1//! KeyDispatch is where GPUI deals with binding actions to key events.
2//!
3//! The key pieces to making a key binding work are to define an action,
4//! implement a method that takes that action as a type parameter,
5//! and then to register the action during render on a focused node
6//! with a keymap context:
7//!
8//! ```ignore
9//! actions!(editor,[Undo, Redo]);
10//!
11//! impl Editor {
12//! fn undo(&mut self, _: &Undo, _window: &mut Window, _cx: &mut Context<Self>) { ... }
13//! fn redo(&mut self, _: &Redo, _window: &mut Window, _cx: &mut Context<Self>) { ... }
14//! }
15//!
16//! impl Render for Editor {
17//! fn render(&mut self, window: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
18//! div()
19//! .track_focus(&self.focus_handle(cx))
20//! .key_context("Editor")
21//! .on_action(cx.listener(Editor::undo))
22//! .on_action(cx.listener(Editor::redo))
23//! ...
24//! }
25//! }
26//!```
27//!
28//! The keybindings themselves are managed independently by calling cx.bind_keys().
29//! (Though mostly when developing Zed itself, you just need to add a new line to
30//! assets/keymaps/default-{platform}.json).
31//!
32//! ```ignore
33//! cx.bind_keys([
34//! KeyBinding::new("cmd-z", Editor::undo, Some("Editor")),
35//! KeyBinding::new("cmd-shift-z", Editor::redo, Some("Editor")),
36//! ])
37//! ```
38//!
39//! With all of this in place, GPUI will ensure that if you have an Editor that contains
40//! the focus, hitting cmd-z will Undo.
41//!
42//! In real apps, it is a little more complicated than this, because typically you have
43//! several nested views that each register keyboard handlers. In this case action matching
44//! bubbles up from the bottom. For example in Zed, the Workspace is the top-level view, which contains Pane's, which contain Editors. If there are conflicting keybindings defined
45//! then the Editor's bindings take precedence over the Pane's bindings, which take precedence over the Workspace.
46//!
47//! In GPUI, keybindings are not limited to just single keystrokes, you can define
48//! sequences by separating the keys with a space:
49//!
50//! KeyBinding::new("cmd-k left", pane::SplitLeft, Some("Pane"))
51
52use crate::{
53 Action, ActionRegistry, App, DispatchPhase, EntityId, FocusId, KeyBinding, KeyContext, Keymap,
54 Keystroke, ModifiersChangedEvent, Window,
55};
56use collections::FxHashMap;
57use smallvec::SmallVec;
58use std::{
59 any::{Any, TypeId},
60 cell::RefCell,
61 mem,
62 ops::Range,
63 rc::Rc,
64};
65
66/// ID of a node within `DispatchTree`. Note that these are **not** stable between frames, and so a
67/// `DispatchNodeId` should only be used with the `DispatchTree` that provided it.
68#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
69pub(crate) struct DispatchNodeId(usize);
70
71pub(crate) struct DispatchTree {
72 node_stack: Vec<DispatchNodeId>,
73 pub(crate) context_stack: Vec<KeyContext>,
74 view_stack: Vec<EntityId>,
75 nodes: Vec<DispatchNode>,
76 focusable_node_ids: FxHashMap<FocusId, DispatchNodeId>,
77 view_node_ids: FxHashMap<EntityId, DispatchNodeId>,
78 keymap: Rc<RefCell<Keymap>>,
79 action_registry: Rc<ActionRegistry>,
80}
81
82#[derive(Default)]
83pub(crate) struct DispatchNode {
84 pub key_listeners: Vec<KeyListener>,
85 pub action_listeners: Vec<DispatchActionListener>,
86 pub modifiers_changed_listeners: Vec<ModifiersChangedListener>,
87 pub context: Option<KeyContext>,
88 pub focus_id: Option<FocusId>,
89 view_id: Option<EntityId>,
90 parent: Option<DispatchNodeId>,
91}
92
93pub(crate) struct ReusedSubtree {
94 old_range: Range<usize>,
95 new_range: Range<usize>,
96 contains_focus: bool,
97}
98
99impl ReusedSubtree {
100 pub fn refresh_node_id(&self, node_id: DispatchNodeId) -> DispatchNodeId {
101 debug_assert!(
102 self.old_range.contains(&node_id.0),
103 "node {} was not part of the reused subtree {:?}",
104 node_id.0,
105 self.old_range
106 );
107 DispatchNodeId((node_id.0 - self.old_range.start) + self.new_range.start)
108 }
109
110 pub fn contains_focus(&self) -> bool {
111 self.contains_focus
112 }
113}
114
115#[derive(Default, Debug)]
116pub(crate) struct Replay {
117 pub(crate) keystroke: Keystroke,
118 pub(crate) bindings: SmallVec<[KeyBinding; 1]>,
119}
120
