1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Context,
6 Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener, DispatchNodeId,
7 DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter, FileDropEvent, FontId,
8 Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero, KeyBinding, KeyContext,
9 KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId, LineLayoutIndex, Modifiers,
10 ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent, MouseMoveEvent, MouseUpEvent,
11 Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput, PlatformInputHandler,
12 PlatformWindow, Point, PolychromeSprite, PromptLevel, Quad, Render, RenderGlyphParams,
13 RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge, SMOOTH_SVG_SCALE_FACTOR,
14 SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style,
15 SubscriberSet, Subscription, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
16 TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
17 WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
18 point, prelude::*, px, rems, size, transparent_black,
19};
20use anyhow::{Context as _, Result, anyhow};
21use collections::{FxHashMap, FxHashSet};
22#[cfg(target_os = "macos")]
23use core_video::pixel_buffer::CVPixelBuffer;
24use derive_more::{Deref, DerefMut};
25use futures::FutureExt;
26use futures::channel::oneshot;
27use parking_lot::RwLock;
28use raw_window_handle::{HandleError, HasWindowHandle};
29use refineable::Refineable;
30use slotmap::SlotMap;
31use smallvec::SmallVec;
32use std::{
33 any::{Any, TypeId},
34 borrow::Cow,
35 cell::{Cell, RefCell},
36 cmp,
37 fmt::{Debug, Display},
38 hash::{Hash, Hasher},
39 marker::PhantomData,
40 mem,
41 ops::{DerefMut, Range},
42 rc::Rc,
43 sync::{
44 Arc, Weak,
45 atomic::{AtomicUsize, Ordering::SeqCst},
46 },
47 time::{Duration, Instant},
48};
49use util::post_inc;
50use util::{ResultExt, measure};
51use uuid::Uuid;
52
53mod prompts;
54
55pub use prompts::*;
56
57pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
58
59/// Represents the two different phases when dispatching events.
60#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
61pub enum DispatchPhase {
62 /// After the capture phase comes the bubble phase, in which mouse event listeners are
63 /// invoked front to back and keyboard event listeners are invoked from the focused element
64 /// to the root of the element tree. This is the phase you'll most commonly want to use when
65 /// registering event listeners.
66 #[default]
67 Bubble,
68 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
69 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
70 /// is used for special purposes such as clearing the "pressed" state for click events. If
71 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
72 /// outside of the immediate region may rely on detecting non-local events during this phase.
73 Capture,
74}
75
76impl DispatchPhase {
77 /// Returns true if this represents the "bubble" phase.
78 pub fn bubble(self) -> bool {
79 self == DispatchPhase::Bubble
80 }
81
82 /// Returns true if this represents the "capture" phase.
83 pub fn capture(self) -> bool {
84 self == DispatchPhase::Capture
85 }
86}
87
88struct WindowInvalidatorInner {
89 pub dirty: bool,
90 pub draw_phase: DrawPhase,
91 pub dirty_views: FxHashSet<EntityId>,
92}
93
94#[derive(Clone)]
95pub(crate) struct WindowInvalidator {
96 inner: Rc<RefCell<WindowInvalidatorInner>>,
97}
98
99impl WindowInvalidator {
100 pub fn new() -> Self {
101 WindowInvalidator {
102 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
103 dirty: true,
104 draw_phase: DrawPhase::None,
105 dirty_views: FxHashSet::default(),
106 })),
107 }
108 }
109
110 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
111 let mut inner = self.inner.borrow_mut();
112 inner.dirty_views.insert(entity);
113 if inner.draw_phase == DrawPhase::None {
114 inner.dirty = true;
115 cx.push_effect(Effect::Notify { emitter: entity });
116 true
117 } else {
118 false
119 }
120 }
121
122 pub fn is_dirty(&self) -> bool {
123 self.inner.borrow().dirty
124 }
125
126 pub fn set_dirty(&self, dirty: bool) {
127 self.inner.borrow_mut().dirty = dirty
128 }
129
130 pub fn set_phase(&self, phase: DrawPhase) {
131 self.inner.borrow_mut().draw_phase = phase
132 }
133
134 pub fn take_views(&self) -> FxHashSet<EntityId> {
135 mem::take(&mut self.inner.borrow_mut().dirty_views)
136 }
137
138 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
139 self.inner.borrow_mut().dirty_views = views;
140 }
141
142 pub fn not_drawing(&self) -> bool {
143 self.inner.borrow().draw_phase == DrawPhase::None
144 }
145
146 #[track_caller]
147 pub fn debug_assert_paint(&self) {
148 debug_assert!(
149 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
150 "this method can only be called during paint"
151 );
152 }
153
154 #[track_caller]
155 pub fn debug_assert_prepaint(&self) {
156 debug_assert!(
157 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
158 "this method can only be called during request_layout, or prepaint"
159 );
160 }
161
162 #[track_caller]
163 pub fn debug_assert_paint_or_prepaint(&self) {
164 debug_assert!(
165 matches!(
166 self.inner.borrow().draw_phase,
167 DrawPhase::Paint | DrawPhase::Prepaint
168 ),
169 "this method can only be called during request_layout, prepaint, or paint"
170 );
171 }
172}
173
174type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
175
176pub(crate) type AnyWindowFocusListener =
177 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
178
179pub(crate) struct WindowFocusEvent {
180 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
181 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
182}
183
184impl WindowFocusEvent {
185 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
186 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
187 }
188
189 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
190 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
191 }
192}
193
194/// This is provided when subscribing for `Context::on_focus_out` events.
195pub struct FocusOutEvent {
196 /// A weak focus handle representing what was blurred.
197 pub blurred: WeakFocusHandle,
198}
199
200slotmap::new_key_type! {
201 /// A globally unique identifier for a focusable element.
202 pub struct FocusId;
203}
204
205thread_local! {
206 /// 8MB wasn't quite enough...
207 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(32 * 1024 * 1024));
208}
209
210pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
211
212impl FocusId {
213 /// Obtains whether the element associated with this handle is currently focused.
214 pub fn is_focused(&self, window: &Window) -> bool {
215 window.focus == Some(*self)
216 }
217
218 /// Obtains whether the element associated with this handle contains the focused
219 /// element or is itself focused.
220 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
221 window
222 .focused(cx)
223 .map_or(false, |focused| self.contains(focused.id, window))
224 }
225
226 /// Obtains whether the element associated with this handle is contained within the
227 /// focused element or is itself focused.
228 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
229 let focused = window.focused(cx);
230 focused.map_or(false, |focused| focused.id.contains(*self, window))
231 }
232
233 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
234 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
235 window
236 .rendered_frame
237 .dispatch_tree
238 .focus_contains(*self, other)
239 }
240}
241
242/// A handle which can be used to track and manipulate the focused element in a window.
243pub struct FocusHandle {
244 pub(crate) id: FocusId,
245 handles: Arc<FocusMap>,
246}
247
248impl std::fmt::Debug for FocusHandle {
249 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
250 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
251 }
252}
253
254impl FocusHandle {
255 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
256 let id = handles.write().insert(AtomicUsize::new(1));
257 Self {
258 id,
259 handles: handles.clone(),
260 }
261 }
262
263 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
264 let lock = handles.read();
265 let ref_count = lock.get(id)?;
266 if ref_count.load(SeqCst) == 0 {
267 None
268 } else {
269 ref_count.fetch_add(1, SeqCst);
270 Some(Self {
271 id,
272 handles: handles.clone(),
273 })
274 }
275 }
276
277 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
278 pub fn downgrade(&self) -> WeakFocusHandle {
279 WeakFocusHandle {
280 id: self.id,
281 handles: Arc::downgrade(&self.handles),
282 }
283 }
284
285 /// Moves the focus to the element associated with this handle.
286 pub fn focus(&self, window: &mut Window) {
287 window.focus(self)
288 }
289
290 /// Obtains whether the element associated with this handle is currently focused.
291 pub fn is_focused(&self, window: &Window) -> bool {
292 self.id.is_focused(window)
293 }
294
295 /// Obtains whether the element associated with this handle contains the focused
296 /// element or is itself focused.
297 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
298 self.id.contains_focused(window, cx)
299 }
300
301 /// Obtains whether the element associated with this handle is contained within the
302 /// focused element or is itself focused.
303 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
304 self.id.within_focused(window, cx)
305 }
306
307 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
308 pub fn contains(&self, other: &Self, window: &Window) -> bool {
309 self.id.contains(other.id, window)
310 }
311
312 /// Dispatch an action on the element that rendered this focus handle
313 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
314 if let Some(node_id) = window
315 .rendered_frame
316 .dispatch_tree
317 .focusable_node_id(self.id)
318 {
319 window.dispatch_action_on_node(node_id, action, cx)
320 }
321 }
322}
323
324impl Clone for FocusHandle {
325 fn clone(&self) -> Self {
326 Self::for_id(self.id, &self.handles).unwrap()
327 }
328}
329
330impl PartialEq for FocusHandle {
331 fn eq(&self, other: &Self) -> bool {
332 self.id == other.id
333 }
334}
335
336impl Eq for FocusHandle {}
337
338impl Drop for FocusHandle {
339 fn drop(&mut self) {
340 self.handles
341 .read()
342 .get(self.id)
343 .unwrap()
344 .fetch_sub(1, SeqCst);
345 }
346}
347
348/// A weak reference to a focus handle.
349#[derive(Clone, Debug)]
350pub struct WeakFocusHandle {
351 pub(crate) id: FocusId,
352 pub(crate) handles: Weak<FocusMap>,
353}
354
355impl WeakFocusHandle {
356 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
357 pub fn upgrade(&self) -> Option<FocusHandle> {
358 let handles = self.handles.upgrade()?;
359 FocusHandle::for_id(self.id, &handles)
360 }
361}
362
363impl PartialEq for WeakFocusHandle {
364 fn eq(&self, other: &WeakFocusHandle) -> bool {
365 self.id == other.id
366 }
367}
368
369impl Eq for WeakFocusHandle {}
370
371impl PartialEq<FocusHandle> for WeakFocusHandle {
372 fn eq(&self, other: &FocusHandle) -> bool {
373 self.id == other.id
374 }
375}
376
377impl PartialEq<WeakFocusHandle> for FocusHandle {
378 fn eq(&self, other: &WeakFocusHandle) -> bool {
379 self.id == other.id
380 }
381}
382
383/// Focusable allows users of your view to easily
384/// focus it (using window.focus_view(cx, view))
385pub trait Focusable: 'static {
386 /// Returns the focus handle associated with this view.
387 fn focus_handle(&self, cx: &App) -> FocusHandle;
388}
389
390impl<V: Focusable> Focusable for Entity<V> {
391 fn focus_handle(&self, cx: &App) -> FocusHandle {
392 self.read(cx).focus_handle(cx)
393 }
394}
395
396/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
397/// where the lifecycle of the view is handled by another view.
398pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
399
400impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
401
402/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
403pub struct DismissEvent;
404
405type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
406
407pub(crate) type AnyMouseListener =
408 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
409
410#[derive(Clone)]
411pub(crate) struct CursorStyleRequest {
412 pub(crate) hitbox_id: Option<HitboxId>, // None represents whole window
413 pub(crate) style: CursorStyle,
414}
415
416/// An identifier for a [Hitbox].
417#[derive(Copy, Clone, Debug, Default, Eq, PartialEq, Hash)]
418pub struct HitboxId(usize);
419
420impl HitboxId {
421 /// Checks if the hitbox with this id is currently hovered.
422 pub fn is_hovered(&self, window: &Window) -> bool {
423 window.mouse_hit_test.0.contains(self)
424 }
425}
426
427/// A rectangular region that potentially blocks hitboxes inserted prior.
428/// See [Window::insert_hitbox] for more details.
429#[derive(Clone, Debug, Deref)]
430pub struct Hitbox {
431 /// A unique identifier for the hitbox.
432 pub id: HitboxId,
433 /// The bounds of the hitbox.
434 #[deref]
435 pub bounds: Bounds<Pixels>,
436 /// The content mask when the hitbox was inserted.
437 pub content_mask: ContentMask<Pixels>,
438 /// Whether the hitbox occludes other hitboxes inserted prior.
439 pub opaque: bool,
440}
441
442impl Hitbox {
443 /// Checks if the hitbox is currently hovered.
444 pub fn is_hovered(&self, window: &Window) -> bool {
445 self.id.is_hovered(window)
446 }
447}
448
449#[derive(Default, Eq, PartialEq)]
450pub(crate) struct HitTest(SmallVec<[HitboxId; 8]>);
451
452/// An identifier for a tooltip.
453#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
454pub struct TooltipId(usize);
455
456impl TooltipId {
457 /// Checks if the tooltip is currently hovered.
458 pub fn is_hovered(&self, window: &Window) -> bool {
459 window
460 .tooltip_bounds
461 .as_ref()
462 .map_or(false, |tooltip_bounds| {
463 tooltip_bounds.id == *self
464 && tooltip_bounds.bounds.contains(&window.mouse_position())
465 })
466 }
467}
468
469pub(crate) struct TooltipBounds {
470 id: TooltipId,
471 bounds: Bounds<Pixels>,
472}
473
474#[derive(Clone)]
475pub(crate) struct TooltipRequest {
476 id: TooltipId,
477 tooltip: AnyTooltip,
478}
479
480pub(crate) struct DeferredDraw {
481 current_view: EntityId,
482 priority: usize,
483 parent_node: DispatchNodeId,
484 element_id_stack: SmallVec<[ElementId; 32]>,
485 text_style_stack: Vec<TextStyleRefinement>,
486 element: Option<AnyElement>,
487 absolute_offset: Point<Pixels>,
488 prepaint_range: Range<PrepaintStateIndex>,
489 paint_range: Range<PaintIndex>,
490}
491
492pub(crate) struct Frame {
493 pub(crate) focus: Option<FocusId>,
494 pub(crate) window_active: bool,
495 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
496 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
497 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
498 pub(crate) dispatch_tree: DispatchTree,
499 pub(crate) scene: Scene,
500 pub(crate) hitboxes: Vec<Hitbox>,
501 pub(crate) deferred_draws: Vec<DeferredDraw>,
502 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
503 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
504 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
505 #[cfg(any(test, feature = "test-support"))]
506 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
507 #[cfg(any(feature = "inspector", debug_assertions))]
508 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
509 #[cfg(any(feature = "inspector", debug_assertions))]
510 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
511}
512
513#[derive(Clone, Default)]
514pub(crate) struct PrepaintStateIndex {
515 hitboxes_index: usize,
516 tooltips_index: usize,
517 deferred_draws_index: usize,
518 dispatch_tree_index: usize,
519 accessed_element_states_index: usize,
520 line_layout_index: LineLayoutIndex,
521}
522
523#[derive(Clone, Default)]
524pub(crate) struct PaintIndex {
525 scene_index: usize,
526 mouse_listeners_index: usize,
527 input_handlers_index: usize,
528 cursor_styles_index: usize,
529 accessed_element_states_index: usize,
530 line_layout_index: LineLayoutIndex,
531}
532
533impl Frame {
534 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
535 Frame {
536 focus: None,
537 window_active: false,
538 element_states: FxHashMap::default(),
539 accessed_element_states: Vec::new(),
540 mouse_listeners: Vec::new(),
541 dispatch_tree,
542 scene: Scene::default(),
543 hitboxes: Vec::new(),
544 deferred_draws: Vec::new(),
545 input_handlers: Vec::new(),
546 tooltip_requests: Vec::new(),
547 cursor_styles: Vec::new(),
548
549 #[cfg(any(test, feature = "test-support"))]
550 debug_bounds: FxHashMap::default(),
551
552 #[cfg(any(feature = "inspector", debug_assertions))]
553 next_inspector_instance_ids: FxHashMap::default(),
554
555 #[cfg(any(feature = "inspector", debug_assertions))]
556 inspector_hitboxes: FxHashMap::default(),
557 }
558 }
559
560 pub(crate) fn clear(&mut self) {
561 self.element_states.clear();
562 self.accessed_element_states.clear();
563 self.mouse_listeners.clear();
564 self.dispatch_tree.clear();
565 self.scene.clear();
566 self.input_handlers.clear();
567 self.tooltip_requests.clear();
568 self.cursor_styles.clear();
569 self.hitboxes.clear();
570 self.deferred_draws.clear();
571 self.focus = None;
572
573 #[cfg(any(feature = "inspector", debug_assertions))]
574 {
575 self.next_inspector_instance_ids.clear();
576 self.inspector_hitboxes.clear();
577 }
578 }
579
580 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
581 let mut hit_test = HitTest::default();
582 for hitbox in self.hitboxes.iter().rev() {
583 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
584 if bounds.contains(&position) {
585 hit_test.0.push(hitbox.id);
586 if hitbox.opaque {
587 break;
588 }
589 }
590 }
591 hit_test
592 }
593
594 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
595 self.focus
596 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
597 .unwrap_or_default()
598 }
599
600 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
601 for element_state_key in &self.accessed_element_states {
602 if let Some((element_state_key, element_state)) =
603 prev_frame.element_states.remove_entry(element_state_key)
604 {
605 self.element_states.insert(element_state_key, element_state);
606 }
607 }
608
609 self.scene.finish();
610 }
611}
612
613/// Holds the state for a specific window.
