google.rs

   1use anyhow::{Context as _, Result, anyhow};
   2use collections::BTreeMap;
   3use credentials_provider::CredentialsProvider;
   4use futures::{FutureExt, Stream, StreamExt, future, future::BoxFuture};
   5use google_ai::{
   6    FunctionDeclaration, GenerateContentResponse, GoogleModelMode, Part, SystemInstruction,
   7    ThinkingConfig, UsageMetadata,
   8};
   9use gpui::{AnyView, App, AsyncApp, Context, Entity, SharedString, Task, Window};
  10use http_client::HttpClient;
  11use language_model::{
  12    AuthenticateError, ConfigurationViewTargetAgent, LanguageModelCompletionError,
  13    LanguageModelCompletionEvent, LanguageModelToolChoice, LanguageModelToolSchemaFormat,
  14    LanguageModelToolUse, LanguageModelToolUseId, MessageContent, StopReason,
  15};
  16use language_model::{
  17    LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
  18    LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
  19    LanguageModelRequest, RateLimiter, Role,
  20};
  21use schemars::JsonSchema;
  22use serde::{Deserialize, Serialize};
  23pub use settings::GoogleAvailableModel as AvailableModel;
  24use settings::{Settings, SettingsStore};
  25use std::pin::Pin;
  26use std::sync::{
  27    Arc, LazyLock,
  28    atomic::{self, AtomicU64},
  29};
  30use strum::IntoEnumIterator;
  31use ui::{List, prelude::*};
  32use ui_input::InputField;
  33use util::ResultExt;
  34use zed_env_vars::EnvVar;
  35
  36use crate::api_key::ApiKey;
  37use crate::api_key::ApiKeyState;
  38use crate::ui::{ConfiguredApiCard, InstructionListItem};
  39
  40const PROVIDER_ID: LanguageModelProviderId = language_model::GOOGLE_PROVIDER_ID;
  41const PROVIDER_NAME: LanguageModelProviderName = language_model::GOOGLE_PROVIDER_NAME;
  42
  43#[derive(Default, Clone, Debug, PartialEq)]
  44pub struct GoogleSettings {
  45    pub api_url: String,
  46    pub available_models: Vec<AvailableModel>,
  47}
  48
  49#[derive(Clone, Copy, Debug, Default, PartialEq, Serialize, Deserialize, JsonSchema)]
  50#[serde(tag = "type", rename_all = "lowercase")]
  51pub enum ModelMode {
  52    #[default]
  53    Default,
  54    Thinking {
  55        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  56        budget_tokens: Option<u32>,
  57    },
  58}
  59
  60pub struct GoogleLanguageModelProvider {
  61    http_client: Arc<dyn HttpClient>,
  62    state: Entity<State>,
  63}
  64
  65pub struct State {
  66    api_key_state: ApiKeyState,
  67}
  68
  69const GEMINI_API_KEY_VAR_NAME: &str = "GEMINI_API_KEY";
  70const GOOGLE_AI_API_KEY_VAR_NAME: &str = "GOOGLE_AI_API_KEY";
  71
  72static API_KEY_ENV_VAR: LazyLock<EnvVar> = LazyLock::new(|| {
  73    // Try GEMINI_API_KEY first as primary, fallback to GOOGLE_AI_API_KEY
  74    EnvVar::new(GEMINI_API_KEY_VAR_NAME.into()).or(EnvVar::new(GOOGLE_AI_API_KEY_VAR_NAME.into()))
  75});
  76
  77impl State {
  78    fn is_authenticated(&self) -> bool {
  79        self.api_key_state.has_key()
  80    }
  81
  82    fn set_api_key(&mut self, api_key: Option<String>, cx: &mut Context<Self>) -> Task<Result<()>> {
  83        let api_url = GoogleLanguageModelProvider::api_url(cx);
  84        self.api_key_state
  85            .store(api_url, api_key, |this| &mut this.api_key_state, cx)
  86    }
  87
  88    fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
  89        let api_url = GoogleLanguageModelProvider::api_url(cx);
  90        self.api_key_state.load_if_needed(
  91            api_url,
  92            &API_KEY_ENV_VAR,
  93            |this| &mut this.api_key_state,
  94            cx,
  95        )
  96    }
  97}
  98
  99impl GoogleLanguageModelProvider {
 100    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
 101        let state = cx.new(|cx| {
 102            cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
 103                let api_url = Self::api_url(cx);
 104                this.api_key_state.handle_url_change(
 105                    api_url,
 106                    &API_KEY_ENV_VAR,
 107                    |this| &mut this.api_key_state,
 108                    cx,
 109                );
 110                cx.notify();
 111            })
 112            .detach();
 113            State {
 114                api_key_state: ApiKeyState::new(Self::api_url(cx)),
 115            }
 116        });
 117
 118        Self { http_client, state }
 119    }
 120
 121    fn create_language_model(&self, model: google_ai::Model) -> Arc<dyn LanguageModel> {
 122        Arc::new(GoogleLanguageModel {
 123            id: LanguageModelId::from(model.id().to_string()),
 124            model,
 125            state: self.state.clone(),
 126            http_client: self.http_client.clone(),
 127            request_limiter: RateLimiter::new(4),
 128        })
 129    }
 130
 131    pub fn api_key_for_gemini_cli(cx: &mut App) -> Task<Result<String>> {
 132        if let Some(key) = API_KEY_ENV_VAR.value.clone() {
 133            return Task::ready(Ok(key));
 134        }
 135        let credentials_provider = <dyn CredentialsProvider>::global(cx);
 136        let api_url = Self::api_url(cx).to_string();
 137        cx.spawn(async move |cx| {
 138            Ok(
 139                ApiKey::load_from_system_keychain(&api_url, credentials_provider.as_ref(), cx)
 140                    .await?