121#[derive(Default, Debug)]
122pub(crate) struct DispatchResult {
123 pub(crate) pending: SmallVec<[Keystroke; 1]>,
124 pub(crate) pending_has_binding: bool,
125 pub(crate) bindings: SmallVec<[KeyBinding; 1]>,
126 pub(crate) to_replay: SmallVec<[Replay; 1]>,
127 pub(crate) context_stack: Vec<KeyContext>,
128}
129
130type KeyListener = Rc<dyn Fn(&dyn Any, DispatchPhase, &mut Window, &mut App)>;
131type ModifiersChangedListener = Rc<dyn Fn(&ModifiersChangedEvent, &mut Window, &mut App)>;
132
133#[derive(Clone)]
134pub(crate) struct DispatchActionListener {
135 pub(crate) action_type: TypeId,
136 pub(crate) listener: Rc<dyn Fn(&dyn Any, DispatchPhase, &mut Window, &mut App)>,
137}
138
139impl DispatchTree {
140 pub fn new(keymap: Rc<RefCell<Keymap>>, action_registry: Rc<ActionRegistry>) -> Self {
141 Self {
142 node_stack: Vec::new(),
143 context_stack: Vec::new(),
144 view_stack: Vec::new(),
145 nodes: Vec::new(),
146 focusable_node_ids: FxHashMap::default(),
147 view_node_ids: FxHashMap::default(),
148 keymap,
149 action_registry,
150 }
151 }
152
153 pub fn clear(&mut self) {
154 self.node_stack.clear();
155 self.context_stack.clear();
156 self.view_stack.clear();
157 self.nodes.clear();
158 self.focusable_node_ids.clear();
159 self.view_node_ids.clear();
160 }
161
162 pub fn len(&self) -> usize {
163 self.nodes.len()
164 }
165
166 pub fn push_node(&mut self) -> DispatchNodeId {
167 let parent = self.node_stack.last().copied();
168 let node_id = DispatchNodeId(self.nodes.len());
169
170 self.nodes.push(DispatchNode {
171 parent,
172 ..Default::default()
173 });
174 self.node_stack.push(node_id);
175 node_id
176 }
177
178 pub fn set_active_node(&mut self, node_id: DispatchNodeId) {
179 let next_node_parent = self.nodes[node_id.0].parent;
180 while self.node_stack.last().copied() != next_node_parent && !self.node_stack.is_empty() {
181 self.pop_node();
182 }
183
184 if self.node_stack.last().copied() == next_node_parent {
185 self.node_stack.push(node_id);
186 let active_node = &self.nodes[node_id.0];
187 if let Some(view_id) = active_node.view_id {
188 self.view_stack.push(view_id)
189 }
190 if let Some(context) = active_node.context.clone() {
191 self.context_stack.push(context);
192 }
193 } else {
194 debug_assert_eq!(self.node_stack.len(), 0);
195
196 let mut current_node_id = Some(node_id);
197 while let Some(node_id) = current_node_id {
198 let node = &self.nodes[node_id.0];
199 if let Some(context) = node.context.clone() {
200 self.context_stack.push(context);
201 }
202 if node.view_id.is_some() {
203 self.view_stack.push(node.view_id.unwrap());
204 }
205 self.node_stack.push(node_id);
206 current_node_id = node.parent;
207 }
208
209 self.context_stack.reverse();
210 self.view_stack.reverse();
211 self.node_stack.reverse();
212 }
213 }
214
215 pub fn set_key_context(&mut self, context: KeyContext) {
216 self.active_node().context = Some(context.clone());
217 self.context_stack.push(context);
218 }
219
220 pub fn set_focus_id(&mut self, focus_id: FocusId) {
221 let node_id = *self.node_stack.last().unwrap();
222 self.nodes[node_id.0].focus_id = Some(focus_id);
223 self.focusable_node_ids.insert(focus_id, node_id);
224 }
225
226 pub fn set_view_id(&mut self, view_id: EntityId) {
227 if self.view_stack.last().copied() != Some(view_id) {
228 let node_id = *self.node_stack.last().unwrap();
229 self.nodes[node_id.0].view_id = Some(view_id);
230 self.view_node_ids.insert(view_id, node_id);
231 self.view_stack.push(view_id);
232 }
233 }
234
235 pub fn pop_node(&mut self) {
236 let node = &self.nodes[self.active_node_id().unwrap().0];
237 if node.context.is_some() {
238 self.context_stack.pop();
239 }
240 if node.view_id.is_some() {
241 self.view_stack.pop();
242 }
243 self.node_stack.pop();
244 }
245
246 fn move_node(&mut self, source: &mut DispatchNode) {
247 self.push_node();
248 if let Some(context) = source.context.clone() {
249 self.set_key_context(context);
250 }
251 if let Some(focus_id) = source.focus_id {
252 self.set_focus_id(focus_id);
253 }
254 if let Some(view_id) = source.view_id {
255 self.set_view_id(view_id);
256 }
257
258 let target = self.active_node();
259 target.key_listeners = mem::take(&mut source.key_listeners);
