open_ai.rs

   1use anyhow::{Result, anyhow};
   2use collections::{BTreeMap, HashMap};
   3use futures::Stream;
   4use futures::{FutureExt, StreamExt, future::BoxFuture};
   5use gpui::{AnyView, App, AsyncApp, Context, Entity, SharedString, Task, Window};
   6use http_client::HttpClient;
   7use language_model::{
   8    ApiKeyState, AuthenticateError, EnvVar, IconOrSvg, LanguageModel, LanguageModelCompletionError,
   9    LanguageModelCompletionEvent, LanguageModelId, LanguageModelImage, LanguageModelName,
  10    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  11    LanguageModelProviderState, LanguageModelRequest, LanguageModelRequestMessage,
  12    LanguageModelToolChoice, LanguageModelToolResult, LanguageModelToolResultContent,
  13    LanguageModelToolUse, LanguageModelToolUseId, MessageContent, RateLimiter, Role, StopReason,
  14    TokenUsage, env_var,
  15};
  16use menu;
  17use open_ai::responses::{
  18    ResponseFunctionCallItem, ResponseFunctionCallOutputItem, ResponseInputContent,
  19    ResponseInputItem, ResponseMessageItem,
  20};
  21use open_ai::{
  22    ImageUrl, Model, OPEN_AI_API_URL, ReasoningEffort, ResponseStreamEvent,
  23    responses::{
  24        Request as ResponseRequest, ResponseOutputItem, ResponseSummary as ResponsesSummary,
  25        ResponseUsage as ResponsesUsage, StreamEvent as ResponsesStreamEvent, stream_response,
  26    },
  27    stream_completion,
  28};
  29use settings::{OpenAiAvailableModel as AvailableModel, Settings, SettingsStore};
  30use std::pin::Pin;
  31use std::str::FromStr as _;
  32use std::sync::{Arc, LazyLock};
  33use strum::IntoEnumIterator;
  34use ui::{ButtonLink, ConfiguredApiCard, List, ListBulletItem, prelude::*};
  35use ui_input::InputField;
  36use util::ResultExt;
  37
  38const PROVIDER_ID: LanguageModelProviderId = language_model::OPEN_AI_PROVIDER_ID;
  39const PROVIDER_NAME: LanguageModelProviderName = language_model::OPEN_AI_PROVIDER_NAME;
  40
  41const API_KEY_ENV_VAR_NAME: &str = "OPENAI_API_KEY";
  42static API_KEY_ENV_VAR: LazyLock<EnvVar> = env_var!(API_KEY_ENV_VAR_NAME);
  43
  44#[derive(Default, Clone, Debug, PartialEq)]
  45pub struct OpenAiSettings {
  46    pub api_url: String,
  47    pub available_models: Vec<AvailableModel>,
  48}
  49
  50pub struct OpenAiLanguageModelProvider {
  51    http_client: Arc<dyn HttpClient>,
  52    state: Entity<State>,
  53}
  54
  55pub struct State {
  56    api_key_state: ApiKeyState,
  57}
  58
  59impl State {
  60    fn is_authenticated(&self) -> bool {
  61        self.api_key_state.has_key()
  62    }
  63
  64    fn set_api_key(&mut self, api_key: Option<String>, cx: &mut Context<Self>) -> Task<Result<()>> {
  65        let api_url = OpenAiLanguageModelProvider::api_url(cx);
  66        self.api_key_state
  67            .store(api_url, api_key, |this| &mut this.api_key_state, cx)
  68    }
  69
  70    fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
  71        let api_url = OpenAiLanguageModelProvider::api_url(cx);
  72        self.api_key_state
  73            .load_if_needed(api_url, |this| &mut this.api_key_state, cx)
  74    }
  75}
  76
  77impl OpenAiLanguageModelProvider {
  78    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
  79        let state = cx.new(|cx| {
  80            cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
  81                let api_url = Self::api_url(cx);
  82                this.api_key_state
  83                    .handle_url_change(api_url, |this| &mut this.api_key_state, cx);
  84                cx.notify();
  85            })
  86            .detach();
  87            State {
  88                api_key_state: ApiKeyState::new(Self::api_url(cx), (*API_KEY_ENV_VAR).clone()),
  89            }
  90        });
  91
  92        Self { http_client, state }
  93    }
  94
  95    fn create_language_model(&self, model: open_ai::Model) -> Arc<dyn LanguageModel> {
  96        Arc::new(OpenAiLanguageModel {
  97            id: LanguageModelId::from(model.id().to_string()),
  98            model,
  99            state: self.state.clone(),
 100            http_client: self.http_client.clone(),
 101            request_limiter: RateLimiter::new(4),
 102        })
 103    }
 104
 105    fn settings(cx: &App) -> &OpenAiSettings {
 106        &crate::AllLanguageModelSettings::get_global(cx).openai
 107    }
 108
 109    fn api_url(cx: &App) -> SharedString {
 110        let api_url = &Self::settings(cx).api_url;
 111        if api_url.is_empty() {
 112            open_ai::OPEN_AI_API_URL.into()
 113        } else {
 114            SharedString::new(api_url.as_str())
 115        }
 116    }
 117}
 118
 119impl LanguageModelProviderState for OpenAiLanguageModelProvider {
 120    type ObservableEntity = State;
 121
 122    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
 123        Some(self.state.clone())
 124    }
 125}
 126
 127impl LanguageModelProvider for OpenAiLanguageModelProvider {
 128    fn id(&self) -> LanguageModelProviderId {
 129        PROVIDER_ID
 130    }
 131
 132    fn name(&self) -> LanguageModelProviderName {
 133        PROVIDER_NAME
 134    }
 135
 136    fn icon(&self) -> IconOrSvg {
 137        IconOrSvg::Icon(IconName::AiOpenAi)
 138    }
 139
 140    fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
 141        Some(self.create_language_model(open_ai::Model::default()))
 142    }
 143
 144    fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
 145        Some(self.create_language_model(open_ai::Model::default_fast()))
 146    }
 147
 148    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 149        let mut models = BTreeMap::default();
 150
 151        // Add base models from open_ai::Model::iter()
 152        for model in open_ai::Model::iter() {
 153            if !matches!(model, open_ai::Model::Custom { .. }) {
 154                models.insert(model.id().to_string(), model);
 155            }
 156        }
 157
 158        // Override with available models from settings
 159        for model in &OpenAiLanguageModelProvider::settings(cx).available_models {
 160            models.insert(
 161                model.name.clone(),
 162                open_ai::Model::Custom {
 163                    name: model.name.clone(),
 164                    display_name: model.display_name.clone(),
 165                    max_tokens: model.max_tokens,
 166                    max_output_tokens: model.max_output_tokens,
 167                    max_completion_tokens: model.max_completion_tokens,
 168                    reasoning_effort: model.reasoning_effort.clone(),
 169                    supports_chat_completions: model.capabilities.chat_completions,
 170                },
 171            );
 172        }
 173
 174        models
 175            .into_values()
 176            .map(|model| self.create_language_model(model))
 177            .collect()
 178    }
 179
 180    fn is_authenticated(&self, cx: &App) -> bool {
 181        self.state.read(cx).is_authenticated()
 182    }
 183
 184    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 185        self.state.update(cx, |state, cx| state.authenticate(cx))
 186    }
 187
 188    fn configuration_view(
 189        &self,
 190        _target_agent: language_model::ConfigurationViewTargetAgent,
 191        window: &mut Window,
 192        cx: &mut App,
 193    ) -> AnyView {
 194        cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
 195            .into()
 196    }
 197
 198    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
 199        self.state
 200            .update(cx, |state, cx| state.set_api_key(None, cx))
 201    }
 202}
 203
 204pub struct OpenAiLanguageModel {
 205    id: LanguageModelId,
 206    model: open_ai::Model,
 207    state: Entity<State>,
 208    http_client: Arc<dyn HttpClient>,
 209    request_limiter: RateLimiter,
 210}
 211
 212impl OpenAiLanguageModel {
 213    fn stream_completion(
 214        &self,
 215        request: open_ai::Request,
 216        cx: &AsyncApp,
 217    ) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponseStreamEvent>>>>
 218    {
 219        let http_client = self.http_client.clone();
 220
 221        let (api_key, api_url) = self.state.read_with(cx, |state, cx| {
 222            let api_url = OpenAiLanguageModelProvider::api_url(cx);
 223            (state.api_key_state.key(&api_url), api_url)
 224        });
 225
 226        let future = self.request_limiter.stream(async move {
 227            let provider = PROVIDER_NAME;
 228            let Some(api_key) = api_key else {
 229                return Err(LanguageModelCompletionError::NoApiKey { provider });
 230            };
 231            let request = stream_completion(
 232                http_client.as_ref(),
 233                provider.0.as_str(),
 234                &api_url,
 235                &api_key,
 236                request,
 237            );
 238            let response = request.await?;
 239            Ok(response)
 240        });
 241
 242        async move { Ok(future.await?.boxed()) }.boxed()
 243    }
 244
 245    fn stream_response(
 246        &self,
 247        request: ResponseRequest,
 248        cx: &AsyncApp,
 249    ) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponsesStreamEvent>>>>
