shaders.metal

  1#include <metal_stdlib>
  2#include "shaders.h"
  3
  4using namespace metal;
  5
  6float4 coloru_to_colorf(uchar4 coloru) {
  7    return float4(coloru) / float4(0xff, 0xff, 0xff, 0xff);
  8}
  9
 10float4 to_device_position(float2 pixel_position, float2 viewport_size) {
 11    return float4(pixel_position / viewport_size * float2(2., -2.) + float2(-1., 1.), 0., 1.);
 12}
 13
 14// A standard gaussian function, used for weighting samples
 15float gaussian(float x, float sigma) {
 16    return exp(-(x * x) / (2. * sigma * sigma)) / (sqrt(2. * M_PI_F) * sigma);
 17}
 18
 19// This approximates the error function, needed for the gaussian integral
 20float2 erf(float2 x) {
 21    float2 s = sign(x);
 22    float2 a = abs(x);
 23    x = 1. + (0.278393 + (0.230389 + 0.078108 * (a * a)) * a) * a;
 24    x *= x;
 25    return s - s / (x * x);
 26}
 27
 28float blur_along_x(float x, float y, float sigma, float corner, float2 halfSize) {
 29    float delta = min(halfSize.y - corner - abs(y), 0.);
 30    float curved = halfSize.x - corner + sqrt(max(0., corner * corner - delta * delta));
 31    float2 integral = 0.5 + 0.5 * erf((x + float2(-curved, curved)) * (sqrt(0.5) / sigma));
 32    return integral.y - integral.x;
 33}
 34
 35struct QuadFragmentInput {
 36    float4 position [[position]];
 37    float2 atlas_position; // only used in the image shader
 38    float2 origin;
 39    float2 size;
 40    float4 background_color;
 41    float border_top;
 42    float border_right;
 43    float border_bottom;
 44    float border_left;
 45    float4 border_color;
 46    float corner_radius;
 47};
 48
 49float4 quad_sdf(QuadFragmentInput input) {
 50    float2 half_size = input.size / 2.;
 51    float2 center = input.origin + half_size;
 52    float2 center_to_point = input.position.xy - center;
 53    float2 rounded_edge_to_point = abs(center_to_point) - half_size + input.corner_radius;
 54    float distance = length(max(0., rounded_edge_to_point)) + min(0., max(rounded_edge_to_point.x, rounded_edge_to_point.y)) - input.corner_radius;
 55
 56    float vertical_border = center_to_point.x <= 0. ? input.border_left : input.border_right;
 57    float horizontal_border = center_to_point.y <= 0. ? input.border_top : input.border_bottom;
 58    float2 inset_size = half_size - input.corner_radius - float2(vertical_border, horizontal_border);
 59    float2 point_to_inset_corner = abs(center_to_point) - inset_size;
 60    float border_width;
 61    if (point_to_inset_corner.x < 0. && point_to_inset_corner.y < 0.) {
 62        border_width = 0.;
 63    } else if (point_to_inset_corner.y > point_to_inset_corner.x) {
 64        border_width = horizontal_border;
 65    } else {
 66        border_width = vertical_border;
 67    }
 68
 69    float4 color;
 70    if (border_width == 0.) {
 71        color = input.background_color;
 72    } else {
 73        float4 border_color = float4(mix(float3(input.background_color), float3(input.border_color), input.border_color.a), 1.);
 74        float inset_distance = distance + border_width;
 75        color = mix(
 76            border_color,
 77            input.background_color,
 78            saturate(0.5 - inset_distance)
 79        );
 80    }
 81
 82    float4 coverage = float4(1., 1., 1., saturate(0.5 - distance));
 83    return coverage * color;
 84}
 85
 86vertex QuadFragmentInput quad_vertex(
 87    uint unit_vertex_id [[vertex_id]],
 88    uint quad_id [[instance_id]],
 89    constant float2 *unit_vertices [[buffer(GPUIQuadInputIndexVertices)]],
 90    constant GPUIQuad *quads [[buffer(GPUIQuadInputIndexQuads)]],
 91    constant GPUIUniforms *uniforms [[buffer(GPUIQuadInputIndexUniforms)]]
 92) {
 93    float2 unit_vertex = unit_vertices[unit_vertex_id];
 94    GPUIQuad quad = quads[quad_id];
 95    float2 position = unit_vertex * quad.size + quad.origin;
 96    float4 device_position = to_device_position(position, uniforms->viewport_size);
 97
 98    return QuadFragmentInput {
 99        device_position,
