open_ai.rs

  1use anyhow::{Result, anyhow};
  2use collections::{BTreeMap, HashMap};
  3use futures::Stream;
  4use futures::{FutureExt, StreamExt, future, future::BoxFuture};
  5use gpui::{AnyView, App, AsyncApp, Context, Entity, SharedString, Task, Window};
  6use http_client::HttpClient;
  7use language_model::{
  8    AuthenticateError, LanguageModel, LanguageModelCompletionError, LanguageModelCompletionEvent,
  9    LanguageModelId, LanguageModelName, LanguageModelProvider, LanguageModelProviderId,
 10    LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
 11    LanguageModelToolChoice, LanguageModelToolResultContent, LanguageModelToolUse, MessageContent,
 12    RateLimiter, Role, StopReason, TokenUsage,
 13};
 14use menu;
 15use open_ai::{
 16    ImageUrl, Model, OPEN_AI_API_URL, ReasoningEffort, ResponseStreamEvent, stream_completion,
 17};
 18use settings::{OpenAiAvailableModel as AvailableModel, Settings, SettingsStore};
 19use std::pin::Pin;
 20use std::str::FromStr as _;
 21use std::sync::{Arc, LazyLock};
 22use strum::IntoEnumIterator;
 23use ui::{List, prelude::*};
 24use ui_input::InputField;
 25use util::ResultExt;
 26use zed_env_vars::{EnvVar, env_var};
 27
 28use crate::ui::ConfiguredApiCard;
 29use crate::{api_key::ApiKeyState, ui::InstructionListItem};
 30
 31const PROVIDER_ID: LanguageModelProviderId = language_model::OPEN_AI_PROVIDER_ID;
 32const PROVIDER_NAME: LanguageModelProviderName = language_model::OPEN_AI_PROVIDER_NAME;
 33
 34const API_KEY_ENV_VAR_NAME: &str = "OPENAI_API_KEY";
 35static API_KEY_ENV_VAR: LazyLock<EnvVar> = env_var!(API_KEY_ENV_VAR_NAME);
 36
 37#[derive(Default, Clone, Debug, PartialEq)]
 38pub struct OpenAiSettings {
 39    pub api_url: String,
 40    pub available_models: Vec<AvailableModel>,
 41}
 42
 43pub struct OpenAiLanguageModelProvider {
 44    http_client: Arc<dyn HttpClient>,
 45    state: Entity<State>,
 46}
 47
 48pub struct State {
 49    api_key_state: ApiKeyState,
 50}
 51
 52impl State {
 53    fn is_authenticated(&self) -> bool {
 54        self.api_key_state.has_key()
 55    }
 56
 57    fn set_api_key(&mut self, api_key: Option<String>, cx: &mut Context<Self>) -> Task<Result<()>> {
 58        let api_url = OpenAiLanguageModelProvider::api_url(cx);
 59        self.api_key_state
 60            .store(api_url, api_key, |this| &mut this.api_key_state, cx)
 61    }
 62
 63    fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
 64        let api_url = OpenAiLanguageModelProvider::api_url(cx);
 65        self.api_key_state.load_if_needed(
 66            api_url,
 67            &API_KEY_ENV_VAR,
 68            |this| &mut this.api_key_state,
 69            cx,
 70        )
 71    }
 72}
 73
 74impl OpenAiLanguageModelProvider {
 75    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
 76        let state = cx.new(|cx| {
 77            cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
 78                let api_url = Self::api_url(cx);
 79                this.api_key_state.handle_url_change(
 80                    api_url,
 81                    &API_KEY_ENV_VAR,
 82                    |this| &mut this.api_key_state,
 83                    cx,
 84                );
 85                cx.notify();
 86            })
 87            .detach();
 88            State {
 89                api_key_state: ApiKeyState::new(Self::api_url(cx)),
 90            }
 91        });
 92
 93        Self { http_client, state }
 94    }
 95
 96    fn create_language_model(&self, model: open_ai::Model) -> Arc<dyn LanguageModel> {
 97        Arc::new(OpenAiLanguageModel {
 98            id: LanguageModelId::from(model.id().to_string()),
 99            model,
100            state: self.state.clone(),
101            http_client: self.http_client.clone(),
102            request_limiter: RateLimiter::new(4),
103        })
104    }
105
106    fn settings(cx: &App) -> &OpenAiSettings {
107        &crate::AllLanguageModelSettings::get_global(cx).openai
108    }
109
110    fn api_url(cx: &App) -> SharedString {
111        let api_url = &Self::settings(cx).api_url;
112        if api_url.is_empty() {
113            open_ai::OPEN_AI_API_URL.into()
114        } else {
115            SharedString::new(api_url.as_str())
116        }
117    }
118}
119
120impl LanguageModelProviderState for OpenAiLanguageModelProvider {