 250    {
 251        let http_client = self.http_client.clone();
 252
 253        let (api_key, api_url) = self.state.read_with(cx, |state, cx| {
 254            let api_url = OpenAiLanguageModelProvider::api_url(cx);
 255            (state.api_key_state.key(&api_url), api_url)
 256        });
 257
 258        let provider = PROVIDER_NAME;
 259        let future = self.request_limiter.stream(async move {
 260            let Some(api_key) = api_key else {
 261                return Err(LanguageModelCompletionError::NoApiKey { provider });
 262            };
 263            let request = stream_response(
 264                http_client.as_ref(),
 265                provider.0.as_str(),
 266                &api_url,
 267                &api_key,
 268                request,
 269            );
 270            let response = request.await?;
 271            Ok(response)
 272        });
 273
 274        async move { Ok(future.await?.boxed()) }.boxed()
 275    }
 276}
 277
 278impl LanguageModel for OpenAiLanguageModel {
 279    fn id(&self) -> LanguageModelId {
 280        self.id.clone()
 281    }
 282
 283    fn name(&self) -> LanguageModelName {
 284        LanguageModelName::from(self.model.display_name().to_string())
 285    }
 286
 287    fn provider_id(&self) -> LanguageModelProviderId {
 288        PROVIDER_ID
 289    }
 290
 291    fn provider_name(&self) -> LanguageModelProviderName {
 292        PROVIDER_NAME
 293    }
 294
 295    fn supports_tools(&self) -> bool {
 296        true
 297    }
 298
 299    fn supports_images(&self) -> bool {
 300        use open_ai::Model;
 301        match &self.model {
 302            Model::FourOmni
 303            | Model::FourOmniMini
 304            | Model::FourPointOne
 305            | Model::FourPointOneMini
 306            | Model::FourPointOneNano
 307            | Model::Five
 308            | Model::FiveCodex
 309            | Model::FiveMini
 310            | Model::FiveNano
 311            | Model::FivePointOne
 312            | Model::FivePointTwo
 313            | Model::O1
 314            | Model::O3
 315            | Model::O4Mini => true,
 316            Model::ThreePointFiveTurbo
 317            | Model::Four
 318            | Model::FourTurbo
 319            | Model::O3Mini
 320            | Model::Custom { .. } => false,
 321        }
 322    }
 323
 324    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 325        match choice {
 326            LanguageModelToolChoice::Auto => true,
 327            LanguageModelToolChoice::Any => true,
 328            LanguageModelToolChoice::None => true,
 329        }
 330    }
 331
 332    fn telemetry_id(&self) -> String {
 333        format!("openai/{}", self.model.id())
 334    }
 335
 336    fn max_token_count(&self) -> u64 {
 337        self.model.max_token_count()
 338    }
 339
 340    fn max_output_tokens(&self) -> Option<u64> {
 341        self.model.max_output_tokens()
 342    }
 343
 344    fn count_tokens(
 345        &self,
 346        request: LanguageModelRequest,
 347        cx: &App,
 348    ) -> BoxFuture<'static, Result<u64>> {
 349        count_open_ai_tokens(request, self.model.clone(), cx)
 350    }
 351
 352    fn stream_completion(
 353        &self,
 354        request: LanguageModelRequest,
 355        cx: &AsyncApp,
 356    ) -> BoxFuture<
 357        'static,
 358        Result<
 359            futures::stream::BoxStream<
 360                'static,
 361                Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
 362            >,
 363            LanguageModelCompletionError,
 364        >,
 365    > {
 366        if self.model.supports_chat_completions() {
 367            let request = into_open_ai(
 368                request,
 369                self.model.id(),
 370                self.model.supports_parallel_tool_calls(),
 371                self.model.supports_prompt_cache_key(),
 372                self.max_output_tokens(),
 373                self.model.reasoning_effort(),
 374            );
 375            let completions = self.stream_completion(request, cx);
 376            async move {
 377                let mapper = OpenAiEventMapper::new();
 378                Ok(mapper.map_stream(completions.await?).boxed())
 379            }
 380            .boxed()
 381        } else {
 382            let request = into_open_ai_response(
 383                request,
 384                self.model.id(),
 385                self.model.supports_parallel_tool_calls(),
 386                self.model.supports_prompt_cache_key(),
 387                self.max_output_tokens(),
 388                self.model.reasoning_effort(),
 389            );
 390            let completions = self.stream_response(request, cx);
 391            async move {
 392                let mapper = OpenAiResponseEventMapper::new();
 393                Ok(mapper.map_stream(completions.await?).boxed())
 394            }
 395            .boxed()
 396        }
 397    }
 398}
 399
 400pub fn into_open_ai(
 401    request: LanguageModelRequest,
 402    model_id: &str,
 403    supports_parallel_tool_calls: bool,
 404    supports_prompt_cache_key: bool,
 405    max_output_tokens: Option<u64>,
 406    reasoning_effort: Option<ReasoningEffort>,
 407) -> open_ai::Request {
 408    let stream = !model_id.starts_with("o1-");
 409
 410    let mut messages = Vec::new();
 411    for message in request.messages {
 412        for content in message.content {
 413            match content {
 414                MessageContent::Text(text) | MessageContent::Thinking { text, .. } => {
 415                    if !text.trim().is_empty() {
 416                        add_message_content_part(
 417                            open_ai::MessagePart::Text { text },
 418                            message.role,
 419                            &mut messages,
 420                        );
 421                    }
 422                }
 423                MessageContent::RedactedThinking(_) => {}
 424                MessageContent::Image(image) => {
 425                    add_message_content_part(
 426                        open_ai::MessagePart::Image {
 427                            image_url: ImageUrl {
 428                                url: image.to_base64_url(),
 429                                detail: None,
 430                            },
 431                        },
 432                        message.role,
 433                        &mut messages,
 434                    );
 435                }
 436                MessageContent::ToolUse(tool_use) => {
 437                    let tool_call = open_ai::ToolCall {
 438                        id: tool_use.id.to_string(),
 439                        content: open_ai::ToolCallContent::Function {
 440                            function: open_ai::FunctionContent {
 441                                name: tool_use.name.to_string(),
 442                                arguments: serde_json::to_string(&tool_use.input)
 443                                    .unwrap_or_default(),
 444                            },
 445                        },
 446                    };
 447
 448                    if let Some(open_ai::RequestMessage::Assistant { tool_calls, .. }) =
 449                        messages.last_mut()
 450                    {
 451                        tool_calls.push(tool_call);
 452                    } else {
 453                        messages.push(open_ai::RequestMessage::Assistant {
 454                            content: None,
 455                            tool_calls: vec![tool_call],
 456                        });
 457                    }
 458                }
 459                MessageContent::ToolResult(tool_result) => {
 460                    let content = match &tool_result.content {
 461                        LanguageModelToolResultContent::Text(text) => {
 462                            vec![open_ai::MessagePart::Text {
 463                                text: text.to_string(),
 464                            }]
 465                        }
 466                        LanguageModelToolResultContent::Image(image) => {
 467                            vec![open_ai::MessagePart::Image {
 468                                image_url: ImageUrl {
 469                                    url: image.to_base64_url(),
 470                                    detail: None,
 471                                },
 472                            }]
 473                        }
 474                    };
 475
 476                    messages.push(open_ai::RequestMessage::Tool {
 477                        content: content.into(),
 478                        tool_call_id: tool_result.tool_use_id.to_string(),
 479                    });
 480                }
 481            }
 482        }
 483    }
 484
 485    open_ai::Request {
 486        model: model_id.into(),
 487        messages,
 488        stream,
 489        stop: request.stop,
 490        temperature: request.temperature.or(Some(1.0)),
 491        max_completion_tokens: max_output_tokens,
 492        parallel_tool_calls: if supports_parallel_tool_calls && !request.tools.is_empty() {
 493            // Disable parallel tool calls, as the Agent currently expects a maximum of one per turn.