614pub struct Window {
615 pub(crate) handle: AnyWindowHandle,
616 pub(crate) invalidator: WindowInvalidator,
617 pub(crate) removed: bool,
618 pub(crate) platform_window: Box<dyn PlatformWindow>,
619 display_id: Option<DisplayId>,
620 sprite_atlas: Arc<dyn PlatformAtlas>,
621 text_system: Arc<WindowTextSystem>,
622 rem_size: Pixels,
623 /// The stack of override values for the window's rem size.
624 ///
625 /// This is used by `with_rem_size` to allow rendering an element tree with
626 /// a given rem size.
627 rem_size_override_stack: SmallVec<[Pixels; 8]>,
628 pub(crate) viewport_size: Size<Pixels>,
629 layout_engine: Option<TaffyLayoutEngine>,
630 pub(crate) root: Option<AnyView>,
631 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
632 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
633 pub(crate) rendered_entity_stack: Vec<EntityId>,
634 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
635 pub(crate) element_opacity: Option<f32>,
636 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
637 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
638 pub(crate) image_cache_stack: Vec<AnyImageCache>,
639 pub(crate) rendered_frame: Frame,
640 pub(crate) next_frame: Frame,
641 pub(crate) next_hitbox_id: HitboxId,
642 pub(crate) next_tooltip_id: TooltipId,
643 pub(crate) tooltip_bounds: Option<TooltipBounds>,
644 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
645 pub(crate) dirty_views: FxHashSet<EntityId>,
646 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
647 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
648 default_prevented: bool,
649 mouse_position: Point<Pixels>,
650 mouse_hit_test: HitTest,
651 modifiers: Modifiers,
652 scale_factor: f32,
653 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
654 appearance: WindowAppearance,
655 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
656 active: Rc<Cell<bool>>,
657 hovered: Rc<Cell<bool>>,
658 pub(crate) needs_present: Rc<Cell<bool>>,
659 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
660 pub(crate) refreshing: bool,
661 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
662 pub(crate) focus: Option<FocusId>,
663 focus_enabled: bool,
664 pending_input: Option<PendingInput>,
665 pending_modifier: ModifierState,
666 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
667 prompt: Option<RenderablePromptHandle>,
668 pub(crate) client_inset: Option<Pixels>,
669 #[cfg(any(feature = "inspector", debug_assertions))]
670 inspector: Option<Entity<Inspector>>,
671}
672
673#[derive(Clone, Debug, Default)]
674struct ModifierState {
675 modifiers: Modifiers,
676 saw_keystroke: bool,
677}
678
679#[derive(Clone, Copy, Debug, Eq, PartialEq)]
680pub(crate) enum DrawPhase {
681 None,
682 Prepaint,
683 Paint,
684 Focus,
685}
686
687#[derive(Default, Debug)]
688struct PendingInput {
689 keystrokes: SmallVec<[Keystroke; 1]>,
690 focus: Option<FocusId>,
691 timer: Option<Task<()>>,
692}
693
694pub(crate) struct ElementStateBox {
695 pub(crate) inner: Box<dyn Any>,
696 #[cfg(debug_assertions)]
697 pub(crate) type_name: &'static str,
698}
699
700fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
701 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
702
703 // TODO, BUG: if you open a window with the currently active window
704 // on the stack, this will erroneously select the 'unwrap_or_else'
705 // code path
706 cx.active_window()
707 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
708 .map(|mut bounds| {
709 bounds.origin += DEFAULT_WINDOW_OFFSET;
710 bounds
711 })
712 .unwrap_or_else(|| {
713 let display = display_id
714 .map(|id| cx.find_display(id))
715 .unwrap_or_else(|| cx.primary_display());
716
717 display
718 .map(|display| display.default_bounds())
719 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
720 })
721}
722
723impl Window {
724 pub(crate) fn new(
725 handle: AnyWindowHandle,
726 options: WindowOptions,
727 cx: &mut App,
728 ) -> Result<Self> {
729 let WindowOptions {
730 window_bounds,
731 titlebar,
732 focus,
733 show,
734 kind,
735 is_movable,
736 display_id,
737 window_background,
738 app_id,
739 window_min_size,
740 window_decorations,
741 } = options;
742
743 let bounds = window_bounds
744 .map(|bounds| bounds.get_bounds())
745 .unwrap_or_else(|| default_bounds(display_id, cx));
746 let mut platform_window = cx.platform.open_window(
747 handle,
748 WindowParams {
749 bounds,
750 titlebar,
751 kind,
752 is_movable,
753 focus,
754 show,
755 display_id,
756 window_min_size,
757 },
758 )?;
759 let display_id = platform_window.display().map(|display| display.id());
760 let sprite_atlas = platform_window.sprite_atlas();
761 let mouse_position = platform_window.mouse_position();
762 let modifiers = platform_window.modifiers();
763 let content_size = platform_window.content_size();
764 let scale_factor = platform_window.scale_factor();
765 let appearance = platform_window.appearance();
766 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
767 let invalidator = WindowInvalidator::new();
768 let active = Rc::new(Cell::new(platform_window.is_active()));
769 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
770 let needs_present = Rc::new(Cell::new(false));
771 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
772 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
773
774 platform_window
775 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
776 platform_window.set_background_appearance(window_background);
777
778 if let Some(ref window_open_state) = window_bounds {
779 match window_open_state {
780 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
781 WindowBounds::Maximized(_) => platform_window.zoom(),
782 WindowBounds::Windowed(_) => {}
783 }
784 }
785
786 platform_window.on_close(Box::new({
787 let mut cx = cx.to_async();
788 move || {
789 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
790 }
791 }));
792 platform_window.on_request_frame(Box::new({
793 let mut cx = cx.to_async();
794 let invalidator = invalidator.clone();
795 let active = active.clone();
796 let needs_present = needs_present.clone();
797 let next_frame_callbacks = next_frame_callbacks.clone();
798 let last_input_timestamp = last_input_timestamp.clone();
799 move |request_frame_options| {
800 let next_frame_callbacks = next_frame_callbacks.take();
801 if !next_frame_callbacks.is_empty() {
802 handle
803 .update(&mut cx, |_, window, cx| {
804 for callback in next_frame_callbacks {
805 callback(window, cx);
806 }
807 })
808 .log_err();
809 }
810
811 // Keep presenting the current scene for 1 extra second since the
812 // last input to prevent the display from underclocking the refresh rate.
813 let needs_present = request_frame_options.require_presentation
814 || needs_present.get()
815 || (active.get()
816 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
817
818 if invalidator.is_dirty() {
819 measure("frame duration", || {
820 handle
821 .update(&mut cx, |_, window, cx| {
822 window.draw(cx);
823 window.present();
824 })
825 .log_err();
826 })
827 } else if needs_present {
828 handle
829 .update(&mut cx, |_, window, _| window.present())
830 .log_err();
831 }
832
833 handle
834 .update(&mut cx, |_, window, _| {
835 window.complete_frame();
836 })
837 .log_err();
838 }
839 }));
840 platform_window.on_resize(Box::new({
841 let mut cx = cx.to_async();
842 move |_, _| {
843 handle
844 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
845 .log_err();
846 }
847 }));
848 platform_window.on_moved(Box::new({
849 let mut cx = cx.to_async();
850 move || {
851 handle
852 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
853 .log_err();
854 }
855 }));
856 platform_window.on_appearance_changed(Box::new({
857 let mut cx = cx.to_async();
858 move || {
859 handle
860 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
861 .log_err();
862 }
863 }));
864 platform_window.on_active_status_change(Box::new({
865 let mut cx = cx.to_async();
866 move |active| {
867 handle
868 .update(&mut cx, |_, window, cx| {
869 window.active.set(active);
870 window.modifiers = window.platform_window.modifiers();
871 window
872 .activation_observers
873 .clone()
874 .retain(&(), |callback| callback(window, cx));
875 window.refresh();
876 })
877 .log_err();
878 }
879 }));
880 platform_window.on_hover_status_change(Box::new({
881 let mut cx = cx.to_async();
882 move |active| {
883 handle
884 .update(&mut cx, |_, window, _| {
885 window.hovered.set(active);
886 window.refresh();
887 })
888 .log_err();
889 }
890 }));
891 platform_window.on_input({
892 let mut cx = cx.to_async();
893 Box::new(move |event| {
894 handle
895 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
896 .log_err()
897 .unwrap_or(DispatchEventResult::default())
898 })
899 });
900
901 if let Some(app_id) = app_id {
902 platform_window.set_app_id(&app_id);
903 }
904
905 platform_window.map_window().unwrap();
906
907 Ok(Window {
908 handle,
909 invalidator,
910 removed: false,
911 platform_window,
912 display_id,
913 sprite_atlas,
914 text_system,
915 rem_size: px(16.),
916 rem_size_override_stack: SmallVec::new(),
917 viewport_size: content_size,
918 layout_engine: Some(TaffyLayoutEngine::new()),
919 root: None,
920 element_id_stack: SmallVec::default(),
921 text_style_stack: Vec::new(),
922 rendered_entity_stack: Vec::new(),
923 element_offset_stack: Vec::new(),
924 content_mask_stack: Vec::new(),
925 element_opacity: None,
926 requested_autoscroll: None,
927 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
928 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
929 next_frame_callbacks,
930 next_hitbox_id: HitboxId::default(),
931 next_tooltip_id: TooltipId::default(),
932 tooltip_bounds: None,
933 dirty_views: FxHashSet::default(),
934 focus_listeners: SubscriberSet::new(),
935 focus_lost_listeners: SubscriberSet::new(),
936 default_prevented: true,
937 mouse_position,
938 mouse_hit_test: HitTest::default(),
939 modifiers,
940 scale_factor,
941 bounds_observers: SubscriberSet::new(),
942 appearance,
943 appearance_observers: SubscriberSet::new(),
944 active,
945 hovered,
946 needs_present,
947 last_input_timestamp,
948 refreshing: false,
949 activation_observers: SubscriberSet::new(),
950 focus: None,
951 focus_enabled: true,
952 pending_input: None,
953 pending_modifier: ModifierState::default(),
954 pending_input_observers: SubscriberSet::new(),
955 prompt: None,
956 client_inset: None,
957 image_cache_stack: Vec::new(),
958 #[cfg(any(feature = "inspector", debug_assertions))]
959 inspector: None,
960 })
961 }
962
963 pub(crate) fn new_focus_listener(
964 &self,
965 value: AnyWindowFocusListener,
966 ) -> (Subscription, impl FnOnce() + use<>) {
967 self.focus_listeners.insert((), value)
968 }
969}
970
971#[derive(Clone, Debug, Default, PartialEq, Eq)]
972pub(crate) struct DispatchEventResult {
973 pub propagate: bool,
974 pub default_prevented: bool,
975}
976
977/// Indicates which region of the window is visible. Content falling outside of this mask will not be
978/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
979/// to leave room to support more complex shapes in the future.
980#[derive(Clone, Debug, Default, PartialEq, Eq)]
981#[repr(C)]
982pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
983 /// The bounds
984 pub bounds: Bounds<P>,
985}
986
987impl ContentMask<Pixels> {
988 /// Scale the content mask's pixel units by the given scaling factor.
989 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
990 ContentMask {
991 bounds: self.bounds.scale(factor),
992 }
993 }
994
995 /// Intersect the content mask with the given content mask.
996 pub fn intersect(&self, other: &Self) -> Self {
997 let bounds = self.bounds.intersect(&other.bounds);
998 ContentMask { bounds }
999 }
1000}
1001
1002impl Window {
1003 fn mark_view_dirty(&mut self, view_id: EntityId) {
1004 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1005 // should already be dirty.
1006 for view_id in self
1007 .rendered_frame
1008 .dispatch_tree
1009 .view_path(view_id)
1010 .into_iter()
1011 .rev()
1012 {
1013 if !self.dirty_views.insert(view_id) {
1014 break;
1015 }
1016 }
1017 }
1018
1019 /// Registers a callback to be invoked when the window appearance changes.
1020 pub fn observe_window_appearance(
1021 &self,
1022 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1023 ) -> Subscription {
1024 let (subscription, activate) = self.appearance_observers.insert(
1025 (),
1026 Box::new(move |window, cx| {
1027 callback(window, cx);
1028 true
1029 }),
1030 );
1031 activate();
1032 subscription
1033 }
1034
1035 /// Replaces the root entity of the window with a new one.
1036 pub fn replace_root<E>(
1037 &mut self,
1038 cx: &mut App,
1039 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1040 ) -> Entity<E>
1041 where
1042 E: 'static + Render,
1043 {
1044 let view = cx.new(|cx| build_view(self, cx));
1045 self.root = Some(view.clone().into());
1046 self.refresh();
1047 view
1048 }
1049
1050 /// Returns the root entity of the window, if it has one.
1051 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1052 where
1053 E: 'static + Render,
1054 {
1055 self.root
1056 .as_ref()
1057 .map(|view| view.clone().downcast::<E>().ok())
1058 }
1059
1060 /// Obtain a handle to the window that belongs to this context.
1061 pub fn window_handle(&self) -> AnyWindowHandle {
1062 self.handle
1063 }
1064
1065 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1066 pub fn refresh(&mut self) {
1067 if self.invalidator.not_drawing() {
1068 self.refreshing = true;
1069 self.invalidator.set_dirty(true);
1070 }
1071 }
1072
1073 /// Close this window.
1074 pub fn remove_window(&mut self) {
1075 self.removed = true;
1076 }
1077
1078 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1079 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1080 self.focus
1081 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1082 }
1083
1084 /// Move focus to the element associated with the given [`FocusHandle`].
1085 pub fn focus(&mut self, handle: &FocusHandle) {
1086 if !self.focus_enabled || self.focus == Some(handle.id) {
1087 return;
1088 }
1089
1090 self.focus = Some(handle.id);
1091 self.clear_pending_keystrokes();
1092 self.refresh();
1093 }
1094
1095 /// Remove focus from all elements within this context's window.
1096 pub fn blur(&mut self) {
1097 if !self.focus_enabled {
1098 return;
1099 }
1100
1101 self.focus = None;
1102 self.refresh();
1103 }
1104
1105 /// Blur the window and don't allow anything in it to be focused again.
1106 pub fn disable_focus(&mut self) {
1107 self.blur();
1108 self.focus_enabled = false;
1109 }
1110
1111 /// Accessor for the text system.
1112 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1113 &self.text_system
1114 }
1115
1116 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1117 pub fn text_style(&self) -> TextStyle {
1118 let mut style = TextStyle::default();
1119 for refinement in &self.text_style_stack {
1120 style.refine(refinement);
1121 }
1122 style
1123 }
1124
1125 /// Check if the platform window is maximized
1126 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1127 pub fn is_maximized(&self) -> bool {
1128 self.platform_window.is_maximized()
1129 }
1130
1131 /// request a certain window decoration (Wayland)
1132 pub fn request_decorations(&self, decorations: WindowDecorations) {
1133 self.platform_window.request_decorations(decorations);
1134 }
1135
1136 /// Start a window resize operation (Wayland)
1137 pub fn start_window_resize(&self, edge: ResizeEdge) {
1138 self.platform_window.start_window_resize(edge);
1139 }
1140
1141 /// Return the `WindowBounds` to indicate that how a window should be opened
1142 /// after it has been closed
1143 pub fn window_bounds(&self) -> WindowBounds {
1144 self.platform_window.window_bounds()
1145 }
1146
1147 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1148 pub fn inner_window_bounds(&self) -> WindowBounds {
1149 self.platform_window.inner_window_bounds()
1150 }
1151
1152 /// Dispatch the given action on the currently focused element.