260 target.action_listeners = mem::take(&mut source.action_listeners);
261 target.modifiers_changed_listeners = mem::take(&mut source.modifiers_changed_listeners);
262 }
263
264 pub fn reuse_subtree(
265 &mut self,
266 old_range: Range<usize>,
267 source: &mut Self,
268 focus: Option<FocusId>,
269 ) -> ReusedSubtree {
270 let new_range = self.nodes.len()..self.nodes.len() + old_range.len();
271
272 let mut contains_focus = false;
273 let mut source_stack = vec![];
274 for (source_node_id, source_node) in source
275 .nodes
276 .iter_mut()
277 .enumerate()
278 .skip(old_range.start)
279 .take(old_range.len())
280 {
281 let source_node_id = DispatchNodeId(source_node_id);
282 while let Some(source_ancestor) = source_stack.last() {
283 if source_node.parent == Some(*source_ancestor) {
284 break;
285 } else {
286 source_stack.pop();
287 self.pop_node();
288 }
289 }
290
291 source_stack.push(source_node_id);
292 if source_node.focus_id.is_some() && source_node.focus_id == focus {
293 contains_focus = true;
294 }
295 self.move_node(source_node);
296 }
297
298 while !source_stack.is_empty() {
299 source_stack.pop();
300 self.pop_node();
301 }
302
303 ReusedSubtree {
304 old_range,
305 new_range,
306 contains_focus,
307 }
308 }
309
310 pub fn truncate(&mut self, index: usize) {
311 for node in &self.nodes[index..] {
312 if let Some(focus_id) = node.focus_id {
313 self.focusable_node_ids.remove(&focus_id);
314 }
315
316 if let Some(view_id) = node.view_id {
317 self.view_node_ids.remove(&view_id);
318 }
319 }
320 self.nodes.truncate(index);
321 }
322
323 pub fn on_key_event(&mut self, listener: KeyListener) {
324 self.active_node().key_listeners.push(listener);
325 }
326
327 pub fn on_modifiers_changed(&mut self, listener: ModifiersChangedListener) {
328 self.active_node()
329 .modifiers_changed_listeners
330 .push(listener);
331 }
332
333 pub fn on_action(
334 &mut self,
335 action_type: TypeId,
336 listener: Rc<dyn Fn(&dyn Any, DispatchPhase, &mut Window, &mut App)>,
337 ) {
338 self.active_node()
339 .action_listeners
340 .push(DispatchActionListener {
341 action_type,
342 listener,
343 });
344 }
345
346 pub fn focus_contains(&self, parent: FocusId, child: FocusId) -> bool {
347 if parent == child {
348 return true;
349 }
350
351 if let Some(parent_node_id) = self.focusable_node_ids.get(&parent) {
352 let mut current_node_id = self.focusable_node_ids.get(&child).copied();
353 while let Some(node_id) = current_node_id {
354 if node_id == *parent_node_id {
355 return true;
356 }
357 current_node_id = self.nodes[node_id.0].parent;
358 }
359 }
360 false
361 }
362
363 pub fn available_actions(&self, target: DispatchNodeId) -> Vec<Box<dyn Action>> {
364 let mut actions = Vec::<Box<dyn Action>>::new();
365 for node_id in self.dispatch_path(target) {
366 let node = &self.nodes[node_id.0];
367 for DispatchActionListener { action_type, .. } in &node.action_listeners {
368 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id())
369 {
370 // Intentionally silence these errors without logging.
371 // If an action cannot be built by default, it's not available.
372 let action = self.action_registry.build_action_type(action_type).ok();
373 if let Some(action) = action {
374 actions.insert(ix, action);
375 }
376 }
377 }
378 }
379 actions
380 }
381
382 pub fn is_action_available(&self, action: &dyn Action, target: DispatchNodeId) -> bool {
383 for node_id in self.dispatch_path(target) {
384 let node = &self.nodes[node_id.0];
385 if node
386 .action_listeners
387 .iter()
388 .any(|listener| listener.action_type == action.as_any().type_id())
389 {
390 return true;
391 }
392 }
393 false
394 }
395
396 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
397 /// returned in the order they were added. For display, the last binding should take precedence.
398 ///
399 /// Bindings are only included if they are the highest precedence match for their keystrokes, so
400 /// shadowed bindings are not included.
401 pub fn bindings_for_action(
402 &self,
403 action: &dyn Action,
404 context_stack: &[KeyContext],
405 ) -> Vec<KeyBinding> {
406 // Ideally this would return a `DoubleEndedIterator` to avoid `highest_precedence_*`
407 // methods, but this can't be done very cleanly since keymap must be borrowed.
