self: Arc<Server>,
544 request: TypedEnvelope<proto::GetUsers>,
545 ) -> tide::Result<()> {
546 let user_id = self
547 .state
548 .read()
549 .await
550 .user_id_for_connection(request.sender_id)?;
551 let receipt = request.receipt();
552 let user_ids = request.payload.user_ids.into_iter().map(UserId::from_proto);
553 let users = self
554 .app_state
555 .db
556 .get_users_by_ids(user_id, user_ids)
557 .await?
558 .into_iter()
559 .map(|user| proto::User {
560 id: user.id.to_proto(),
561 avatar_url: format!("https://github.com/{}.png?size=128", user.github_login),
562 github_login: user.github_login,
563 })
564 .collect();
565 self.peer
566 .respond(receipt, proto::GetUsersResponse { users })
567 .await?;
568 Ok(())
569 }
570
571 async fn join_channel(
572 self: Arc<Self>,
573 request: TypedEnvelope<proto::JoinChannel>,
574 ) -> tide::Result<()> {
575 let user_id = self
576 .state
577 .read()
578 .await
579 .user_id_for_connection(request.sender_id)?;
580 let channel_id = ChannelId::from_proto(request.payload.channel_id);
581 if !self
582 .app_state
583 .db
584 .can_user_access_channel(user_id, channel_id)
585 .await?
586 {
587 Err(anyhow!("access denied"))?;
588 }
589
590 self.state
591 .write()
592 .await
593 .join_channel(request.sender_id, channel_id);
594 let messages = self
595 .app_state
596 .db
597 .get_channel_messages(channel_id, MESSAGE_COUNT_PER_PAGE, None)
598 .await?
599 .into_iter()
600 .map(|msg| proto::ChannelMessage {
601 id: msg.id.to_proto(),
602 body: msg.body,
603 timestamp: msg.sent_at.unix_timestamp() as u64,
604 sender_id: msg.sender_id.to_proto(),
605 nonce: Some(msg.nonce.as_u128().into()),
606 })
607 .collect::<Vec<_>>();
608 self.peer
609 .respond(
610 request.receipt(),
611 proto::JoinChannelResponse {
612 done: messages.len() < MESSAGE_COUNT_PER_PAGE,
613 messages,
614 },
615 )
616 .await?;
617 Ok(())
618 }
619
620 async fn leave_channel(
621 self: Arc<Self>,
622 request: TypedEnvelope<proto::LeaveChannel>,
623 ) -> tide::Result<()> {
624 let user_id = self
625 .state
626 .read()
627 .await
628 .user_id_for_connection(request.sender_id)?;
629 let channel_id = ChannelId::from_proto(request.payload.channel_id);
630 if !self
631 .app_state
632 .db
633 .can_user_access_channel(user_id, channel_id)
634 .await?
635 {
636 Err(anyhow!("access denied"))?;
637 }
638
639 self.state
640 .write()
641 .await
642 .leave_channel(request.sender_id, channel_id);
643
644 Ok(())
645 }
646
647 async fn send_channel_message(
648 self: Arc<Self>,
649 request: TypedEnvelope<proto::SendChannelMessage>,
650 ) -> tide::Result<()> {
651 let receipt = request.receipt();
652 let channel_id = ChannelId::from_proto(request.payload.channel_id);
653 let user_id;
654 let connection_ids;
655 {
656 let state = self.state.read().await;
657 user_id = state.user_id_for_connection(request.sender_id)?;
658 if let Some(channel) = state.channels.get(&channel_id) {
659 connection_ids = channel.connection_ids();
660 } else {
661 return Ok(());
662 }
663 }
664
665 // Validate the message body.
666 let body = request.payload.body.trim().to_string();
667 if body.len() > MAX_MESSAGE_LEN {
668 self.peer
669 .respond_with_error(
670 receipt,
671 proto::Error {
672 message: "message is too long".to_string(),
673 },
674 )
675 .await?;
676 return Ok(());
677 }
678 if body.is_empty() {
679 self.peer
680 .respond_with_error(
681 receipt,
682 proto::Error {
683 message: "message can't be blank".to_string(),
684 },
685 )
686 .await?;
687 return Ok(());
688 }
689
690 let timestamp = OffsetDateTime::now_utc();
691 let nonce = if let Some(nonce) = request.payload.nonce {
692 nonce
693 } else {
694 self.peer
695 .respond_with_error(
696 receipt,
697 proto::Error {
698 message: "nonce can't be blank".to_string(),
699 },
700 )
701 .await?;
702 return Ok(());
703 };
704
705 let message_id = self
706 .app_state
707 .db
708 .create_channel_message(channel_id, user_id, &body, timestamp, nonce.clone().into())
709 .await?
710 .to_proto();
711 let message = proto::ChannelMessage {
712 sender_id: user_id.to_proto(),
713 id: message_id,
714 body,
715 timestamp: timestamp.unix_timestamp() as u64,
716 nonce: Some(nonce),
717 };
718 broadcast(request.sender_id, connection_ids, |conn_id| {
719 self.peer.send(
720 conn_id,
721 proto::ChannelMessageSent {
722 channel_id: channel_id.to_proto(),
723 message: Some(message.clone()),
724 },
725 )
726 })
727 .await?;
728 self.peer
729 .respond(
730 receipt,
731 proto::SendChannelMessageResponse {
732 message: Some(message),
733 },
734 )
735 .await?;
736 Ok(())
737 }
738
739 async fn get_channel_messages(
740 self: Arc<Self>,
741 request: TypedEnvelope<proto::GetChannelMessages>,
742 ) -> tide::Result<()> {
743 let user_id = self
744 .state
745 .read()
746 .await
747 .user_id_for_connection(request.sender_id)?;
748 let channel_id = ChannelId::from_proto(request.payload.channel_id);
749 if !self
750 .app_state
751 .db
752 .can_user_access_channel(user_id, channel_id)
753 .await?
754 {
755 Err(anyhow!("access denied"))?;
756 }
757
758 let messages = self
759 .app_state
760 .db
761 .get_channel_messages(
762 channel_id,
763 MESSAGE_COUNT_PER_PAGE,
764 Some(MessageId::from_proto(request.payload.before_message_id)),
765 )
766 .await?
767 .into_iter()
768 .map(|msg| proto::ChannelMessage {
769 id: msg.id.to_proto(),
770 body: msg.body,
771 timestamp: msg.sent_at.unix_timestamp() as u64,
772 sender_id: msg.sender_id.to_proto(),
773 nonce: Some(msg.nonce.as_u128().into()),
774 })
775 .collect::<Vec<_>>();
776 self.peer
777 .respond(
778 request.receipt(),
779 proto::GetChannelMessagesResponse {
780 done: messages.len() < MESSAGE_COUNT_PER_PAGE,
781 messages,
782 },
783 )
784 .await?;
785 Ok(())
786 }
787
788 async fn broadcast_in_worktree<T: proto::EnvelopedMessage>(
789 &self,
790 worktree_id: u64,
791 message: &TypedEnvelope<T>,
792 ) -> tide::Result<()> {
793 let connection_ids = self
794 .state
795 .read()
796 .await
797 .read_worktree(worktree_id, message.sender_id)?