1153 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1154 let focus_handle = self.focused(cx);
1155
1156 let window = self.handle;
1157 cx.defer(move |cx| {
1158 window
1159 .update(cx, |_, window, cx| {
1160 let node_id = focus_handle
1161 .and_then(|handle| {
1162 window
1163 .rendered_frame
1164 .dispatch_tree
1165 .focusable_node_id(handle.id)
1166 })
1167 .unwrap_or_else(|| window.rendered_frame.dispatch_tree.root_node_id());
1168
1169 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1170 })
1171 .log_err();
1172 })
1173 }
1174
1175 pub(crate) fn dispatch_keystroke_observers(
1176 &mut self,
1177 event: &dyn Any,
1178 action: Option<Box<dyn Action>>,
1179 context_stack: Vec<KeyContext>,
1180 cx: &mut App,
1181 ) {
1182 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1183 return;
1184 };
1185
1186 cx.keystroke_observers.clone().retain(&(), move |callback| {
1187 (callback)(
1188 &KeystrokeEvent {
1189 keystroke: key_down_event.keystroke.clone(),
1190 action: action.as_ref().map(|action| action.boxed_clone()),
1191 context_stack: context_stack.clone(),
1192 },
1193 self,
1194 cx,
1195 )
1196 });
1197 }
1198
1199 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1200 /// that are currently on the stack to be returned to the app.
1201 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1202 let handle = self.handle;
1203 cx.defer(move |cx| {
1204 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1205 });
1206 }
1207
1208 /// Subscribe to events emitted by a entity.
1209 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1210 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1211 pub fn observe<T: 'static>(
1212 &mut self,
1213 observed: &Entity<T>,
1214 cx: &mut App,
1215 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1216 ) -> Subscription {
1217 let entity_id = observed.entity_id();
1218 let observed = observed.downgrade();
1219 let window_handle = self.handle;
1220 cx.new_observer(
1221 entity_id,
1222 Box::new(move |cx| {
1223 window_handle
1224 .update(cx, |_, window, cx| {
1225 if let Some(handle) = observed.upgrade() {
1226 on_notify(handle, window, cx);
1227 true
1228 } else {
1229 false
1230 }
1231 })
1232 .unwrap_or(false)
1233 }),
1234 )
1235 }
1236
1237 /// Subscribe to events emitted by a entity.
1238 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1239 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1240 pub fn subscribe<Emitter, Evt>(
1241 &mut self,
1242 entity: &Entity<Emitter>,
1243 cx: &mut App,
1244 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1245 ) -> Subscription
1246 where
1247 Emitter: EventEmitter<Evt>,
1248 Evt: 'static,
1249 {
1250 let entity_id = entity.entity_id();
1251 let handle = entity.downgrade();
1252 let window_handle = self.handle;
1253 cx.new_subscription(
1254 entity_id,
1255 (
1256 TypeId::of::<Evt>(),
1257 Box::new(move |event, cx| {
1258 window_handle
1259 .update(cx, |_, window, cx| {
1260 if let Some(entity) = handle.upgrade() {
1261 let event = event.downcast_ref().expect("invalid event type");
1262 on_event(entity, event, window, cx);
1263 true
1264 } else {
1265 false
1266 }
1267 })
1268 .unwrap_or(false)
1269 }),
1270 ),
1271 )
1272 }
1273
1274 /// Register a callback to be invoked when the given `Entity` is released.
1275 pub fn observe_release<T>(
1276 &self,
1277 entity: &Entity<T>,
1278 cx: &mut App,
1279 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1280 ) -> Subscription
1281 where
1282 T: 'static,
1283 {
1284 let entity_id = entity.entity_id();
1285 let window_handle = self.handle;
1286 let (subscription, activate) = cx.release_listeners.insert(
1287 entity_id,
1288 Box::new(move |entity, cx| {
1289 let entity = entity.downcast_mut().expect("invalid entity type");
1290 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1291 }),
1292 );
1293 activate();
1294 subscription
1295 }
1296
1297 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1298 /// await points in async code.
1299 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1300 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1301 }
1302
1303 /// Schedule the given closure to be run directly after the current frame is rendered.
1304 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1305 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1306 }
1307
1308 /// Schedule a frame to be drawn on the next animation frame.
1309 ///
1310 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1311 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1312 ///
1313 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1314 pub fn request_animation_frame(&self) {
1315 let entity = self.current_view();
1316 self.on_next_frame(move |_, cx| cx.notify(entity));
1317 }
1318
1319 /// Spawn the future returned by the given closure on the application thread pool.
1320 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1321 /// use within your future.
1322 #[track_caller]
1323 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1324 where
1325 R: 'static,
1326 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1327 {
1328 let handle = self.handle;
1329 cx.spawn(async move |app| {
1330 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1331 f(&mut async_window_cx).await
1332 })
1333 }
1334
1335 fn bounds_changed(&mut self, cx: &mut App) {
1336 self.scale_factor = self.platform_window.scale_factor();
1337 self.viewport_size = self.platform_window.content_size();
1338 self.display_id = self.platform_window.display().map(|display| display.id());
1339
1340 self.refresh();
1341
1342 self.bounds_observers
1343 .clone()
1344 .retain(&(), |callback| callback(self, cx));
1345 }
1346
1347 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1348 pub fn bounds(&self) -> Bounds<Pixels> {
1349 self.platform_window.bounds()
1350 }
1351
1352 /// Set the content size of the window.
1353 pub fn resize(&mut self, size: Size<Pixels>) {
1354 self.platform_window.resize(size);
1355 }
1356
1357 /// Returns whether or not the window is currently fullscreen
1358 pub fn is_fullscreen(&self) -> bool {
1359 self.platform_window.is_fullscreen()
1360 }
1361
1362 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1363 self.appearance = self.platform_window.appearance();
1364
1365 self.appearance_observers
1366 .clone()
1367 .retain(&(), |callback| callback(self, cx));
1368 }
1369
1370 /// Returns the appearance of the current window.
1371 pub fn appearance(&self) -> WindowAppearance {
1372 self.appearance
1373 }
1374
1375 /// Returns the size of the drawable area within the window.
1376 pub fn viewport_size(&self) -> Size<Pixels> {
1377 self.viewport_size
1378 }
1379
1380 /// Returns whether this window is focused by the operating system (receiving key events).
1381 pub fn is_window_active(&self) -> bool {
1382 self.active.get()
1383 }
1384
1385 /// Returns whether this window is considered to be the window
1386 /// that currently owns the mouse cursor.
1387 /// On mac, this is equivalent to `is_window_active`.
1388 pub fn is_window_hovered(&self) -> bool {
1389 if cfg!(any(
1390 target_os = "windows",
1391 target_os = "linux",
1392 target_os = "freebsd"
1393 )) {
1394 self.hovered.get()
1395 } else {
1396 self.is_window_active()
1397 }
1398 }
1399
1400 /// Toggle zoom on the window.
1401 pub fn zoom_window(&self) {
1402 self.platform_window.zoom();
1403 }
1404
1405 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1406 pub fn show_window_menu(&self, position: Point<Pixels>) {
1407 self.platform_window.show_window_menu(position)
1408 }
1409
1410 /// Tells the compositor to take control of window movement (Wayland and X11)
1411 ///
1412 /// Events may not be received during a move operation.
1413 pub fn start_window_move(&self) {
1414 self.platform_window.start_window_move()
1415 }
1416
1417 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1418 pub fn set_client_inset(&mut self, inset: Pixels) {
1419 self.client_inset = Some(inset);
1420 self.platform_window.set_client_inset(inset);
1421 }
1422
1423 /// Returns the client_inset value by [`Self::set_client_inset`].
1424 pub fn client_inset(&self) -> Option<Pixels> {
1425 self.client_inset
1426 }
1427
1428 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1429 pub fn window_decorations(&self) -> Decorations {
1430 self.platform_window.window_decorations()
1431 }
1432
1433 /// Returns which window controls are currently visible (Wayland)
1434 pub fn window_controls(&self) -> WindowControls {
1435 self.platform_window.window_controls()
1436 }
1437
1438 /// Updates the window's title at the platform level.
1439 pub fn set_window_title(&mut self, title: &str) {
1440 self.platform_window.set_title(title);
1441 }
1442
1443 /// Sets the application identifier.
1444 pub fn set_app_id(&mut self, app_id: &str) {
1445 self.platform_window.set_app_id(app_id);
1446 }
1447
1448 /// Sets the window background appearance.
1449 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1450 self.platform_window
1451 .set_background_appearance(background_appearance);
1452 }
1453
1454 /// Mark the window as dirty at the platform level.
1455 pub fn set_window_edited(&mut self, edited: bool) {
1456 self.platform_window.set_edited(edited);
1457 }
1458
1459 /// Determine the display on which the window is visible.
1460 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1461 cx.platform
1462 .displays()
1463 .into_iter()
1464 .find(|display| Some(display.id()) == self.display_id)
1465 }
1466
1467 /// Show the platform character palette.
1468 pub fn show_character_palette(&self) {
1469 self.platform_window.show_character_palette();
1470 }
1471
1472 /// The scale factor of the display associated with the window. For example, it could
1473 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1474 /// be rendered as two pixels on screen.
1475 pub fn scale_factor(&self) -> f32 {
1476 self.scale_factor
1477 }
1478
1479 /// The size of an em for the base font of the application. Adjusting this value allows the
1480 /// UI to scale, just like zooming a web page.
1481 pub fn rem_size(&self) -> Pixels {
1482 self.rem_size_override_stack
1483 .last()
1484 .copied()
1485 .unwrap_or(self.rem_size)
1486 }
1487
1488 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1489 /// UI to scale, just like zooming a web page.
1490 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1491 self.rem_size = rem_size.into();
1492 }
1493
1494 /// Acquire a globally unique identifier for the given ElementId.
1495 /// Only valid for the duration of the provided closure.
1496 pub fn with_global_id<R>(
1497 &mut self,
1498 element_id: ElementId,
1499 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1500 ) -> R {
1501 self.element_id_stack.push(element_id);
1502 let global_id = GlobalElementId(self.element_id_stack.clone());
1503 let result = f(&global_id, self);
1504 self.element_id_stack.pop();
1505 result
1506 }
1507
1508 /// Executes the provided function with the specified rem size.
1509 ///
1510 /// This method must only be called as part of element drawing.
1511 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1512 where
1513 F: FnOnce(&mut Self) -> R,
1514 {
1515 self.invalidator.debug_assert_paint_or_prepaint();
1516
1517 if let Some(rem_size) = rem_size {
1518 self.rem_size_override_stack.push(rem_size.into());
1519 let result = f(self);
1520 self.rem_size_override_stack.pop();
1521 result
1522 } else {
1523 f(self)
1524 }
1525 }
1526
1527 /// The line height associated with the current text style.
1528 pub fn line_height(&self) -> Pixels {
1529 self.text_style().line_height_in_pixels(self.rem_size())
1530 }
1531
1532 /// Call to prevent the default action of an event. Currently only used to prevent
1533 /// parent elements from becoming focused on mouse down.
1534 pub fn prevent_default(&mut self) {
1535 self.default_prevented = true;
1536 }
1537
1538 /// Obtain whether default has been prevented for the event currently being dispatched.
1539 pub fn default_prevented(&self) -> bool {
1540 self.default_prevented
1541 }
1542
1543 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1544 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1545 let target = self
1546 .focused(cx)
1547 .and_then(|focused_handle| {
1548 self.rendered_frame
1549 .dispatch_tree
1550 .focusable_node_id(focused_handle.id)
1551 })
1552 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
1553 self.rendered_frame
1554 .dispatch_tree
1555 .is_action_available(action, target)
1556 }
1557
1558 /// The position of the mouse relative to the window.
1559 pub fn mouse_position(&self) -> Point<Pixels> {
1560 self.mouse_position
1561 }
1562
1563 /// The current state of the keyboard's modifiers
1564 pub fn modifiers(&self) -> Modifiers {
1565 self.modifiers
1566 }
1567
1568 fn complete_frame(&self) {
1569 self.platform_window.completed_frame();
1570 }
1571
1572 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1573 /// the contents of the new [Scene], use [present].
1574 #[profiling::function]
1575 pub fn draw(&mut self, cx: &mut App) {
1576 self.invalidate_entities();
1577 cx.entities.clear_accessed();
1578 debug_assert!(self.rendered_entity_stack.is_empty());
1579 self.invalidator.set_dirty(false);
1580 self.requested_autoscroll = None;
1581
1582 // Restore the previously-used input handler.
1583 if let Some(input_handler) = self.platform_window.take_input_handler() {
1584 self.rendered_frame.input_handlers.push(Some(input_handler));
1585 }
1586 self.draw_roots(cx);
1587 self.dirty_views.clear();
1588 self.next_frame.window_active = self.active.get();
1589
1590 // Register requested input handler with the platform window.
1591 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1592 self.platform_window
1593 .set_input_handler(input_handler.unwrap());
1594 }
1595
1596 self.layout_engine.as_mut().unwrap().clear();
1597 self.text_system().finish_frame();
1598 self.next_frame.finish(&mut self.rendered_frame);
1599 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
1600 let percentage = (element_arena.len() as f32 / element_arena.capacity() as f32) * 100.;
1601 if percentage >= 80. {
1602 log::warn!("elevated element arena occupation: {}.", percentage);
1603 }
1604 element_arena.clear();
1605 });
1606
1607 self.invalidator.set_phase(DrawPhase::Focus);
1608 let previous_focus_path = self.rendered_frame.focus_path();
1609 let previous_window_active = self.rendered_frame.window_active;
1610 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1611 self.next_frame.clear();
1612 let current_focus_path = self.rendered_frame.focus_path();
1613 let current_window_active = self.rendered_frame.window_active;
1614
1615 if previous_focus_path != current_focus_path
1616 || previous_window_active != current_window_active
1617 {
1618 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1619 self.focus_lost_listeners
1620 .clone()
1621 .retain(&(), |listener| listener(self, cx));
1622 }
1623
1624 let event = WindowFocusEvent {
1625 previous_focus_path: if previous_window_active {
1626 previous_focus_path
1627 } else {
1628 Default::default()
1629 },
1630 current_focus_path: if current_window_active {
1631 current_focus_path
1632 } else {
1633 Default::default()
1634 },
1635 };
1636 self.focus_listeners
1637 .clone()
1638 .retain(&(), |listener| listener(&event, self, cx));
1639 }
1640
1641 debug_assert!(self.rendered_entity_stack.is_empty());
1642 self.record_entities_accessed(cx);
1643 self.reset_cursor_style(cx);
1644 self.refreshing = false;
1645 self.invalidator.set_phase(DrawPhase::None);
1646 self.needs_present.set(true);
1647 }
1648
1649 fn record_entities_accessed(&mut self, cx: &mut App) {
1650 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1651 let mut entities = mem::take(entities_ref.deref_mut());
1652 drop(entities_ref);
1653 let handle = self.handle;
1654 cx.record_entities_accessed(
1655 handle,
1656 // Try moving window invalidator into the Window
1657 self.invalidator.clone(),
1658 &entities,
1659 );
1660 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1661 mem::swap(&mut entities, entities_ref.deref_mut());
1662 }
1663
1664 fn invalidate_entities(&mut self) {
1665 let mut views = self.invalidator.take_views();
1666 for entity in views.drain() {
1667 self.mark_view_dirty(entity);
1668 }
1669 self.invalidator.replace_views(views);
1670 }
1671
1672 #[profiling::function]
1673 fn present(&self) {
1674 self.platform_window.draw(&self.rendered_frame.scene);
1675 self.needs_present.set(false);
1676 profiling::finish_frame!();
1677 }
1678
1679 fn draw_roots(&mut self, cx: &mut App) {
1680 self.invalidator.set_phase(DrawPhase::Prepaint);
1681 self.tooltip_bounds.take();
1682
1683 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
1684 let root_size = {
1685 #[cfg(any(feature = "inspector", debug_assertions))]
1686 {
1687 if self.inspector.is_some() {
1688 let mut size = self.viewport_size;
1689 size.width = (size.width - _inspector_width).max(px(0.0));
1690 size
1691 } else {
1692 self.viewport_size
1693 }
1694 }
1695 #[cfg(not(any(feature = "inspector", debug_assertions)))]
1696 {
1697 self.viewport_size
1698 }
1699 };
1700
1701 // Layout all root elements.
1702 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1703 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1704
1705 #[cfg(any(feature = "inspector", debug_assertions))]
1706 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
1707
1708 let mut sorted_deferred_draws =
1709 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1710 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1711 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1712
1713 let mut prompt_element = None;
1714 let mut active_drag_element = None;
1715 let mut tooltip_element = None;
1716 if let Some(prompt) = self.prompt.take() {
1717 let mut element = prompt.view.any_view().into_any();
1718 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1719 prompt_element = Some(element);
1720 self.prompt = Some(prompt);
1721 } else if let Some(active_drag) = cx.active_drag.take() {
1722 let mut element = active_drag.view.clone().into_any();
1723 let offset = self.mouse_position() - active_drag.cursor_offset;
1724 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1725 active_drag_element = Some(element);
1726 cx.active_drag = Some(active_drag);
1727 } else {
1728 tooltip_element = self.prepaint_tooltip(cx);
1729 }
1730
1731 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1732
1733 // Now actually paint the elements.