 141                    .key()
 142                    .to_string(),
 143            )
 144        })
 145    }
 146
 147    fn settings(cx: &App) -> &GoogleSettings {
 148        &crate::AllLanguageModelSettings::get_global(cx).google
 149    }
 150
 151    fn api_url(cx: &App) -> SharedString {
 152        let api_url = &Self::settings(cx).api_url;
 153        if api_url.is_empty() {
 154            google_ai::API_URL.into()
 155        } else {
 156            SharedString::new(api_url.as_str())
 157        }
 158    }
 159}
 160
 161impl LanguageModelProviderState for GoogleLanguageModelProvider {
 162    type ObservableEntity = State;
 163
 164    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
 165        Some(self.state.clone())
 166    }
 167}
 168
 169impl LanguageModelProvider for GoogleLanguageModelProvider {
 170    fn id(&self) -> LanguageModelProviderId {
 171        PROVIDER_ID
 172    }
 173
 174    fn name(&self) -> LanguageModelProviderName {
 175        PROVIDER_NAME
 176    }
 177
 178    fn icon(&self) -> IconName {
 179        IconName::AiGoogle
 180    }
 181
 182    fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
 183        Some(self.create_language_model(google_ai::Model::default()))
 184    }
 185
 186    fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
 187        Some(self.create_language_model(google_ai::Model::default_fast()))
 188    }
 189
 190    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 191        let mut models = BTreeMap::default();
 192
 193        // Add base models from google_ai::Model::iter()
 194        for model in google_ai::Model::iter() {
 195            if !matches!(model, google_ai::Model::Custom { .. }) {
 196                models.insert(model.id().to_string(), model);
 197            }
 198        }
 199
 200        // Override with available models from settings
 201        for model in &GoogleLanguageModelProvider::settings(cx).available_models {
 202            models.insert(
 203                model.name.clone(),
 204                google_ai::Model::Custom {
 205                    name: model.name.clone(),
 206                    display_name: model.display_name.clone(),
 207                    max_tokens: model.max_tokens,
 208                    mode: model.mode.unwrap_or_default(),
 209                },
 210            );
 211        }
 212
 213        models
 214            .into_values()
 215            .map(|model| {
 216                Arc::new(GoogleLanguageModel {
 217                    id: LanguageModelId::from(model.id().to_string()),
 218                    model,
 219                    state: self.state.clone(),
 220                    http_client: self.http_client.clone(),
 221                    request_limiter: RateLimiter::new(4),
 222                }) as Arc<dyn LanguageModel>
 223            })
 224            .collect()
 225    }
 226
 227    fn is_authenticated(&self, cx: &App) -> bool {
 228        self.state.read(cx).is_authenticated()
 229    }
 230
 231    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 232        self.state.update(cx, |state, cx| state.authenticate(cx))
 233    }
 234
 235    fn configuration_view(
 236        &self,
 237        target_agent: language_model::ConfigurationViewTargetAgent,
 238        window: &mut Window,
 239        cx: &mut App,
 240    ) -> AnyView {
 241        cx.new(|cx| ConfigurationView::new(self.state.clone(), target_agent, window, cx))
 242            .into()
 243    }
 244
 245    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
 246        self.state
 247            .update(cx, |state, cx| state.set_api_key(None, cx))
 248    }
 249}
 250
 251pub struct GoogleLanguageModel {
 252    id: LanguageModelId,
 253    model: google_ai::Model,
 254    state: Entity<State>,
 255    http_client: Arc<dyn HttpClient>,
 256    request_limiter: RateLimiter,
 257}
 258
 259impl GoogleLanguageModel {
 260    fn stream_completion(
 261        &self,
 262        request: google_ai::GenerateContentRequest,
 263        cx: &AsyncApp,
 264    ) -> BoxFuture<
 265        'static,
 266        Result<futures::stream::BoxStream<'static, Result<GenerateContentResponse>>>,
 267    > {
 268        let http_client = self.http_client.clone();
 269
 270        let Ok((api_key, api_url)) = self.state.read_with(cx, |state, cx| {
 271            let api_url = GoogleLanguageModelProvider::api_url(cx);
 272            (state.api_key_state.key(&api_url), api_url)
 273        }) else {
 274            return future::ready(Err(anyhow!("App state dropped"))).boxed();
 275        };
 276
 277        async move {
 278            let api_key = api_key.context("Missing Google API key")?;
 279            let request = google_ai::stream_generate_content(
 280                http_client.as_ref(),
 281                &api_url,
 282                &api_key,
 283                request,
 284            );
 285            request.await.context("failed to stream completion")
 286        }
 287        .boxed()
 288    }
 289}
 290
 291impl LanguageModel for GoogleLanguageModel {
 292    fn id(&self) -> LanguageModelId {
 293        self.id.clone()
 294    }
 295
 296    fn name(&self) -> LanguageModelName {
 297        LanguageModelName::from(self.model.display_name().to_string())
 298    }
 299
 300    fn provider_id(&self) -> LanguageModelProviderId {
 301        PROVIDER_ID
 302    }
 303
 304    fn provider_name(&self) -> LanguageModelProviderName {
 305        PROVIDER_NAME
 306    }
 307
 308    fn supports_tools(&self) -> bool {
 309        self.model.supports_tools()
 310    }
 311
 312    fn supports_images(&self) -> bool {
 313        self.model.supports_images()
 314    }
 315
 316    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 317        match choice {
 318            LanguageModelToolChoice::Auto
 319            | LanguageModelToolChoice::Any
 320            | LanguageModelToolChoice::None => true,
 321        }
 322    }
 323
 324    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 325        LanguageModelToolSchemaFormat::JsonSchemaSubset
 326    }
 327
 328    fn telemetry_id(&self) -> String {
 329        format!("google/{}", self.model.request_id())
 330    }
 331
 332    fn max_token_count(&self) -> u64 {
 333        self.model.max_token_count()
 334    }
 335
 336    fn max_output_tokens(&self) -> Option<u64> {
 337        self.model.max_output_tokens()
 338    }
 339
 340    fn count_tokens(
 341        &self,
 342        request: LanguageModelRequest,
 343        cx: &App,
 344    ) -> BoxFuture<'static, Result<u64>> {
 345        let model_id = self.model.request_id().to_string();
 346        let request = into_google(request, model_id, self.model.mode());
 347        let http_client = self.http_client.clone();
 348        let api_url = GoogleLanguageModelProvider::api_url(cx);
 349        let api_key = self.state.read(cx).api_key_state.key(&api_url);
 350
 351        async move {
 352            let Some(api_key) = api_key else {
 353                return Err(LanguageModelCompletionError::NoApiKey {
 354                    provider: PROVIDER_NAME,
 355                }
 356                .into());
 357            };
 358            let response = google_ai::count_tokens(
 359                http_client.as_ref(),