408 let keymap = self.keymap.borrow();
409 keymap
410 .bindings_for_action(action)
411 .filter(|binding| {
412 Self::binding_matches_predicate_and_not_shadowed(&keymap, binding, context_stack)
413 })
414 .cloned()
415 .collect()
416 }
417
418 /// Returns the highest precedence binding for the given action and context stack. This is the
419 /// same as the last result of `bindings_for_action`, but more efficient than getting all bindings.
420 pub fn highest_precedence_binding_for_action(
421 &self,
422 action: &dyn Action,
423 context_stack: &[KeyContext],
424 ) -> Option<KeyBinding> {
425 let keymap = self.keymap.borrow();
426 keymap
427 .bindings_for_action(action)
428 .rev()
429 .find(|binding| {
430 Self::binding_matches_predicate_and_not_shadowed(&keymap, binding, context_stack)
431 })
432 .cloned()
433 }
434
435 fn binding_matches_predicate_and_not_shadowed(
436 keymap: &Keymap,
437 binding: &KeyBinding,
438 context_stack: &[KeyContext],
439 ) -> bool {
440 let (bindings, _) = keymap.bindings_for_input(&binding.keystrokes, context_stack);
441 if let Some(found) = bindings.iter().next() {
442 found.action.partial_eq(binding.action.as_ref())
443 } else {
444 false
445 }
446 }
447
448 fn bindings_for_input(
449 &self,
450 input: &[Keystroke],
451 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
452 has_pending_keystrokes: bool,
453 ) -> (SmallVec<[KeyBinding; 1]>, bool, Vec<KeyContext>) {
454 let mut context_stack: Vec<KeyContext> = dispatch_path
455 .iter()
456 .filter_map(|node_id| self.node(*node_id).context.clone())
457 .collect();
458
459 if has_pending_keystrokes {
460 let mut pending_context = KeyContext::default();
461 pending_context.add("pending");
462 context_stack.push(pending_context);
463 }
464
465 let (bindings, partial) = self
466 .keymap
467 .borrow()
468 .bindings_for_input(input, &context_stack);
469 (bindings, partial, context_stack)
470 }
471
472 /// Find the bindings that can follow the current input sequence.
473 pub fn possible_next_bindings_for_input(
474 &self,
475 input: &[Keystroke],
476 context_stack: &[KeyContext],
477 ) -> Vec<KeyBinding> {
478 self.keymap
479 .borrow()
480 .possible_next_bindings_for_input(input, context_stack)
481 }
482
483 /// dispatch_key processes the keystroke
484 /// input should be set to the value of `pending` from the previous call to dispatch_key.
485 /// This returns three instructions to the input handler:
486 /// - bindings: any bindings to execute before processing this keystroke
487 /// - pending: the new set of pending keystrokes to store
488 /// - to_replay: any keystroke that had been pushed to pending, but are no-longer matched,
489 /// these should be replayed first.
490 pub fn dispatch_key(
491 &mut self,
492 mut input: SmallVec<[Keystroke; 1]>,
493 keystroke: Keystroke,
494 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
495 ) -> DispatchResult {
496 let has_pending_keystrokes = !input.is_empty();
497 input.push(keystroke.clone());
498 let (bindings, pending, context_stack) =
499 self.bindings_for_input(&input, dispatch_path, has_pending_keystrokes);
500
501 if pending {
502 return DispatchResult {
503 pending: input,
504 pending_has_binding: !bindings.is_empty(),
505 context_stack,
506 ..Default::default()
507 };
508 } else if !bindings.is_empty() {
509 return DispatchResult {
510 bindings,
511 context_stack,
512 ..Default::default()
513 };
514 } else if input.len() == 1 {
515 return DispatchResult {
516 context_stack,
517 ..Default::default()
518 };
519 }
520 input.pop();
521
522 let (suffix, mut to_replay) = self.replay_prefix(input, dispatch_path);
523
524 let mut result = self.dispatch_key(suffix, keystroke, dispatch_path);
525 to_replay.extend(result.to_replay);
526 result.to_replay = to_replay;
527 result
528 }
529
530 /// If the user types a matching prefix of a binding and then waits for a timeout
531 /// flush_dispatch() converts any previously pending input to replay events.
532 pub fn flush_dispatch(
533 &mut self,
534 input: SmallVec<[Keystroke; 1]>,
535 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
536 ) -> SmallVec<[Replay; 1]> {
537 let (suffix, mut to_replay) = self.replay_prefix(input, dispatch_path);
538
539 if !suffix.is_empty() {
540 to_replay.extend(self.flush_dispatch(suffix, dispatch_path))
541 }
542
543 to_replay
544 }
545
546 /// Converts the longest prefix of input to a replay event and returns the rest.