1734 self.invalidator.set_phase(DrawPhase::Paint);
1735 root_element.paint(self, cx);
1736
1737 #[cfg(any(feature = "inspector", debug_assertions))]
1738 self.paint_inspector(inspector_element, cx);
1739
1740 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1741
1742 if let Some(mut prompt_element) = prompt_element {
1743 prompt_element.paint(self, cx);
1744 } else if let Some(mut drag_element) = active_drag_element {
1745 drag_element.paint(self, cx);
1746 } else if let Some(mut tooltip_element) = tooltip_element {
1747 tooltip_element.paint(self, cx);
1748 }
1749
1750 #[cfg(any(feature = "inspector", debug_assertions))]
1751 self.paint_inspector_hitbox(cx);
1752 }
1753
1754 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1755 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1756 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1757 let Some(Some(tooltip_request)) = self
1758 .next_frame
1759 .tooltip_requests
1760 .get(tooltip_request_index)
1761 .cloned()
1762 else {
1763 log::error!("Unexpectedly absent TooltipRequest");
1764 continue;
1765 };
1766 let mut element = tooltip_request.tooltip.view.clone().into_any();
1767 let mouse_position = tooltip_request.tooltip.mouse_position;
1768 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1769
1770 let mut tooltip_bounds =
1771 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1772 let window_bounds = Bounds {
1773 origin: Point::default(),
1774 size: self.viewport_size(),
1775 };
1776
1777 if tooltip_bounds.right() > window_bounds.right() {
1778 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1779 if new_x >= Pixels::ZERO {
1780 tooltip_bounds.origin.x = new_x;
1781 } else {
1782 tooltip_bounds.origin.x = cmp::max(
1783 Pixels::ZERO,
1784 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1785 );
1786 }
1787 }
1788
1789 if tooltip_bounds.bottom() > window_bounds.bottom() {
1790 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1791 if new_y >= Pixels::ZERO {
1792 tooltip_bounds.origin.y = new_y;
1793 } else {
1794 tooltip_bounds.origin.y = cmp::max(
1795 Pixels::ZERO,
1796 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
1797 );
1798 }
1799 }
1800
1801 // It's possible for an element to have an active tooltip while not being painted (e.g.
1802 // via the `visible_on_hover` method). Since mouse listeners are not active in this
1803 // case, instead update the tooltip's visibility here.
1804 let is_visible =
1805 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
1806 if !is_visible {
1807 continue;
1808 }
1809
1810 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
1811 element.prepaint(window, cx)
1812 });
1813
1814 self.tooltip_bounds = Some(TooltipBounds {
1815 id: tooltip_request.id,
1816 bounds: tooltip_bounds,
1817 });
1818 return Some(element);
1819 }
1820 None
1821 }
1822
1823 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1824 assert_eq!(self.element_id_stack.len(), 0);
1825
1826 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1827 for deferred_draw_ix in deferred_draw_indices {
1828 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1829 self.element_id_stack
1830 .clone_from(&deferred_draw.element_id_stack);
1831 self.text_style_stack
1832 .clone_from(&deferred_draw.text_style_stack);
1833 self.next_frame
1834 .dispatch_tree
1835 .set_active_node(deferred_draw.parent_node);
1836
1837 let prepaint_start = self.prepaint_index();
1838 if let Some(element) = deferred_draw.element.as_mut() {
1839 self.with_rendered_view(deferred_draw.current_view, |window| {
1840 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
1841 element.prepaint(window, cx)
1842 });
1843 })
1844 } else {
1845 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
1846 }
1847 let prepaint_end = self.prepaint_index();
1848 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
1849 }
1850 assert_eq!(
1851 self.next_frame.deferred_draws.len(),
1852 0,
1853 "cannot call defer_draw during deferred drawing"
1854 );
1855 self.next_frame.deferred_draws = deferred_draws;
1856 self.element_id_stack.clear();
1857 self.text_style_stack.clear();
1858 }
1859
1860 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1861 assert_eq!(self.element_id_stack.len(), 0);
1862
1863 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1864 for deferred_draw_ix in deferred_draw_indices {
1865 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1866 self.element_id_stack
1867 .clone_from(&deferred_draw.element_id_stack);
1868 self.next_frame
1869 .dispatch_tree
1870 .set_active_node(deferred_draw.parent_node);
1871
1872 let paint_start = self.paint_index();
1873 if let Some(element) = deferred_draw.element.as_mut() {
1874 self.with_rendered_view(deferred_draw.current_view, |window| {
1875 element.paint(window, cx);
1876 })
1877 } else {
1878 self.reuse_paint(deferred_draw.paint_range.clone());
1879 }
1880 let paint_end = self.paint_index();
1881 deferred_draw.paint_range = paint_start..paint_end;
1882 }
1883 self.next_frame.deferred_draws = deferred_draws;
1884 self.element_id_stack.clear();
1885 }
1886
1887 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
1888 PrepaintStateIndex {
1889 hitboxes_index: self.next_frame.hitboxes.len(),
1890 tooltips_index: self.next_frame.tooltip_requests.len(),
1891 deferred_draws_index: self.next_frame.deferred_draws.len(),
1892 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
1893 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
1894 line_layout_index: self.text_system.layout_index(),
1895 }
1896 }
1897
1898 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
1899 self.next_frame.hitboxes.extend(
1900 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
1901 .iter()
1902 .cloned(),
1903 );
1904 self.next_frame.tooltip_requests.extend(
1905 self.rendered_frame.tooltip_requests
1906 [range.start.tooltips_index..range.end.tooltips_index]
1907 .iter_mut()
1908 .map(|request| request.take()),
1909 );
1910 self.next_frame.accessed_element_states.extend(
1911 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
1912 ..range.end.accessed_element_states_index]
1913 .iter()
1914 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
1915 );
1916 self.text_system
1917 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
1918
1919 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
1920 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
1921 &mut self.rendered_frame.dispatch_tree,
1922 self.focus,
1923 );
1924
1925 if reused_subtree.contains_focus() {
1926 self.next_frame.focus = self.focus;
1927 }
1928
1929 self.next_frame.deferred_draws.extend(
1930 self.rendered_frame.deferred_draws
1931 [range.start.deferred_draws_index..range.end.deferred_draws_index]
1932 .iter()
1933 .map(|deferred_draw| DeferredDraw {
1934 current_view: deferred_draw.current_view,
1935 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
1936 element_id_stack: deferred_draw.element_id_stack.clone(),
1937 text_style_stack: deferred_draw.text_style_stack.clone(),
1938 priority: deferred_draw.priority,
1939 element: None,
1940 absolute_offset: deferred_draw.absolute_offset,
1941 prepaint_range: deferred_draw.prepaint_range.clone(),
1942 paint_range: deferred_draw.paint_range.clone(),
1943 }),
1944 );
1945 }
1946
1947 pub(crate) fn paint_index(&self) -> PaintIndex {
1948 PaintIndex {
1949 scene_index: self.next_frame.scene.len(),
1950 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
1951 input_handlers_index: self.next_frame.input_handlers.len(),
1952 cursor_styles_index: self.next_frame.cursor_styles.len(),
1953 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
1954 line_layout_index: self.text_system.layout_index(),
1955 }
1956 }
1957
1958 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
1959 self.next_frame.cursor_styles.extend(
1960 self.rendered_frame.cursor_styles
1961 [range.start.cursor_styles_index..range.end.cursor_styles_index]
1962 .iter()
1963 .cloned(),
1964 );
1965 self.next_frame.input_handlers.extend(
1966 self.rendered_frame.input_handlers
1967 [range.start.input_handlers_index..range.end.input_handlers_index]
1968 .iter_mut()
1969 .map(|handler| handler.take()),
1970 );
1971 self.next_frame.mouse_listeners.extend(
1972 self.rendered_frame.mouse_listeners
1973 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
1974 .iter_mut()
1975 .map(|listener| listener.take()),
1976 );
1977 self.next_frame.accessed_element_states.extend(
1978 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
1979 ..range.end.accessed_element_states_index]
1980 .iter()
1981 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
1982 );
1983
1984 self.text_system
1985 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
1986 self.next_frame.scene.replay(
1987 range.start.scene_index..range.end.scene_index,
1988 &self.rendered_frame.scene,
1989 );
1990 }
1991
1992 /// Push a text style onto the stack, and call a function with that style active.
1993 /// Use [`Window::text_style`] to get the current, combined text style. This method
1994 /// should only be called as part of element drawing.
1995 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
1996 where
1997 F: FnOnce(&mut Self) -> R,
1998 {
1999 self.invalidator.debug_assert_paint_or_prepaint();
2000 if let Some(style) = style {
2001 self.text_style_stack.push(style);
2002 let result = f(self);
2003 self.text_style_stack.pop();
2004 result
2005 } else {
2006 f(self)
2007 }
2008 }
2009
2010 /// Updates the cursor style at the platform level. This method should only be called
2011 /// during the prepaint phase of element drawing.
2012 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: Option<&Hitbox>) {
2013 self.invalidator.debug_assert_paint();
2014 self.next_frame.cursor_styles.push(CursorStyleRequest {
2015 hitbox_id: hitbox.map(|hitbox| hitbox.id),
2016 style,
2017 });
2018 }
2019
2020 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2021 /// during the paint phase of element drawing.
2022 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2023 self.invalidator.debug_assert_prepaint();
2024 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2025 self.next_frame
2026 .tooltip_requests
2027 .push(Some(TooltipRequest { id, tooltip }));
2028 id
2029 }
2030
2031 /// Invoke the given function with the given content mask after intersecting it
2032 /// with the current mask. This method should only be called during element drawing.
2033 pub fn with_content_mask<R>(
2034 &mut self,
2035 mask: Option<ContentMask<Pixels>>,
2036 f: impl FnOnce(&mut Self) -> R,
2037 ) -> R {
2038 self.invalidator.debug_assert_paint_or_prepaint();
2039 if let Some(mask) = mask {
2040 let mask = mask.intersect(&self.content_mask());
2041 self.content_mask_stack.push(mask);
2042 let result = f(self);
2043 self.content_mask_stack.pop();
2044 result
2045 } else {
2046 f(self)
2047 }
2048 }
2049
2050 /// Updates the global element offset relative to the current offset. This is used to implement
2051 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2052 pub fn with_element_offset<R>(
2053 &mut self,
2054 offset: Point<Pixels>,
2055 f: impl FnOnce(&mut Self) -> R,
2056 ) -> R {
2057 self.invalidator.debug_assert_prepaint();
2058
2059 if offset.is_zero() {
2060 return f(self);
2061 };
2062
2063 let abs_offset = self.element_offset() + offset;
2064 self.with_absolute_element_offset(abs_offset, f)
2065 }
2066
2067 /// Updates the global element offset based on the given offset. This is used to implement
2068 /// drag handles and other manual painting of elements. This method should only be called during
2069 /// the prepaint phase of element drawing.
2070 pub fn with_absolute_element_offset<R>(
2071 &mut self,
2072 offset: Point<Pixels>,
2073 f: impl FnOnce(&mut Self) -> R,
2074 ) -> R {
2075 self.invalidator.debug_assert_prepaint();
2076 self.element_offset_stack.push(offset);
2077 let result = f(self);
2078 self.element_offset_stack.pop();
2079 result
2080 }
2081
2082 pub(crate) fn with_element_opacity<R>(
2083 &mut self,
2084 opacity: Option<f32>,
2085 f: impl FnOnce(&mut Self) -> R,
2086 ) -> R {
2087 if opacity.is_none() {
2088 return f(self);
2089 }
2090
2091 self.invalidator.debug_assert_paint_or_prepaint();
2092 self.element_opacity = opacity;
2093 let result = f(self);
2094 self.element_opacity = None;
2095 result
2096 }
2097
2098 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2099 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2100 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2101 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2102 /// called during the prepaint phase of element drawing.
2103 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2104 self.invalidator.debug_assert_prepaint();
2105 let index = self.prepaint_index();
2106 let result = f(self);
2107 if result.is_err() {
2108 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2109 self.next_frame
2110 .tooltip_requests
2111 .truncate(index.tooltips_index);
2112 self.next_frame
2113 .deferred_draws
2114 .truncate(index.deferred_draws_index);
2115 self.next_frame
2116 .dispatch_tree
2117 .truncate(index.dispatch_tree_index);
2118 self.next_frame
2119 .accessed_element_states
2120 .truncate(index.accessed_element_states_index);
2121 self.text_system.truncate_layouts(index.line_layout_index);
2122 }
2123 result
2124 }
2125
2126 /// When you call this method during [`prepaint`], containing elements will attempt to
2127 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2128 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2129 /// that supports this method being called on the elements it contains. This method should only be
2130 /// called during the prepaint phase of element drawing.
2131 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2132 self.invalidator.debug_assert_prepaint();
2133 self.requested_autoscroll = Some(bounds);
2134 }
2135
2136 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2137 /// described in [`request_autoscroll`].
2138 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2139 self.invalidator.debug_assert_prepaint();
2140 self.requested_autoscroll.take()
2141 }
2142
2143 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2144 /// Your view will be re-drawn once the asset has finished loading.
2145 ///
2146 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2147 /// time.
2148 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2149 let (task, is_first) = cx.fetch_asset::<A>(source);
2150 task.clone().now_or_never().or_else(|| {
2151 if is_first {
2152 let entity_id = self.current_view();
2153 self.spawn(cx, {
2154 let task = task.clone();
2155 async move |cx| {
2156 task.await;
2157
2158 cx.on_next_frame(move |_, cx| {
2159 cx.notify(entity_id);
2160 });
2161 }
2162 })
2163 .detach();
2164 }
2165
2166 None
2167 })
2168 }
2169
2170 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2171 /// Your view will not be re-drawn once the asset has finished loading.
2172 ///
2173 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2174 /// time.
2175 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2176 let (task, _) = cx.fetch_asset::<A>(source);
2177 task.clone().now_or_never()
2178 }
2179 /// Obtain the current element offset. This method should only be called during the
2180 /// prepaint phase of element drawing.
2181 pub fn element_offset(&self) -> Point<Pixels> {
2182 self.invalidator.debug_assert_prepaint();
2183 self.element_offset_stack
2184 .last()
2185 .copied()
2186 .unwrap_or_default()
2187 }
2188
2189 /// Obtain the current element opacity. This method should only be called during the
2190 /// prepaint phase of element drawing.
2191 pub(crate) fn element_opacity(&self) -> f32 {
2192 self.invalidator.debug_assert_paint_or_prepaint();
2193 self.element_opacity.unwrap_or(1.0)
2194 }
2195
2196 /// Obtain the current content mask. This method should only be called during element drawing.
2197 pub fn content_mask(&self) -> ContentMask<Pixels> {
2198 self.invalidator.debug_assert_paint_or_prepaint();
2199 self.content_mask_stack
2200 .last()
2201 .cloned()
2202 .unwrap_or_else(|| ContentMask {
2203 bounds: Bounds {
2204 origin: Point::default(),
2205 size: self.viewport_size,
2206 },
2207 })
2208 }
2209
2210 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2211 /// This can be used within a custom element to distinguish multiple sets of child elements.
2212 pub fn with_element_namespace<R>(
2213 &mut self,
2214 element_id: impl Into<ElementId>,
2215 f: impl FnOnce(&mut Self) -> R,
2216 ) -> R {
2217 self.element_id_stack.push(element_id.into());
2218 let result = f(self);
2219 self.element_id_stack.pop();
2220 result
2221 }
2222
2223 /// Updates or initializes state for an element with the given id that lives across multiple
2224 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2225 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2226 /// when drawing the next frame. This method should only be called as part of element drawing.
2227 pub fn with_element_state<S, R>(
2228 &mut self,
2229 global_id: &GlobalElementId,
2230 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2231 ) -> R
2232 where
2233 S: 'static,
2234 {
2235 self.invalidator.debug_assert_paint_or_prepaint();
2236
2237 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2238 self.next_frame
2239 .accessed_element_states
2240 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2241
2242 if let Some(any) = self
2243 .next_frame
2244 .element_states
2245 .remove(&key)
2246 .or_else(|| self.rendered_frame.element_states.remove(&key))
2247 {
2248 let ElementStateBox {
2249 inner,
2250 #[cfg(debug_assertions)]
2251 type_name,
2252 } = any;
2253 // Using the extra inner option to avoid needing to reallocate a new box.