121    type ObservableEntity = State;
122
123    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
124        Some(self.state.clone())
125    }
126}
127
128impl LanguageModelProvider for OpenAiLanguageModelProvider {
129    fn id(&self) -> LanguageModelProviderId {
130        PROVIDER_ID
131    }
132
133    fn name(&self) -> LanguageModelProviderName {
134        PROVIDER_NAME
135    }
136
137    fn icon(&self) -> IconName {
138        IconName::AiOpenAi
139    }
140
141    fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
142        Some(self.create_language_model(open_ai::Model::default()))
143    }
144
145    fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
146        Some(self.create_language_model(open_ai::Model::default_fast()))
147    }
148
149    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
150        let mut models = BTreeMap::default();
151
152        // Add base models from open_ai::Model::iter()
153        for model in open_ai::Model::iter() {
154            if !matches!(model, open_ai::Model::Custom { .. }) {
155                models.insert(model.id().to_string(), model);
156            }
157        }
158
159        // Override with available models from settings
160        for model in &OpenAiLanguageModelProvider::settings(cx).available_models {
161            models.insert(
162                model.name.clone(),
163                open_ai::Model::Custom {
164                    name: model.name.clone(),
165                    display_name: model.display_name.clone(),
166                    max_tokens: model.max_tokens,
167                    max_output_tokens: model.max_output_tokens,
168                    max_completion_tokens: model.max_completion_tokens,
169                    reasoning_effort: model.reasoning_effort.clone(),
170                },
171            );
172        }
173
174        models
175            .into_values()
176            .map(|model| self.create_language_model(model))
177            .collect()
178    }
179
180    fn is_authenticated(&self, cx: &App) -> bool {
181        self.state.read(cx).is_authenticated()
182    }
183
184    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
185        self.state.update(cx, |state, cx| state.authenticate(cx))
186    }
187
188    fn configuration_view(
189        &self,
190        _target_agent: language_model::ConfigurationViewTargetAgent,
191        window: &mut Window,
192        cx: &mut App,
193    ) -> AnyView {
194        cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
195            .into()
196    }
197
198    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
199        self.state
200            .update(cx, |state, cx| state.set_api_key(None, cx))
201    }
202}
203
204pub struct OpenAiLanguageModel {
205    id: LanguageModelId,
206    model: open_ai::Model,
207    state: Entity<State>,
208    http_client: Arc<dyn HttpClient>,
209    request_limiter: RateLimiter,
210}
211
212impl OpenAiLanguageModel {
213    fn stream_completion(
214        &self,
215        request: open_ai::Request,
216        cx: &AsyncApp,
217    ) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponseStreamEvent>>>>
218    {
219        let http_client = self.http_client.clone();
220
221        let Ok((api_key, api_url)) = self.state.read_with(cx, |state, cx| {
222            let api_url = OpenAiLanguageModelProvider::api_url(cx);
223            (state.api_key_state.key(&api_url), api_url)
224        }) else {
225            return future::ready(Err(anyhow!("App state dropped"))).boxed();
226        };
227
228        let future = self.request_limiter.stream(async move {
229            let provider = PROVIDER_NAME;
230            let Some(api_key) = api_key else {
231                return Err(LanguageModelCompletionError::NoApiKey { provider });
232            };
233            let request = stream_completion(
234                http_client.as_ref(),
235                provider.0.as_str(),
236                &api_url,
237                &api_key,
238                request,
239            );
240            let response = request.await?;
241            Ok(response)
242        });
243
244        async move { Ok(future.await?.boxed()) }.boxed()
245    }
246}
247
248impl LanguageModel for OpenAiLanguageModel {