 494            Some(false)
 495        } else {
 496            None
 497        },
 498        prompt_cache_key: if supports_prompt_cache_key {
 499            request.thread_id
 500        } else {
 501            None
 502        },
 503        tools: request
 504            .tools
 505            .into_iter()
 506            .map(|tool| open_ai::ToolDefinition::Function {
 507                function: open_ai::FunctionDefinition {
 508                    name: tool.name,
 509                    description: Some(tool.description),
 510                    parameters: Some(tool.input_schema),
 511                },
 512            })
 513            .collect(),
 514        tool_choice: request.tool_choice.map(|choice| match choice {
 515            LanguageModelToolChoice::Auto => open_ai::ToolChoice::Auto,
 516            LanguageModelToolChoice::Any => open_ai::ToolChoice::Required,
 517            LanguageModelToolChoice::None => open_ai::ToolChoice::None,
 518        }),
 519        reasoning_effort,
 520    }
 521}
 522
 523pub fn into_open_ai_response(
 524    request: LanguageModelRequest,
 525    model_id: &str,
 526    supports_parallel_tool_calls: bool,
 527    supports_prompt_cache_key: bool,
 528    max_output_tokens: Option<u64>,
 529    reasoning_effort: Option<ReasoningEffort>,
 530) -> ResponseRequest {
 531    let stream = !model_id.starts_with("o1-");
 532
 533    let LanguageModelRequest {
 534        thread_id,
 535        prompt_id: _,
 536        intent: _,
 537        mode: _,
 538        messages,
 539        tools,
 540        tool_choice,
 541        stop: _,
 542        temperature,
 543        thinking_allowed: _,
 544    } = request;
 545
 546    let mut input_items = Vec::new();
 547    for (index, message) in messages.into_iter().enumerate() {
 548        append_message_to_response_items(message, index, &mut input_items);
 549    }
 550
 551    let tools: Vec<_> = tools
 552        .into_iter()
 553        .map(|tool| open_ai::responses::ToolDefinition::Function {
 554            name: tool.name,
 555            description: Some(tool.description),
 556            parameters: Some(tool.input_schema),
 557            strict: None,
 558        })
 559        .collect();
 560
 561    ResponseRequest {
 562        model: model_id.into(),
 563        input: input_items,
 564        stream,
 565        temperature,
 566        top_p: None,
 567        max_output_tokens,
 568        parallel_tool_calls: if tools.is_empty() {
 569            None
 570        } else {
 571            Some(supports_parallel_tool_calls)
 572        },
 573        tool_choice: tool_choice.map(|choice| match choice {
 574            LanguageModelToolChoice::Auto => open_ai::ToolChoice::Auto,
 575            LanguageModelToolChoice::Any => open_ai::ToolChoice::Required,
 576            LanguageModelToolChoice::None => open_ai::ToolChoice::None,
 577        }),
 578        tools,
 579        prompt_cache_key: if supports_prompt_cache_key {
 580            thread_id
 581        } else {
 582            None
 583        },
 584        reasoning: reasoning_effort.map(|effort| open_ai::responses::ReasoningConfig { effort }),
 585    }
 586}
 587
 588fn append_message_to_response_items(
 589    message: LanguageModelRequestMessage,
 590    index: usize,
 591    input_items: &mut Vec<ResponseInputItem>,
 592) {
 593    let mut content_parts: Vec<ResponseInputContent> = Vec::new();
 594
 595    for content in message.content {
 596        match content {
 597            MessageContent::Text(text) => {
 598                push_response_text_part(&message.role, text, &mut content_parts);
 599            }
 600            MessageContent::Thinking { text, .. } => {
 601                push_response_text_part(&message.role, text, &mut content_parts);
 602            }
 603            MessageContent::RedactedThinking(_) => {}
 604            MessageContent::Image(image) => {
 605                push_response_image_part(&message.role, image, &mut content_parts);
 606            }
 607            MessageContent::ToolUse(tool_use) => {
 608                flush_response_parts(&message.role, index, &mut content_parts, input_items);
 609                let call_id = tool_use.id.to_string();
 610                input_items.push(ResponseInputItem::FunctionCall(ResponseFunctionCallItem {
 611                    call_id,
 612                    name: tool_use.name.to_string(),
 613                    arguments: tool_use.raw_input,
 614                }));
 615            }
 616            MessageContent::ToolResult(tool_result) => {
 617                flush_response_parts(&message.role, index, &mut content_parts, input_items);
 618                input_items.push(ResponseInputItem::FunctionCallOutput(
 619                    ResponseFunctionCallOutputItem {
 620                        call_id: tool_result.tool_use_id.to_string(),
 621                        output: tool_result_output(&tool_result),
 622                    },
 623                ));
 624            }
 625        }
 626    }
 627
 628    flush_response_parts(&message.role, index, &mut content_parts, input_items);
 629}
 630
 631fn push_response_text_part(
 632    role: &Role,
 633    text: impl Into<String>,
 634    parts: &mut Vec<ResponseInputContent>,
 635) {
 636    let text = text.into();
 637    if text.trim().is_empty() {
 638        return;
 639    }
 640
 641    match role {
 642        Role::Assistant => parts.push(ResponseInputContent::OutputText {
 643            text,
 644            annotations: Vec::new(),
 645        }),
 646        _ => parts.push(ResponseInputContent::Text { text }),
 647    }
 648}
 649
 650fn push_response_image_part(
 651    role: &Role,
 652    image: LanguageModelImage,
 653    parts: &mut Vec<ResponseInputContent>,
 654) {
 655    match role {
 656        Role::Assistant => parts.push(ResponseInputContent::OutputText {
 657            text: "[image omitted]".to_string(),
 658            annotations: Vec::new(),
 659        }),
 660        _ => parts.push(ResponseInputContent::Image {
 661            image_url: image.to_base64_url(),
 662        }),
 663    }
 664}
 665
 666fn flush_response_parts(
 667    role: &Role,
 668    _index: usize,
 669    parts: &mut Vec<ResponseInputContent>,
 670    input_items: &mut Vec<ResponseInputItem>,
 671) {
 672    if parts.is_empty() {
 673        return;
 674    }
 675
 676    let item = ResponseInputItem::Message(ResponseMessageItem {
 677        role: match role {
 678            Role::User => open_ai::Role::User,
 679            Role::Assistant => open_ai::Role::Assistant,
 680            Role::System => open_ai::Role::System,
 681        },
 682        content: parts.clone(),
 683    });
 684
 685    input_items.push(item);
 686    parts.clear();
 687}
 688
 689fn tool_result_output(result: &LanguageModelToolResult) -> String {
 690    if let Some(output) = &result.output {
 691        match output {
 692            serde_json::Value::String(text) => text.clone(),
 693            serde_json::Value::Null => String::new(),
 694            _ => output.to_string(),
 695        }
 696    } else {
 697        match &result.content {
 698            LanguageModelToolResultContent::Text(text) => text.to_string(),
 699            LanguageModelToolResultContent::Image(image) => image.to_base64_url(),
 700        }
 701    }
 702}
 703
 704fn add_message_content_part(
 705    new_part: open_ai::MessagePart,
 706    role: Role,
 707    messages: &mut Vec<open_ai::RequestMessage>,
 708) {
 709    match (role, messages.last_mut()) {
 710        (Role::User, Some(open_ai::RequestMessage::User { content }))
 711        | (
 712            Role::Assistant,
 713            Some(open_ai::RequestMessage::Assistant {
 714                content: Some(content),
 715                ..