2254 let mut state_box = inner
2255 .downcast::<Option<S>>()
2256 .map_err(|_| {
2257 #[cfg(debug_assertions)]
2258 {
2259 anyhow::anyhow!(
2260 "invalid element state type for id, requested {:?}, actual: {:?}",
2261 std::any::type_name::<S>(),
2262 type_name
2263 )
2264 }
2265
2266 #[cfg(not(debug_assertions))]
2267 {
2268 anyhow::anyhow!(
2269 "invalid element state type for id, requested {:?}",
2270 std::any::type_name::<S>(),
2271 )
2272 }
2273 })
2274 .unwrap();
2275
2276 let state = state_box.take().expect(
2277 "reentrant call to with_element_state for the same state type and element id",
2278 );
2279 let (result, state) = f(Some(state), self);
2280 state_box.replace(state);
2281 self.next_frame.element_states.insert(
2282 key,
2283 ElementStateBox {
2284 inner: state_box,
2285 #[cfg(debug_assertions)]
2286 type_name,
2287 },
2288 );
2289 result
2290 } else {
2291 let (result, state) = f(None, self);
2292 self.next_frame.element_states.insert(
2293 key,
2294 ElementStateBox {
2295 inner: Box::new(Some(state)),
2296 #[cfg(debug_assertions)]
2297 type_name: std::any::type_name::<S>(),
2298 },
2299 );
2300 result
2301 }
2302 }
2303
2304 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2305 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2306 /// when the element is guaranteed to have an id.
2307 ///
2308 /// The first option means 'no ID provided'
2309 /// The second option means 'not yet initialized'
2310 pub fn with_optional_element_state<S, R>(
2311 &mut self,
2312 global_id: Option<&GlobalElementId>,
2313 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2314 ) -> R
2315 where
2316 S: 'static,
2317 {
2318 self.invalidator.debug_assert_paint_or_prepaint();
2319
2320 if let Some(global_id) = global_id {
2321 self.with_element_state(global_id, |state, cx| {
2322 let (result, state) = f(Some(state), cx);
2323 let state =
2324 state.expect("you must return some state when you pass some element id");
2325 (result, state)
2326 })
2327 } else {
2328 let (result, state) = f(None, self);
2329 debug_assert!(
2330 state.is_none(),
2331 "you must not return an element state when passing None for the global id"
2332 );
2333 result
2334 }
2335 }
2336
2337 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2338 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2339 /// with higher values being drawn on top.
2340 ///
2341 /// This method should only be called as part of the prepaint phase of element drawing.
2342 pub fn defer_draw(
2343 &mut self,
2344 element: AnyElement,
2345 absolute_offset: Point<Pixels>,
2346 priority: usize,
2347 ) {
2348 self.invalidator.debug_assert_prepaint();
2349 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2350 self.next_frame.deferred_draws.push(DeferredDraw {
2351 current_view: self.current_view(),
2352 parent_node,
2353 element_id_stack: self.element_id_stack.clone(),
2354 text_style_stack: self.text_style_stack.clone(),
2355 priority,
2356 element: Some(element),
2357 absolute_offset,
2358 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2359 paint_range: PaintIndex::default()..PaintIndex::default(),
2360 });
2361 }
2362
2363 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2364 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2365 /// for performance reasons.
2366 ///
2367 /// This method should only be called as part of the paint phase of element drawing.
2368 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2369 self.invalidator.debug_assert_paint();
2370
2371 let scale_factor = self.scale_factor();
2372 let content_mask = self.content_mask();
2373 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2374 if !clipped_bounds.is_empty() {
2375 self.next_frame
2376 .scene
2377 .push_layer(clipped_bounds.scale(scale_factor));
2378 }
2379
2380 let result = f(self);
2381
2382 if !clipped_bounds.is_empty() {
2383 self.next_frame.scene.pop_layer();
2384 }
2385
2386 result
2387 }
2388
2389 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2390 ///
2391 /// This method should only be called as part of the paint phase of element drawing.
2392 pub fn paint_shadows(
2393 &mut self,
2394 bounds: Bounds<Pixels>,
2395 corner_radii: Corners<Pixels>,
2396 shadows: &[BoxShadow],
2397 ) {
2398 self.invalidator.debug_assert_paint();
2399
2400 let scale_factor = self.scale_factor();
2401 let content_mask = self.content_mask();
2402 let opacity = self.element_opacity();
2403 for shadow in shadows {
2404 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2405 self.next_frame.scene.insert_primitive(Shadow {
2406 order: 0,
2407 blur_radius: shadow.blur_radius.scale(scale_factor),
2408 bounds: shadow_bounds.scale(scale_factor),
2409 content_mask: content_mask.scale(scale_factor),
2410 corner_radii: corner_radii.scale(scale_factor),
2411 color: shadow.color.opacity(opacity),
2412 });
2413 }
2414 }
2415
2416 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2417 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2418 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2419 ///
2420 /// This method should only be called as part of the paint phase of element drawing.
2421 ///
2422 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2423 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2424 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2425 pub fn paint_quad(&mut self, quad: PaintQuad) {
2426 self.invalidator.debug_assert_paint();
2427
2428 let scale_factor = self.scale_factor();
2429 let content_mask = self.content_mask();
2430 let opacity = self.element_opacity();
2431 self.next_frame.scene.insert_primitive(Quad {
2432 order: 0,
2433 bounds: quad.bounds.scale(scale_factor),
2434 content_mask: content_mask.scale(scale_factor),
2435 background: quad.background.opacity(opacity),
2436 border_color: quad.border_color.opacity(opacity),
2437 corner_radii: quad.corner_radii.scale(scale_factor),
2438 border_widths: quad.border_widths.scale(scale_factor),
2439 border_style: quad.border_style,
2440 });
2441 }
2442
2443 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2444 ///
2445 /// This method should only be called as part of the paint phase of element drawing.
2446 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2447 self.invalidator.debug_assert_paint();
2448
2449 let scale_factor = self.scale_factor();
2450 let content_mask = self.content_mask();
2451 let opacity = self.element_opacity();
2452 path.content_mask = content_mask;
2453 let color: Background = color.into();
2454 path.color = color.opacity(opacity);
2455 self.next_frame
2456 .scene
2457 .insert_primitive(path.scale(scale_factor));
2458 }
2459
2460 /// Paint an underline into the scene for the next frame at the current z-index.
2461 ///
2462 /// This method should only be called as part of the paint phase of element drawing.
2463 pub fn paint_underline(
2464 &mut self,
2465 origin: Point<Pixels>,
2466 width: Pixels,
2467 style: &UnderlineStyle,
2468 ) {
2469 self.invalidator.debug_assert_paint();
2470
2471 let scale_factor = self.scale_factor();
2472 let height = if style.wavy {
2473 style.thickness * 3.
2474 } else {
2475 style.thickness
2476 };
2477 let bounds = Bounds {
2478 origin,
2479 size: size(width, height),
2480 };
2481 let content_mask = self.content_mask();
2482 let element_opacity = self.element_opacity();
2483
2484 self.next_frame.scene.insert_primitive(Underline {
2485 order: 0,
2486 pad: 0,
2487 bounds: bounds.scale(scale_factor),
2488 content_mask: content_mask.scale(scale_factor),
2489 color: style.color.unwrap_or_default().opacity(element_opacity),
2490 thickness: style.thickness.scale(scale_factor),
2491 wavy: style.wavy,
2492 });
2493 }
2494
2495 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2496 ///
2497 /// This method should only be called as part of the paint phase of element drawing.
2498 pub fn paint_strikethrough(
2499 &mut self,
2500 origin: Point<Pixels>,
2501 width: Pixels,
2502 style: &StrikethroughStyle,
2503 ) {
2504 self.invalidator.debug_assert_paint();
2505
2506 let scale_factor = self.scale_factor();
2507 let height = style.thickness;
2508 let bounds = Bounds {
2509 origin,
2510 size: size(width, height),
2511 };
2512 let content_mask = self.content_mask();
2513 let opacity = self.element_opacity();
2514
2515 self.next_frame.scene.insert_primitive(Underline {
2516 order: 0,
2517 pad: 0,
2518 bounds: bounds.scale(scale_factor),
2519 content_mask: content_mask.scale(scale_factor),
2520 thickness: style.thickness.scale(scale_factor),
2521 color: style.color.unwrap_or_default().opacity(opacity),
2522 wavy: false,
2523 });
2524 }
2525
2526 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2527 ///
2528 /// The y component of the origin is the baseline of the glyph.
2529 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2530 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2531 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2532 ///
2533 /// This method should only be called as part of the paint phase of element drawing.
2534 pub fn paint_glyph(
2535 &mut self,
2536 origin: Point<Pixels>,
2537 font_id: FontId,
2538 glyph_id: GlyphId,
2539 font_size: Pixels,
2540 color: Hsla,
2541 ) -> Result<()> {
2542 self.invalidator.debug_assert_paint();
2543
2544 let element_opacity = self.element_opacity();
2545 let scale_factor = self.scale_factor();
2546 let glyph_origin = origin.scale(scale_factor);
2547 let subpixel_variant = Point {
2548 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2549 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2550 };
2551 let params = RenderGlyphParams {
2552 font_id,
2553 glyph_id,
2554 font_size,
2555 subpixel_variant,
2556 scale_factor,
2557 is_emoji: false,
2558 };
2559
2560 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2561 if !raster_bounds.is_zero() {
2562 let tile = self
2563 .sprite_atlas
2564 .get_or_insert_with(¶ms.clone().into(), &mut || {
2565 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2566 Ok(Some((size, Cow::Owned(bytes))))
2567 })?
2568 .expect("Callback above only errors or returns Some");
2569 let bounds = Bounds {
2570 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2571 size: tile.bounds.size.map(Into::into),
2572 };
2573 let content_mask = self.content_mask().scale(scale_factor);
2574 self.next_frame.scene.insert_primitive(MonochromeSprite {
2575 order: 0,
2576 pad: 0,
2577 bounds,
2578 content_mask,
2579 color: color.opacity(element_opacity),
2580 tile,
2581 transformation: TransformationMatrix::unit(),
2582 });
2583 }
2584 Ok(())
2585 }
2586
2587 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2588 ///
2589 /// The y component of the origin is the baseline of the glyph.
2590 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2591 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2592 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2593 ///
2594 /// This method should only be called as part of the paint phase of element drawing.
2595 pub fn paint_emoji(
2596 &mut self,
2597 origin: Point<Pixels>,
2598 font_id: FontId,
2599 glyph_id: GlyphId,
2600 font_size: Pixels,
2601 ) -> Result<()> {
2602 self.invalidator.debug_assert_paint();
2603
2604 let scale_factor = self.scale_factor();
2605 let glyph_origin = origin.scale(scale_factor);
2606 let params = RenderGlyphParams {
2607 font_id,
2608 glyph_id,
2609 font_size,
2610 // We don't render emojis with subpixel variants.
2611 subpixel_variant: Default::default(),
2612 scale_factor,
2613 is_emoji: true,
2614 };
2615
2616 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2617 if !raster_bounds.is_zero() {
2618 let tile = self
2619 .sprite_atlas
2620 .get_or_insert_with(¶ms.clone().into(), &mut || {
2621 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2622 Ok(Some((size, Cow::Owned(bytes))))
2623 })?
2624 .expect("Callback above only errors or returns Some");
2625
2626 let bounds = Bounds {
2627 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2628 size: tile.bounds.size.map(Into::into),
2629 };
2630 let content_mask = self.content_mask().scale(scale_factor);
2631 let opacity = self.element_opacity();
2632
2633 self.next_frame.scene.insert_primitive(PolychromeSprite {
2634 order: 0,
2635 pad: 0,
2636 grayscale: false,
2637 bounds,
2638 corner_radii: Default::default(),
2639 content_mask,
2640 tile,
2641 opacity,
2642 });
2643 }
2644 Ok(())
2645 }
2646
2647 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2648 ///
2649 /// This method should only be called as part of the paint phase of element drawing.
2650 pub fn paint_svg(
2651 &mut self,
2652 bounds: Bounds<Pixels>,
2653 path: SharedString,
2654 transformation: TransformationMatrix,
2655 color: Hsla,
2656 cx: &App,
2657 ) -> Result<()> {
2658 self.invalidator.debug_assert_paint();
2659
2660 let element_opacity = self.element_opacity();
2661 let scale_factor = self.scale_factor();
2662 let bounds = bounds.scale(scale_factor);
2663 let params = RenderSvgParams {
2664 path,
2665 size: bounds.size.map(|pixels| {
2666 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2667 }),
2668 };
2669
2670 let Some(tile) =
2671 self.sprite_atlas
2672 .get_or_insert_with(¶ms.clone().into(), &mut || {
2673 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2674 return Ok(None);
2675 };
2676 Ok(Some((params.size, Cow::Owned(bytes))))
2677 })?
2678 else {
2679 return Ok(());
2680 };
2681 let content_mask = self.content_mask().scale(scale_factor);
2682
2683 self.next_frame.scene.insert_primitive(MonochromeSprite {
2684 order: 0,
2685 pad: 0,
2686 bounds: bounds
2687 .map_origin(|origin| origin.floor())
2688 .map_size(|size| size.ceil()),
2689 content_mask,
2690 color: color.opacity(element_opacity),
2691 tile,
2692 transformation,
2693 });
2694
2695 Ok(())
2696 }
2697
2698 /// Paint an image into the scene for the next frame at the current z-index.
2699 /// This method will panic if the frame_index is not valid
2700 ///
2701 /// This method should only be called as part of the paint phase of element drawing.
2702 pub fn paint_image(
2703 &mut self,
2704 bounds: Bounds<Pixels>,
2705 corner_radii: Corners<Pixels>,
2706 data: Arc<RenderImage>,
2707 frame_index: usize,
2708 grayscale: bool,
2709 ) -> Result<()> {
2710 self.invalidator.debug_assert_paint();
2711
2712 let scale_factor = self.scale_factor();
2713 let bounds = bounds.scale(scale_factor);
2714 let params = RenderImageParams {
2715 image_id: data.id,
2716 frame_index,
2717 };
2718
2719 let tile = self
2720 .sprite_atlas
2721 .get_or_insert_with(¶ms.clone().into(), &mut || {
2722 Ok(Some((
2723 data.size(frame_index),
2724 Cow::Borrowed(
2725 data.as_bytes(frame_index)
2726 .expect("It's the caller's job to pass a valid frame index"),
2727 ),
2728 )))
2729 })?
2730 .expect("Callback above only returns Some");
2731 let content_mask = self.content_mask().scale(scale_factor);
2732 let corner_radii = corner_radii.scale(scale_factor);
2733 let opacity = self.element_opacity();
2734
2735 self.next_frame.scene.insert_primitive(PolychromeSprite {
2736 order: 0,
2737 pad: 0,
2738 grayscale,
2739 bounds: bounds
2740 .map_origin(|origin| origin.floor())
2741 .map_size(|size| size.ceil()),
2742 content_mask,
2743 corner_radii,
2744 tile,
2745 opacity,
2746 });
2747 Ok(())
2748 }
2749
2750 /// Paint a surface into the scene for the next frame at the current z-index.
2751 ///
2752 /// This method should only be called as part of the paint phase of element drawing.
2753 #[cfg(target_os = "macos")]
2754 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
2755 use crate::PaintSurface;
2756
2757 self.invalidator.debug_assert_paint();
2758
2759 let scale_factor = self.scale_factor();
2760 let bounds = bounds.scale(scale_factor);
2761 let content_mask = self.content_mask().scale(scale_factor);
2762 self.next_frame.scene.insert_primitive(PaintSurface {
2763 order: 0,
2764 bounds,
2765 content_mask,
2766 image_buffer,
2767 });
2768 }
2769
2770 /// Removes an image from the sprite atlas.
2771 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2772 for frame_index in 0..data.frame_count() {
2773 let params = RenderImageParams {
2774 image_id: data.id,
2775 frame_index,
2776 };
2777
2778 self.sprite_atlas.remove(¶ms.clone().into());
2779 }
2780
2781 Ok(())
2782 }
2783
2784 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
2785 /// layout is being requested, along with the layout ids of any children. This method is called during
2786 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
2787 ///
2788 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2789 #[must_use]
2790 pub fn request_layout(
2791 &mut self,
2792 style: Style,
2793 children: impl IntoIterator<Item = LayoutId>,
2794 cx: &mut App,
2795 ) -> LayoutId {
2796 self.invalidator.debug_assert_prepaint();
2797
2798 cx.layout_id_buffer.clear();
2799 cx.layout_id_buffer.extend(children);
2800 let rem_size = self.rem_size();
2801
2802 self.layout_engine
2803 .as_mut()
2804 .unwrap()
2805 .request_layout(style, rem_size, &cx.layout_id_buffer)
2806 }
2807
2808 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
2809 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
2810 /// determine the element's size. One place this is used internally is when measuring text.
2811 ///
2812 /// The given closure is invoked at layout time with the known dimensions and available space and
2813 /// returns a `Size`.