 360                &api_url,
 361                &api_key,
 362                google_ai::CountTokensRequest {
 363                    generate_content_request: request,
 364                },
 365            )
 366            .await?;
 367            Ok(response.total_tokens)
 368        }
 369        .boxed()
 370    }
 371
 372    fn stream_completion(
 373        &self,
 374        request: LanguageModelRequest,
 375        cx: &AsyncApp,
 376    ) -> BoxFuture<
 377        'static,
 378        Result<
 379            futures::stream::BoxStream<
 380                'static,
 381                Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
 382            >,
 383            LanguageModelCompletionError,
 384        >,
 385    > {
 386        let request = into_google(
 387            request,
 388            self.model.request_id().to_string(),
 389            self.model.mode(),
 390        );
 391        let request = self.stream_completion(request, cx);
 392        let future = self.request_limiter.stream(async move {
 393            let response = request.await.map_err(LanguageModelCompletionError::from)?;
 394            Ok(GoogleEventMapper::new().map_stream(response))
 395        });
 396        async move { Ok(future.await?.boxed()) }.boxed()
 397    }
 398}
 399
 400pub fn into_google(
 401    mut request: LanguageModelRequest,
 402    model_id: String,
 403    mode: GoogleModelMode,
 404) -> google_ai::GenerateContentRequest {
 405    fn map_content(content: Vec<MessageContent>) -> Vec<Part> {
 406        content
 407            .into_iter()
 408            .flat_map(|content| match content {
 409                language_model::MessageContent::Text(text) => {
 410                    if !text.is_empty() {
 411                        vec![Part::TextPart(google_ai::TextPart { text })]
 412                    } else {
 413                        vec![]
 414                    }
 415                }
 416                language_model::MessageContent::Thinking {
 417                    text: _,
 418                    signature: Some(signature),
 419                } => {
 420                    if !signature.is_empty() {
 421                        vec![Part::ThoughtPart(google_ai::ThoughtPart {
 422                            thought: true,
 423                            thought_signature: signature,
 424                        })]
 425                    } else {
 426                        vec![]
 427                    }
 428                }
 429                language_model::MessageContent::Thinking { .. } => {
 430                    vec![]
 431                }
 432                language_model::MessageContent::RedactedThinking(_) => vec![],
 433                language_model::MessageContent::Image(image) => {
 434                    vec![Part::InlineDataPart(google_ai::InlineDataPart {
 435                        inline_data: google_ai::GenerativeContentBlob {
 436                            mime_type: "image/png".to_string(),
 437                            data: image.source.to_string(),
 438                        },
 439                    })]
 440                }
 441                language_model::MessageContent::ToolUse(tool_use) => {
 442                    // Normalize empty string signatures to None
 443                    let thought_signature = tool_use.thought_signature.filter(|s| !s.is_empty());
 444
 445                    vec![Part::FunctionCallPart(google_ai::FunctionCallPart {
 446                        function_call: google_ai::FunctionCall {
 447                            name: tool_use.name.to_string(),
 448                            args: tool_use.input,
 449                        },
 450                        thought_signature,
 451                    })]
 452                }
 453                language_model::MessageContent::ToolResult(tool_result) => {
 454                    match tool_result.content {
 455                        language_model::LanguageModelToolResultContent::Text(text) => {
 456                            vec![Part::FunctionResponsePart(
 457                                google_ai::FunctionResponsePart {
 458                                    function_response: google_ai::FunctionResponse {
 459                                        name: tool_result.tool_name.to_string(),
 460                                        // The API expects a valid JSON object
 461                                        response: serde_json::json!({
 462                                            "output": text
 463                                        }),
 464                                    },
 465                                },
 466                            )]
 467                        }
 468                        language_model::LanguageModelToolResultContent::Image(image) => {
 469                            vec![
 470                                Part::FunctionResponsePart(google_ai::FunctionResponsePart {
 471                                    function_response: google_ai::FunctionResponse {
 472                                        name: tool_result.tool_name.to_string(),
 473                                        // The API expects a valid JSON object
 474                                        response: serde_json::json!({
 475                                            "output": "Tool responded with an image"
 476                                        }),
 477                                    },
 478                                }),
 479                                Part::InlineDataPart(google_ai::InlineDataPart {
 480                                    inline_data: google_ai::GenerativeContentBlob {
 481                                        mime_type: "image/png".to_string(),
 482                                        data: image.source.to_string(),
 483                                    },
 484                                }),
 485                            ]
 486                        }
 487                    }
 488                }
 489            })
 490            .collect()
 491    }
 492
 493    let system_instructions = if request
 494        .messages
 495        .first()
 496        .is_some_and(|msg| matches!(msg.role, Role::System))
 497    {
 498        let message = request.messages.remove(0);
 499        Some(SystemInstruction {
 500            parts: map_content(message.content),
 501        })
 502    } else {
 503        None
 504    };
 505
 506    google_ai::GenerateContentRequest {
 507        model: google_ai::ModelName { model_id },
 508        system_instruction: system_instructions,
 509        contents: request
 510            .messages
 511            .into_iter()
 512            .filter_map(|message| {
 513                let parts = map_content(message.content);
 514                if parts.is_empty() {
 515                    None
 516                } else {
 517                    Some(google_ai::Content {
 518                        parts,
 519                        role: match message.role {
 520                            Role::User => google_ai::Role::User,
 521                            Role::Assistant => google_ai::Role::Model,
 522                            Role::System => google_ai::Role::User, // Google AI doesn't have a system role