798 .connection_ids();
799
800 broadcast(message.sender_id, connection_ids, |conn_id| {
801 self.peer
802 .forward_send(message.sender_id, conn_id, message.payload.clone())
803 })
804 .await?;
805
806 Ok(())
807 }
808}
809
810pub async fn broadcast<F, T>(
811 sender_id: ConnectionId,
812 receiver_ids: Vec<ConnectionId>,
813 mut f: F,
814) -> anyhow::Result<()>
815where
816 F: FnMut(ConnectionId) -> T,
817 T: Future<Output = anyhow::Result<()>>,
818{
819 let futures = receiver_ids
820 .into_iter()
821 .filter(|id| *id != sender_id)
822 .map(|id| f(id));
823 futures::future::try_join_all(futures).await?;
824 Ok(())
825}
826
827impl ServerState {
828 fn join_channel(&mut self, connection_id: ConnectionId, channel_id: ChannelId) {
829 if let Some(connection) = self.connections.get_mut(&connection_id) {
830 connection.channels.insert(channel_id);
831 self.channels
832 .entry(channel_id)
833 .or_default()
834 .connection_ids
835 .insert(connection_id);
836 }
837 }
838
839 fn leave_channel(&mut self, connection_id: ConnectionId, channel_id: ChannelId) {
840 if let Some(connection) = self.connections.get_mut(&connection_id) {
841 connection.channels.remove(&channel_id);
842 if let hash_map::Entry::Occupied(mut entry) = self.channels.entry(channel_id) {
843 entry.get_mut().connection_ids.remove(&connection_id);
844 if entry.get_mut().connection_ids.is_empty() {
845 entry.remove();
846 }
847 }
848 }
849 }
850
851 fn user_id_for_connection(&self, connection_id: ConnectionId) -> tide::Result<UserId> {
852 Ok(self
853 .connections
854 .get(&connection_id)
855 .ok_or_else(|| anyhow!("unknown connection"))?
856 .user_id)
857 }
858
859 // Add the given connection as a guest of the given worktree
860 fn join_worktree(
861 &mut self,
862 connection_id: ConnectionId,
863 worktree_id: u64,
864 access_token: &str,
865 ) -> Option<(ReplicaId, &Worktree)> {
866 if let Some(worktree) = self.worktrees.get_mut(&worktree_id) {
867 if access_token == worktree.access_token {
868 if let Some(connection) = self.connections.get_mut(&connection_id) {
869 connection.worktrees.insert(worktree_id);
870 }
871
872 let mut replica_id = 1;
873 while worktree.active_replica_ids.contains(&replica_id) {
874 replica_id += 1;
875 }
876 worktree.active_replica_ids.insert(replica_id);
877 worktree
878 .guest_connection_ids
879 .insert(connection_id, replica_id);
880 Some((replica_id, worktree))
881 } else {
882 None
883 }
884 } else {
885 None
886 }
887 }
888
889 fn read_worktree(
890 &self,
891 worktree_id: u64,
892 connection_id: ConnectionId,
893 ) -> tide::Result<&Worktree> {
894 let worktree = self
895 .worktrees
896 .get(&worktree_id)
897 .ok_or_else(|| anyhow!("worktree not found"))?;
898
899 if worktree.host_connection_id == Some(connection_id)
900 || worktree.guest_connection_ids.contains_key(&connection_id)
901 {
902 Ok(worktree)
903 } else {
904 Err(anyhow!(
905 "{} is not a member of worktree {}",
906 connection_id,
907 worktree_id
908 ))?
909 }
910 }
911
912 fn write_worktree(
913 &mut self,
914 worktree_id: u64,
915 connection_id: ConnectionId,
916 ) -> tide::Result<&mut Worktree> {
917 let worktree = self
918 .worktrees
919 .get_mut(&worktree_id)
920 .ok_or_else(|| anyhow!("worktree not found"))?;
921
922 if worktree.host_connection_id == Some(connection_id)
923 || worktree.guest_connection_ids.contains_key(&connection_id)
924 {
925 Ok(worktree)
926 } else {
927 Err(anyhow!(
928 "{} is not a member of worktree {}",
929 connection_id,
930 worktree_id
931 ))?
932 }
933 }
934}
935
936impl Worktree {
937 pub fn connection_ids(&self) -> Vec<ConnectionId> {
938 self.guest_connection_ids
939 .keys()
940 .copied()
941 .chain(self.host_connection_id)
942 .collect()
943 }
944
945 fn host_connection_id(&self) -> tide::Result<ConnectionId> {
946 Ok(self
947 .host_connection_id
948 .ok_or_else(|| anyhow!("host disconnected from worktree"))?)