 716            }),
 717        )
 718        | (Role::System, Some(open_ai::RequestMessage::System { content, .. })) => {
 719            content.push_part(new_part);
 720        }
 721        _ => {
 722            messages.push(match role {
 723                Role::User => open_ai::RequestMessage::User {
 724                    content: open_ai::MessageContent::from(vec![new_part]),
 725                },
 726                Role::Assistant => open_ai::RequestMessage::Assistant {
 727                    content: Some(open_ai::MessageContent::from(vec![new_part])),
 728                    tool_calls: Vec::new(),
 729                },
 730                Role::System => open_ai::RequestMessage::System {
 731                    content: open_ai::MessageContent::from(vec![new_part]),
 732                },
 733            });
 734        }
 735    }
 736}
 737
 738pub struct OpenAiEventMapper {
 739    tool_calls_by_index: HashMap<usize, RawToolCall>,
 740}
 741
 742impl OpenAiEventMapper {
 743    pub fn new() -> Self {
 744        Self {
 745            tool_calls_by_index: HashMap::default(),
 746        }
 747    }
 748
 749    pub fn map_stream(
 750        mut self,
 751        events: Pin<Box<dyn Send + Stream<Item = Result<ResponseStreamEvent>>>>,
 752    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 753    {
 754        events.flat_map(move |event| {
 755            futures::stream::iter(match event {
 756                Ok(event) => self.map_event(event),
 757                Err(error) => vec![Err(LanguageModelCompletionError::from(anyhow!(error)))],
 758            })
 759        })
 760    }
 761
 762    pub fn map_event(
 763        &mut self,
 764        event: ResponseStreamEvent,
 765    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
 766        let mut events = Vec::new();
 767        if let Some(usage) = event.usage {
 768            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
 769                input_tokens: usage.prompt_tokens,
 770                output_tokens: usage.completion_tokens,
 771                cache_creation_input_tokens: 0,
 772                cache_read_input_tokens: 0,
 773            })));
 774        }
 775
 776        let Some(choice) = event.choices.first() else {
 777            return events;
 778        };
 779
 780        if let Some(delta) = choice.delta.as_ref() {
 781            if let Some(content) = delta.content.clone() {
 782                events.push(Ok(LanguageModelCompletionEvent::Text(content)));
 783            }
 784
 785            if let Some(tool_calls) = delta.tool_calls.as_ref() {
 786                for tool_call in tool_calls {
 787                    let entry = self.tool_calls_by_index.entry(tool_call.index).or_default();
 788
 789                    if let Some(tool_id) = tool_call.id.clone() {
 790                        entry.id = tool_id;
 791                    }
 792
 793                    if let Some(function) = tool_call.function.as_ref() {
 794                        if let Some(name) = function.name.clone() {
 795                            entry.name = name;
 796                        }
 797
 798                        if let Some(arguments) = function.arguments.clone() {
 799                            entry.arguments.push_str(&arguments);
 800                        }
 801                    }
 802                }
 803            }
 804        }
 805
 806        match choice.finish_reason.as_deref() {
 807            Some("stop") => {
 808                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
 809            }
 810            Some("tool_calls") => {
 811                events.extend(self.tool_calls_by_index.drain().map(|(_, tool_call)| {
 812                    match serde_json::Value::from_str(&tool_call.arguments) {
 813                        Ok(input) => Ok(LanguageModelCompletionEvent::ToolUse(
 814                            LanguageModelToolUse {
 815                                id: tool_call.id.clone().into(),
 816                                name: tool_call.name.as_str().into(),
 817                                is_input_complete: true,
 818                                input,
 819                                raw_input: tool_call.arguments.clone(),
 820                                thought_signature: None,
 821                            },
 822                        )),
 823                        Err(error) => Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
 824                            id: tool_call.id.into(),
 825                            tool_name: tool_call.name.into(),
 826                            raw_input: tool_call.arguments.clone().into(),
 827                            json_parse_error: error.to_string(),
 828                        }),
 829                    }
 830                }));
 831
 832                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
 833            }
 834            Some(stop_reason) => {
 835                log::error!("Unexpected OpenAI stop_reason: {stop_reason:?}",);
 836                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
 837            }
 838            None => {}
 839        }
 840
 841        events
 842    }
 843}
 844
 845#[derive(Default)]
 846struct RawToolCall {
 847    id: String,
 848    name: String,
 849    arguments: String,
 850}
 851
 852pub struct OpenAiResponseEventMapper {
 853    function_calls_by_item: HashMap<String, PendingResponseFunctionCall>,
 854    pending_stop_reason: Option<StopReason>,
 855}
 856
 857#[derive(Default)]
 858struct PendingResponseFunctionCall {
 859    call_id: String,
 860    name: Arc<str>,
 861    arguments: String,
 862}
 863
 864impl OpenAiResponseEventMapper {
 865    pub fn new() -> Self {
 866        Self {
 867            function_calls_by_item: HashMap::default(),
 868            pending_stop_reason: None,
 869        }
 870    }
 871
 872    pub fn map_stream(
 873        mut self,
 874        events: Pin<Box<dyn Send + Stream<Item = Result<ResponsesStreamEvent>>>>,
 875    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 876    {
 877        events.flat_map(move |event| {
 878            futures::stream::iter(match event {
 879                Ok(event) => self.map_event(event),
 880                Err(error) => vec![Err(LanguageModelCompletionError::from(anyhow!(error)))],
 881            })
 882        })
 883    }
 884
 885    pub fn map_event(
 886        &mut self,
 887        event: ResponsesStreamEvent,
 888    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
 889        match event {
 890            ResponsesStreamEvent::OutputItemAdded { item, .. } => {
 891                let mut events = Vec::new();
 892
 893                match &item {
 894                    ResponseOutputItem::Message(message) => {
 895                        if let Some(id) = &message.id {
 896                            events.push(Ok(LanguageModelCompletionEvent::StartMessage {
 897                                message_id: id.clone(),
 898                            }));
 899                        }
 900                    }
 901                    ResponseOutputItem::FunctionCall(function_call) => {
 902                        if let Some(item_id) = function_call.id.clone() {
 903                            let call_id = function_call
 904                                .call_id
 905                                .clone()
 906                                .or_else(|| function_call.id.clone())
 907                                .unwrap_or_else(|| item_id.clone());
 908                            let entry = PendingResponseFunctionCall {
 909                                call_id,
 910                                name: Arc::<str>::from(
 911                                    function_call.name.clone().unwrap_or_default(),
 912                                ),
 913                                arguments: function_call.arguments.clone(),
 914                            };
 915                            self.function_calls_by_item.insert(item_id, entry);
 916                        }
 917                    }
 918                    ResponseOutputItem::Unknown => {}
 919                }
 920                events
 921            }
 922            ResponsesStreamEvent::OutputTextDelta { delta, .. } => {
 923                if delta.is_empty() {
 924                    Vec::new()
 925                } else {
 926                    vec![Ok(LanguageModelCompletionEvent::Text(delta))]
 927                }
 928            }
 929            ResponsesStreamEvent::FunctionCallArgumentsDelta { item_id, delta, .. } => {
 930                if let Some(entry) = self.function_calls_by_item.get_mut(&item_id) {
 931                    entry.arguments.push_str(&delta);
 932                }
 933                Vec::new()
 934            }
 935            ResponsesStreamEvent::FunctionCallArgumentsDone {
 936                item_id, arguments, ..