 523                        },
 524                    })
 525                }
 526            })
 527            .collect(),
 528        generation_config: Some(google_ai::GenerationConfig {
 529            candidate_count: Some(1),
 530            stop_sequences: Some(request.stop),
 531            max_output_tokens: None,
 532            temperature: request.temperature.map(|t| t as f64).or(Some(1.0)),
 533            thinking_config: match (request.thinking_allowed, mode) {
 534                (true, GoogleModelMode::Thinking { budget_tokens }) => {
 535                    budget_tokens.map(|thinking_budget| ThinkingConfig { thinking_budget })
 536                }
 537                _ => None,
 538            },
 539            top_p: None,
 540            top_k: None,
 541        }),
 542        safety_settings: None,
 543        tools: (!request.tools.is_empty()).then(|| {
 544            vec![google_ai::Tool {
 545                function_declarations: request
 546                    .tools
 547                    .into_iter()
 548                    .map(|tool| FunctionDeclaration {
 549                        name: tool.name,
 550                        description: tool.description,
 551                        parameters: tool.input_schema,
 552                    })
 553                    .collect(),
 554            }]
 555        }),
 556        tool_config: request.tool_choice.map(|choice| google_ai::ToolConfig {
 557            function_calling_config: google_ai::FunctionCallingConfig {
 558                mode: match choice {
 559                    LanguageModelToolChoice::Auto => google_ai::FunctionCallingMode::Auto,
 560                    LanguageModelToolChoice::Any => google_ai::FunctionCallingMode::Any,
 561                    LanguageModelToolChoice::None => google_ai::FunctionCallingMode::None,
 562                },
 563                allowed_function_names: None,
 564            },
 565        }),
 566    }
 567}
 568
 569pub struct GoogleEventMapper {
 570    usage: UsageMetadata,
 571    stop_reason: StopReason,
 572}
 573
 574impl GoogleEventMapper {
 575    pub fn new() -> Self {
 576        Self {
 577            usage: UsageMetadata::default(),
 578            stop_reason: StopReason::EndTurn,
 579        }
 580    }
 581
 582    pub fn map_stream(
 583        mut self,
 584        events: Pin<Box<dyn Send + Stream<Item = Result<GenerateContentResponse>>>>,
 585    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 586    {
 587        events
 588            .map(Some)
 589            .chain(futures::stream::once(async { None }))
 590            .flat_map(move |event| {
 591                futures::stream::iter(match event {
 592                    Some(Ok(event)) => self.map_event(event),
 593                    Some(Err(error)) => {
 594                        vec![Err(LanguageModelCompletionError::from(error))]
 595                    }
 596                    None => vec![Ok(LanguageModelCompletionEvent::Stop(self.stop_reason))],
 597                })
 598            })
 599    }
 600
 601    pub fn map_event(
 602        &mut self,
 603        event: GenerateContentResponse,
 604    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
 605        static TOOL_CALL_COUNTER: AtomicU64 = AtomicU64::new(0);
 606
 607        let mut events: Vec<_> = Vec::new();
 608        let mut wants_to_use_tool = false;
 609        if let Some(usage_metadata) = event.usage_metadata {
 610            update_usage(&mut self.usage, &usage_metadata);
 611            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(
 612                convert_usage(&self.usage),
 613            )))
 614        }
 615
 616        if let Some(prompt_feedback) = event.prompt_feedback
 617            && let Some(block_reason) = prompt_feedback.block_reason.as_deref()
 618        {
 619            self.stop_reason = match block_reason {
 620                "SAFETY" | "OTHER" | "BLOCKLIST" | "PROHIBITED_CONTENT" | "IMAGE_SAFETY" => {
 621                    StopReason::Refusal
 622                }
 623                _ => {
 624                    log::error!("Unexpected Google block_reason: {block_reason}");
 625                    StopReason::Refusal
 626                }
 627            };
 628            events.push(Ok(LanguageModelCompletionEvent::Stop(self.stop_reason)));
 629
 630            return events;
 631        }
 632
 633        if let Some(candidates) = event.candidates {
 634            for candidate in candidates {
 635                if let Some(finish_reason) = candidate.finish_reason.as_deref() {
 636                    self.stop_reason = match finish_reason {
 637                        "STOP" => StopReason::EndTurn,
 638                        "MAX_TOKENS" => StopReason::MaxTokens,
 639                        _ => {
 640                            log::error!("Unexpected google finish_reason: {finish_reason}");
 641                            StopReason::EndTurn
 642                        }
 643                    };
 644                }
 645                candidate
 646                    .content
 647                    .parts
 648                    .into_iter()
 649                    .for_each(|part| match part {
 650                        Part::TextPart(text_part) => {
 651                            events.push(Ok(LanguageModelCompletionEvent::Text(text_part.text)))
 652                        }
 653                        Part::InlineDataPart(_) => {}
 654                        Part::FunctionCallPart(function_call_part) => {
 655                            wants_to_use_tool = true;
 656                            let name: Arc<str> = function_call_part.function_call.name.into();
 657                            let next_tool_id =
 658                                TOOL_CALL_COUNTER.fetch_add(1, atomic::Ordering::SeqCst);
 659                            let id: LanguageModelToolUseId =
 660                                format!("{}-{}", name, next_tool_id).into();
 661
 662                            // Normalize empty string signatures to None
 663                            let thought_signature = function_call_part
 664                                .thought_signature
 665                                .filter(|s| !s.is_empty());
 666
 667                            events.push(Ok(LanguageModelCompletionEvent::ToolUse(
 668                                LanguageModelToolUse {
 669                                    id,
 670                                    name,
 671                                    is_input_complete: true,
 672                                    raw_input: function_call_part.function_call.args.to_string(),
 673                                    input: function_call_part.function_call.args,
 674                                    thought_signature,
 675                                },
 676                            )));
 677                        }
 678                        Part::FunctionResponsePart(_) => {}
 679                        Part::ThoughtPart(part) => {
 680                            events.push(Ok(LanguageModelCompletionEvent::Thinking {
 681                                text: "(Encrypted thought)".to_string(), // TODO: Can we populate this from thought summaries?