949 }
950}
951
952impl Channel {
953 fn connection_ids(&self) -> Vec<ConnectionId> {
954 self.connection_ids.iter().copied().collect()
955 }
956}
957
958pub fn add_routes(app: &mut tide::Server<Arc<AppState>>, rpc: &Arc<Peer>) {
959 let server = Server::new(app.state().clone(), rpc.clone(), None);
960 app.at("/rpc").with(auth::VerifyToken).get(move |request: Request<Arc<AppState>>| {
961 let user_id = request.ext::<UserId>().copied();
962 let server = server.clone();
963 async move {
964 const WEBSOCKET_GUID: &str = "258EAFA5-E914-47DA-95CA-C5AB0DC85B11";
965
966 let connection_upgrade = header_contains_ignore_case(&request, CONNECTION, "upgrade");
967 let upgrade_to_websocket = header_contains_ignore_case(&request, UPGRADE, "websocket");
968 let upgrade_requested = connection_upgrade && upgrade_to_websocket;
969
970 if !upgrade_requested {
971 return Ok(Response::new(StatusCode::UpgradeRequired));
972 }
973
974 let header = match request.header("Sec-Websocket-Key") {
975 Some(h) => h.as_str(),
976 None => return Err(anyhow!("expected sec-websocket-key"))?,
977 };
978
979 let mut response = Response::new(StatusCode::SwitchingProtocols);
980 response.insert_header(UPGRADE, "websocket");
981 response.insert_header(CONNECTION, "Upgrade");
982 let hash = Sha1::new().chain(header).chain(WEBSOCKET_GUID).finalize();
983 response.insert_header("Sec-Websocket-Accept", base64::encode(&hash[..]));
984 response.insert_header("Sec-Websocket-Version", "13");
985
986 let http_res: &mut tide::http::Response = response.as_mut();
987 let upgrade_receiver = http_res.recv_upgrade().await;
988 let addr = request.remote().unwrap_or("unknown").to_string();
989 let user_id = user_id.ok_or_else(|| anyhow!("user_id is not present on request. ensure auth::VerifyToken middleware is present"))?;
990 task::spawn(async move {
991 if let Some(stream) = upgrade_receiver.await {
992 server.handle_connection(Connection::new(WebSocketStream::from_raw_socket(stream, Role::Server, None).await), addr, user_id).await;
993 }
994 });
995
996 Ok(response)
997 }
998 });
999}
1000
1001fn header_contains_ignore_case<T>(
1002 request: &tide::Request<T>,
1003 header_name: HeaderName,
1004 value: &str,
1005) -> bool {
1006 request
1007 .header(header_name)
1008 .map(|h| {
1009 h.as_str()
1010 .split(',')
1011 .any(|s| s.trim().eq_ignore_ascii_case(value.trim()))
1012 })
1013 .unwrap_or(false)
1014}
1015
1016#[cfg(test)]
1017mod tests {
1018 use super::*;
1019 use crate::{
1020 auth,
1021 db::{tests::TestDb, UserId},
1022 github, AppState, Config,
1023 };
1024 use async_std::{sync::RwLockReadGuard, task};
1025 use gpui::TestAppContext;
1026 use parking_lot::Mutex;
1027 use postage::{mpsc, watch};
1028 use serde_json::json;
1029 use sqlx::types::time::OffsetDateTime;
1030 use std::{
1031 path::Path,
1032 sync::{
1033 atomic::{AtomicBool, Ordering::SeqCst},
1034 Arc,
1035 },
1036 time::Duration,
1037 };
1038 use zed::{
1039 channel::{Channel, ChannelDetails, ChannelList},
1040 editor::{Editor, Insert},
1041 fs::{FakeFs, Fs as _},
1042 language::LanguageRegistry,
1043 rpc::{self, Client, Credentials, EstablishConnectionError},
1044 settings,
1045 test::FakeHttpClient,
1046 user::UserStore,
1047 worktree::Worktree,
1048 };
1049 use zrpc::Peer;
1050
1051 #[gpui::test]
1052 async fn test_share_worktree(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
1053 let (window_b, _) = cx_b.add_window(|_| EmptyView);
1054 let settings = cx_b.read(settings::test).1;
1055 let lang_registry = Arc::new(LanguageRegistry::new());
1056
1057 // Connect to a server as 2 clients.
1058 let mut server = TestServer::start().await;
1059 let (client_a, _) = server.create_client(&mut cx_a, "user_a").await;
1060 let (client_b, _) = server.create_client(&mut cx_b, "user_b").await;
1061
1062 cx_a.foreground().forbid_parking();
1063
1064 // Share a local worktree as client A
1065 let fs = Arc::new(FakeFs::new());
1066 fs.insert_tree(
1067 "/a",
1068 json!({
1069 "a.txt": "a-contents",
1070 "b.txt": "b-contents",
1071 }),
1072 )
1073 .await;
1074 let worktree_a = Worktree::open_local(
1075 "/a".as_ref(),
1076 lang_registry.clone(),
1077 fs,
1078 &mut cx_a.to_async(),
1079 )
1080 .await
1081 .unwrap();
1082 worktree_a
1083 .read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
1084 .await;
1085 let (worktree_id, worktree_token) = worktree_a
1086 .update(&mut cx_a, |tree, cx| {
1087 tree.as_local_mut().unwrap().share(client_a.clone(), cx)
1088 })
1089 .await
1090 .unwrap();
1091
1092 // Join that worktree as client B, and see that a guest has joined as client A.
1093 let worktree_b = Worktree::open_remote(
1094 client_b.clone(),
1095 worktree_id,
1096 worktree_token,
1097 lang_registry.clone(),
1098 &mut cx_b.to_async(),
1099 )
1100 .await
1101 .unwrap();
1102 let replica_id_b = worktree_b.read_with(&cx_b, |tree, _| tree.replica_id());
1103 worktree_a
1104 .condition(&cx_a, |tree, _| {
1105 tree.peers()
1106 .values()
1107 .any(|replica_id| *replica_id == replica_id_b)
1108 })
1109 .await;
1110
1111 // Open the same file as client B and client A.
1112 let buffer_b = worktree_b
1113 .update(&mut cx_b, |worktree, cx| worktree.open_buffer("b.txt", cx))
1114 .await
1115 .unwrap();
1116 buffer_b.read_with(&cx_b, |buf, _| assert_eq!(buf.text(), "b-contents"));
1117 worktree_a.read_with(&cx_a, |tree, cx| assert!(tree.has_open_buffer("b.txt", cx)));
1118 let buffer_a = worktree_a
1119 .update(&mut cx_a, |tree, cx| tree.open_buffer("b.txt", cx))
1120 .await
1121 .unwrap();
1122
1123 // Create a selection set as client B and see that selection set as client A.
1124 let editor_b = cx_b.add_view(window_b, |cx| Editor::for_buffer(buffer_b, settings, cx));
1125 buffer_a
1126 .condition(&cx_a, |buffer, _| buffer.selection_sets().count() == 1)
1127 .await;
1128
1129 // Edit the buffer as client B and see that edit as client A.
1130 editor_b.update(&mut cx_b, |editor, cx| {
1131 editor.insert(&Insert("ok, ".into()), cx)
1132 });
1133 buffer_a
1134 .condition(&cx_a, |buffer, _| buffer.text() == "ok, b-contents")
1135 .await;
1136
1137 // Remove the selection set as client B, see those selections disappear as client A.
1138 cx_b.update(move |_| drop(editor_b));
1139 buffer_a
1140 .condition(&cx_a, |buffer, _| buffer.selection_sets().count() == 0)
1141 .await;
1142
1143 // Close the buffer as client A, see that the buffer is closed.
1144 cx_a.update(move |_| drop(buffer_a));
1145 worktree_a
1146 .condition(&cx_a, |tree, cx| !tree.has_open_buffer("b.txt", cx))
1147 .await;
1148
1149 // Dropping the worktree removes client B from client A's peers.
1150 cx_b.update(move |_| drop(worktree_b));
1151 worktree_a
1152 .condition(&cx_a, |tree, _| tree.peers().is_empty())
1153 .await;
1154 }
1155
1156 #[gpui::test]
1157 async fn test_propagate_saves_and_fs_changes_in_shared_worktree(
1158 mut cx_a: TestAppContext,
1159 mut cx_b: TestAppContext,
1160 mut cx_c: TestAppContext,
1161 ) {
1162 cx_a.foreground().forbid_parking();
1163 let lang_registry = Arc::new(LanguageRegistry::new());
1164
1165 // Connect to a server as 3 clients.