2814 ///
2815 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2816 pub fn request_measured_layout<
2817 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
2818 + 'static,
2819 >(
2820 &mut self,
2821 style: Style,
2822 measure: F,
2823 ) -> LayoutId {
2824 self.invalidator.debug_assert_prepaint();
2825
2826 let rem_size = self.rem_size();
2827 self.layout_engine
2828 .as_mut()
2829 .unwrap()
2830 .request_measured_layout(style, rem_size, measure)
2831 }
2832
2833 /// Compute the layout for the given id within the given available space.
2834 /// This method is called for its side effect, typically by the framework prior to painting.
2835 /// After calling it, you can request the bounds of the given layout node id or any descendant.
2836 ///
2837 /// This method should only be called as part of the prepaint phase of element drawing.
2838 pub fn compute_layout(
2839 &mut self,
2840 layout_id: LayoutId,
2841 available_space: Size<AvailableSpace>,
2842 cx: &mut App,
2843 ) {
2844 self.invalidator.debug_assert_prepaint();
2845
2846 let mut layout_engine = self.layout_engine.take().unwrap();
2847 layout_engine.compute_layout(layout_id, available_space, self, cx);
2848 self.layout_engine = Some(layout_engine);
2849 }
2850
2851 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
2852 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
2853 ///
2854 /// This method should only be called as part of element drawing.
2855 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
2856 self.invalidator.debug_assert_prepaint();
2857
2858 let mut bounds = self
2859 .layout_engine
2860 .as_mut()
2861 .unwrap()
2862 .layout_bounds(layout_id)
2863 .map(Into::into);
2864 bounds.origin += self.element_offset();
2865 bounds
2866 }
2867
2868 /// This method should be called during `prepaint`. You can use
2869 /// the returned [Hitbox] during `paint` or in an event handler
2870 /// to determine whether the inserted hitbox was the topmost.
2871 ///
2872 /// This method should only be called as part of the prepaint phase of element drawing.
2873 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, opaque: bool) -> Hitbox {
2874 self.invalidator.debug_assert_prepaint();
2875
2876 let content_mask = self.content_mask();
2877 let id = self.next_hitbox_id;
2878 self.next_hitbox_id.0 += 1;
2879 let hitbox = Hitbox {
2880 id,
2881 bounds,
2882 content_mask,
2883 opaque,
2884 };
2885 self.next_frame.hitboxes.push(hitbox.clone());
2886 hitbox
2887 }
2888
2889 /// Sets the key context for the current element. This context will be used to translate
2890 /// keybindings into actions.
2891 ///
2892 /// This method should only be called as part of the paint phase of element drawing.
2893 pub fn set_key_context(&mut self, context: KeyContext) {
2894 self.invalidator.debug_assert_paint();
2895 self.next_frame.dispatch_tree.set_key_context(context);
2896 }
2897
2898 /// Sets the focus handle for the current element. This handle will be used to manage focus state
2899 /// and keyboard event dispatch for the element.
2900 ///
2901 /// This method should only be called as part of the prepaint phase of element drawing.
2902 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
2903 self.invalidator.debug_assert_prepaint();
2904 if focus_handle.is_focused(self) {
2905 self.next_frame.focus = Some(focus_handle.id);
2906 }
2907 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
2908 }
2909
2910 /// Sets the view id for the current element, which will be used to manage view caching.
2911 ///
2912 /// This method should only be called as part of element prepaint. We plan on removing this
2913 /// method eventually when we solve some issues that require us to construct editor elements
2914 /// directly instead of always using editors via views.
2915 pub fn set_view_id(&mut self, view_id: EntityId) {
2916 self.invalidator.debug_assert_prepaint();
2917 self.next_frame.dispatch_tree.set_view_id(view_id);
2918 }
2919
2920 /// Get the entity ID for the currently rendering view
2921 pub fn current_view(&self) -> EntityId {
2922 self.invalidator.debug_assert_paint_or_prepaint();
2923 self.rendered_entity_stack.last().copied().unwrap()
2924 }
2925
2926 pub(crate) fn with_rendered_view<R>(
2927 &mut self,
2928 id: EntityId,
2929 f: impl FnOnce(&mut Self) -> R,
2930 ) -> R {
2931 self.rendered_entity_stack.push(id);
2932 let result = f(self);
2933 self.rendered_entity_stack.pop();
2934 result
2935 }
2936
2937 /// Executes the provided function with the specified image cache.
2938 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
2939 where
2940 F: FnOnce(&mut Self) -> R,
2941 {
2942 if let Some(image_cache) = image_cache {
2943 self.image_cache_stack.push(image_cache);
2944 let result = f(self);
2945 self.image_cache_stack.pop();
2946 result
2947 } else {
2948 f(self)
2949 }
2950 }
2951
2952 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
2953 /// platform to receive textual input with proper integration with concerns such
2954 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
2955 /// rendered.
2956 ///
2957 /// This method should only be called as part of the paint phase of element drawing.
2958 ///
2959 /// [element_input_handler]: crate::ElementInputHandler
2960 pub fn handle_input(
2961 &mut self,
2962 focus_handle: &FocusHandle,
2963 input_handler: impl InputHandler,
2964 cx: &App,
2965 ) {
2966 self.invalidator.debug_assert_paint();
2967
2968 if focus_handle.is_focused(self) {
2969 let cx = self.to_async(cx);
2970 self.next_frame
2971 .input_handlers
2972 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
2973 }
2974 }
2975
2976 /// Register a mouse event listener on the window for the next frame. The type of event
2977 /// is determined by the first parameter of the given listener. When the next frame is rendered
2978 /// the listener will be cleared.
2979 ///
2980 /// This method should only be called as part of the paint phase of element drawing.
2981 pub fn on_mouse_event<Event: MouseEvent>(
2982 &mut self,
2983 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
2984 ) {
2985 self.invalidator.debug_assert_paint();
2986
2987 self.next_frame.mouse_listeners.push(Some(Box::new(
2988 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
2989 if let Some(event) = event.downcast_ref() {
2990 handler(event, phase, window, cx)
2991 }
2992 },
2993 )));
2994 }
2995
2996 /// Register a key event listener on the window for the next frame. The type of event
2997 /// is determined by the first parameter of the given listener. When the next frame is rendered
2998 /// the listener will be cleared.
2999 ///
3000 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3001 /// a specific need to register a global listener.
3002 ///
3003 /// This method should only be called as part of the paint phase of element drawing.
3004 pub fn on_key_event<Event: KeyEvent>(
3005 &mut self,
3006 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3007 ) {
3008 self.invalidator.debug_assert_paint();
3009
3010 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3011 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3012 if let Some(event) = event.downcast_ref::<Event>() {
3013 listener(event, phase, window, cx)
3014 }
3015 },
3016 ));
3017 }
3018
3019 /// Register a modifiers changed event listener on the window for the next frame.
3020 ///
3021 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3022 /// a specific need to register a global listener.
3023 ///
3024 /// This method should only be called as part of the paint phase of element drawing.
3025 pub fn on_modifiers_changed(
3026 &mut self,
3027 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3028 ) {
3029 self.invalidator.debug_assert_paint();
3030
3031 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3032 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3033 listener(event, window, cx)
3034 },
3035 ));
3036 }
3037
3038 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3039 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3040 /// Returns a subscription and persists until the subscription is dropped.
3041 pub fn on_focus_in(
3042 &mut self,
3043 handle: &FocusHandle,
3044 cx: &mut App,
3045 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3046 ) -> Subscription {
3047 let focus_id = handle.id;
3048 let (subscription, activate) =
3049 self.new_focus_listener(Box::new(move |event, window, cx| {
3050 if event.is_focus_in(focus_id) {
3051 listener(window, cx);
3052 }
3053 true
3054 }));
3055 cx.defer(move |_| activate());
3056 subscription
3057 }
3058
3059 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3060 /// Returns a subscription and persists until the subscription is dropped.
3061 pub fn on_focus_out(
3062 &mut self,
3063 handle: &FocusHandle,
3064 cx: &mut App,
3065 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3066 ) -> Subscription {
3067 let focus_id = handle.id;
3068 let (subscription, activate) =
3069 self.new_focus_listener(Box::new(move |event, window, cx| {
3070 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
3071 if event.is_focus_out(focus_id) {
3072 let event = FocusOutEvent {
3073 blurred: WeakFocusHandle {
3074 id: blurred_id,
3075 handles: Arc::downgrade(&cx.focus_handles),
3076 },
3077 };
3078 listener(event, window, cx)
3079 }
3080 }
3081 true
3082 }));
3083 cx.defer(move |_| activate());
3084 subscription
3085 }
3086
3087 fn reset_cursor_style(&self, cx: &mut App) {
3088 // Set the cursor only if we're the active window.
3089 if self.is_window_hovered() {
3090 let style = self
3091 .rendered_frame
3092 .cursor_styles
3093 .iter()
3094 .rev()
3095 .find(|request| {
3096 request
3097 .hitbox_id
3098 .map_or(true, |hitbox_id| hitbox_id.is_hovered(self))
3099 })
3100 .map(|request| request.style)
3101 .unwrap_or(CursorStyle::Arrow);
3102 cx.platform.set_cursor_style(style);
3103 }
3104 }
3105
3106 /// Dispatch a given keystroke as though the user had typed it.
3107 /// You can create a keystroke with Keystroke::parse("").
3108 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3109 let keystroke = keystroke.with_simulated_ime();
3110 let result = self.dispatch_event(
3111 PlatformInput::KeyDown(KeyDownEvent {
3112 keystroke: keystroke.clone(),
3113 is_held: false,
3114 }),
3115 cx,
3116 );
3117 if !result.propagate {
3118 return true;
3119 }
3120
3121 if let Some(input) = keystroke.key_char {
3122 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3123 input_handler.dispatch_input(&input, self, cx);
3124 self.platform_window.set_input_handler(input_handler);
3125 return true;
3126 }
3127 }
3128
3129 false
3130 }
3131
3132 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3133 /// binding for the action (last binding added to the keymap).
3134 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3135 self.bindings_for_action(action)
3136 .last()
3137 .map(|binding| {
3138 binding
3139 .keystrokes()
3140 .iter()
3141 .map(ToString::to_string)
3142 .collect::<Vec<_>>()
3143 .join(" ")
3144 })
3145 .unwrap_or_else(|| action.name().to_string())
3146 }
3147
3148 /// Dispatch a mouse or keyboard event on the window.
3149 #[profiling::function]
3150 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3151 self.last_input_timestamp.set(Instant::now());
3152 // Handlers may set this to false by calling `stop_propagation`.
3153 cx.propagate_event = true;
3154 // Handlers may set this to true by calling `prevent_default`.
3155 self.default_prevented = false;
3156
3157 let event = match event {
3158 // Track the mouse position with our own state, since accessing the platform
3159 // API for the mouse position can only occur on the main thread.
3160 PlatformInput::MouseMove(mouse_move) => {
3161 self.mouse_position = mouse_move.position;
3162 self.modifiers = mouse_move.modifiers;
3163 PlatformInput::MouseMove(mouse_move)
3164 }
3165 PlatformInput::MouseDown(mouse_down) => {
3166 self.mouse_position = mouse_down.position;
3167 self.modifiers = mouse_down.modifiers;
3168 PlatformInput::MouseDown(mouse_down)
3169 }
3170 PlatformInput::MouseUp(mouse_up) => {
3171 self.mouse_position = mouse_up.position;
3172 self.modifiers = mouse_up.modifiers;
3173 PlatformInput::MouseUp(mouse_up)
3174 }
3175 PlatformInput::MouseExited(mouse_exited) => {
3176 self.modifiers = mouse_exited.modifiers;
3177 PlatformInput::MouseExited(mouse_exited)
3178 }
3179 PlatformInput::ModifiersChanged(modifiers_changed) => {
3180 self.modifiers = modifiers_changed.modifiers;
3181 PlatformInput::ModifiersChanged(modifiers_changed)
3182 }
3183 PlatformInput::ScrollWheel(scroll_wheel) => {
3184 self.mouse_position = scroll_wheel.position;
3185 self.modifiers = scroll_wheel.modifiers;
3186 PlatformInput::ScrollWheel(scroll_wheel)
3187 }
3188 // Translate dragging and dropping of external files from the operating system
3189 // to internal drag and drop events.
3190 PlatformInput::FileDrop(file_drop) => match file_drop {
3191 FileDropEvent::Entered { position, paths } => {
3192 self.mouse_position = position;
3193 if cx.active_drag.is_none() {
3194 cx.active_drag = Some(AnyDrag {
3195 value: Arc::new(paths.clone()),
3196 view: cx.new(|_| paths).into(),
3197 cursor_offset: position,
3198 cursor_style: None,
3199 });
3200 }
3201 PlatformInput::MouseMove(MouseMoveEvent {
3202 position,
3203 pressed_button: Some(MouseButton::Left),
3204 modifiers: Modifiers::default(),
3205 })
3206 }
3207 FileDropEvent::Pending { position } => {
3208 self.mouse_position = position;
3209 PlatformInput::MouseMove(MouseMoveEvent {
3210 position,
3211 pressed_button: Some(MouseButton::Left),
3212 modifiers: Modifiers::default(),
3213 })
3214 }
3215 FileDropEvent::Submit { position } => {
3216 cx.activate(true);
3217 self.mouse_position = position;
3218 PlatformInput::MouseUp(MouseUpEvent {
3219 button: MouseButton::Left,
3220 position,
3221 modifiers: Modifiers::default(),
3222 click_count: 1,
3223 })
3224 }
3225 FileDropEvent::Exited => {
3226 cx.active_drag.take();
3227 PlatformInput::FileDrop(FileDropEvent::Exited)
3228 }
3229 },
3230 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3231 };
3232
3233 if let Some(any_mouse_event) = event.mouse_event() {
3234 self.dispatch_mouse_event(any_mouse_event, cx);
3235 } else if let Some(any_key_event) = event.keyboard_event() {
3236 self.dispatch_key_event(any_key_event, cx);
3237 }
3238
3239 DispatchEventResult {
3240 propagate: cx.propagate_event,
3241 default_prevented: self.default_prevented,
3242 }
3243 }
3244
3245 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3246 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3247 if hit_test != self.mouse_hit_test {
3248 self.mouse_hit_test = hit_test;
3249 self.reset_cursor_style(cx);
3250 }
3251
3252 #[cfg(any(feature = "inspector", debug_assertions))]
3253 if self.is_inspector_picking(cx) {
3254 self.handle_inspector_mouse_event(event, cx);
3255 // When inspector is picking, all other mouse handling is skipped.
3256 return;
3257 }
3258
3259 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3260
3261 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3262 // special purposes, such as detecting events outside of a given Bounds.
3263 for listener in &mut mouse_listeners {
3264 let listener = listener.as_mut().unwrap();
3265 listener(event, DispatchPhase::Capture, self, cx);
3266 if !cx.propagate_event {
3267 break;
3268 }
3269 }
3270
3271 // Bubble phase, where most normal handlers do their work.
3272 if cx.propagate_event {
3273 for listener in mouse_listeners.iter_mut().rev() {
3274 let listener = listener.as_mut().unwrap();
3275 listener(event, DispatchPhase::Bubble, self, cx);
3276 if !cx.propagate_event {
3277 break;
3278 }
3279 }
3280 }
3281
3282 self.rendered_frame.mouse_listeners = mouse_listeners;
3283
3284 if cx.has_active_drag() {
3285 if event.is::<MouseMoveEvent>() {
3286 // If this was a mouse move event, redraw the window so that the
3287 // active drag can follow the mouse cursor.
3288 self.refresh();
3289 } else if event.is::<MouseUpEvent>() {
3290 // If this was a mouse up event, cancel the active drag and redraw
3291 // the window.