 937            } => {
 938                if let Some(mut entry) = self.function_calls_by_item.remove(&item_id) {
 939                    if !arguments.is_empty() {
 940                        entry.arguments = arguments;
 941                    }
 942                    let raw_input = entry.arguments.clone();
 943                    self.pending_stop_reason = Some(StopReason::ToolUse);
 944                    match serde_json::from_str::<serde_json::Value>(&entry.arguments) {
 945                        Ok(input) => {
 946                            vec![Ok(LanguageModelCompletionEvent::ToolUse(
 947                                LanguageModelToolUse {
 948                                    id: LanguageModelToolUseId::from(entry.call_id.clone()),
 949                                    name: entry.name.clone(),
 950                                    is_input_complete: true,
 951                                    input,
 952                                    raw_input,
 953                                    thought_signature: None,
 954                                },
 955                            ))]
 956                        }
 957                        Err(error) => {
 958                            vec![Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
 959                                id: LanguageModelToolUseId::from(entry.call_id.clone()),
 960                                tool_name: entry.name.clone(),
 961                                raw_input: Arc::<str>::from(raw_input),
 962                                json_parse_error: error.to_string(),
 963                            })]
 964                        }
 965                    }
 966                } else {
 967                    Vec::new()
 968                }
 969            }
 970            ResponsesStreamEvent::Completed { response } => {
 971                self.handle_completion(response, StopReason::EndTurn)
 972            }
 973            ResponsesStreamEvent::Incomplete { response } => {
 974                let reason = response
 975                    .status_details
 976                    .as_ref()
 977                    .and_then(|details| details.reason.as_deref());
 978                let stop_reason = match reason {
 979                    Some("max_output_tokens") => StopReason::MaxTokens,
 980                    Some("content_filter") => {
 981                        self.pending_stop_reason = Some(StopReason::Refusal);
 982                        StopReason::Refusal
 983                    }
 984                    _ => self
 985                        .pending_stop_reason
 986                        .take()
 987                        .unwrap_or(StopReason::EndTurn),
 988                };
 989
 990                let mut events = Vec::new();
 991                if self.pending_stop_reason.is_none() {
 992                    events.extend(self.emit_tool_calls_from_output(&response.output));
 993                }
 994                if let Some(usage) = response.usage.as_ref() {
 995                    events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(
 996                        token_usage_from_response_usage(usage),
 997                    )));
 998                }
 999                events.push(Ok(LanguageModelCompletionEvent::Stop(stop_reason)));
1000                events
1001            }
1002            ResponsesStreamEvent::Failed { response } => {
1003                let message = response
1004                    .status_details
1005                    .and_then(|details| details.error)
1006                    .map(|error| error.to_string())
1007                    .unwrap_or_else(|| "response failed".to_string());
1008                vec![Err(LanguageModelCompletionError::Other(anyhow!(message)))]
1009            }
1010            ResponsesStreamEvent::Error { error }
1011            | ResponsesStreamEvent::GenericError { error } => {
1012                vec![Err(LanguageModelCompletionError::Other(anyhow!(format!(
1013                    "{error:?}"
1014                ))))]
1015            }
1016            ResponsesStreamEvent::OutputTextDone { .. } => Vec::new(),
1017            ResponsesStreamEvent::OutputItemDone { .. }
1018            | ResponsesStreamEvent::ContentPartAdded { .. }
1019            | ResponsesStreamEvent::ContentPartDone { .. }
1020            | ResponsesStreamEvent::Created { .. }
1021            | ResponsesStreamEvent::InProgress { .. }
1022            | ResponsesStreamEvent::Unknown => Vec::new(),
1023        }
1024    }
1025
1026    fn handle_completion(
1027        &mut self,
1028        response: ResponsesSummary,
1029        default_reason: StopReason,
1030    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
1031        let mut events = Vec::new();
1032
1033        if self.pending_stop_reason.is_none() {
1034            events.extend(self.emit_tool_calls_from_output(&response.output));
1035        }
1036
1037        if let Some(usage) = response.usage.as_ref() {
1038            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(
1039                token_usage_from_response_usage(usage),
1040            )));
1041        }
1042
1043        let stop_reason = self.pending_stop_reason.take().unwrap_or(default_reason);
1044        events.push(Ok(LanguageModelCompletionEvent::Stop(stop_reason)));
1045        events
1046    }
1047
1048    fn emit_tool_calls_from_output(
1049        &mut self,
1050        output: &[ResponseOutputItem],
1051    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
1052        let mut events = Vec::new();
1053        for item in output {
1054            if let ResponseOutputItem::FunctionCall(function_call) = item {
1055                let Some(call_id) = function_call
1056                    .call_id
1057                    .clone()
1058                    .or_else(|| function_call.id.clone())
1059                else {
1060                    log::error!(
1061                        "Function call item missing both call_id and id: {:?}",
1062                        function_call
1063                    );
1064                    continue;
1065                };
1066                let name: Arc<str> = Arc::from(function_call.name.clone().unwrap_or_default());
1067                let arguments = &function_call.arguments;
1068                if !arguments.is_empty() {
1069                    self.pending_stop_reason = Some(StopReason::ToolUse);
1070                    match serde_json::from_str::<serde_json::Value>(arguments) {
1071                        Ok(input) => {
1072                            events.push(Ok(LanguageModelCompletionEvent::ToolUse(
1073                                LanguageModelToolUse {
1074                                    id: LanguageModelToolUseId::from(call_id.clone()),
1075                                    name: name.clone(),
1076                                    is_input_complete: true,
1077                                    input,
1078                                    raw_input: arguments.clone(),
1079                                    thought_signature: None,
1080                                },
1081                            )));
1082                        }
1083                        Err(error) => {
1084                            events.push(Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
1085                                id: LanguageModelToolUseId::from(call_id.clone()),
1086                                tool_name: name.clone(),
1087                                raw_input: Arc::<str>::from(arguments.clone()),
1088                                json_parse_error: error.to_string(),
1089                            }));
1090                        }
1091                    }
1092                }
1093            }
1094        }
1095        events
1096    }
1097}
1098
1099fn token_usage_from_response_usage(usage: &ResponsesUsage) -> TokenUsage {
1100    TokenUsage {
1101        input_tokens: usage.input_tokens.unwrap_or_default(),
1102        output_tokens: usage.output_tokens.unwrap_or_default(),
1103        cache_creation_input_tokens: 0,
1104        cache_read_input_tokens: 0,
1105    }
1106}
1107
1108pub(crate) fn collect_tiktoken_messages(
1109    request: LanguageModelRequest,
1110) -> Vec<tiktoken_rs::ChatCompletionRequestMessage> {
1111    request
1112        .messages
1113        .into_iter()
1114        .map(|message| tiktoken_rs::ChatCompletionRequestMessage {
1115            role: match message.role {
1116                Role::User => "user".into(),
1117                Role::Assistant => "assistant".into(),
1118                Role::System => "system".into(),
1119            },
1120            content: Some(message.string_contents()),
1121            name: None,
1122            function_call: None,
1123        })
1124        .collect::<Vec<_>>()
1125}
1126
1127pub fn count_open_ai_tokens(
1128    request: LanguageModelRequest,
1129    model: Model,
1130    cx: &App,
1131) -> BoxFuture<'static, Result<u64>> {
1132    cx.background_spawn(async move {
1133        let messages = collect_tiktoken_messages(request);
1134        match model {
1135            Model::Custom { max_tokens, .. } => {
1136                let model = if max_tokens >= 100_000 {
1137                    // If the max tokens is 100k or more, it is likely the o200k_base tokenizer from gpt4o
1138                    "gpt-4o"
1139                } else {
1140                    // Otherwise fallback to gpt-4, since only cl100k_base and o200k_base are
1141                    // supported with this tiktoken method
1142                    "gpt-4"
1143                };
1144                tiktoken_rs::num_tokens_from_messages(model, &messages)
1145            }
1146            // Currently supported by tiktoken_rs
1147            // Sometimes tiktoken-rs is behind on model support. If that is the case, make a new branch
1148            // arm with an override. We enumerate all supported models here so that we can check if new
1149            // models are supported yet or not.
1150            Model::ThreePointFiveTurbo
1151            | Model::Four
1152            | Model::FourTurbo
1153            | Model::FourOmni
1154            | Model::FourOmniMini
1155            | Model::FourPointOne
1156            | Model::FourPointOneMini
1157            | Model::FourPointOneNano
1158            | Model::O1
1159            | Model::O3
1160            | Model::O3Mini
1161            | Model::O4Mini
1162            | Model::Five
1163            | Model::FiveCodex
1164            | Model::FiveMini
1165            | Model::FiveNano => tiktoken_rs::num_tokens_from_messages(model.id(), &messages),
1166            // GPT-5.1 and 5.2 don't have dedicated tiktoken support; use gpt-5 tokenizer
1167            Model::FivePointOne | Model::FivePointTwo => {
1168                tiktoken_rs::num_tokens_from_messages("gpt-5", &messages)
1169            }
1170        }
1171        .map(|tokens| tokens as u64)
1172    })
1173    .boxed()
1174}
1175
1176struct ConfigurationView {
1177    api_key_editor: Entity<InputField>,
1178    state: Entity<State>,
1179    load_credentials_task: Option<Task<()>>,
1180}
1181
1182impl ConfigurationView {
1183    fn new(state: Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
1184        let api_key_editor = cx.new(|cx| {
1185            InputField::new(
1186                window,
1187                cx,
1188                "sk-000000000000000000000000000000000000000000000000",
1189            )
1190        });
1191
1192        cx.observe(&state, |_, _, cx| {
1193            cx.notify();
1194        })
1195        .detach();
1196
1197        let load_credentials_task = Some(cx.spawn_in(window, {
1198            let state = state.clone();
1199            async move |this, cx| {
1200                if let Some(task) = Some(state.update(cx, |state, cx| state.authenticate(cx))) {
1201                    // We don't log an error, because "not signed in" is also an error.