 682                                signature: Some(part.thought_signature),
 683                            }));
 684                        }
 685                    });
 686            }
 687        }
 688
 689        // Even when Gemini wants to use a Tool, the API
 690        // responds with `finish_reason: STOP`
 691        if wants_to_use_tool {
 692            self.stop_reason = StopReason::ToolUse;
 693            events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
 694        }
 695        events
 696    }
 697}
 698
 699pub fn count_google_tokens(
 700    request: LanguageModelRequest,
 701    cx: &App,
 702) -> BoxFuture<'static, Result<u64>> {
 703    // We couldn't use the GoogleLanguageModelProvider to count tokens because the github copilot doesn't have the access to google_ai directly.
 704    // So we have to use tokenizer from tiktoken_rs to count tokens.
 705    cx.background_spawn(async move {
 706        let messages = request
 707            .messages
 708            .into_iter()
 709            .map(|message| tiktoken_rs::ChatCompletionRequestMessage {
 710                role: match message.role {
 711                    Role::User => "user".into(),
 712                    Role::Assistant => "assistant".into(),
 713                    Role::System => "system".into(),
 714                },
 715                content: Some(message.string_contents()),
 716                name: None,
 717                function_call: None,
 718            })
 719            .collect::<Vec<_>>();
 720
 721        // Tiktoken doesn't yet support these models, so we manually use the
 722        // same tokenizer as GPT-4.
 723        tiktoken_rs::num_tokens_from_messages("gpt-4", &messages).map(|tokens| tokens as u64)
 724    })
 725    .boxed()
 726}
 727
 728fn update_usage(usage: &mut UsageMetadata, new: &UsageMetadata) {
 729    if let Some(prompt_token_count) = new.prompt_token_count {
 730        usage.prompt_token_count = Some(prompt_token_count);
 731    }
 732    if let Some(cached_content_token_count) = new.cached_content_token_count {
 733        usage.cached_content_token_count = Some(cached_content_token_count);
 734    }
 735    if let Some(candidates_token_count) = new.candidates_token_count {
 736        usage.candidates_token_count = Some(candidates_token_count);
 737    }
 738    if let Some(tool_use_prompt_token_count) = new.tool_use_prompt_token_count {
 739        usage.tool_use_prompt_token_count = Some(tool_use_prompt_token_count);
 740    }
 741    if let Some(thoughts_token_count) = new.thoughts_token_count {
 742        usage.thoughts_token_count = Some(thoughts_token_count);
 743    }
 744    if let Some(total_token_count) = new.total_token_count {
 745        usage.total_token_count = Some(total_token_count);
 746    }
 747}
 748
 749fn convert_usage(usage: &UsageMetadata) -> language_model::TokenUsage {
 750    let prompt_tokens = usage.prompt_token_count.unwrap_or(0);
 751    let cached_tokens = usage.cached_content_token_count.unwrap_or(0);
 752    let input_tokens = prompt_tokens - cached_tokens;
 753    let output_tokens = usage.candidates_token_count.unwrap_or(0);
 754
 755    language_model::TokenUsage {
 756        input_tokens,
 757        output_tokens,
 758        cache_read_input_tokens: cached_tokens,
 759        cache_creation_input_tokens: 0,
 760    }
 761}
 762
 763struct ConfigurationView {
 764    api_key_editor: Entity<InputField>,
 765    state: Entity<State>,
 766    target_agent: language_model::ConfigurationViewTargetAgent,
 767    load_credentials_task: Option<Task<()>>,
 768}
 769
 770impl ConfigurationView {
 771    fn new(
 772        state: Entity<State>,
 773        target_agent: language_model::ConfigurationViewTargetAgent,
 774        window: &mut Window,
 775        cx: &mut Context<Self>,
 776    ) -> Self {
 777        cx.observe(&state, |_, _, cx| {
 778            cx.notify();
 779        })
 780        .detach();
 781
 782        let load_credentials_task = Some(cx.spawn_in(window, {
 783            let state = state.clone();
 784            async move |this, cx| {
 785                if let Some(task) = state
 786                    .update(cx, |state, cx| state.authenticate(cx))
 787                    .log_err()
 788                {
 789                    // We don't log an error, because "not signed in" is also an error.
 790                    let _ = task.await;
 791                }
 792                this.update(cx, |this, cx| {
 793                    this.load_credentials_task = None;
 794                    cx.notify();
 795                })
 796                .log_err();
 797            }
 798        }));
 799
 800        Self {
 801            api_key_editor: cx.new(|cx| InputField::new(window, cx, "AIzaSy...")),
 802            target_agent,
 803            state,
 804            load_credentials_task,
 805        }
 806    }
 807
 808    fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
 809        let api_key = self.api_key_editor.read(cx).text(cx).trim().to_string();
 810        if api_key.is_empty() {
 811            return;
 812        }
 813
 814        // url changes can cause the editor to be displayed again
 815        self.api_key_editor
 816            .update(cx, |editor, cx| editor.set_text("", window, cx));
 817
 818        let state = self.state.clone();
 819        cx.spawn_in(window, async move |_, cx| {
 820            state
 821                .update(cx, |state, cx| state.set_api_key(Some(api_key), cx))?
 822                .await
 823        })
 824        .detach_and_log_err(cx);
 825    }
 826
 827    fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
 828        self.api_key_editor
 829            .update(cx, |editor, cx| editor.set_text("", window, cx));
 830
 831        let state = self.state.clone();
 832        cx.spawn_in(window, async move |_, cx| {
 833            state
 834                .update(cx, |state, cx| state.set_api_key(None, cx))?