249    fn id(&self) -> LanguageModelId {
250        self.id.clone()
251    }
252
253    fn name(&self) -> LanguageModelName {
254        LanguageModelName::from(self.model.display_name().to_string())
255    }
256
257    fn provider_id(&self) -> LanguageModelProviderId {
258        PROVIDER_ID
259    }
260
261    fn provider_name(&self) -> LanguageModelProviderName {
262        PROVIDER_NAME
263    }
264
265    fn supports_tools(&self) -> bool {
266        true
267    }
268
269    fn supports_images(&self) -> bool {
270        use open_ai::Model;
271        match &self.model {
272            Model::FourOmni
273            | Model::FourOmniMini
274            | Model::FourPointOne
275            | Model::FourPointOneMini
276            | Model::FourPointOneNano
277            | Model::Five
278            | Model::FiveMini
279            | Model::FiveNano
280            | Model::O1
281            | Model::O3
282            | Model::O4Mini => true,
283            Model::ThreePointFiveTurbo
284            | Model::Four
285            | Model::FourTurbo
286            | Model::O3Mini
287            | Model::Custom { .. } => false,
288        }
289    }
290
291    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
292        match choice {
293            LanguageModelToolChoice::Auto => true,
294            LanguageModelToolChoice::Any => true,
295            LanguageModelToolChoice::None => true,
296        }
297    }
298
299    fn telemetry_id(&self) -> String {
300        format!("openai/{}", self.model.id())
301    }
302
303    fn max_token_count(&self) -> u64 {
304        self.model.max_token_count()
305    }
306
307    fn max_output_tokens(&self) -> Option<u64> {
308        self.model.max_output_tokens()
309    }
310
311    fn count_tokens(
312        &self,
313        request: LanguageModelRequest,
314        cx: &App,
315    ) -> BoxFuture<'static, Result<u64>> {
316        count_open_ai_tokens(request, self.model.clone(), cx)
317    }
318
319    fn stream_completion(
320        &self,
321        request: LanguageModelRequest,
322        cx: &AsyncApp,
323    ) -> BoxFuture<
324        'static,
325        Result<
326            futures::stream::BoxStream<
327                'static,
328                Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
329            >,
330            LanguageModelCompletionError,
331        >,
332    > {
333        let request = into_open_ai(
334            request,
335            self.model.id(),
336            self.model.supports_parallel_tool_calls(),
337            self.model.supports_prompt_cache_key(),
338            self.max_output_tokens(),
339            self.model.reasoning_effort(),
340        );
341        let completions = self.stream_completion(request, cx);
342        async move {
343            let mapper = OpenAiEventMapper::new();
344            Ok(mapper.map_stream(completions.await?).boxed())
345        }
346        .boxed()
347    }
348}
349
350pub fn into_open_ai(
351    request: LanguageModelRequest,
352    model_id: &str,
353    supports_parallel_tool_calls: bool,
354    supports_prompt_cache_key: bool,
355    max_output_tokens: Option<u64>,
356    reasoning_effort: Option<ReasoningEffort>,
357) -> open_ai::Request {
358    let stream = !model_id.starts_with("o1-");
359
360    let mut messages = Vec::new();
361    for message in request.messages {
362        for content in message.content {
363            match content {
364                MessageContent::Text(text) | MessageContent::Thinking { text, .. } => {
365                    if !text.trim().is_empty() {
366                        add_message_content_part(
367                            open_ai::MessagePart::Text { text },
368                            message.role,
369                            &mut messages,
370                        );
371                    }
372                }
373                MessageContent::RedactedThinking(_) => {}
374                MessageContent::Image(image) => {
375                    add_message_content_part(
376                        open_ai::MessagePart::Image {
377                            image_url: ImageUrl {
378                                url: image.to_base64_url(),
379                                detail: None,
380                            },