1202                    let _ = task.await;
1203                }
1204                this.update(cx, |this, cx| {
1205                    this.load_credentials_task = None;
1206                    cx.notify();
1207                })
1208                .log_err();
1209            }
1210        }));
1211
1212        Self {
1213            api_key_editor,
1214            state,
1215            load_credentials_task,
1216        }
1217    }
1218
1219    fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
1220        let api_key = self.api_key_editor.read(cx).text(cx).trim().to_string();
1221        if api_key.is_empty() {
1222            return;
1223        }
1224
1225        // url changes can cause the editor to be displayed again
1226        self.api_key_editor
1227            .update(cx, |editor, cx| editor.set_text("", window, cx));
1228
1229        let state = self.state.clone();
1230        cx.spawn_in(window, async move |_, cx| {
1231            state
1232                .update(cx, |state, cx| state.set_api_key(Some(api_key), cx))
1233                .await
1234        })
1235        .detach_and_log_err(cx);
1236    }
1237
1238    fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
1239        self.api_key_editor
1240            .update(cx, |input, cx| input.set_text("", window, cx));
1241
1242        let state = self.state.clone();
1243        cx.spawn_in(window, async move |_, cx| {
1244            state
1245                .update(cx, |state, cx| state.set_api_key(None, cx))
1246                .await
1247        })
1248        .detach_and_log_err(cx);
1249    }
1250
1251    fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
1252        !self.state.read(cx).is_authenticated()
1253    }
1254}
1255
1256impl Render for ConfigurationView {
1257    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1258        let env_var_set = self.state.read(cx).api_key_state.is_from_env_var();
1259        let configured_card_label = if env_var_set {
1260            format!("API key set in {API_KEY_ENV_VAR_NAME} environment variable")
1261        } else {
1262            let api_url = OpenAiLanguageModelProvider::api_url(cx);
1263            if api_url == OPEN_AI_API_URL {
1264                "API key configured".to_string()
1265            } else {
1266                format!("API key configured for {}", api_url)
1267            }
1268        };
1269
1270        let api_key_section = if self.should_render_editor(cx) {
1271            v_flex()
1272                .on_action(cx.listener(Self::save_api_key))
1273                .child(Label::new("To use Zed's agent with OpenAI, you need to add an API key. Follow these steps:"))
1274                .child(
1275                    List::new()
1276                        .child(
1277                            ListBulletItem::new("")
1278                                .child(Label::new("Create one by visiting"))
1279                                .child(ButtonLink::new("OpenAI's console", "https://platform.openai.com/api-keys"))
1280                        )
1281                        .child(
1282                            ListBulletItem::new("Ensure your OpenAI account has credits")
1283                        )
1284                        .child(
1285                            ListBulletItem::new("Paste your API key below and hit enter to start using the agent")
1286                        ),
1287                )
1288                .child(self.api_key_editor.clone())
1289                .child(
1290                    Label::new(format!(
1291                        "You can also set the {API_KEY_ENV_VAR_NAME} environment variable and restart Zed."
1292                    ))
1293                    .size(LabelSize::Small)
1294                    .color(Color::Muted),
1295                )
1296                .child(
1297                    Label::new(
1298                        "Note that having a subscription for another service like GitHub Copilot won't work.",
1299                    )
1300                    .size(LabelSize::Small).color(Color::Muted),
1301                )
1302                .into_any_element()
1303        } else {
1304            ConfiguredApiCard::new(configured_card_label)
1305                .disabled(env_var_set)
1306                .on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx)))
1307                .when(env_var_set, |this| {
1308                    this.tooltip_label(format!("To reset your API key, unset the {API_KEY_ENV_VAR_NAME} environment variable."))
1309                })
1310                .into_any_element()
1311        };
1312
1313        let compatible_api_section = h_flex()
1314            .mt_1p5()
1315            .gap_0p5()
1316            .flex_wrap()
1317            .when(self.should_render_editor(cx), |this| {
1318                this.pt_1p5()
1319                    .border_t_1()
1320                    .border_color(cx.theme().colors().border_variant)
1321            })
1322            .child(
1323                h_flex()
1324                    .gap_2()
1325                    .child(
1326                        Icon::new(IconName::Info)
1327                            .size(IconSize::XSmall)
1328                            .color(Color::Muted),
1329                    )
1330                    .child(Label::new("Zed also supports OpenAI-compatible models.")),
1331            )
1332            .child(
1333                Button::new("docs", "Learn More")
1334                    .icon(IconName::ArrowUpRight)
1335                    .icon_size(IconSize::Small)
1336                    .icon_color(Color::Muted)
1337                    .on_click(move |_, _window, cx| {
1338                        cx.open_url("https://zed.dev/docs/ai/llm-providers#openai-api-compatible")
1339                    }),
1340            );
1341
1342        if self.load_credentials_task.is_some() {
1343            div().child(Label::new("Loading credentials…")).into_any()
1344        } else {
1345            v_flex()
1346                .size_full()
1347                .child(api_key_section)
1348                .child(compatible_api_section)
1349                .into_any()
1350        }
1351    }
1352}
1353
1354#[cfg(test)]
1355mod tests {
1356    use futures::{StreamExt, executor::block_on};
1357    use gpui::TestAppContext;
1358    use language_model::{LanguageModelRequestMessage, LanguageModelRequestTool};
1359    use open_ai::responses::{
1360        ResponseFunctionToolCall, ResponseOutputItem, ResponseOutputMessage, ResponseStatusDetails,
1361        ResponseSummary, ResponseUsage, StreamEvent as ResponsesStreamEvent,
1362    };
1363    use pretty_assertions::assert_eq;
1364    use serde_json::json;
1365
1366    use super::*;
1367
1368    fn map_response_events(events: Vec<ResponsesStreamEvent>) -> Vec<LanguageModelCompletionEvent> {
1369        block_on(async {
1370            OpenAiResponseEventMapper::new()
1371                .map_stream(Box::pin(futures::stream::iter(events.into_iter().map(Ok))))
1372                .collect::<Vec<_>>()
1373                .await
1374                .into_iter()
1375                .map(Result::unwrap)
1376                .collect()
1377        })
1378    }
1379
1380    fn response_item_message(id: &str) -> ResponseOutputItem {
1381        ResponseOutputItem::Message(ResponseOutputMessage {
1382            id: Some(id.to_string()),
1383            role: Some("assistant".to_string()),
1384            status: Some("in_progress".to_string()),
1385            content: vec![],
1386        })
1387    }
1388
1389    fn response_item_function_call(id: &str, args: Option<&str>) -> ResponseOutputItem {
1390        ResponseOutputItem::FunctionCall(ResponseFunctionToolCall {
1391            id: Some(id.to_string()),
1392            status: Some("in_progress".to_string()),
1393            name: Some("get_weather".to_string()),
1394            call_id: Some("call_123".to_string()),
1395            arguments: args.map(|s| s.to_string()).unwrap_or_default(),
1396        })
1397    }
1398
1399    #[gpui::test]
1400    fn tiktoken_rs_support(cx: &TestAppContext) {
1401        let request = LanguageModelRequest {
1402            thread_id: None,
1403            prompt_id: None,
1404            intent: None,
1405            mode: None,
1406            messages: vec![LanguageModelRequestMessage {
1407                role: Role::User,
1408                content: vec![MessageContent::Text("message".into())],
1409                cache: false,
1410                reasoning_details: None,
1411            }],
1412            tools: vec![],
1413            tool_choice: None,
1414            stop: vec![],
1415            temperature: None,
1416            thinking_allowed: true,
1417        };
1418
1419        // Validate that all models are supported by tiktoken-rs
1420        for model in Model::iter() {
1421            let count = cx
1422                .foreground_executor()
1423                .block_on(count_open_ai_tokens(
1424                    request.clone(),
1425                    model,
1426                    &cx.app.borrow(),
1427                ))
1428                .unwrap();
1429            assert!(count > 0);
1430        }
1431    }
1432
1433    #[test]
1434    fn responses_stream_maps_text_and_usage() {
1435        let events = vec![
1436            ResponsesStreamEvent::OutputItemAdded {
1437                output_index: 0,
1438                sequence_number: None,
1439                item: response_item_message("msg_123"),
1440            },
1441            ResponsesStreamEvent::OutputTextDelta {
1442                item_id: "msg_123".into(),
1443                output_index: 0,
1444                content_index: Some(0),
1445                delta: "Hello".into(),
1446            },
1447            ResponsesStreamEvent::Completed {
1448                response: ResponseSummary {
1449                    usage: Some(ResponseUsage {
1450                        input_tokens: Some(5),
1451                        output_tokens: Some(3),
1452                        total_tokens: Some(8),
1453                    }),
1454                    ..Default::default()
1455                },
1456            },
1457        ];
1458
1459        let mapped = map_response_events(events);
1460        assert!(matches!(
1461            mapped[0],
1462            LanguageModelCompletionEvent::StartMessage { ref message_id } if message_id == "msg_123"
1463        ));
1464        assert!(matches!(
1465            mapped[1],
1466            LanguageModelCompletionEvent::Text(ref text) if text == "Hello"
1467        ));
1468        assert!(matches!(
1469            mapped[2],
1470            LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
1471                input_tokens: 5,
1472                output_tokens: 3,
1473                ..