 835                .await
 836        })
 837        .detach_and_log_err(cx);
 838    }
 839
 840    fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
 841        !self.state.read(cx).is_authenticated()
 842    }
 843}
 844
 845impl Render for ConfigurationView {
 846    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
 847        let env_var_set = self.state.read(cx).api_key_state.is_from_env_var();
 848        let configured_card_label = if env_var_set {
 849            format!(
 850                "API key set in {} environment variable",
 851                API_KEY_ENV_VAR.name
 852            )
 853        } else {
 854            let api_url = GoogleLanguageModelProvider::api_url(cx);
 855            if api_url == google_ai::API_URL {
 856                "API key configured".to_string()
 857            } else {
 858                format!("API key configured for {}", api_url)
 859            }
 860        };
 861
 862        if self.load_credentials_task.is_some() {
 863            div()
 864                .child(Label::new("Loading credentials..."))
 865                .into_any_element()
 866        } else if self.should_render_editor(cx) {
 867            v_flex()
 868                .size_full()
 869                .on_action(cx.listener(Self::save_api_key))
 870                .child(Label::new(format!("To use {}, you need to add an API key. Follow these steps:", match &self.target_agent {
 871                    ConfigurationViewTargetAgent::ZedAgent => "Zed's agent with Google AI".into(),
 872                    ConfigurationViewTargetAgent::Other(agent) => agent.clone(),
 873                })))
 874                .child(
 875                    List::new()
 876                        .child(InstructionListItem::new(
 877                            "Create one by visiting",
 878                            Some("Google AI's console"),
 879                            Some("https://aistudio.google.com/app/apikey"),
 880                        ))
 881                        .child(InstructionListItem::text_only(
 882                            "Paste your API key below and hit enter to start using the assistant",
 883                        )),
 884                )
 885                .child(self.api_key_editor.clone())
 886                .child(
 887                    Label::new(
 888                        format!("You can also assign the {GEMINI_API_KEY_VAR_NAME} environment variable and restart Zed."),
 889                    )
 890                    .size(LabelSize::Small).color(Color::Muted),
 891                )
 892                .into_any_element()
 893        } else {
 894            ConfiguredApiCard::new(configured_card_label)
 895                .disabled(env_var_set)
 896                .on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx)))
 897                .when(env_var_set, |this| {
 898                    this.tooltip_label(format!("To reset your API key, make sure {GEMINI_API_KEY_VAR_NAME} and {GOOGLE_AI_API_KEY_VAR_NAME} environment variables are unset."))
 899                })
 900                .into_any_element()
 901        }
 902    }
 903}
 904
 905#[cfg(test)]
 906mod tests {
 907    use super::*;
 908    use google_ai::{
 909        Content, FunctionCall, FunctionCallPart, GenerateContentCandidate, GenerateContentResponse,
 910        Part, Role as GoogleRole, TextPart,
 911    };
 912    use language_model::{LanguageModelToolUseId, MessageContent, Role};
 913    use serde_json::json;
 914
 915    #[test]
 916    fn test_function_call_with_signature_creates_tool_use_with_signature() {
 917        let mut mapper = GoogleEventMapper::new();
 918
 919        let response = GenerateContentResponse {
 920            candidates: Some(vec![GenerateContentCandidate {
 921                index: Some(0),
 922                content: Content {
 923                    parts: vec![Part::FunctionCallPart(FunctionCallPart {
 924                        function_call: FunctionCall {
 925                            name: "test_function".to_string(),
 926                            args: json!({"arg": "value"}),
 927                        },
 928                        thought_signature: Some("test_signature_123".to_string()),
 929                    })],
 930                    role: GoogleRole::Model,
 931                },
 932                finish_reason: None,
 933                finish_message: None,
 934                safety_ratings: None,
 935                citation_metadata: None,
 936            }]),
 937            prompt_feedback: None,
 938            usage_metadata: None,
 939        };
 940
 941        let events = mapper.map_event(response);
 942
 943        assert_eq!(events.len(), 2); // ToolUse event + Stop event
 944
 945        if let Ok(LanguageModelCompletionEvent::ToolUse(tool_use)) = &events[0] {
 946            assert_eq!(tool_use.name.as_ref(), "test_function");
 947            assert_eq!(
 948                tool_use.thought_signature.as_deref(),
 949                Some("test_signature_123")
 950            );
 951        } else {
 952            panic!("Expected ToolUse event");
 953        }
 954    }
 955
 956    #[test]
 957    fn test_function_call_without_signature_has_none() {
 958        let mut mapper = GoogleEventMapper::new();
 959
 960        let response = GenerateContentResponse {
 961            candidates: Some(vec![GenerateContentCandidate {
 962                index: Some(0),
 963                content: Content {
 964                    parts: vec![Part::FunctionCallPart(FunctionCallPart {
 965                        function_call: FunctionCall {
 966                            name: "test_function".to_string(),
 967                            args: json!({"arg": "value"}),
 968                        },
 969                        thought_signature: None,
 970                    })],
 971                    role: GoogleRole::Model,
 972                },
 973                finish_reason: None,
 974                finish_message: None,
 975                safety_ratings: None,
 976                citation_metadata: None,
 977            }]),
 978            prompt_feedback: None,
 979            usage_metadata: None,
 980        };
 981
 982        let events = mapper.map_event(response);
 983
 984        if let Ok(LanguageModelCompletionEvent::ToolUse(tool_use)) = &events[0] {
 985            assert_eq!(tool_use.thought_signature, None);
 986        } else {
 987            panic!("Expected ToolUse event");
 988        }
 989    }
 990
 991    #[test]
 992    fn test_empty_string_signature_normalized_to_none() {
 993        let mut mapper = GoogleEventMapper::new();
 994
 995        let response = GenerateContentResponse {
 996            candidates: Some(vec![GenerateContentCandidate {