381                        },
382                        message.role,
383                        &mut messages,
384                    );
385                }
386                MessageContent::ToolUse(tool_use) => {
387                    let tool_call = open_ai::ToolCall {
388                        id: tool_use.id.to_string(),
389                        content: open_ai::ToolCallContent::Function {
390                            function: open_ai::FunctionContent {
391                                name: tool_use.name.to_string(),
392                                arguments: serde_json::to_string(&tool_use.input)
393                                    .unwrap_or_default(),
394                            },
395                        },
396                    };
397
398                    if let Some(open_ai::RequestMessage::Assistant { tool_calls, .. }) =
399                        messages.last_mut()
400                    {
401                        tool_calls.push(tool_call);
402                    } else {
403                        messages.push(open_ai::RequestMessage::Assistant {
404                            content: None,
405                            tool_calls: vec![tool_call],
406                        });
407                    }
408                }
409                MessageContent::ToolResult(tool_result) => {
410                    let content = match &tool_result.content {
411                        LanguageModelToolResultContent::Text(text) => {
412                            vec![open_ai::MessagePart::Text {
413                                text: text.to_string(),
414                            }]
415                        }
416                        LanguageModelToolResultContent::Image(image) => {
417                            vec![open_ai::MessagePart::Image {
418                                image_url: ImageUrl {
419                                    url: image.to_base64_url(),
420                                    detail: None,
421                                },
422                            }]
423                        }
424                    };
425
426                    messages.push(open_ai::RequestMessage::Tool {
427                        content: content.into(),
428                        tool_call_id: tool_result.tool_use_id.to_string(),
429                    });
430                }
431            }
432        }
433    }
434
435    open_ai::Request {
436        model: model_id.into(),
437        messages,
438        stream,
439        stop: request.stop,
440        temperature: request.temperature.unwrap_or(1.0),
441        max_completion_tokens: max_output_tokens,
442        parallel_tool_calls: if supports_parallel_tool_calls && !request.tools.is_empty() {
443            // Disable parallel tool calls, as the Agent currently expects a maximum of one per turn.
444            Some(false)
445        } else {
446            None
447        },
448        prompt_cache_key: if supports_prompt_cache_key {
449            request.thread_id
450        } else {
451            None
452        },
453        tools: request
454            .tools
455            .into_iter()
456            .map(|tool| open_ai::ToolDefinition::Function {
457                function: open_ai::FunctionDefinition {
458                    name: tool.name,
459                    description: Some(tool.description),
460                    parameters: Some(tool.input_schema),
461                },
462            })
463            .collect(),
464        tool_choice: request.tool_choice.map(|choice| match choice {
465            LanguageModelToolChoice::Auto => open_ai::ToolChoice::Auto,
466            LanguageModelToolChoice::Any => open_ai::ToolChoice::Required,
467            LanguageModelToolChoice::None => open_ai::ToolChoice::None,
468        }),
469        reasoning_effort,
470    }
471}
472
473fn add_message_content_part(
474    new_part: open_ai::MessagePart,
475    role: Role,
476    messages: &mut Vec<open_ai::RequestMessage>,
477) {
478    match (role, messages.last_mut()) {
479        (Role::User, Some(open_ai::RequestMessage::User { content }))
480        | (
481            Role::Assistant,
482            Some(open_ai::RequestMessage::Assistant {
483                content: Some(content),
484                ..