547 fn replay_prefix(
548 &self,
549 mut input: SmallVec<[Keystroke; 1]>,
550 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
551 ) -> (SmallVec<[Keystroke; 1]>, SmallVec<[Replay; 1]>) {
552 let mut to_replay: SmallVec<[Replay; 1]> = Default::default();
553 for last in (0..input.len()).rev() {
554 let (bindings, _, _) = self.bindings_for_input(&input[0..=last], dispatch_path, false);
555 if !bindings.is_empty() {
556 to_replay.push(Replay {
557 keystroke: input.drain(0..=last).next_back().unwrap(),
558 bindings,
559 });
560 break;
561 }
562 }
563 if to_replay.is_empty() {
564 to_replay.push(Replay {
565 keystroke: input.remove(0),
566 ..Default::default()
567 });
568 }
569 (input, to_replay)
570 }
571
572 pub fn dispatch_path(&self, target: DispatchNodeId) -> SmallVec<[DispatchNodeId; 32]> {
573 let mut dispatch_path: SmallVec<[DispatchNodeId; 32]> = SmallVec::new();
574 let mut current_node_id = Some(target);
575 while let Some(node_id) = current_node_id {
576 dispatch_path.push(node_id);
577 current_node_id = self.nodes.get(node_id.0).and_then(|node| node.parent);
578 }
579 dispatch_path.reverse(); // Reverse the path so it goes from the root to the focused node.
580 dispatch_path
581 }
582
583 pub fn focus_path(&self, focus_id: FocusId) -> SmallVec<[FocusId; 8]> {
584 let mut focus_path: SmallVec<[FocusId; 8]> = SmallVec::new();
585 let mut current_node_id = self.focusable_node_ids.get(&focus_id).copied();
586 while let Some(node_id) = current_node_id {
587 let node = self.node(node_id);
588 if let Some(focus_id) = node.focus_id {
589 focus_path.push(focus_id);
590 }
591 current_node_id = node.parent;
592 }
593 focus_path.reverse(); // Reverse the path so it goes from the root to the focused node.
594 focus_path
595 }
596
597 pub fn view_path_reversed(&self, view_id: EntityId) -> impl Iterator<Item = EntityId> {
598 let mut current_node_id = self.view_node_ids.get(&view_id).copied();
599
600 std::iter::successors(
601 current_node_id.map(|node_id| self.node(node_id)),
602 |node_id| Some(self.node(node_id.parent?)),
603 )
604 .filter_map(|node| node.view_id)
605 }
606
607 pub fn node(&self, node_id: DispatchNodeId) -> &DispatchNode {
608 &self.nodes[node_id.0]
609 }
610
611 fn active_node(&mut self) -> &mut DispatchNode {
612 let active_node_id = self.active_node_id().unwrap();
613 &mut self.nodes[active_node_id.0]
614 }
615
616 pub fn focusable_node_id(&self, target: FocusId) -> Option<DispatchNodeId> {
617 self.focusable_node_ids.get(&target).copied()
618 }
619
620 pub fn root_node_id(&self) -> DispatchNodeId {
621 debug_assert!(!self.nodes.is_empty());
622 DispatchNodeId(0)
623 }
624
625 pub fn active_node_id(&self) -> Option<DispatchNodeId> {
626 self.node_stack.last().copied()
627 }
628}
629
630#[cfg(test)]
631mod tests {
632 use crate::{
633 self as gpui, AppContext, DispatchResult, Element, ElementId, GlobalElementId,
634 InspectorElementId, Keystroke, LayoutId, Style,
635 };
636 use core::panic;
637 use smallvec::SmallVec;
638 use std::{cell::RefCell, ops::Range, rc::Rc};
639
640 use crate::{
641 Action, ActionRegistry, App, Bounds, Context, DispatchTree, FocusHandle, InputHandler,
642 IntoElement, KeyBinding, KeyContext, Keymap, Pixels, Point, Render, Subscription,
643 TestAppContext, UTF16Selection, Window,
644 };
645
646 #[derive(PartialEq, Eq)]
647 struct TestAction;
648
649 impl Action for TestAction {
650 fn name(&self) -> &'static str {
651 "test::TestAction"
652 }
653
654 fn name_for_type() -> &'static str
655 where
656 Self: ::std::marker::Sized,
657 {
658 "test::TestAction"
659 }
660
661 fn partial_eq(&self, action: &dyn Action) -> bool {
662 action.as_any().downcast_ref::<Self>() == Some(self)
663 }
664
665 fn boxed_clone(&self) -> std::boxed::Box<dyn Action> {