1166 let mut server = TestServer::start().await;
1167 let (client_a, _) = server.create_client(&mut cx_a, "user_a").await;
1168 let (client_b, _) = server.create_client(&mut cx_b, "user_b").await;
1169 let (client_c, _) = server.create_client(&mut cx_c, "user_c").await;
1170
1171 let fs = Arc::new(FakeFs::new());
1172
1173 // Share a worktree as client A.
1174 fs.insert_tree(
1175 "/a",
1176 json!({
1177 "file1": "",
1178 "file2": ""
1179 }),
1180 )
1181 .await;
1182
1183 let worktree_a = Worktree::open_local(
1184 "/a".as_ref(),
1185 lang_registry.clone(),
1186 fs.clone(),
1187 &mut cx_a.to_async(),
1188 )
1189 .await
1190 .unwrap();
1191 worktree_a
1192 .read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
1193 .await;
1194 let (worktree_id, worktree_token) = worktree_a
1195 .update(&mut cx_a, |tree, cx| {
1196 tree.as_local_mut().unwrap().share(client_a.clone(), cx)
1197 })
1198 .await
1199 .unwrap();
1200
1201 // Join that worktree as clients B and C.
1202 let worktree_b = Worktree::open_remote(
1203 client_b.clone(),
1204 worktree_id,
1205 worktree_token.clone(),
1206 lang_registry.clone(),
1207 &mut cx_b.to_async(),
1208 )
1209 .await
1210 .unwrap();
1211 let worktree_c = Worktree::open_remote(
1212 client_c.clone(),
1213 worktree_id,
1214 worktree_token,
1215 lang_registry.clone(),
1216 &mut cx_c.to_async(),
1217 )
1218 .await
1219 .unwrap();
1220
1221 // Open and edit a buffer as both guests B and C.
1222 let buffer_b = worktree_b
1223 .update(&mut cx_b, |tree, cx| tree.open_buffer("file1", cx))
1224 .await
1225 .unwrap();
1226 let buffer_c = worktree_c
1227 .update(&mut cx_c, |tree, cx| tree.open_buffer("file1", cx))
1228 .await
1229 .unwrap();
1230 buffer_b.update(&mut cx_b, |buf, cx| buf.edit([0..0], "i-am-b, ", cx));
1231 buffer_c.update(&mut cx_c, |buf, cx| buf.edit([0..0], "i-am-c, ", cx));
1232
1233 // Open and edit that buffer as the host.
1234 let buffer_a = worktree_a
1235 .update(&mut cx_a, |tree, cx| tree.open_buffer("file1", cx))
1236 .await
1237 .unwrap();
1238
1239 buffer_a
1240 .condition(&mut cx_a, |buf, _| buf.text() == "i-am-c, i-am-b, ")
1241 .await;
1242 buffer_a.update(&mut cx_a, |buf, cx| {
1243 buf.edit([buf.len()..buf.len()], "i-am-a", cx)
1244 });
1245
1246 // Wait for edits to propagate
1247 buffer_a
1248 .condition(&mut cx_a, |buf, _| buf.text() == "i-am-c, i-am-b, i-am-a")
1249 .await;
1250 buffer_b
1251 .condition(&mut cx_b, |buf, _| buf.text() == "i-am-c, i-am-b, i-am-a")
1252 .await;
1253 buffer_c
1254 .condition(&mut cx_c, |buf, _| buf.text() == "i-am-c, i-am-b, i-am-a")
1255 .await;
1256
1257 // Edit the buffer as the host and concurrently save as guest B.
1258 let save_b = buffer_b.update(&mut cx_b, |buf, cx| buf.save(cx).unwrap());
1259 buffer_a.update(&mut cx_a, |buf, cx| buf.edit([0..0], "hi-a, ", cx));
1260 save_b.await.unwrap();
1261 assert_eq!(
1262 fs.load("/a/file1".as_ref()).await.unwrap(),
1263 "hi-a, i-am-c, i-am-b, i-am-a"
1264 );
1265 buffer_a.read_with(&cx_a, |buf, _| assert!(!buf.is_dirty()));
1266 buffer_b.read_with(&cx_b, |buf, _| assert!(!buf.is_dirty()));
1267 buffer_c.condition(&cx_c, |buf, _| !buf.is_dirty()).await;
1268
1269 // Make changes on host's file system, see those changes on the guests.
1270 fs.rename("/a/file2".as_ref(), "/a/file3".as_ref())
1271 .await
1272 .unwrap();
1273 fs.insert_file(Path::new("/a/file4"), "4".into())
1274 .await
1275 .unwrap();
1276
1277 worktree_b
1278 .condition(&cx_b, |tree, _| tree.file_count() == 3)
1279 .await;
1280 worktree_c
1281 .condition(&cx_c, |tree, _| tree.file_count() == 3)
1282 .await;
1283 worktree_b.read_with(&cx_b, |tree, _| {
1284 assert_eq!(
1285 tree.paths()
1286 .map(|p| p.to_string_lossy())
1287 .collect::<Vec<_>>(),
1288 &["file1", "file3", "file4"]
1289 )
1290 });
1291 worktree_c.read_with(&cx_c, |tree, _| {
1292 assert_eq!(
1293 tree.paths()
1294 .map(|p| p.to_string_lossy())
1295 .collect::<Vec<_>>(),
1296 &["file1", "file3", "file4"]
1297 )
1298 });
1299 }
1300
1301 #[gpui::test]
1302 async fn test_buffer_conflict_after_save(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
1303 cx_a.foreground().forbid_parking();
1304 let lang_registry = Arc::new(LanguageRegistry::new());
1305
1306 // Connect to a server as 2 clients.
1307 let mut server = TestServer::start().await;
1308 let (client_a, _) = server.create_client(&mut cx_a, "user_a").await;
1309 let (client_b, _) = server.create_client(&mut cx_b, "user_b").await;
1310
1311 // Share a local worktree as client A
1312 let fs = Arc::new(FakeFs::new());
1313 fs.save(Path::new("/a.txt"), &"a-contents".into())
1314 .await
1315 .unwrap();
1316 let worktree_a = Worktree::open_local(
1317 "/".as_ref(),
1318 lang_registry.clone(),
1319 fs,
1320 &mut cx_a.to_async(),
1321 )
1322 .await
1323 .unwrap();
1324 worktree_a
1325 .read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
1326 .await;
1327 let (worktree_id, worktree_token) = worktree_a
1328 .update(&mut cx_a, |tree, cx| {
1329 tree.as_local_mut().unwrap().share(client_a.clone(), cx)
1330 })
1331 .await
1332 .unwrap();
1333
1334 // Join that worktree as client B, and see that a guest has joined as client A.