3292 cx.active_drag = None;
3293 self.refresh();
3294 }
3295 }
3296 }
3297
3298 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3299 if self.invalidator.is_dirty() {
3300 self.draw(cx);
3301 }
3302
3303 let node_id = self
3304 .focus
3305 .and_then(|focus_id| {
3306 self.rendered_frame
3307 .dispatch_tree
3308 .focusable_node_id(focus_id)
3309 })
3310 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3311
3312 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3313
3314 let mut keystroke: Option<Keystroke> = None;
3315
3316 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3317 if event.modifiers.number_of_modifiers() == 0
3318 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3319 && !self.pending_modifier.saw_keystroke
3320 {
3321 let key = match self.pending_modifier.modifiers {
3322 modifiers if modifiers.shift => Some("shift"),
3323 modifiers if modifiers.control => Some("control"),
3324 modifiers if modifiers.alt => Some("alt"),
3325 modifiers if modifiers.platform => Some("platform"),
3326 modifiers if modifiers.function => Some("function"),
3327 _ => None,
3328 };
3329 if let Some(key) = key {
3330 keystroke = Some(Keystroke {
3331 key: key.to_string(),
3332 key_char: None,
3333 modifiers: Modifiers::default(),
3334 });
3335 }
3336 }
3337
3338 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3339 && event.modifiers.number_of_modifiers() == 1
3340 {
3341 self.pending_modifier.saw_keystroke = false
3342 }
3343 self.pending_modifier.modifiers = event.modifiers
3344 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3345 self.pending_modifier.saw_keystroke = true;
3346 keystroke = Some(key_down_event.keystroke.clone());
3347 }
3348
3349 let Some(keystroke) = keystroke else {
3350 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3351 return;
3352 };
3353
3354 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3355 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3356 currently_pending = PendingInput::default();
3357 }
3358
3359 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3360 currently_pending.keystrokes,
3361 keystroke,
3362 &dispatch_path,
3363 );
3364
3365 if !match_result.to_replay.is_empty() {
3366 self.replay_pending_input(match_result.to_replay, cx)
3367 }
3368
3369 if !match_result.pending.is_empty() {
3370 currently_pending.keystrokes = match_result.pending;
3371 currently_pending.focus = self.focus;
3372 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3373 cx.background_executor.timer(Duration::from_secs(1)).await;
3374 cx.update(move |window, cx| {
3375 let Some(currently_pending) = window
3376 .pending_input
3377 .take()
3378 .filter(|pending| pending.focus == window.focus)
3379 else {
3380 return;
3381 };
3382
3383 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3384
3385 let to_replay = window
3386 .rendered_frame
3387 .dispatch_tree
3388 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3389
3390 window.replay_pending_input(to_replay, cx)
3391 })
3392 .log_err();
3393 }));
3394 self.pending_input = Some(currently_pending);
3395 self.pending_input_changed(cx);
3396 cx.propagate_event = false;
3397 return;
3398 }
3399
3400 cx.propagate_event = true;
3401 for binding in match_result.bindings {
3402 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3403 if !cx.propagate_event {
3404 self.dispatch_keystroke_observers(
3405 event,
3406 Some(binding.action),
3407 match_result.context_stack.clone(),
3408 cx,
3409 );
3410 self.pending_input_changed(cx);
3411 return;
3412 }
3413 }
3414
3415 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3416 self.pending_input_changed(cx);
3417 }
3418
3419 fn finish_dispatch_key_event(
3420 &mut self,
3421 event: &dyn Any,
3422 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3423 context_stack: Vec<KeyContext>,
3424 cx: &mut App,
3425 ) {
3426 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3427 if !cx.propagate_event {
3428 return;
3429 }
3430
3431 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3432 if !cx.propagate_event {
3433 return;
3434 }
3435
3436 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3437 }
3438
3439 fn pending_input_changed(&mut self, cx: &mut App) {
3440 self.pending_input_observers
3441 .clone()
3442 .retain(&(), |callback| callback(self, cx));
3443 }
3444
3445 fn dispatch_key_down_up_event(
3446 &mut self,
3447 event: &dyn Any,
3448 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3449 cx: &mut App,
3450 ) {
3451 // Capture phase
3452 for node_id in dispatch_path {
3453 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3454
3455 for key_listener in node.key_listeners.clone() {
3456 key_listener(event, DispatchPhase::Capture, self, cx);
3457 if !cx.propagate_event {
3458 return;
3459 }
3460 }
3461 }
3462
3463 // Bubble phase
3464 for node_id in dispatch_path.iter().rev() {
3465 // Handle low level key events
3466 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3467 for key_listener in node.key_listeners.clone() {
3468 key_listener(event, DispatchPhase::Bubble, self, cx);
3469 if !cx.propagate_event {
3470 return;
3471 }
3472 }
3473 }
3474 }
3475
3476 fn dispatch_modifiers_changed_event(
3477 &mut self,
3478 event: &dyn Any,
3479 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3480 cx: &mut App,
3481 ) {
3482 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3483 return;
3484 };
3485 for node_id in dispatch_path.iter().rev() {
3486 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3487 for listener in node.modifiers_changed_listeners.clone() {
3488 listener(event, self, cx);
3489 if !cx.propagate_event {
3490 return;
3491 }
3492 }
3493 }
3494 }
3495
3496 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3497 pub fn has_pending_keystrokes(&self) -> bool {
3498 self.pending_input.is_some()
3499 }
3500
3501 pub(crate) fn clear_pending_keystrokes(&mut self) {
3502 self.pending_input.take();
3503 }
3504
3505 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3506 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3507 self.pending_input
3508 .as_ref()
3509 .map(|pending_input| pending_input.keystrokes.as_slice())
3510 }
3511
3512 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3513 let node_id = self
3514 .focus
3515 .and_then(|focus_id| {
3516 self.rendered_frame
3517 .dispatch_tree
3518 .focusable_node_id(focus_id)
3519 })
3520 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3521
3522 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3523
3524 'replay: for replay in replays {
3525 let event = KeyDownEvent {
3526 keystroke: replay.keystroke.clone(),
3527 is_held: false,
3528 };
3529
3530 cx.propagate_event = true;
3531 for binding in replay.bindings {
3532 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3533 if !cx.propagate_event {
3534 self.dispatch_keystroke_observers(
3535 &event,
3536 Some(binding.action),
3537 Vec::default(),
3538 cx,
3539 );
3540 continue 'replay;
3541 }
3542 }
3543
3544 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3545 if !cx.propagate_event {
3546 continue 'replay;
3547 }
3548 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3549 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3550 input_handler.dispatch_input(&input, self, cx);
3551 self.platform_window.set_input_handler(input_handler)
3552 }
3553 }
3554 }
3555 }
3556
3557 fn dispatch_action_on_node(
3558 &mut self,
3559 node_id: DispatchNodeId,
3560 action: &dyn Action,
3561 cx: &mut App,
3562 ) {
3563 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3564
3565 // Capture phase for global actions.
3566 cx.propagate_event = true;
3567 if let Some(mut global_listeners) = cx
3568 .global_action_listeners
3569 .remove(&action.as_any().type_id())
3570 {
3571 for listener in &global_listeners {
3572 listener(action.as_any(), DispatchPhase::Capture, cx);
3573 if !cx.propagate_event {
3574 break;
3575 }
3576 }
3577
3578 global_listeners.extend(
3579 cx.global_action_listeners
3580 .remove(&action.as_any().type_id())
3581 .unwrap_or_default(),
3582 );
3583
3584 cx.global_action_listeners
3585 .insert(action.as_any().type_id(), global_listeners);
3586 }
3587
3588 if !cx.propagate_event {
3589 return;
3590 }
3591
3592 // Capture phase for window actions.
3593 for node_id in &dispatch_path {
3594 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3595 for DispatchActionListener {
3596 action_type,
3597 listener,
3598 } in node.action_listeners.clone()
3599 {
3600 let any_action = action.as_any();
3601 if action_type == any_action.type_id() {
3602 listener(any_action, DispatchPhase::Capture, self, cx);
3603
3604 if !cx.propagate_event {
3605 return;
3606 }
3607 }
3608 }
3609 }
3610
3611 // Bubble phase for window actions.
3612 for node_id in dispatch_path.iter().rev() {
3613 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3614 for DispatchActionListener {
3615 action_type,
3616 listener,
3617 } in node.action_listeners.clone()
3618 {
3619 let any_action = action.as_any();
3620 if action_type == any_action.type_id() {
3621 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3622 listener(any_action, DispatchPhase::Bubble, self, cx);
3623
3624 if !cx.propagate_event {
3625 return;
3626 }
3627 }
3628 }
3629 }
3630
3631 // Bubble phase for global actions.
3632 if let Some(mut global_listeners) = cx
3633 .global_action_listeners
3634 .remove(&action.as_any().type_id())
3635 {
3636 for listener in global_listeners.iter().rev() {
3637 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3638
3639 listener(action.as_any(), DispatchPhase::Bubble, cx);
3640 if !cx.propagate_event {
3641 break;
3642 }
3643 }
3644
3645 global_listeners.extend(
3646 cx.global_action_listeners
3647 .remove(&action.as_any().type_id())
3648 .unwrap_or_default(),
3649 );
3650
3651 cx.global_action_listeners
3652 .insert(action.as_any().type_id(), global_listeners);
3653 }
3654 }
3655
3656 /// Register the given handler to be invoked whenever the global of the given type
3657 /// is updated.
3658 pub fn observe_global<G: Global>(
3659 &mut self,
3660 cx: &mut App,
3661 f: impl Fn(&mut Window, &mut App) + 'static,
3662 ) -> Subscription {
3663 let window_handle = self.handle;
3664 let (subscription, activate) = cx.global_observers.insert(
3665 TypeId::of::<G>(),
3666 Box::new(move |cx| {
3667 window_handle
3668 .update(cx, |_, window, cx| f(window, cx))
3669 .is_ok()
3670 }),
3671 );
3672 cx.defer(move |_| activate());
3673 subscription
3674 }
3675
3676 /// Focus the current window and bring it to the foreground at the platform level.
3677 pub fn activate_window(&self) {
3678 self.platform_window.activate();
3679 }
3680
3681 /// Minimize the current window at the platform level.
3682 pub fn minimize_window(&self) {
3683 self.platform_window.minimize();
3684 }
3685
3686 /// Toggle full screen status on the current window at the platform level.
3687 pub fn toggle_fullscreen(&self) {
3688 self.platform_window.toggle_fullscreen();
3689 }
3690
3691 /// Updates the IME panel position suggestions for languages like japanese, chinese.
3692 pub fn invalidate_character_coordinates(&self) {
3693 self.on_next_frame(|window, cx| {
3694 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3695 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3696 window
3697 .platform_window
3698 .update_ime_position(bounds.scale(window.scale_factor()));
3699 }
3700 window.platform_window.set_input_handler(input_handler);
3701 }
3702 });
3703 }
3704
3705 /// Present a platform dialog.
3706 /// The provided message will be presented, along with buttons for each answer.
3707 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3708 pub fn prompt(
3709 &mut self,
3710 level: PromptLevel,
3711 message: &str,
3712 detail: Option<&str>,
3713 answers: &[&str],
3714 cx: &mut App,
3715 ) -> oneshot::Receiver<usize> {
3716 let prompt_builder = cx.prompt_builder.take();
3717 let Some(prompt_builder) = prompt_builder else {
3718 unreachable!("Re-entrant window prompting is not supported by GPUI");
3719 };
3720
3721 let receiver = match &prompt_builder {
3722 PromptBuilder::Default => self
3723 .platform_window
3724 .prompt(level, message, detail, answers)
3725 .unwrap_or_else(|| {
3726 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3727 }),
3728 PromptBuilder::Custom(_) => {
3729 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3730 }
3731 };
3732
3733 cx.prompt_builder = Some(prompt_builder);
3734
3735 receiver
3736 }
3737
3738 fn build_custom_prompt(
3739 &mut self,
3740 prompt_builder: &PromptBuilder,
3741 level: PromptLevel,
3742 message: &str,
3743 detail: Option<&str>,
3744 answers: &[&str],
3745 cx: &mut App,
3746 ) -> oneshot::Receiver<usize> {
3747 let (sender, receiver) = oneshot::channel();
3748 let handle = PromptHandle::new(sender);
3749 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
3750 self.prompt = Some(handle);
3751 receiver
3752 }
3753
3754 /// Returns the current context stack.
3755 pub fn context_stack(&self) -> Vec<KeyContext> {
3756 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3757 let node_id = self
3758 .focus
3759 .and_then(|focus_id| dispatch_tree.focusable_node_id(focus_id))
3760 .unwrap_or_else(|| dispatch_tree.root_node_id());
3761
3762 dispatch_tree
3763 .dispatch_path(node_id)
3764 .iter()
3765 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
3766 .collect()
3767 }
3768
3769 /// Returns all available actions for the focused element.
3770 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
3771 let node_id = self
3772 .focus
3773 .and_then(|focus_id| {
3774 self.rendered_frame
3775 .dispatch_tree
3776 .focusable_node_id(focus_id)
3777 })
3778 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3779
3780 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
3781 for action_type in cx.global_action_listeners.keys() {
3782 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
3783 let action = cx.actions.build_action_type(action_type).ok();
3784 if let Some(action) = action {
3785 actions.insert(ix, action);
3786 }
3787 }
3788 }
3789 actions
3790 }
3791
3792 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
3793 /// returned in the order they were added. For display, the last binding should take precedence.
3794 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
3795 self.rendered_frame
3796 .dispatch_tree
3797 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
3798 }
3799
3800 /// Returns any bindings that would invoke an action on the given focus handle if it were
3801 /// focused. Bindings are returned in the order they were added. For display, the last binding
3802 /// should take precedence.
3803 pub fn bindings_for_action_in(
3804 &self,
3805 action: &dyn Action,
3806 focus_handle: &FocusHandle,
3807 ) -> Vec<KeyBinding> {
3808 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3809
3810 let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
3811 return vec![];
3812 };
3813 let context_stack: Vec<_> = dispatch_tree
3814 .dispatch_path(node_id)
3815 .into_iter()
3816 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
3817 .collect();
3818 dispatch_tree.bindings_for_action(action, &context_stack)
3819 }
3820
3821 /// Returns the key bindings for the given action in the given context.
3822 pub fn bindings_for_action_in_context(
3823 &self,
3824 action: &dyn Action,
3825 context: KeyContext,
3826 ) -> Vec<KeyBinding> {
3827 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3828 dispatch_tree.bindings_for_action(action, &[context])
3829 }
3830
3831 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
3832 pub fn listener_for<V: Render, E>(
3833 &self,
3834 view: &Entity<V>,
3835 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
3836 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
3837 let view = view.downgrade();
3838 move |e: &E, window: &mut Window, cx: &mut App| {
3839 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
3840 }
3841 }
3842
3843 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
3844 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
3845 &self,
3846 view: &Entity<V>,
3847 f: Callback,
3848 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
3849 let view = view.downgrade();
3850 move |window: &mut Window, cx: &mut App| {
3851 view.update(cx, |view, cx| f(view, window, cx)).ok();
3852 }
3853 }
3854
3855 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
3856 /// If the callback returns false, the window won't be closed.
3857 pub fn on_window_should_close(
3858 &self,
3859 cx: &App,
3860 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
3861 ) {
3862 let mut cx = self.to_async(cx);
3863 self.platform_window.on_should_close(Box::new(move || {
3864 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
3865 }))
3866 }
3867
3868 /// Register an action listener on the window for the next frame. The type of action
3869 /// is determined by the first parameter of the given listener. When the next frame is rendered
3870 /// the listener will be cleared.
3871 ///
3872 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
3873 /// a specific need to register a global listener.
3874 pub fn on_action(
3875 &mut self,
3876 action_type: TypeId,
3877 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
3878 ) {
3879 self.next_frame
3880 .dispatch_tree
3881 .on_action(action_type, Rc::new(listener));
3882 }
3883
3884 /// Read information about the GPU backing this window.
3885 /// Currently returns None on Mac and Windows.
3886 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
3887 self.platform_window.gpu_specs()
3888 }
3889
3890 /// Toggles the inspector mode on this window.
3891 #[cfg(any(feature = "inspector", debug_assertions))]
3892 pub fn toggle_inspector(&mut self, cx: &mut App) {
3893 self.inspector = match self.inspector {
3894 None => Some(cx.new(|_| Inspector::new())),
3895 Some(_) => None,
3896 };
3897 self.refresh();
3898 }
3899
3900 /// Returns true if the window is in inspector mode.
3901 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
3902 #[cfg(any(feature = "inspector", debug_assertions))]
3903 {
3904 if let Some(inspector) = &self.inspector {
3905 return inspector.read(_cx).is_picking();
3906 }
3907 }
3908 false
3909 }
3910
3911 /// Executes the provided function with mutable access to an inspector state.
3912 #[cfg(any(feature = "inspector", debug_assertions))]
3913 pub fn with_inspector_state<T: 'static, R>(
3914 &mut self,
3915 _inspector_id: Option<&crate::InspectorElementId>,
3916 cx: &mut App,
3917 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
3918 ) -> R {
3919 if let Some(inspector_id) = _inspector_id {
3920 if let Some(inspector) = &self.inspector {
3921 let inspector = inspector.clone();
3922 let active_element_id = inspector.read(cx).active_element_id();
3923 if Some(inspector_id) == active_element_id {
3924 return inspector.update(cx, |inspector, _cx| {
3925 inspector.with_active_element_state(self, f)
3926 });
3927 }
3928 }
3929 }
3930 f(&mut None, self)
3931 }
3932
3933 #[cfg(any(feature = "inspector", debug_assertions))]
3934 pub(crate) fn build_inspector_element_id(
3935 &mut self,
3936 path: crate::InspectorElementPath,
3937 ) -> crate::InspectorElementId {
3938 self.invalidator.debug_assert_paint_or_prepaint();
3939 let path = Rc::new(path);
3940 let next_instance_id = self
3941 .next_frame
3942 .next_inspector_instance_ids
3943 .entry(path.clone())
3944 .or_insert(0);
3945 let instance_id = *next_instance_id;
3946 *next_instance_id += 1;
3947 crate::InspectorElementId { path, instance_id }
3948 }
3949
3950 #[cfg(any(feature = "inspector", debug_assertions))]
3951 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
3952 if let Some(inspector) = self.inspector.take() {
3953 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
3954 inspector_element.prepaint_as_root(
3955 point(self.viewport_size.width - inspector_width, px(0.0)),
3956 size(inspector_width, self.viewport_size.height).into(),
3957 self,
3958 cx,
3959 );
3960 self.inspector = Some(inspector);
3961 Some(inspector_element)
3962 } else {
3963 None
3964 }
3965 }
3966
3967 #[cfg(any(feature = "inspector", debug_assertions))]
3968 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
3969 if let Some(mut inspector_element) = inspector_element {
3970 inspector_element.paint(self, cx);
3971 };
3972 }
3973
3974 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
3975 /// inspect UI elements by clicking on them.