485            }),
486        )
487        | (Role::System, Some(open_ai::RequestMessage::System { content, .. })) => {
488            content.push_part(new_part);
489        }
490        _ => {
491            messages.push(match role {
492                Role::User => open_ai::RequestMessage::User {
493                    content: open_ai::MessageContent::from(vec![new_part]),
494                },
495                Role::Assistant => open_ai::RequestMessage::Assistant {
496                    content: Some(open_ai::MessageContent::from(vec![new_part])),
497                    tool_calls: Vec::new(),
498                },
499                Role::System => open_ai::RequestMessage::System {
500                    content: open_ai::MessageContent::from(vec![new_part]),
501                },
502            });
503        }
504    }
505}
506
507pub struct OpenAiEventMapper {
508    tool_calls_by_index: HashMap<usize, RawToolCall>,
509}
510
511impl OpenAiEventMapper {
512    pub fn new() -> Self {
513        Self {
514            tool_calls_by_index: HashMap::default(),
515        }
516    }
517
518    pub fn map_stream(
519        mut self,
520        events: Pin<Box<dyn Send + Stream<Item = Result<ResponseStreamEvent>>>>,
521    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
522    {
523        events.flat_map(move |event| {
524            futures::stream::iter(match event {
525                Ok(event) => self.map_event(event),
526                Err(error) => vec![Err(LanguageModelCompletionError::from(anyhow!(error)))],
527            })
528        })
529    }
530
531    pub fn map_event(
532        &mut self,
533        event: ResponseStreamEvent,
534    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
535        let mut events = Vec::new();
536        if let Some(usage) = event.usage {
537            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
538                input_tokens: usage.prompt_tokens,
539                output_tokens: usage.completion_tokens,
540                cache_creation_input_tokens: 0,
541                cache_read_input_tokens: 0,
542            })));
543        }
544
545        let Some(choice) = event.choices.first() else {
546            return events;
547        };
548
549        if let Some(delta) = choice.delta.as_ref() {
550            if let Some(content) = delta.content.clone() {
551                events.push(Ok(LanguageModelCompletionEvent::Text(content)));
552            }
553
554            if let Some(tool_calls) = delta.tool_calls.as_ref() {
555                for tool_call in tool_calls {
556                    let entry = self.tool_calls_by_index.entry(tool_call.index).or_default();
557
558                    if let Some(tool_id) = tool_call.id.clone() {
559                        entry.id = tool_id;
560                    }
561
562                    if let Some(function) = tool_call.function.as_ref() {
563                        if let Some(name) = function.name.clone() {
564                            entry.name = name;
565                        }
566
567                        if let Some(arguments) = function.arguments.clone() {
568                            entry.arguments.push_str(&arguments);
569                        }
570                    }
571                }
572            }
573        }
574
575        match choice.finish_reason.as_deref() {
576            Some("stop") => {
577                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
578            }
579            Some("tool_calls") => {
580                events.extend(self.tool_calls_by_index.drain().map(|(_, tool_call)| {
581                    match serde_json::Value::from_str(&tool_call.arguments) {
582                        Ok(input) => Ok(LanguageModelCompletionEvent::ToolUse(
583                            LanguageModelToolUse {
584                                id: tool_call.id.clone().into(),
585                                name: tool_call.name.as_str().into(),
586                                is_input_complete: true,
587                                input,
588                                raw_input: tool_call.arguments.clone(),
589                            },
590                        )),
591                        Err(error) => Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
592                            id: tool_call.id.into(),
593                            tool_name: tool_call.name.into(),
594                            raw_input: tool_call.arguments.clone().into(),
595                            json_parse_error: error.to_string(),
596                        }),
597                    }
598                }));
599
600                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
601            }
602            Some(stop_reason) => {
603                log::error!("Unexpected OpenAI stop_reason: {stop_reason:?}",);
604                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
605            }
606            None => {}
607        }
608
609        events
610    }
611}
612
613#[derive(Default)]
614struct RawToolCall {
615    id: String,
616    name: String,
617    arguments: String,
618}
619
620pub(crate) fn collect_tiktoken_messages(
621    request: LanguageModelRequest,
622) -> Vec<tiktoken_rs::ChatCompletionRequestMessage> {
623    request
624        .messages
625        .into_iter()
626        .map(|message| tiktoken_rs::ChatCompletionRequestMessage {
627            role: match message.role {
628                Role::User => "user".into(),
629                Role::Assistant => "assistant".into(),
630                Role::System => "system".into(),
631            },
632            content: Some(message.string_contents()),
633            name: None,
634            function_call: None,
635        })
636        .collect::<Vec<_>>()
637}
638
639pub fn count_open_ai_tokens(
640    request: LanguageModelRequest,
641    model: Model,
642    cx: &App,
643) -> BoxFuture<'static, Result<u64>> {
644    cx.background_spawn(async move {
645        let messages = collect_tiktoken_messages(request);
646
647        match model {
648            Model::Custom { max_tokens, .. } => {
649                let model = if max_tokens >= 100_000 {
650                    // If the max tokens is 100k or more, it is likely the o200k_base tokenizer from gpt4o
651                    "gpt-4o"
652                } else {
653                    // Otherwise fallback to gpt-4, since only cl100k_base and o200k_base are
654                    // supported with this tiktoken method
655                    "gpt-4"
656                };
657                tiktoken_rs::num_tokens_from_messages(model, &messages)
658            }
659            // Currently supported by tiktoken_rs
660            // Sometimes tiktoken-rs is behind on model support. If that is the case, make a new branch
661            // arm with an override. We enumerate all supported models here so that we can check if new
662            // models are supported yet or not.