1335 let worktree_b = Worktree::open_remote(
1336 client_b.clone(),
1337 worktree_id,
1338 worktree_token,
1339 lang_registry.clone(),
1340 &mut cx_b.to_async(),
1341 )
1342 .await
1343 .unwrap();
1344
1345 let buffer_b = worktree_b
1346 .update(&mut cx_b, |worktree, cx| worktree.open_buffer("a.txt", cx))
1347 .await
1348 .unwrap();
1349 let mtime = buffer_b.read_with(&cx_b, |buf, _| buf.file().unwrap().mtime);
1350
1351 buffer_b.update(&mut cx_b, |buf, cx| buf.edit([0..0], "world ", cx));
1352 buffer_b.read_with(&cx_b, |buf, _| {
1353 assert!(buf.is_dirty());
1354 assert!(!buf.has_conflict());
1355 });
1356
1357 buffer_b
1358 .update(&mut cx_b, |buf, cx| buf.save(cx))
1359 .unwrap()
1360 .await
1361 .unwrap();
1362 worktree_b
1363 .condition(&cx_b, |_, cx| {
1364 buffer_b.read(cx).file().unwrap().mtime != mtime
1365 })
1366 .await;
1367 buffer_b.read_with(&cx_b, |buf, _| {
1368 assert!(!buf.is_dirty());
1369 assert!(!buf.has_conflict());
1370 });
1371
1372 buffer_b.update(&mut cx_b, |buf, cx| buf.edit([0..0], "hello ", cx));
1373 buffer_b.read_with(&cx_b, |buf, _| {
1374 assert!(buf.is_dirty());
1375 assert!(!buf.has_conflict());
1376 });
1377 }
1378
1379 #[gpui::test]
1380 async fn test_editing_while_guest_opens_buffer(
1381 mut cx_a: TestAppContext,
1382 mut cx_b: TestAppContext,
1383 ) {
1384 cx_a.foreground().forbid_parking();
1385 let lang_registry = Arc::new(LanguageRegistry::new());
1386
1387 // Connect to a server as 2 clients.
1388 let mut server = TestServer::start().await;
1389 let (client_a, _) = server.create_client(&mut cx_a, "user_a").await;
1390 let (client_b, _) = server.create_client(&mut cx_b, "user_b").await;
1391
1392 // Share a local worktree as client A
1393 let fs = Arc::new(FakeFs::new());
1394 fs.save(Path::new("/a.txt"), &"a-contents".into())
1395 .await
1396 .unwrap();
1397 let worktree_a = Worktree::open_local(
1398 "/".as_ref(),
1399 lang_registry.clone(),
1400 fs,
1401 &mut cx_a.to_async(),
1402 )
1403 .await
1404 .unwrap();
1405 worktree_a
1406 .read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
1407 .await;
1408 let (worktree_id, worktree_token) = worktree_a
1409 .update(&mut cx_a, |tree, cx| {
1410 tree.as_local_mut().unwrap().share(client_a.clone(), cx)
1411 })
1412 .await
1413 .unwrap();
1414
1415 // Join that worktree as client B, and see that a guest has joined as client A.
1416 let worktree_b = Worktree::open_remote(
1417 client_b.clone(),
1418 worktree_id,
1419 worktree_token,
1420 lang_registry.clone(),
1421 &mut cx_b.to_async(),
1422 )
1423 .await
1424 .unwrap();
1425
1426 let buffer_a = worktree_a
1427 .update(&mut cx_a, |tree, cx| tree.open_buffer("a.txt", cx))
1428 .await
1429 .unwrap();
1430 let buffer_b = cx_b
1431 .background()
1432 .spawn(worktree_b.update(&mut cx_b, |worktree, cx| worktree.open_buffer("a.txt", cx)));
1433
1434 task::yield_now().await;
1435 buffer_a.update(&mut cx_a, |buf, cx| buf.edit([0..0], "z", cx));
1436
1437 let text = buffer_a.read_with(&cx_a, |buf, _| buf.text());
1438 let buffer_b = buffer_b.await.unwrap();
1439 buffer_b.condition(&cx_b, |buf, _| buf.text() == text).await;
1440 }
1441
1442 #[gpui::test]
1443 async fn test_peer_disconnection(mut cx_a: TestAppContext, cx_b: TestAppContext) {
1444 cx_a.foreground().forbid_parking();
1445 let lang_registry = Arc::new(LanguageRegistry::new());
1446
1447 // Connect to a server as 2 clients.
1448 let mut server = TestServer::start().await;
1449 let (client_a, _) = server.create_client(&mut cx_a, "user_a").await;
1450 let (client_b, _) = server.create_client(&mut cx_a, "user_b").await;
1451
1452 // Share a local worktree as client A
1453 let fs = Arc::new(FakeFs::new());
1454 fs.insert_tree(
1455 "/a",
1456 json!({
1457 "a.txt": "a-contents",
1458 "b.txt": "b-contents",
1459 }),
1460 )
1461 .await;
1462 let worktree_a = Worktree::open_local(
1463 "/a".as_ref(),
1464 lang_registry.clone(),
1465 fs,
1466 &mut cx_a.to_async(),
1467 )
1468 .await
1469 .unwrap();
1470 worktree_a
1471 .read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
1472 .await;
1473 let (worktree_id, worktree_token) = worktree_a
1474 .update(&mut cx_a, |tree, cx| {
1475 tree.as_local_mut().unwrap().share(client_a.clone(), cx)
1476 })
1477 .await
1478 .unwrap();
1479
1480 // Join that worktree as client B, and see that a guest has joined as client A.
1481 let _worktree_b = Worktree::open_remote(
1482 client_b.clone(),
1483 worktree_id,
1484 worktree_token,
1485 lang_registry.clone(),
1486 &mut cx_b.to_async(),
1487 )
1488 .await
1489 .unwrap();
1490 worktree_a
1491 .condition(&cx_a, |tree, _| tree.peers().len() == 1)
1492 .await;
1493
1494 // Drop client B's connection and ensure client A observes client B leaving the worktree.
1495 client_b.disconnect(&cx_b.to_async()).await.unwrap();
1496 worktree_a
1497 .condition(&cx_a, |tree, _| tree.peers().len() == 0)
1498 .await;
1499 }
1500
1501 #[gpui::test]
1502 async fn test_basic_chat(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
1503 cx_a.foreground().forbid_parking();
1504
1505 // Connect to a server as 2 clients.
1506 let mut server = TestServer::start().await;
1507 let (client_a, user_store_a) = server.create_client(&mut cx_a, "user_a").await;
1508 let (client_b, user_store_b) = server.create_client(&mut cx_b, "user_b").await;
1509
1510 // Create an org that includes these 2 users.
1511 let db = &server.app_state.db;
1512 let org_id = db.create_org("Test Org", "test-org").await.unwrap();
1513 db.add_org_member(org_id, current_user_id(&user_store_a), false)
1514 .await
1515 .unwrap();
1516 db.add_org_member(org_id, current_user_id(&user_store_b), false)
1517 .await
1518 .unwrap();
1519
1520 // Create a channel that includes all the users.