1474            })
1475        ));
1476        assert!(matches!(
1477            mapped[3],
1478            LanguageModelCompletionEvent::Stop(StopReason::EndTurn)
1479        ));
1480    }
1481
1482    #[test]
1483    fn into_open_ai_response_builds_complete_payload() {
1484        let tool_call_id = LanguageModelToolUseId::from("call-42");
1485        let tool_input = json!({ "city": "Boston" });
1486        let tool_arguments = serde_json::to_string(&tool_input).unwrap();
1487        let tool_use = LanguageModelToolUse {
1488            id: tool_call_id.clone(),
1489            name: Arc::from("get_weather"),
1490            raw_input: tool_arguments.clone(),
1491            input: tool_input,
1492            is_input_complete: true,
1493            thought_signature: None,
1494        };
1495        let tool_result = LanguageModelToolResult {
1496            tool_use_id: tool_call_id,
1497            tool_name: Arc::from("get_weather"),
1498            is_error: false,
1499            content: LanguageModelToolResultContent::Text(Arc::from("Sunny")),
1500            output: Some(json!({ "forecast": "Sunny" })),
1501        };
1502        let user_image = LanguageModelImage {
1503            source: SharedString::from("aGVsbG8="),
1504            size: None,
1505        };
1506        let expected_image_url = user_image.to_base64_url();
1507
1508        let request = LanguageModelRequest {
1509            thread_id: Some("thread-123".into()),
1510            prompt_id: None,
1511            intent: None,
1512            mode: None,
1513            messages: vec![
1514                LanguageModelRequestMessage {
1515                    role: Role::System,
1516                    content: vec![MessageContent::Text("System context".into())],
1517                    cache: false,
1518                    reasoning_details: None,
1519                },
1520                LanguageModelRequestMessage {
1521                    role: Role::User,
1522                    content: vec![
1523                        MessageContent::Text("Please check the weather.".into()),
1524                        MessageContent::Image(user_image),
1525                    ],
1526                    cache: false,
1527                    reasoning_details: None,
1528                },
1529                LanguageModelRequestMessage {
1530                    role: Role::Assistant,
1531                    content: vec![
1532                        MessageContent::Text("Looking that up.".into()),
1533                        MessageContent::ToolUse(tool_use),
1534                    ],
1535                    cache: false,
1536                    reasoning_details: None,
1537                },
1538                LanguageModelRequestMessage {
1539                    role: Role::Assistant,
1540                    content: vec![MessageContent::ToolResult(tool_result)],
1541                    cache: false,
1542                    reasoning_details: None,
1543                },
1544            ],
1545            tools: vec![LanguageModelRequestTool {
1546                name: "get_weather".into(),
1547                description: "Fetches the weather".into(),
1548                input_schema: json!({ "type": "object" }),
1549            }],
1550            tool_choice: Some(LanguageModelToolChoice::Any),
1551            stop: vec!["<STOP>".into()],
1552            temperature: None,
1553            thinking_allowed: false,
1554        };
1555
1556        let response = into_open_ai_response(
1557            request,
1558            "custom-model",
1559            true,
1560            true,
1561            Some(2048),
1562            Some(ReasoningEffort::Low),
1563        );
1564
1565        let serialized = serde_json::to_value(&response).unwrap();
1566        let expected = json!({
1567            "model": "custom-model",
1568            "input": [
1569                {
1570                    "type": "message",
1571                    "role": "system",
1572                    "content": [
1573                        { "type": "input_text", "text": "System context" }
1574                    ]
1575                },
1576                {
1577                    "type": "message",
1578                    "role": "user",
1579                    "content": [
1580                        { "type": "input_text", "text": "Please check the weather." },
1581                        { "type": "input_image", "image_url": expected_image_url }
1582                    ]
1583                },
1584                {
1585                    "type": "message",
1586                    "role": "assistant",
1587                    "content": [
1588                        { "type": "output_text", "text": "Looking that up.", "annotations": [] }
1589                    ]
1590                },
1591                {
1592                    "type": "function_call",
1593                    "call_id": "call-42",
1594                    "name": "get_weather",
1595                    "arguments": tool_arguments
1596                },
1597                {
1598                    "type": "function_call_output",
1599                    "call_id": "call-42",
1600                    "output": "{\"forecast\":\"Sunny\"}"
1601                }
1602            ],
1603            "stream": true,
1604            "max_output_tokens": 2048,
1605            "parallel_tool_calls": true,
1606            "tool_choice": "required",
1607            "tools": [
1608                {
1609                    "type": "function",
1610                    "name": "get_weather",
1611                    "description": "Fetches the weather",
1612                    "parameters": { "type": "object" }
1613                }
1614            ],
1615            "prompt_cache_key": "thread-123",
1616            "reasoning": { "effort": "low" }
1617        });
1618
1619        assert_eq!(serialized, expected);
1620    }
1621
1622    #[test]
1623    fn responses_stream_maps_tool_calls() {
1624        let events = vec![
1625            ResponsesStreamEvent::OutputItemAdded {
1626                output_index: 0,
1627                sequence_number: None,
1628                item: response_item_function_call("item_fn", Some("{\"city\":\"Bos")),
1629            },
1630            ResponsesStreamEvent::FunctionCallArgumentsDelta {
1631                item_id: "item_fn".into(),
1632                output_index: 0,
1633                delta: "ton\"}".into(),
1634                sequence_number: None,
1635            },
1636            ResponsesStreamEvent::FunctionCallArgumentsDone {
1637                item_id: "item_fn".into(),
1638                output_index: 0,
1639                arguments: "{\"city\":\"Boston\"}".into(),
1640                sequence_number: None,
1641            },
1642            ResponsesStreamEvent::Completed {
1643                response: ResponseSummary::default(),
1644            },
1645        ];
1646
1647        let mapped = map_response_events(events);
1648        assert!(matches!(
1649            mapped[0],
1650            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse {
1651                ref id,
1652                ref name,
1653                ref raw_input,
1654                ..
1655            }) if id.to_string() == "call_123"
1656                && name.as_ref() == "get_weather"
1657                && raw_input == "{\"city\":\"Boston\"}"
1658        ));
1659        assert!(matches!(
1660            mapped[1],
1661            LanguageModelCompletionEvent::Stop(StopReason::ToolUse)
1662        ));
1663    }
1664
1665    #[test]
1666    fn responses_stream_uses_max_tokens_stop_reason() {
1667        let events = vec![ResponsesStreamEvent::Incomplete {
1668            response: ResponseSummary {
1669                status_details: Some(ResponseStatusDetails {
1670                    reason: Some("max_output_tokens".into()),
1671                    r#type: Some("incomplete".into()),
1672                    error: None,
1673                }),
1674                usage: Some(ResponseUsage {
1675                    input_tokens: Some(10),
1676                    output_tokens: Some(20),
1677                    total_tokens: Some(30),
1678                }),
1679                ..Default::default()
1680            },
1681        }];
1682
1683        let mapped = map_response_events(events);
1684        assert!(matches!(
1685            mapped[0],
1686            LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
1687                input_tokens: 10,
1688                output_tokens: 20,
1689                ..