3976 #[cfg(any(feature = "inspector", debug_assertions))]
3977 pub fn insert_inspector_hitbox(
3978 &mut self,
3979 hitbox_id: HitboxId,
3980 inspector_id: Option<&crate::InspectorElementId>,
3981 cx: &App,
3982 ) {
3983 self.invalidator.debug_assert_paint_or_prepaint();
3984 if !self.is_inspector_picking(cx) {
3985 return;
3986 }
3987 if let Some(inspector_id) = inspector_id {
3988 self.next_frame
3989 .inspector_hitboxes
3990 .insert(hitbox_id, inspector_id.clone());
3991 }
3992 }
3993
3994 #[cfg(any(feature = "inspector", debug_assertions))]
3995 fn paint_inspector_hitbox(&mut self, cx: &App) {
3996 if let Some(inspector) = self.inspector.as_ref() {
3997 let inspector = inspector.read(cx);
3998 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
3999 {
4000 if let Some(hitbox) = self
4001 .next_frame
4002 .hitboxes
4003 .iter()
4004 .find(|hitbox| hitbox.id == hitbox_id)
4005 {
4006 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4007 }
4008 }
4009 }
4010 }
4011
4012 #[cfg(any(feature = "inspector", debug_assertions))]
4013 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4014 let Some(inspector) = self.inspector.clone() else {
4015 return;
4016 };
4017 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4018 inspector.update(cx, |inspector, _cx| {
4019 if let Some((_, inspector_id)) =
4020 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4021 {
4022 inspector.hover(inspector_id, self);
4023 }
4024 });
4025 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4026 inspector.update(cx, |inspector, _cx| {
4027 if let Some((_, inspector_id)) =
4028 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4029 {
4030 inspector.select(inspector_id, self);
4031 }
4032 });
4033 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4034 // This should be kept in sync with SCROLL_LINES in x11 platform.
4035 const SCROLL_LINES: f32 = 3.0;
4036 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4037 let delta_y = event
4038 .delta
4039 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4040 .y;
4041 if let Some(inspector) = self.inspector.clone() {
4042 inspector.update(cx, |inspector, _cx| {
4043 if let Some(depth) = inspector.pick_depth.as_mut() {
4044 *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4045 let max_depth = self.mouse_hit_test.0.len() as f32 - 0.5;
4046 if *depth < 0.0 {
4047 *depth = 0.0;
4048 } else if *depth > max_depth {
4049 *depth = max_depth;
4050 }
4051 if let Some((_, inspector_id)) =
4052 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4053 {
4054 inspector.set_active_element_id(inspector_id.clone(), self);
4055 }
4056 }
4057 });
4058 }
4059 }
4060 }
4061
4062 #[cfg(any(feature = "inspector", debug_assertions))]
4063 fn hovered_inspector_hitbox(
4064 &self,
4065 inspector: &Inspector,
4066 frame: &Frame,
4067 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4068 if let Some(pick_depth) = inspector.pick_depth {
4069 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4070 let max_skipped = self.mouse_hit_test.0.len().saturating_sub(1);
4071 let skip_count = (depth as usize).min(max_skipped);
4072 for hitbox_id in self.mouse_hit_test.0.iter().skip(skip_count) {
4073 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4074 return Some((*hitbox_id, inspector_id.clone()));
4075 }
4076 }
4077 }
4078 return None;
4079 }
4080}
4081
4082// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4083slotmap::new_key_type! {
4084 /// A unique identifier for a window.
4085 pub struct WindowId;
4086}
4087
4088impl WindowId {
4089 /// Converts this window ID to a `u64`.
4090 pub fn as_u64(&self) -> u64 {
4091 self.0.as_ffi()
4092 }
4093}
4094
4095impl From<u64> for WindowId {
4096 fn from(value: u64) -> Self {
4097 WindowId(slotmap::KeyData::from_ffi(value))
4098 }
4099}
4100
4101/// A handle to a window with a specific root view type.
4102/// Note that this does not keep the window alive on its own.
4103#[derive(Deref, DerefMut)]
4104pub struct WindowHandle<V> {
4105 #[deref]
4106 #[deref_mut]
4107 pub(crate) any_handle: AnyWindowHandle,
4108 state_type: PhantomData<V>,
4109}
4110
4111impl<V: 'static + Render> WindowHandle<V> {
4112 /// Creates a new handle from a window ID.
4113 /// This does not check if the root type of the window is `V`.
4114 pub fn new(id: WindowId) -> Self {
4115 WindowHandle {
4116 any_handle: AnyWindowHandle {
4117 id,
4118 state_type: TypeId::of::<V>(),
4119 },
4120 state_type: PhantomData,
4121 }
4122 }
4123
4124 /// Get the root view out of this window.
4125 ///
4126 /// This will fail if the window is closed or if the root view's type does not match `V`.
4127 #[cfg(any(test, feature = "test-support"))]
4128 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4129 where
4130 C: AppContext,
4131 {
4132 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4133 root_view
4134 .downcast::<V>()
4135 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4136 }))
4137 }
4138
4139 /// Updates the root view of this window.
4140 ///
4141 /// This will fail if the window has been closed or if the root view's type does not match
4142 pub fn update<C, R>(
4143 &self,
4144 cx: &mut C,
4145 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4146 ) -> Result<R>
4147 where
4148 C: AppContext,
4149 {
4150 cx.update_window(self.any_handle, |root_view, window, cx| {
4151 let view = root_view
4152 .downcast::<V>()
4153 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4154
4155 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4156 })?
4157 }
4158
4159 /// Read the root view out of this window.
4160 ///
4161 /// This will fail if the window is closed or if the root view's type does not match `V`.
4162 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4163 let x = cx
4164 .windows
4165 .get(self.id)
4166 .and_then(|window| {
4167 window
4168 .as_ref()
4169 .and_then(|window| window.root.clone())
4170 .map(|root_view| root_view.downcast::<V>())
4171 })
4172 .context("window not found")?
4173 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4174
4175 Ok(x.read(cx))
4176 }
4177
4178 /// Read the root view out of this window, with a callback
4179 ///
4180 /// This will fail if the window is closed or if the root view's type does not match `V`.
4181 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4182 where
4183 C: AppContext,
4184 {
4185 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4186 }
4187
4188 /// Read the root view pointer off of this window.
4189 ///
4190 /// This will fail if the window is closed or if the root view's type does not match `V`.
4191 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4192 where
4193 C: AppContext,
4194 {
4195 cx.read_window(self, |root_view, _cx| root_view.clone())
4196 }
4197
4198 /// Check if this window is 'active'.
4199 ///
4200 /// Will return `None` if the window is closed or currently
4201 /// borrowed.
4202 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4203 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4204 .ok()
4205 }
4206}
4207
4208impl<V> Copy for WindowHandle<V> {}
4209
4210impl<V> Clone for WindowHandle<V> {
4211 fn clone(&self) -> Self {
4212 *self
4213 }
4214}
4215
4216impl<V> PartialEq for WindowHandle<V> {
4217 fn eq(&self, other: &Self) -> bool {
4218 self.any_handle == other.any_handle
4219 }
4220}
4221
4222impl<V> Eq for WindowHandle<V> {}
4223
4224impl<V> Hash for WindowHandle<V> {
4225 fn hash<H: Hasher>(&self, state: &mut H) {
4226 self.any_handle.hash(state);
4227 }
4228}
4229
4230impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4231 fn from(val: WindowHandle<V>) -> Self {
4232 val.any_handle
4233 }
4234}
4235
4236unsafe impl<V> Send for WindowHandle<V> {}
4237unsafe impl<V> Sync for WindowHandle<V> {}
4238
4239/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4240#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4241pub struct AnyWindowHandle {
4242 pub(crate) id: WindowId,
4243 state_type: TypeId,
4244}
4245
4246impl AnyWindowHandle {
4247 /// Get the ID of this window.
4248 pub fn window_id(&self) -> WindowId {
4249 self.id
4250 }
4251
4252 /// Attempt to convert this handle to a window handle with a specific root view type.
4253 /// If the types do not match, this will return `None`.
4254 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4255 if TypeId::of::<T>() == self.state_type {
4256 Some(WindowHandle {
4257 any_handle: *self,
4258 state_type: PhantomData,
4259 })
4260 } else {
4261 None
4262 }
4263 }
4264
4265 /// Updates the state of the root view of this window.
4266 ///
4267 /// This will fail if the window has been closed.
4268 pub fn update<C, R>(
4269 self,
4270 cx: &mut C,
4271 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4272 ) -> Result<R>
4273 where
4274 C: AppContext,
4275 {
4276 cx.update_window(self, update)
4277 }
4278
4279 /// Read the state of the root view of this window.
4280 ///
4281 /// This will fail if the window has been closed.
4282 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4283 where
4284 C: AppContext,
4285 T: 'static,
4286 {
4287 let view = self
4288 .downcast::<T>()
4289 .context("the type of the window's root view has changed")?;
4290
4291 cx.read_window(&view, read)
4292 }
4293}
4294
4295impl HasWindowHandle for Window {
4296 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4297 self.platform_window.window_handle()
4298 }
4299}
4300
4301/// An identifier for an [`Element`](crate::Element).
4302///
4303/// Can be constructed with a string, a number, or both, as well
4304/// as other internal representations.
4305#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4306pub enum ElementId {
4307 /// The ID of a View element
4308 View(EntityId),
4309 /// An integer ID.
4310 Integer(u64),
4311 /// A string based ID.
4312 Name(SharedString),
4313 /// A UUID.
4314 Uuid(Uuid),
4315 /// An ID that's equated with a focus handle.
4316 FocusHandle(FocusId),
4317 /// A combination of a name and an integer.
4318 NamedInteger(SharedString, u64),
4319 /// A path.
4320 Path(Arc<std::path::Path>),
4321}
4322
4323impl ElementId {
4324 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4325 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4326 Self::NamedInteger(name.into(), integer as u64)
4327 }
4328}
4329
4330impl Display for ElementId {
4331 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4332 match self {
4333 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4334 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4335 ElementId::Name(name) => write!(f, "{}", name)?,
4336 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4337 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4338 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4339 ElementId::Path(path) => write!(f, "{}", path.display())?,
4340 }
4341
4342 Ok(())
4343 }
4344}
4345
4346impl TryInto<SharedString> for ElementId {
4347 type Error = anyhow::Error;
4348
4349 fn try_into(self) -> anyhow::Result<SharedString> {
4350 if let ElementId::Name(name) = self {
4351 Ok(name)
4352 } else {
4353 anyhow::bail!("element id is not string")
4354 }
4355 }
4356}
4357
4358impl From<usize> for ElementId {
4359 fn from(id: usize) -> Self {
4360 ElementId::Integer(id as u64)
4361 }
4362}
4363
4364impl From<i32> for ElementId {
4365 fn from(id: i32) -> Self {
4366 Self::Integer(id as u64)
4367 }
4368}
4369
4370impl From<SharedString> for ElementId {
4371 fn from(name: SharedString) -> Self {
4372 ElementId::Name(name)
4373 }
4374}
4375
4376impl From<Arc<std::path::Path>> for ElementId {
4377 fn from(path: Arc<std::path::Path>) -> Self {
4378 ElementId::Path(path)
4379 }
4380}
4381
4382impl From<&'static str> for ElementId {
4383 fn from(name: &'static str) -> Self {
4384 ElementId::Name(name.into())
4385 }
4386}
4387
4388impl<'a> From<&'a FocusHandle> for ElementId {
4389 fn from(handle: &'a FocusHandle) -> Self {
4390 ElementId::FocusHandle(handle.id)
4391 }
4392}
4393
4394impl From<(&'static str, EntityId)> for ElementId {
4395 fn from((name, id): (&'static str, EntityId)) -> Self {
4396 ElementId::NamedInteger(name.into(), id.as_u64())
4397 }
4398}
4399
4400impl From<(&'static str, usize)> for ElementId {
4401 fn from((name, id): (&'static str, usize)) -> Self {
4402 ElementId::NamedInteger(name.into(), id as u64)
4403 }
4404}
4405
4406impl From<(SharedString, usize)> for ElementId {
4407 fn from((name, id): (SharedString, usize)) -> Self {
4408 ElementId::NamedInteger(name, id as u64)
4409 }
4410}
4411
4412impl From<(&'static str, u64)> for ElementId {
4413 fn from((name, id): (&'static str, u64)) -> Self {
4414 ElementId::NamedInteger(name.into(), id)
4415 }
4416}
4417
4418impl From<Uuid> for ElementId {
4419 fn from(value: Uuid) -> Self {
4420 Self::Uuid(value)
4421 }
4422}
4423
4424impl From<(&'static str, u32)> for ElementId {
4425 fn from((name, id): (&'static str, u32)) -> Self {
4426 ElementId::NamedInteger(name.into(), id.into())
4427 }
4428}
4429
4430/// A rectangle to be rendered in the window at the given position and size.
4431/// Passed as an argument [`Window::paint_quad`].
4432#[derive(Clone)]
4433pub struct PaintQuad {
4434 /// The bounds of the quad within the window.
4435 pub bounds: Bounds<Pixels>,
4436 /// The radii of the quad's corners.
4437 pub corner_radii: Corners<Pixels>,
4438 /// The background color of the quad.
4439 pub background: Background,
4440 /// The widths of the quad's borders.
4441 pub border_widths: Edges<Pixels>,
4442 /// The color of the quad's borders.
4443 pub border_color: Hsla,
4444 /// The style of the quad's borders.
4445 pub border_style: BorderStyle,
4446}
4447
4448impl PaintQuad {
4449 /// Sets the corner radii of the quad.
4450 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4451 PaintQuad {
4452 corner_radii: corner_radii.into(),
4453 ..self
4454 }
4455 }
4456
4457 /// Sets the border widths of the quad.
4458 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4459 PaintQuad {
4460 border_widths: border_widths.into(),
4461 ..self
4462 }
4463 }
4464
4465 /// Sets the border color of the quad.
4466 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4467 PaintQuad {
4468 border_color: border_color.into(),
4469 ..self
4470 }
4471 }
4472
4473 /// Sets the background color of the quad.
4474 pub fn background(self, background: impl Into<Background>) -> Self {
4475 PaintQuad {
4476 background: background.into(),
4477 ..self
4478 }
4479 }
4480}
4481
4482/// Creates a quad with the given parameters.
4483pub fn quad(
4484 bounds: Bounds<Pixels>,
4485 corner_radii: impl Into<Corners<Pixels>>,
4486 background: impl Into<Background>,
4487 border_widths: impl Into<Edges<Pixels>>,
4488 border_color: impl Into<Hsla>,
4489 border_style: BorderStyle,
4490) -> PaintQuad {
4491 PaintQuad {
4492 bounds,
4493 corner_radii: corner_radii.into(),
4494 background: background.into(),
4495 border_widths: border_widths.into(),
4496 border_color: border_color.into(),
4497 border_style,
4498 }
4499}
4500
4501/// Creates a filled quad with the given bounds and background color.
4502pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4503 PaintQuad {
4504 bounds: bounds.into(),
4505 corner_radii: (0.).into(),
4506 background: background.into(),
4507 border_widths: (0.).into(),
4508 border_color: transparent_black(),
4509 border_style: BorderStyle::default(),
4510 }
4511}
4512
4513/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4514pub fn outline(
4515 bounds: impl Into<Bounds<Pixels>>,
4516 border_color: impl Into<Hsla>,
4517 border_style: BorderStyle,
4518) -> PaintQuad {
4519 PaintQuad {
4520 bounds: bounds.into(),
4521 corner_radii: (0.).into(),
4522 background: transparent_black().into(),
4523 border_widths: (1.).into(),
4524 border_color: border_color.into(),
4525 border_style,
4526 }
4527}