1521 let channel_id = db.create_org_channel(org_id, "test-channel").await.unwrap();
1522 db.add_channel_member(channel_id, current_user_id(&user_store_a), false)
1523 .await
1524 .unwrap();
1525 db.add_channel_member(channel_id, current_user_id(&user_store_b), false)
1526 .await
1527 .unwrap();
1528 db.create_channel_message(
1529 channel_id,
1530 current_user_id(&user_store_b),
1531 "hello A, it's B.",
1532 OffsetDateTime::now_utc(),
1533 1,
1534 )
1535 .await
1536 .unwrap();
1537
1538 let channels_a = cx_a.add_model(|cx| ChannelList::new(user_store_a, client_a, cx));
1539 channels_a
1540 .condition(&mut cx_a, |list, _| list.available_channels().is_some())
1541 .await;
1542 channels_a.read_with(&cx_a, |list, _| {
1543 assert_eq!(
1544 list.available_channels().unwrap(),
1545 &[ChannelDetails {
1546 id: channel_id.to_proto(),
1547 name: "test-channel".to_string()
1548 }]
1549 )
1550 });
1551 let channel_a = channels_a.update(&mut cx_a, |this, cx| {
1552 this.get_channel(channel_id.to_proto(), cx).unwrap()
1553 });
1554 channel_a.read_with(&cx_a, |channel, _| assert!(channel.messages().is_empty()));
1555 channel_a
1556 .condition(&cx_a, |channel, _| {
1557 channel_messages(channel)
1558 == [("user_b".to_string(), "hello A, it's B.".to_string(), false)]
1559 })
1560 .await;
1561
1562 let channels_b = cx_b.add_model(|cx| ChannelList::new(user_store_b, client_b, cx));
1563 channels_b
1564 .condition(&mut cx_b, |list, _| list.available_channels().is_some())
1565 .await;
1566 channels_b.read_with(&cx_b, |list, _| {
1567 assert_eq!(
1568 list.available_channels().unwrap(),
1569 &[ChannelDetails {
1570 id: channel_id.to_proto(),
1571 name: "test-channel".to_string()
1572 }]
1573 )
1574 });
1575
1576 let channel_b = channels_b.update(&mut cx_b, |this, cx| {
1577 this.get_channel(channel_id.to_proto(), cx).unwrap()
1578 });
1579 channel_b.read_with(&cx_b, |channel, _| assert!(channel.messages().is_empty()));
1580 channel_b
1581 .condition(&cx_b, |channel, _| {
1582 channel_messages(channel)
1583 == [("user_b".to_string(), "hello A, it's B.".to_string(), false)]
1584 })
1585 .await;
1586
1587 channel_a
1588 .update(&mut cx_a, |channel, cx| {
1589 channel
1590 .send_message("oh, hi B.".to_string(), cx)
1591 .unwrap()
1592 .detach();
1593 let task = channel.send_message("sup".to_string(), cx).unwrap();
1594 assert_eq!(
1595 channel_messages(channel),
1596 &[
1597 ("user_b".to_string(), "hello A, it's B.".to_string(), false),
1598 ("user_a".to_string(), "oh, hi B.".to_string(), true),
1599 ("user_a".to_string(), "sup".to_string(), true)
1600 ]
1601 );
1602 task
1603 })
1604 .await
1605 .unwrap();
1606
1607 channel_b
1608 .condition(&cx_b, |channel, _| {
1609 channel_messages(channel)
1610 == [
1611 ("user_b".to_string(), "hello A, it's B.".to_string(), false),
1612 ("user_a".to_string(), "oh, hi B.".to_string(), false),
1613 ("user_a".to_string(), "sup".to_string(), false),
1614 ]
1615 })
1616 .await;
1617
1618 assert_eq!(
1619 server.state().await.channels[&channel_id]
1620 .connection_ids
1621 .len(),
1622 2
1623 );
1624 cx_b.update(|_| drop(channel_b));
1625 server
1626 .condition(|state| state.channels[&channel_id].connection_ids.len() == 1)
1627 .await;
1628
1629 cx_a.update(|_| drop(channel_a));
1630 server
1631 .condition(|state| !state.channels.contains_key(&channel_id))
1632 .await;
1633 }
1634
1635 #[gpui::test]
1636 async fn test_chat_message_validation(mut cx_a: TestAppContext) {
1637 cx_a.foreground().forbid_parking();
1638
1639 let mut server = TestServer::start().await;
1640 let (client_a, user_store_a) = server.create_client(&mut cx_a, "user_a").await;
1641
1642 let db = &server.app_state.db;
1643 let org_id = db.create_org("Test Org", "test-org").await.unwrap();
1644 let channel_id = db.create_org_channel(org_id, "test-channel").await.unwrap();
1645 db.add_org_member(org_id, current_user_id(&user_store_a), false)
1646 .await
1647 .unwrap();
1648 db.add_channel_member(channel_id, current_user_id(&user_store_a), false)
1649 .await
1650 .unwrap();
1651
1652 let channels_a = cx_a.add_model(|cx| ChannelList::new(user_store_a, client_a, cx));
1653 channels_a
1654 .condition(&mut cx_a, |list, _| list.available_channels().is_some())
1655 .await;
1656 let channel_a = channels_a.update(&mut cx_a, |this, cx| {
1657 this.get_channel(channel_id.to_proto(), cx).unwrap()
1658 });
1659
1660 // Messages aren't allowed to be too long.
1661 channel_a
1662 .update(&mut cx_a, |channel, cx| {
1663 let long_body = "this is long.\n".repeat(1024);
1664 channel.send_message(long_body, cx).unwrap()
1665 })
1666 .await
1667 .unwrap_err();
1668
1669 // Messages aren't allowed to be blank.
1670 channel_a.update(&mut cx_a, |channel, cx| {
1671 channel.send_message(String::new(), cx).unwrap_err()
1672 });
1673
1674 // Leading and trailing whitespace are trimmed.
1675 channel_a
1676 .update(&mut cx_a, |channel, cx| {
1677 channel
1678 .send_message("\n surrounded by whitespace \n".to_string(), cx)
1679 .unwrap()
1680 })
1681 .await
1682 .unwrap();
1683 assert_eq!(
1684 db.get_channel_messages(channel_id, 10, None)
1685 .await
1686 .unwrap()
1687 .iter()
1688 .map(|m| &m.body)
1689 .collect::<Vec<_>>(),
1690 &["surrounded by whitespace"]
1691 );
1692 }
1693
1694 #[gpui::test]
1695 async fn test_chat_reconnection(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
1696 cx_a.foreground().forbid_parking();
1697 let http = FakeHttpClient::new(|_| async move { Ok(surf::http::Response::new(404)) });
1698
1699 // Connect to a server as 2 clients.
1700 let mut server = TestServer::start().await;
1701 let (client_a, user_store_a) = server.create_client(&mut cx_a, "user_a").await;
1702 let (client_b, user_store_b) = server.create_client(&mut cx_b, "user_b").await;
1703 let mut status_b = client_b.status();
1704
1705 // Create an org that includes these 2 users.