666 Box::new(TestAction)
667 }
668
669 fn build(_value: serde_json::Value) -> anyhow::Result<Box<dyn Action>>
670 where
671 Self: Sized,
672 {
673 Ok(Box::new(TestAction))
674 }
675 }
676
677 #[test]
678 fn test_keybinding_for_action_bounds() {
679 let keymap = Keymap::new(vec![KeyBinding::new(
680 "cmd-n",
681 TestAction,
682 Some("ProjectPanel"),
683 )]);
684
685 let mut registry = ActionRegistry::default();
686
687 registry.load_action::<TestAction>();
688
689 let keymap = Rc::new(RefCell::new(keymap));
690
691 let tree = DispatchTree::new(keymap, Rc::new(registry));
692
693 let contexts = vec![
694 KeyContext::parse("Workspace").unwrap(),
695 KeyContext::parse("ProjectPanel").unwrap(),
696 ];
697
698 let keybinding = tree.bindings_for_action(&TestAction, &contexts);
699
700 assert!(keybinding[0].action.partial_eq(&TestAction))
701 }
702
703 #[test]
704 fn test_pending_has_binding_state() {
705 let bindings = vec![
706 KeyBinding::new("ctrl-b h", TestAction, None),
707 KeyBinding::new("space", TestAction, Some("ContextA")),
708 KeyBinding::new("space f g", TestAction, Some("ContextB")),
709 ];
710 let keymap = Rc::new(RefCell::new(Keymap::new(bindings)));
711 let mut registry = ActionRegistry::default();
712 registry.load_action::<TestAction>();
713 let mut tree = DispatchTree::new(keymap, Rc::new(registry));
714
715 type DispatchPath = SmallVec<[super::DispatchNodeId; 32]>;
716 fn dispatch(
717 tree: &mut DispatchTree,
718 pending: SmallVec<[Keystroke; 1]>,
719 key: &str,
720 path: &DispatchPath,
721 ) -> DispatchResult {
722 tree.dispatch_key(pending, Keystroke::parse(key).unwrap(), path)
723 }
724
725 let dispatch_path: DispatchPath = SmallVec::new();
726 let result = dispatch(&mut tree, SmallVec::new(), "ctrl-b", &dispatch_path);
727 assert_eq!(result.pending.len(), 1);
728 assert!(!result.pending_has_binding);
729
730 let result = dispatch(&mut tree, result.pending, "h", &dispatch_path);
731 assert_eq!(result.pending.len(), 0);
732 assert_eq!(result.bindings.len(), 1);
733 assert!(!result.pending_has_binding);
734
735 let node_id = tree.push_node();
736 tree.set_key_context(KeyContext::parse("ContextB").unwrap());
737 tree.pop_node();
738
739 let dispatch_path = tree.dispatch_path(node_id);
740 let result = dispatch(&mut tree, SmallVec::new(), "space", &dispatch_path);
741
742 assert_eq!(result.pending.len(), 1);
743 assert!(!result.pending_has_binding);
744 }
745
746 #[crate::test]
747 fn test_pending_input_observers_notified_on_focus_change(cx: &mut TestAppContext) {
748 #[derive(Clone)]
749 struct CustomElement {
750 focus_handle: FocusHandle,
751 text: Rc<RefCell<String>>,
752 }
753
754 impl CustomElement {
755 fn new(cx: &mut Context<Self>) -> Self {
756 Self {
757 focus_handle: cx.focus_handle(),
758 text: Rc::default(),
759 }
760 }
761 }
762
763 impl Element for CustomElement {
764 type RequestLayoutState = ();
765
766 type PrepaintState = ();
767
768 fn id(&self) -> Option<ElementId> {
769 Some("custom".into())
770 }
771
772 fn source_location(&self) -> Option<&'static panic::Location<'static>> {
773 None
774 }
775
776 fn request_layout(
777 &mut self,
778 _: Option<&GlobalElementId>,
779 _: Option<&InspectorElementId>,
780 window: &mut Window,
781 cx: &mut App,
782 ) -> (LayoutId, Self::RequestLayoutState) {
783 (window.request_layout(Style::default(), [], cx), ())
784 }
785
786 fn prepaint(
787 &mut self,
788 _: Option<&GlobalElementId>,
789 _: Option<&InspectorElementId>,
790 _: Bounds<Pixels>,
791 _: &mut Self::RequestLayoutState,
792 window: &mut Window,
793 cx: &mut App,
794 ) -> Self::PrepaintState {
795 window.set_focus_handle(&self.focus_handle, cx);
796 }
797
798 fn paint(
799 &mut self,
800 _: Option<&GlobalElementId>,
801 _: Option<&InspectorElementId>,