 997                index: Some(0),
 998                content: Content {
 999                    parts: vec![Part::FunctionCallPart(FunctionCallPart {
1000                        function_call: FunctionCall {
1001                            name: "test_function".to_string(),
1002                            args: json!({"arg": "value"}),
1003                        },
1004                        thought_signature: Some("".to_string()),
1005                    })],
1006                    role: GoogleRole::Model,
1007                },
1008                finish_reason: None,
1009                finish_message: None,
1010                safety_ratings: None,
1011                citation_metadata: None,
1012            }]),
1013            prompt_feedback: None,
1014            usage_metadata: None,
1015        };
1016
1017        let events = mapper.map_event(response);
1018
1019        if let Ok(LanguageModelCompletionEvent::ToolUse(tool_use)) = &events[0] {
1020            assert_eq!(tool_use.thought_signature, None);
1021        } else {
1022            panic!("Expected ToolUse event");
1023        }
1024    }
1025
1026    #[test]
1027    fn test_parallel_function_calls_preserve_signatures() {
1028        let mut mapper = GoogleEventMapper::new();
1029
1030        let response = GenerateContentResponse {
1031            candidates: Some(vec![GenerateContentCandidate {
1032                index: Some(0),
1033                content: Content {
1034                    parts: vec![
1035                        Part::FunctionCallPart(FunctionCallPart {
1036                            function_call: FunctionCall {
1037                                name: "function_1".to_string(),
1038                                args: json!({"arg": "value1"}),
1039                            },
1040                            thought_signature: Some("signature_1".to_string()),
1041                        }),
1042                        Part::FunctionCallPart(FunctionCallPart {
1043                            function_call: FunctionCall {
1044                                name: "function_2".to_string(),
1045                                args: json!({"arg": "value2"}),
1046                            },
1047                            thought_signature: None,
1048                        }),
1049                    ],
1050                    role: GoogleRole::Model,
1051                },
1052                finish_reason: None,
1053                finish_message: None,
1054                safety_ratings: None,
1055                citation_metadata: None,
1056            }]),
1057            prompt_feedback: None,
1058            usage_metadata: None,
1059        };
1060
1061        let events = mapper.map_event(response);
1062
1063        assert_eq!(events.len(), 3); // 2 ToolUse events + Stop event
1064
1065        if let Ok(LanguageModelCompletionEvent::ToolUse(tool_use)) = &events[0] {
1066            assert_eq!(tool_use.name.as_ref(), "function_1");
1067            assert_eq!(tool_use.thought_signature.as_deref(), Some("signature_1"));
1068        } else {
1069            panic!("Expected ToolUse event for function_1");
1070        }
1071
1072        if let Ok(LanguageModelCompletionEvent::ToolUse(tool_use)) = &events[1] {
1073            assert_eq!(tool_use.name.as_ref(), "function_2");
1074            assert_eq!(tool_use.thought_signature, None);
1075        } else {
1076            panic!("Expected ToolUse event for function_2");
1077        }
1078    }
1079
1080    #[test]
1081    fn test_tool_use_with_signature_converts_to_function_call_part() {
1082        let tool_use = language_model::LanguageModelToolUse {
1083            id: LanguageModelToolUseId::from("test_id"),
1084            name: "test_function".into(),
1085            raw_input: json!({"arg": "value"}).to_string(),
1086            input: json!({"arg": "value"}),
1087            is_input_complete: true,
1088            thought_signature: Some("test_signature_456".to_string()),
1089        };
1090
1091        let request = super::into_google(
1092            LanguageModelRequest {
1093                messages: vec![language_model::LanguageModelRequestMessage {
1094                    role: Role::Assistant,
1095                    content: vec![MessageContent::ToolUse(tool_use)],
1096                    cache: false,
1097                }],
1098                ..Default::default()
1099            },
1100            "gemini-2.5-flash".to_string(),
1101            GoogleModelMode::Default,
1102        );
1103
1104        assert_eq!(request.contents[0].parts.len(), 1);
1105        if let Part::FunctionCallPart(fc_part) = &request.contents[0].parts[0] {
1106            assert_eq!(fc_part.function_call.name, "test_function");
1107            assert_eq!(
1108                fc_part.thought_signature.as_deref(),
1109                Some("test_signature_456")
1110            );
1111        } else {
1112            panic!("Expected FunctionCallPart");
1113        }
1114    }
1115
1116    #[test]
1117    fn test_tool_use_without_signature_omits_field() {
1118        let tool_use = language_model::LanguageModelToolUse {
1119            id: LanguageModelToolUseId::from("test_id"),
1120            name: "test_function".into(),
1121            raw_input: json!({"arg": "value"}).to_string(),
1122            input: json!({"arg": "value"}),
1123            is_input_complete: true,
1124            thought_signature: None,
1125        };
1126
1127        let request = super::into_google(
1128            LanguageModelRequest {
1129                messages: vec![language_model::LanguageModelRequestMessage {
1130                    role: Role::Assistant,
1131                    content: vec![MessageContent::ToolUse(tool_use)],
1132                    cache: false,
1133                }],
1134                ..Default::default()
1135            },
1136            "gemini-2.5-flash".to_string(),
1137            GoogleModelMode::Default,
1138        );
1139
1140        assert_eq!(request.contents[0].parts.len(), 1);
1141        if let Part::FunctionCallPart(fc_part) = &request.contents[0].parts[0] {
1142            assert_eq!(fc_part.thought_signature, None);
1143        } else {
1144            panic!("Expected FunctionCallPart");
1145        }
1146    }
1147
1148    #[test]
1149    fn test_empty_signature_in_tool_use_normalized_to_none() {
1150        let tool_use = language_model::LanguageModelToolUse {
1151            id: LanguageModelToolUseId::from("test_id"),
1152            name: "test_function".into(),
1153            raw_input: json!({"arg": "value"}).to_string(),
1154            input: json!({"arg": "value"}),
1155            is_input_complete: true,
1156            thought_signature: Some("".to_string()),