1690            })
1691        ));
1692        assert!(matches!(
1693            mapped[1],
1694            LanguageModelCompletionEvent::Stop(StopReason::MaxTokens)
1695        ));
1696    }
1697
1698    #[test]
1699    fn responses_stream_handles_multiple_tool_calls() {
1700        let events = vec![
1701            ResponsesStreamEvent::OutputItemAdded {
1702                output_index: 0,
1703                sequence_number: None,
1704                item: response_item_function_call("item_fn1", Some("{\"city\":\"NYC\"}")),
1705            },
1706            ResponsesStreamEvent::FunctionCallArgumentsDone {
1707                item_id: "item_fn1".into(),
1708                output_index: 0,
1709                arguments: "{\"city\":\"NYC\"}".into(),
1710                sequence_number: None,
1711            },
1712            ResponsesStreamEvent::OutputItemAdded {
1713                output_index: 1,
1714                sequence_number: None,
1715                item: response_item_function_call("item_fn2", Some("{\"city\":\"LA\"}")),
1716            },
1717            ResponsesStreamEvent::FunctionCallArgumentsDone {
1718                item_id: "item_fn2".into(),
1719                output_index: 1,
1720                arguments: "{\"city\":\"LA\"}".into(),
1721                sequence_number: None,
1722            },
1723            ResponsesStreamEvent::Completed {
1724                response: ResponseSummary::default(),
1725            },
1726        ];
1727
1728        let mapped = map_response_events(events);
1729        assert_eq!(mapped.len(), 3);
1730        assert!(matches!(
1731            mapped[0],
1732            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse { ref raw_input, .. })
1733            if raw_input == "{\"city\":\"NYC\"}"
1734        ));
1735        assert!(matches!(
1736            mapped[1],
1737            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse { ref raw_input, .. })
1738            if raw_input == "{\"city\":\"LA\"}"
1739        ));
1740        assert!(matches!(
1741            mapped[2],
1742            LanguageModelCompletionEvent::Stop(StopReason::ToolUse)
1743        ));
1744    }
1745
1746    #[test]
1747    fn responses_stream_handles_mixed_text_and_tool_calls() {
1748        let events = vec![
1749            ResponsesStreamEvent::OutputItemAdded {
1750                output_index: 0,
1751                sequence_number: None,
1752                item: response_item_message("msg_123"),
1753            },
1754            ResponsesStreamEvent::OutputTextDelta {
1755                item_id: "msg_123".into(),
1756                output_index: 0,
1757                content_index: Some(0),
1758                delta: "Let me check that".into(),
1759            },
1760            ResponsesStreamEvent::OutputItemAdded {
1761                output_index: 1,
1762                sequence_number: None,
1763                item: response_item_function_call("item_fn", Some("{\"query\":\"test\"}")),
1764            },
1765            ResponsesStreamEvent::FunctionCallArgumentsDone {
1766                item_id: "item_fn".into(),
1767                output_index: 1,
1768                arguments: "{\"query\":\"test\"}".into(),
1769                sequence_number: None,
1770            },
1771            ResponsesStreamEvent::Completed {
1772                response: ResponseSummary::default(),
1773            },
1774        ];
1775
1776        let mapped = map_response_events(events);
1777        assert!(matches!(
1778            mapped[0],
1779            LanguageModelCompletionEvent::StartMessage { .. }
1780        ));
1781        assert!(matches!(
1782            mapped[1],
1783            LanguageModelCompletionEvent::Text(ref text) if text == "Let me check that"
1784        ));
1785        assert!(matches!(
1786            mapped[2],
1787            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse { ref raw_input, .. })
1788            if raw_input == "{\"query\":\"test\"}"
1789        ));
1790        assert!(matches!(
1791            mapped[3],
1792            LanguageModelCompletionEvent::Stop(StopReason::ToolUse)
1793        ));
1794    }
1795
1796    #[test]
1797    fn responses_stream_handles_json_parse_error() {
1798        let events = vec![
1799            ResponsesStreamEvent::OutputItemAdded {
1800                output_index: 0,
1801                sequence_number: None,
1802                item: response_item_function_call("item_fn", Some("{invalid json")),
1803            },
1804            ResponsesStreamEvent::FunctionCallArgumentsDone {
1805                item_id: "item_fn".into(),
1806                output_index: 0,
1807                arguments: "{invalid json".into(),
1808                sequence_number: None,
1809            },
1810            ResponsesStreamEvent::Completed {
1811                response: ResponseSummary::default(),
1812            },
1813        ];
1814
1815        let mapped = map_response_events(events);
1816        assert!(matches!(
1817            mapped[0],
1818            LanguageModelCompletionEvent::ToolUseJsonParseError {
1819                ref raw_input,
1820                ..
1821            } if raw_input.as_ref() == "{invalid json"
1822        ));
1823    }
1824
1825    #[test]
1826    fn responses_stream_handles_incomplete_function_call() {
1827        let events = vec![
1828            ResponsesStreamEvent::OutputItemAdded {
1829                output_index: 0,
1830                sequence_number: None,
1831                item: response_item_function_call("item_fn", Some("{\"city\":")),
1832            },
1833            ResponsesStreamEvent::FunctionCallArgumentsDelta {
1834                item_id: "item_fn".into(),
1835                output_index: 0,
1836                delta: "\"Boston\"".into(),
1837                sequence_number: None,
1838            },
1839            ResponsesStreamEvent::Incomplete {
1840                response: ResponseSummary {
1841                    status_details: Some(ResponseStatusDetails {
1842                        reason: Some("max_output_tokens".into()),
1843                        r#type: Some("incomplete".into()),
1844                        error: None,
1845                    }),
1846                    output: vec![response_item_function_call(
1847                        "item_fn",
1848                        Some("{\"city\":\"Boston\"}"),
1849                    )],
1850                    ..Default::default()
1851                },
1852            },
1853        ];
1854
1855        let mapped = map_response_events(events);
1856        assert!(matches!(
1857            mapped[0],
1858            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse { ref raw_input, .. })
1859            if raw_input == "{\"city\":\"Boston\"}"
1860        ));
1861        assert!(matches!(
1862            mapped[1],
1863            LanguageModelCompletionEvent::Stop(StopReason::MaxTokens)
1864        ));
1865    }
1866
1867    #[test]
1868    fn responses_stream_incomplete_does_not_duplicate_tool_calls() {
1869        let events = vec![
1870            ResponsesStreamEvent::OutputItemAdded {
1871                output_index: 0,
1872                sequence_number: None,
1873                item: response_item_function_call("item_fn", Some("{\"city\":\"Boston\"}")),
1874            },
1875            ResponsesStreamEvent::FunctionCallArgumentsDone {
1876                item_id: "item_fn".into(),
1877                output_index: 0,
1878                arguments: "{\"city\":\"Boston\"}".into(),
1879                sequence_number: None,
1880            },
1881            ResponsesStreamEvent::Incomplete {
1882                response: ResponseSummary {
1883                    status_details: Some(ResponseStatusDetails {
1884                        reason: Some("max_output_tokens".into()),
1885                        r#type: Some("incomplete".into()),
1886                        error: None,
1887                    }),
1888                    output: vec![response_item_function_call(
1889                        "item_fn",
1890                        Some("{\"city\":\"Boston\"}"),
1891                    )],
1892                    ..Default::default()
1893                },
1894            },
1895        ];
1896
1897        let mapped = map_response_events(events);
1898        assert_eq!(mapped.len(), 2);
1899        assert!(matches!(
1900            mapped[0],
1901            LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse { ref raw_input, .. })
1902            if raw_input == "{\"city\":\"Boston\"}"
1903        ));
1904        assert!(matches!(
1905            mapped[1],
1906            LanguageModelCompletionEvent::Stop(StopReason::MaxTokens)
1907        ));
1908    }
1909}