663            Model::ThreePointFiveTurbo
664            | Model::Four
665            | Model::FourTurbo
666            | Model::FourOmni
667            | Model::FourOmniMini
668            | Model::FourPointOne
669            | Model::FourPointOneMini
670            | Model::FourPointOneNano
671            | Model::O1
672            | Model::O3
673            | Model::O3Mini
674            | Model::O4Mini => tiktoken_rs::num_tokens_from_messages(model.id(), &messages),
675            // GPT-5 models don't have tiktoken support yet; fall back on gpt-4o tokenizer
676            Model::Five | Model::FiveMini | Model::FiveNano => {
677                tiktoken_rs::num_tokens_from_messages("gpt-4o", &messages)
678            }
679        }
680        .map(|tokens| tokens as u64)
681    })
682    .boxed()
683}
684
685struct ConfigurationView {
686    api_key_editor: Entity<InputField>,
687    state: Entity<State>,
688    load_credentials_task: Option<Task<()>>,
689}
690
691impl ConfigurationView {
692    fn new(state: Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
693        let api_key_editor = cx.new(|cx| {
694            InputField::new(
695                window,
696                cx,
697                "sk-000000000000000000000000000000000000000000000000",
698            )
699        });
700
701        cx.observe(&state, |_, _, cx| {
702            cx.notify();
703        })
704        .detach();
705
706        let load_credentials_task = Some(cx.spawn_in(window, {
707            let state = state.clone();
708            async move |this, cx| {
709                if let Some(task) = state
710                    .update(cx, |state, cx| state.authenticate(cx))
711                    .log_err()
712                {
713                    // We don't log an error, because "not signed in" is also an error.
714                    let _ = task.await;
715                }
716                this.update(cx, |this, cx| {
717                    this.load_credentials_task = None;
718                    cx.notify();
719                })
720                .log_err();
721            }
722        }));
723
724        Self {
725            api_key_editor,
726            state,
727            load_credentials_task,
728        }
729    }
730
731    fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
732        let api_key = self.api_key_editor.read(cx).text(cx).trim().to_string();
733        if api_key.is_empty() {
734            return;
735        }
736
737        // url changes can cause the editor to be displayed again
738        self.api_key_editor
739            .update(cx, |editor, cx| editor.set_text("", window, cx));
740
741        let state = self.state.clone();
742        cx.spawn_in(window, async move |_, cx| {
743            state
744                .update(cx, |state, cx| state.set_api_key(Some(api_key), cx))?
745                .await
746        })
747        .detach_and_log_err(cx);
748    }
749
750    fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
751        self.api_key_editor
752            .update(cx, |input, cx| input.set_text("", window, cx));
753
754        let state = self.state.clone();
755        cx.spawn_in(window, async move |_, cx| {
756            state
757                .update(cx, |state, cx| state.set_api_key(None, cx))?