802 _: Bounds<Pixels>,
803 _: &mut Self::RequestLayoutState,
804 _: &mut Self::PrepaintState,
805 window: &mut Window,
806 cx: &mut App,
807 ) {
808 let mut key_context = KeyContext::default();
809 key_context.add("Terminal");
810 window.set_key_context(key_context);
811 window.handle_input(&self.focus_handle, self.clone(), cx);
812 window.on_action(std::any::TypeId::of::<TestAction>(), |_, _, _, _| {});
813 }
814 }
815
816 impl IntoElement for CustomElement {
817 type Element = Self;
818
819 fn into_element(self) -> Self::Element {
820 self
821 }
822 }
823
824 impl InputHandler for CustomElement {
825 fn selected_text_range(
826 &mut self,
827 _: bool,
828 _: &mut Window,
829 _: &mut App,
830 ) -> Option<UTF16Selection> {
831 None
832 }
833
834 fn marked_text_range(&mut self, _: &mut Window, _: &mut App) -> Option<Range<usize>> {
835 None
836 }
837
838 fn text_for_range(
839 &mut self,
840 _: Range<usize>,
841 _: &mut Option<Range<usize>>,
842 _: &mut Window,
843 _: &mut App,
844 ) -> Option<String> {
845 None
846 }
847
848 fn replace_text_in_range(
849 &mut self,
850 replacement_range: Option<Range<usize>>,
851 text: &str,
852 _: &mut Window,
853 _: &mut App,
854 ) {
855 if replacement_range.is_some() {
856 unimplemented!()
857 }
858 self.text.borrow_mut().push_str(text)
859 }
860
861 fn replace_and_mark_text_in_range(
862 &mut self,
863 replacement_range: Option<Range<usize>>,
864 new_text: &str,
865 _: Option<Range<usize>>,
866 _: &mut Window,
867 _: &mut App,
868 ) {
869 if replacement_range.is_some() {
870 unimplemented!()
871 }
872 self.text.borrow_mut().push_str(new_text)
873 }
874
875 fn unmark_text(&mut self, _: &mut Window, _: &mut App) {}
876
877 fn bounds_for_range(
878 &mut self,
879 _: Range<usize>,
880 _: &mut Window,
881 _: &mut App,
882 ) -> Option<Bounds<Pixels>> {
883 None
884 }
885
886 fn character_index_for_point(
887 &mut self,
888 _: Point<Pixels>,
889 _: &mut Window,
890 _: &mut App,
891 ) -> Option<usize> {
892 None
893 }
894 }
895
896 impl Render for CustomElement {
897 fn render(&mut self, _: &mut Window, _: &mut Context<Self>) -> impl IntoElement {
898 self.clone()
899 }
900 }
901
902 cx.update(|cx| {
903 cx.bind_keys([KeyBinding::new("ctrl-b", TestAction, Some("Terminal"))]);
904 cx.bind_keys([KeyBinding::new("ctrl-b h", TestAction, Some("Terminal"))]);
905 });
906
907 let (test, cx) = cx.add_window_view(|_, cx| CustomElement::new(cx));
908 let focus_handle = test.update(cx, |test, _| test.focus_handle.clone());
909
910 let pending_input_changed_count = Rc::new(RefCell::new(0usize));
911 let pending_input_changed_count_for_observer = pending_input_changed_count.clone();
912
913 struct PendingInputObserver {
914 _subscription: Subscription,
915 }
916
917 let _observer = cx.update(|window, cx| {
918 cx.new(|cx| PendingInputObserver {
919 _subscription: cx.observe_pending_input(window, move |_, _, _| {
920 *pending_input_changed_count_for_observer.borrow_mut() += 1;
921 }),
922 })
923 });
924
925 cx.update(|window, cx| {
926 window.focus(&focus_handle, cx);
927 window.activate_window();
928 });
929
930 cx.simulate_keystrokes("ctrl-b");
931
932 let count_after_pending = Rc::new(RefCell::new(0usize));
933 let count_after_pending_for_assertion = count_after_pending.clone();
934
935 cx.update(|window, cx| {
936 assert!(window.has_pending_keystrokes());
937 *count_after_pending.borrow_mut() = *pending_input_changed_count.borrow();
938 assert!(*count_after_pending.borrow() > 0);
939
940 window.focus(&cx.focus_handle(), cx);
941
942 assert!(!window.has_pending_keystrokes());
943 });
944
945 // Focus-triggered pending-input notifications are deferred to the end of the current
946 // effect cycle, so the observer callback should run after the focus update completes.