1157        };
1158
1159        let request = super::into_google(
1160            LanguageModelRequest {
1161                messages: vec![language_model::LanguageModelRequestMessage {
1162                    role: Role::Assistant,
1163                    content: vec![MessageContent::ToolUse(tool_use)],
1164                    cache: false,
1165                }],
1166                ..Default::default()
1167            },
1168            "gemini-2.5-flash".to_string(),
1169            GoogleModelMode::Default,
1170        );
1171
1172        if let Part::FunctionCallPart(fc_part) = &request.contents[0].parts[0] {
1173            assert_eq!(fc_part.thought_signature, None);
1174        } else {
1175            panic!("Expected FunctionCallPart");
1176        }
1177    }
1178
1179    #[test]
1180    fn test_round_trip_preserves_signature() {
1181        let mut mapper = GoogleEventMapper::new();
1182
1183        // Simulate receiving a response from Google with a signature
1184        let response = GenerateContentResponse {
1185            candidates: Some(vec![GenerateContentCandidate {
1186                index: Some(0),
1187                content: Content {
1188                    parts: vec![Part::FunctionCallPart(FunctionCallPart {
1189                        function_call: FunctionCall {
1190                            name: "test_function".to_string(),
1191                            args: json!({"arg": "value"}),
1192                        },
1193                        thought_signature: Some("round_trip_sig".to_string()),
1194                    })],
1195                    role: GoogleRole::Model,
1196                },
1197                finish_reason: None,
1198                finish_message: None,
1199                safety_ratings: None,
1200                citation_metadata: None,
1201            }]),
1202            prompt_feedback: None,
1203            usage_metadata: None,
1204        };
1205
1206        let events = mapper.map_event(response);
1207
1208        let tool_use = if let Ok(LanguageModelCompletionEvent::ToolUse(tool_use)) = &events[0] {
1209            tool_use.clone()
1210        } else {
1211            panic!("Expected ToolUse event");
1212        };
1213
1214        // Convert back to Google format
1215        let request = super::into_google(
1216            LanguageModelRequest {
1217                messages: vec![language_model::LanguageModelRequestMessage {
1218                    role: Role::Assistant,
1219                    content: vec![MessageContent::ToolUse(tool_use)],
1220                    cache: false,
1221                }],
1222                ..Default::default()
1223            },
1224            "gemini-2.5-flash".to_string(),
1225            GoogleModelMode::Default,
1226        );
1227
1228        // Verify signature is preserved
1229        if let Part::FunctionCallPart(fc_part) = &request.contents[0].parts[0] {
1230            assert_eq!(fc_part.thought_signature.as_deref(), Some("round_trip_sig"));
1231        } else {
1232            panic!("Expected FunctionCallPart");
1233        }
1234    }
1235
1236    #[test]
1237    fn test_mixed_text_and_function_call_with_signature() {
1238        let mut mapper = GoogleEventMapper::new();
1239
1240        let response = GenerateContentResponse {
1241            candidates: Some(vec![GenerateContentCandidate {
1242                index: Some(0),
1243                content: Content {
1244                    parts: vec![
1245                        Part::TextPart(TextPart {
1246                            text: "I'll help with that.".to_string(),
1247                        }),
1248                        Part::FunctionCallPart(FunctionCallPart {
1249                            function_call: FunctionCall {
1250                                name: "helper_function".to_string(),
1251                                args: json!({"query": "help"}),
1252                            },
1253                            thought_signature: Some("mixed_sig".to_string()),
1254                        }),
1255                    ],
1256                    role: GoogleRole::Model,
1257                },
1258                finish_reason: None,
1259                finish_message: None,
1260                safety_ratings: None,
1261                citation_metadata: None,
1262            }]),
1263            prompt_feedback: None,
1264            usage_metadata: None,
1265        };
1266
1267        let events = mapper.map_event(response);
1268
1269        assert_eq!(events.len(), 3); // Text event + ToolUse event + Stop event
1270
1271        if let Ok(LanguageModelCompletionEvent::Text(text)) = &events[0] {
1272            assert_eq!(text, "I'll help with that.");
1273        } else {
1274            panic!("Expected Text event");
1275        }
1276
1277        if let Ok(LanguageModelCompletionEvent::ToolUse(tool_use)) = &events[1] {
1278            assert_eq!(tool_use.name.as_ref(), "helper_function");
1279            assert_eq!(tool_use.thought_signature.as_deref(), Some("mixed_sig"));
1280        } else {
1281            panic!("Expected ToolUse event");
1282        }
1283    }
1284
1285    #[test]
1286    fn test_special_characters_in_signature_preserved() {
1287        let mut mapper = GoogleEventMapper::new();
1288
1289        let signature_with_special_chars = "sig<>\"'&%$#@!{}[]".to_string();
1290
1291        let response = GenerateContentResponse {
1292            candidates: Some(vec![GenerateContentCandidate {
1293                index: Some(0),
1294                content: Content {
1295                    parts: vec![Part::FunctionCallPart(FunctionCallPart {
1296                        function_call: FunctionCall {
1297                            name: "test_function".to_string(),
1298                            args: json!({"arg": "value"}),
1299                        },
1300                        thought_signature: Some(signature_with_special_chars.clone()),
1301                    })],
1302                    role: GoogleRole::Model,
1303                },
1304                finish_reason: None,
1305                finish_message: None,
1306                safety_ratings: None,
1307                citation_metadata: None,
1308            }]),
1309            prompt_feedback: None,
1310            usage_metadata: None,
1311        };
1312
1313        let events = mapper.map_event(response);
1314
1315        if let Ok(LanguageModelCompletionEvent::ToolUse(tool_use)) = &events[0] {
1316            assert_eq!(
1317                tool_use.thought_signature.as_deref(),
1318                Some(signature_with_special_chars.as_str())
1319            );
1320        } else {
1321            panic!("Expected ToolUse event");
1322        }
1323    }
1324}