758                .await
759        })
760        .detach_and_log_err(cx);
761    }
762
763    fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
764        !self.state.read(cx).is_authenticated()
765    }
766}
767
768impl Render for ConfigurationView {
769    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
770        let env_var_set = self.state.read(cx).api_key_state.is_from_env_var();
771        let configured_card_label = if env_var_set {
772            format!("API key set in {API_KEY_ENV_VAR_NAME} environment variable")
773        } else {
774            let api_url = OpenAiLanguageModelProvider::api_url(cx);
775            if api_url == OPEN_AI_API_URL {
776                "API key configured".to_string()
777            } else {
778                format!("API key configured for {}", api_url)
779            }
780        };
781
782        let api_key_section = if self.should_render_editor(cx) {
783            v_flex()
784                .on_action(cx.listener(Self::save_api_key))
785                .child(Label::new("To use Zed's agent with OpenAI, you need to add an API key. Follow these steps:"))
786                .child(
787                    List::new()
788                        .child(InstructionListItem::new(
789                            "Create one by visiting",
790                            Some("OpenAI's console"),
791                            Some("https://platform.openai.com/api-keys"),
792                        ))
793                        .child(InstructionListItem::text_only(
794                            "Ensure your OpenAI account has credits",
795                        ))
796                        .child(InstructionListItem::text_only(
797                            "Paste your API key below and hit enter to start using the assistant",
798                        )),
799                )
800                .child(self.api_key_editor.clone())
801                .child(
802                    Label::new(format!(
803                        "You can also assign the {API_KEY_ENV_VAR_NAME} environment variable and restart Zed."
804                    ))
805                    .size(LabelSize::Small)
806                    .color(Color::Muted),
807                )
808                .child(
809                    Label::new(
810                        "Note that having a subscription for another service like GitHub Copilot won't work.",
811                    )
812                    .size(LabelSize::Small).color(Color::Muted),
813                )
814                .into_any_element()
815        } else {
816            ConfiguredApiCard::new(configured_card_label)
817                .disabled(env_var_set)
818                .on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx)))
819                .when(env_var_set, |this| {
820                    this.tooltip_label(format!("To reset your API key, unset the {API_KEY_ENV_VAR_NAME} environment variable."))
821                })
822                .into_any_element()
823        };
824
825        let compatible_api_section = h_flex()
826            .mt_1p5()
827            .gap_0p5()
828            .flex_wrap()
829            .when(self.should_render_editor(cx), |this| {
830                this.pt_1p5()
831                    .border_t_1()
832                    .border_color(cx.theme().colors().border_variant)
833            })
834            .child(
835                h_flex()
836                    .gap_2()
837                    .child(
838                        Icon::new(IconName::Info)
839                            .size(IconSize::XSmall)
840                            .color(Color::Muted),
841                    )
842                    .child(Label::new("Zed also supports OpenAI-compatible models.")),
843            )
844            .child(
845                Button::new("docs", "Learn More")
846                    .icon(IconName::ArrowUpRight)
847                    .icon_size(IconSize::Small)
848                    .icon_color(Color::Muted)
849                    .on_click(move |_, _window, cx| {
850                        cx.open_url("https://zed.dev/docs/ai/llm-providers#openai-api-compatible")
851                    }),
852            );
853
854        if self.load_credentials_task.is_some() {
855            div().child(Label::new("Loading credentials…")).into_any()
856        } else {
857            v_flex()
858                .size_full()
859                .child(api_key_section)
860                .child(compatible_api_section)
861                .into_any()
862        }
863    }
864}
865
866#[cfg(test)]
867mod tests {
868    use gpui::TestAppContext;
869    use language_model::LanguageModelRequestMessage;
870
871    use super::*;
872
873    #[gpui::test]
874    fn tiktoken_rs_support(cx: &TestAppContext) {
875        let request = LanguageModelRequest {
876            thread_id: None,
877            prompt_id: None,
878            intent: None,
879            mode: None,
880            messages: vec![LanguageModelRequestMessage {
881                role: Role::User,
882                content: vec![MessageContent::Text("message".into())],
883                cache: false,
884            }],
885            tools: vec![],
886            tool_choice: None,
887            stop: vec![],
888            temperature: None,
889            thinking_allowed: true,
890        };
891
892        // Validate that all models are supported by tiktoken-rs
893        for model in Model::iter() {
894            let count = cx
895                .executor()
896                .block(count_open_ai_tokens(
897                    request.clone(),
898                    model,
899                    &cx.app.borrow(),
900                ))
901                .unwrap();
902            assert!(count > 0);
903        }
904    }
905}