947 cx.update(|_, _| {
948 let count_after_focus_change = *pending_input_changed_count.borrow();
949 assert!(count_after_focus_change > *count_after_pending_for_assertion.borrow());
950 });
951 }
952
953 #[crate::test]
954 fn test_input_handler_pending(cx: &mut TestAppContext) {
955 #[derive(Clone)]
956 struct CustomElement {
957 focus_handle: FocusHandle,
958 text: Rc<RefCell<String>>,
959 }
960 impl CustomElement {
961 fn new(cx: &mut Context<Self>) -> Self {
962 Self {
963 focus_handle: cx.focus_handle(),
964 text: Rc::default(),
965 }
966 }
967 }
968 impl Element for CustomElement {
969 type RequestLayoutState = ();
970
971 type PrepaintState = ();
972
973 fn id(&self) -> Option<ElementId> {
974 Some("custom".into())
975 }
976 fn source_location(&self) -> Option<&'static panic::Location<'static>> {
977 None
978 }
979 fn request_layout(
980 &mut self,
981 _: Option<&GlobalElementId>,
982 _: Option<&InspectorElementId>,
983 window: &mut Window,
984 cx: &mut App,
985 ) -> (LayoutId, Self::RequestLayoutState) {
986 (window.request_layout(Style::default(), [], cx), ())
987 }
988 fn prepaint(
989 &mut self,
990 _: Option<&GlobalElementId>,
991 _: Option<&InspectorElementId>,
992 _: Bounds<Pixels>,
993 _: &mut Self::RequestLayoutState,
994 window: &mut Window,
995 cx: &mut App,
996 ) -> Self::PrepaintState {
997 window.set_focus_handle(&self.focus_handle, cx);
998 }
999 fn paint(
1000 &mut self,
1001 _: Option<&GlobalElementId>,
1002 _: Option<&InspectorElementId>,
1003 _: Bounds<Pixels>,
1004 _: &mut Self::RequestLayoutState,
1005 _: &mut Self::PrepaintState,
1006 window: &mut Window,
1007 cx: &mut App,
1008 ) {
1009 let mut key_context = KeyContext::default();
1010 key_context.add("Terminal");
1011 window.set_key_context(key_context);
1012 window.handle_input(&self.focus_handle, self.clone(), cx);
1013 window.on_action(std::any::TypeId::of::<TestAction>(), |_, _, _, _| {});
1014 }
1015 }
1016 impl IntoElement for CustomElement {
1017 type Element = Self;
1018
1019 fn into_element(self) -> Self::Element {
1020 self
1021 }
1022 }
1023
1024 impl InputHandler for CustomElement {
1025 fn selected_text_range(
1026 &mut self,
1027 _: bool,
1028 _: &mut Window,
1029 _: &mut App,
1030 ) -> Option<UTF16Selection> {
1031 None
1032 }
1033
1034 fn marked_text_range(&mut self, _: &mut Window, _: &mut App) -> Option<Range<usize>> {
1035 None
1036 }
1037
1038 fn text_for_range(
1039 &mut self,
1040 _: Range<usize>,
1041 _: &mut Option<Range<usize>>,
1042 _: &mut Window,
1043 _: &mut App,
1044 ) -> Option<String> {
1045 None
1046 }
1047
1048 fn replace_text_in_range(
1049 &mut self,
1050 replacement_range: Option<Range<usize>>,
1051 text: &str,
1052 _: &mut Window,
1053 _: &mut App,
1054 ) {
1055 if replacement_range.is_some() {
1056 unimplemented!()
1057 }
1058 self.text.borrow_mut().push_str(text)
1059 }
1060
1061 fn replace_and_mark_text_in_range(
1062 &mut self,
1063 replacement_range: Option<Range<usize>>,
1064 new_text: &str,
1065 _: Option<Range<usize>>,
1066 _: &mut Window,
1067 _: &mut App,
1068 ) {
1069 if replacement_range.is_some() {
1070 unimplemented!()
1071 }
1072 self.text.borrow_mut().push_str(new_text)
1073 }
1074
1075 fn unmark_text(&mut self, _: &mut Window, _: &mut App) {}
1076
1077 fn bounds_for_range(
1078 &mut self,
1079 _: Range<usize>,
1080 _: &mut Window,
1081 _: &mut App,
1082 ) -> Option<Bounds<Pixels>> {
1083 None
1084 }
1085
1086 fn character_index_for_point(
1087 &mut self,
1088 _: Point<Pixels>,
1089 _: &mut Window,
1090 _: &mut App,
1091 ) -> Option<usize> {
1092 None
1093 }
1094 }
1095 impl Render for CustomElement {
1096 fn render(&mut self, _: &mut Window, _: &mut Context<Self>) -> impl IntoElement {
1097 self.clone()
1098 }
1099 }
1100
1101 cx.update(|cx| {
1102 cx.bind_keys([KeyBinding::new("ctrl-b", TestAction, Some("Terminal"))]);
1103 cx.bind_keys([KeyBinding::new("ctrl-b h", TestAction, Some("Terminal"))]);
1104 });
1105 let (test, cx) = cx.add_window_view(|_, cx| CustomElement::new(cx));
1106 let focus_handle = test.update(cx, |test, _| test.focus_handle.clone());
1107 cx.update(|window, cx| {
1108 window.focus(&focus_handle, cx);
1109 window.activate_window();
1110 });
1111 cx.simulate_keystrokes("ctrl-b [");
1112 test.update(cx, |test, _| assert_eq!(test.text.borrow().as_str(), "["))
1113 }
1114}