1706 let db = &server.app_state.db;
1707 let org_id = db.create_org("Test Org", "test-org").await.unwrap();
1708 db.add_org_member(org_id, current_user_id(&user_store_a), false)
1709 .await
1710 .unwrap();
1711 db.add_org_member(org_id, current_user_id(&user_store_b), false)
1712 .await
1713 .unwrap();
1714
1715 // Create a channel that includes all the users.
1716 let channel_id = db.create_org_channel(org_id, "test-channel").await.unwrap();
1717 db.add_channel_member(channel_id, current_user_id(&user_store_a), false)
1718 .await
1719 .unwrap();
1720 db.add_channel_member(channel_id, current_user_id(&user_store_b), false)
1721 .await
1722 .unwrap();
1723 db.create_channel_message(
1724 channel_id,
1725 current_user_id(&user_store_b),
1726 "hello A, it's B.",
1727 OffsetDateTime::now_utc(),
1728 2,
1729 )
1730 .await
1731 .unwrap();
1732
1733 let user_store_a =
1734 UserStore::new(client_a.clone(), http.clone(), cx_a.background().as_ref());
1735 let channels_a = cx_a.add_model(|cx| ChannelList::new(user_store_a, client_a, cx));
1736 channels_a
1737 .condition(&mut cx_a, |list, _| list.available_channels().is_some())
1738 .await;
1739
1740 channels_a.read_with(&cx_a, |list, _| {
1741 assert_eq!(
1742 list.available_channels().unwrap(),
1743 &[ChannelDetails {
1744 id: channel_id.to_proto(),
1745 name: "test-channel".to_string()
1746 }]
1747 )
1748 });
1749 let channel_a = channels_a.update(&mut cx_a, |this, cx| {
1750 this.get_channel(channel_id.to_proto(), cx).unwrap()
1751 });
1752 channel_a.read_with(&cx_a, |channel, _| assert!(channel.messages().is_empty()));
1753 channel_a
1754 .condition(&cx_a, |channel, _| {
1755 channel_messages(channel)
1756 == [("user_b".to_string(), "hello A, it's B.".to_string(), false)]
1757 })
1758 .await;
1759
1760 let channels_b = cx_b.add_model(|cx| ChannelList::new(user_store_b.clone(), client_b, cx));
1761 channels_b
1762 .condition(&mut cx_b, |list, _| list.available_channels().is_some())
1763 .await;
1764 channels_b.read_with(&cx_b, |list, _| {
1765 assert_eq!(
1766 list.available_channels().unwrap(),
1767 &[ChannelDetails {
1768 id: channel_id.to_proto(),
1769 name: "test-channel".to_string()
1770 }]
1771 )
1772 });
1773
1774 let channel_b = channels_b.update(&mut cx_b, |this, cx| {
1775 this.get_channel(channel_id.to_proto(), cx).unwrap()
1776 });
1777 channel_b.read_with(&cx_b, |channel, _| assert!(channel.messages().is_empty()));
1778 channel_b
1779 .condition(&cx_b, |channel, _| {
1780 channel_messages(channel)
1781 == [("user_b".to_string(), "hello A, it's B.".to_string(), false)]
1782 })
1783 .await;
1784
1785 // Disconnect client B, ensuring we can still access its cached channel data.
1786 server.forbid_connections();
1787 server.disconnect_client(current_user_id(&user_store_b));
1788 while !matches!(
1789 status_b.recv().await,
1790 Some(rpc::Status::ReconnectionError { .. })
1791 ) {}
1792
1793 channels_b.read_with(&cx_b, |channels, _| {
1794 assert_eq!(
1795 channels.available_channels().unwrap(),
1796 [ChannelDetails {
1797 id: channel_id.to_proto(),
1798 name: "test-channel".to_string()
1799 }]
1800 )
1801 });
1802 channel_b.read_with(&cx_b, |channel, _| {
1803 assert_eq!(
1804 channel_messages(channel),
1805 [("user_b".to_string(), "hello A, it's B.".to_string(), false)]
1806 )
1807 });
1808
1809 // Send a message from client B while it is disconnected.
1810 channel_b
1811 .update(&mut cx_b, |channel, cx| {
1812 let task = channel
1813 .send_message("can you see this?".to_string(), cx)
1814 .unwrap();
1815 assert_eq!(
1816 channel_messages(channel),
1817 &[
1818 ("user_b".to_string(), "hello A, it's B.".to_string(), false),
1819 ("user_b".to_string(), "can you see this?".to_string(), true)
1820 ]
1821 );
1822 task
1823 })
1824 .await
1825 .unwrap_err();
1826
1827 // Send a message from client A while B is disconnected.
1828 channel_a
1829 .update(&mut cx_a, |channel, cx| {
1830 channel
1831 .send_message("oh, hi B.".to_string(), cx)
1832 .unwrap()
1833 .detach();
1834 let task = channel.send_message("sup".to_string(), cx).unwrap();
1835 assert_eq!(
1836 channel_messages(channel),
1837 &[
1838 ("user_b".to_string(), "hello A, it's B.".to_string(), false),
1839 ("user_a".to_string(), "oh, hi B.".to_string(), true),
1840 ("user_a".to_string(), "sup".to_string(), true)
1841 ]
1842 );
1843 task
1844 })
1845 .await
1846 .unwrap();
1847
1848 // Give client B a chance to reconnect.
1849 server.allow_connections();
1850 cx_b.foreground().advance_clock(Duration::from_secs(10));
1851
1852 // Verify that B sees the new messages upon reconnection, as well as the message client B
1853 // sent while offline.
1854 channel_b
1855 .condition(&cx_b, |channel, _| {
1856 channel_messages(channel)
1857 == [
1858 ("user_b".to_string(), "hello A, it's B.".to_string(), false),
1859 ("user_a".to_string(), "oh, hi B.".to_string(), false),
1860 ("user_a".to_string(), "sup".to_string(), false),
1861 ("user_b".to_string(), "can you see this?".to_string(), false),
1862 ]
1863 })
1864 .await;
1865
1866 // Ensure client A and B can communicate normally after reconnection.
1867 channel_a
1868 .update(&mut cx_a, |channel, cx| {
1869 channel.send_message("you online?".to_string(), cx).unwrap()
1870 })
1871 .await
1872 .unwrap();
1873 channel_b
1874 .condition(&cx_b, |channel, _| {
1875 channel_messages(channel)
1876 == [
1877 ("user_b".to_string(), "hello A, it's B.".to_string(), false),
1878 ("user_a".to_string(), "oh, hi B.".to_string(), false),
1879 ("user_a".to_string(), "sup".to_string(), false),
1880 ("user_b".to_string(), "can you see this?".to_string(), false),
1881 ("user_a".to_string(), "you online?".to_string(), false),
1882 ]
1883 })
1884 .await;
1885
1886 channel_b
1887 .update(&mut cx_b, |channel, cx| {
1888 channel.send_message("yep".to_string(), cx).unwrap()
1889 })
1890 .await
1891 .unwrap();
1892 channel_a
1893 .condition(&cx_a, |channel, _| {
1894 channel_messages(channel)
1895 == [
1896 ("user_b".to_string(), "hello A, it's B.".to_string(), false),
1897 ("user_a".to_string(), "oh, hi B.".to_string(), false),
1898 ("user_a".to_string(), "sup".to_string(), false),
1899 ("user_b".to_string(), "can you see this?".to_string(), false),
1900 ("user_a".to_string(), "you online?".to_string(), false),
1901 ("user_b".to_string(), "yep".to_string(), false),
1902 ]
1903 })
1904 .await;
1905 }
1906
1907 struct TestServer {
1908 peer: Arc<Peer>,
1909 app_state: Arc<AppState>,
1910 server: Arc<Server>,
1911 notifications: mpsc::Receiver<()>,
1912 connection_killers: Arc<Mutex<HashMap<UserId, watch::Sender<Option<()>>>>>,
1913 forbid_connections: Arc<AtomicBool>,
1914 _test_db: TestDb,
1915 }
1916
1917 impl TestServer {
1918 async fn start() -> Self {
1919 let test_db = TestDb::new();
1920 let app_state = Self::build_app_state(&test_db).await;
1921 let peer = Peer::new();
1922 let notifications = mpsc::channel(128);
1923 let server = Server::new(app_state.clone(), peer.clone(), Some(notifications.0));
1924 Self {
1925 peer,
1926 app_state,
1927 server,
1928 notifications: notifications.1,
1929 connection_killers: Default::default(),
1930 forbid_connections: Default::default(),
1931 _test_db: test_db,
1932 }
1933 }
1934
1935 async fn create_client(
1936 &mut self,
1937 cx: &mut TestAppContext,
1938 name: &str,
1939 ) -> (Arc<Client>, Arc<UserStore>) {
1940 let user_id = self.app_state.db.create_user(name, false).await.unwrap();
1941 let client_name = name.to_string();
1942 let mut client = Client::new();
1943 let server = self.server.clone();
1944 let connection_killers = self.connection_killers.clone();
1945 let forbid_connections = self.forbid_connections.clone();
1946 Arc::get_mut(&mut client)
1947 .unwrap()
1948 .override_authenticate(move |cx| {
1949 cx.spawn(|_| async move {
1950 let access_token = "the-token".to_string();
1951 Ok(Credentials {
1952 user_id: user_id.0 as u64,
1953 access_token,
1954 })
1955 })
1956 })
1957 .override_establish_connection(move |credentials, cx| {
1958 assert_eq!(credentials.user_id, user_id.0 as u64);
1959 assert_eq!(credentials.access_token, "the-token");
1960
1961 let server = server.clone();
1962 let connection_killers = connection_killers.clone();
1963 let forbid_connections = forbid_connections.clone();
1964 let client_name = client_name.clone();
1965 cx.spawn(move |cx| async move {
1966 if forbid_connections.load(SeqCst) {
1967 Err(EstablishConnectionError::other(anyhow!(
1968 "server is forbidding connections"
1969 )))
1970 } else {
1971 let (client_conn, server_conn, kill_conn) = Connection::in_memory();
1972 connection_killers.lock().insert(user_id, kill_conn);
1973 cx.background()
1974 .spawn(server.handle_connection(server_conn, client_name, user_id))
1975 .detach();
1976 Ok(client_conn)
1977 }
1978 })
1979 });
1980
1981 let http = FakeHttpClient::new(|_| async move { Ok(surf::http::Response::new(404)) });
1982 client
1983 .authenticate_and_connect(&cx.to_async())
1984 .await
1985 .unwrap();
1986
1987 let user_store = UserStore::new(client.clone(), http, &cx.background());
1988 let mut authed_user = user_store.watch_current_user();
1989 while authed_user.recv().await.unwrap().is_none() {}
1990
1991 (client, user_store)
1992 }
1993
1994 fn disconnect_client(&self, user_id: UserId) {
1995 if let Some(mut kill_conn) = self.connection_killers.lock().remove(&user_id) {
1996 let _ = kill_conn.try_send(Some(()));
1997 }
1998 }
1999
2000 fn forbid_connections(&self) {
2001 self.forbid_connections.store(true, SeqCst);
2002 }
2003
2004 fn allow_connections(&self) {
2005 self.forbid_connections.store(false, SeqCst);
2006 }
2007
2008 async fn build_app_state(test_db: &TestDb) -> Arc<AppState> {
2009 let mut config = Config::default();
2010 config.session_secret = "a".repeat(32);
2011 config.database_url = test_db.url.clone();
2012 let github_client = github::AppClient::test();
2013 Arc::new(AppState {
2014 db: test_db.db().clone(),
2015 handlebars: Default::default(),
2016 auth_client: auth::build_client("", ""),
2017 repo_client: github::RepoClient::test(&github_client),
2018 github_client,
2019 config,
2020 })
2021 }
2022
2023 async fn state<'a>(&'a self) -> RwLockReadGuard<'a, ServerState> {
2024 self.server.state.read().await
2025 }
2026
2027 async fn condition<F>(&mut self, mut predicate: F)
2028 where
2029 F: FnMut(&ServerState) -> bool,
2030 {
2031 async_std::future::timeout(Duration::from_millis(500), async {
2032 while !(predicate)(&*self.server.state.read().await) {
2033 self.notifications.recv().await;
2034 }
2035 })
2036 .await
2037 .expect("condition timed out");
2038 }
2039 }
2040
2041 impl Drop for TestServer {
2042 fn drop(&mut self) {
2043 task::block_on(self.peer.reset());
2044 }
2045 }
2046
2047 fn current_user_id(user_store: &Arc<UserStore>) -> UserId {
2048 UserId::from_proto(user_store.current_user().unwrap().id)
2049 }
2050
2051 fn channel_messages(channel: &Channel) -> Vec<(String, String, bool)> {
2052 channel
2053 .messages()
2054 .cursor::<(), ()>()
2055 .map(|m| {
2056 (
2057 m.sender.github_login.clone(),
2058 m.body.clone(),
2059 m.is_pending(),
2060 )
2061 })
2062 .collect()
2063 }
2064
2065 struct EmptyView;
2066
2067 impl gpui::Entity for EmptyView {
2068 type Event = ();
2069 }
2070
2071 impl gpui::View for EmptyView {
2072 fn ui_name() -> &'static str {
2073 "empty view"
2074 }
2075
2076 fn render(&mut self, _: &mut gpui::RenderContext<Self>) -> gpui::ElementBox {
2077 gpui::Element::boxed(gpui::elements::Empty)
2078 }
2079 }
2080}