100        float2(0., 0.),
101        quad.origin,
102        quad.size,
103        coloru_to_colorf(quad.background_color),
104        quad.border_top,
105        quad.border_right,
106        quad.border_bottom,
107        quad.border_left,
108        coloru_to_colorf(quad.border_color),
109        quad.corner_radius,
110    };
111}
112
113fragment float4 quad_fragment(
114    QuadFragmentInput input [[stage_in]]
115) {
116    return quad_sdf(input);
117}
118
119struct ShadowFragmentInput {
120    float4 position [[position]];
121    vector_float2 origin;
122    vector_float2 size;
123    float corner_radius;
124    float sigma;
125    vector_uchar4 color;
126};
127
128vertex ShadowFragmentInput shadow_vertex(
129    uint unit_vertex_id [[vertex_id]],
130    uint shadow_id [[instance_id]],
131    constant float2 *unit_vertices [[buffer(GPUIShadowInputIndexVertices)]],
132    constant GPUIShadow *shadows [[buffer(GPUIShadowInputIndexShadows)]],
133    constant GPUIUniforms *uniforms [[buffer(GPUIShadowInputIndexUniforms)]]
134) {
135    float2 unit_vertex = unit_vertices[unit_vertex_id];
136    GPUIShadow shadow = shadows[shadow_id];
137
138    float margin = 3. * shadow.sigma;
139    float2 position = unit_vertex * (shadow.size + 2. * margin) + shadow.origin - margin;
140    float4 device_position = to_device_position(position, uniforms->viewport_size);
141
142    return ShadowFragmentInput {
143        device_position,
144        shadow.origin,
145        shadow.size,
146        shadow.corner_radius,
147        shadow.sigma,
148        shadow.color,
149    };
150}
151
152fragment float4 shadow_fragment(
153    ShadowFragmentInput input [[stage_in]]
154) {
155    float sigma = input.sigma;
156    float corner_radius = input.corner_radius;
157    float2 half_size = input.size / 2.;
158    float2 center = input.origin + half_size;
159    float2 point = input.position.xy - center;
160
161    // The signal is only non-zero in a limited range, so don't waste samples
162    float low = point.y - half_size.y;
163    float high = point.y + half_size.y;
164    float start = clamp(-3. * sigma, low, high);
165    float end = clamp(3. * sigma, low, high);
166
167    // Accumulate samples (we can get away with surprisingly few samples)
168    float step = (end - start) / 4.;
169    float y = start + step * 0.5;
170    float alpha = 0.;
171    for (int i = 0; i < 4; i++) {
172        alpha += blur_along_x(point.x, point.y - y, sigma, corner_radius, half_size) * gaussian(y, sigma) * step;
173        y += step;
174    }
175
176    return float4(1., 1., 1., alpha) * coloru_to_colorf(input.color);
177}
178
179struct SpriteFragmentInput {
180    float4 position [[position]];
181    float2 atlas_position;
182    float4 color [[flat]];
183    uchar compute_winding [[flat]];
184};
185
186vertex SpriteFragmentInput sprite_vertex(
187    uint unit_vertex_id [[vertex_id]],
188    uint sprite_id [[instance_id]],
189    constant float2 *unit_vertices [[buffer(GPUISpriteVertexInputIndexVertices)]],
190    constant GPUISprite *sprites [[buffer(GPUISpriteVertexInputIndexSprites)]],
191    constant float2 *viewport_size [[buffer(GPUISpriteVertexInputIndexViewportSize)]],
192    constant float2 *atlas_size [[buffer(GPUISpriteVertexInputIndexAtlasSize)]]
193) {
194    float2 unit_vertex = unit_vertices[unit_vertex_id];
195    GPUISprite sprite = sprites[sprite_id];
196    float2 position = unit_vertex * sprite.target_size + sprite.origin;
197    float4 device_position = to_device_position(position, *viewport_size);
198    float2 atlas_position = (unit_vertex * sprite.source_size + sprite.atlas_origin) / *atlas_size;
199
200    return SpriteFragmentInput {
201        device_position,
202        atlas_position,
203        coloru_to_colorf(sprite.color),
204        sprite.compute_winding
205    };
206}
207
208fragment float4 sprite_fragment(
209    SpriteFragmentInput input [[stage_in]],
210    texture2d<float> atlas [[ texture(GPUISpriteFragmentInputIndexAtlas) ]]
211) {
212    constexpr sampler atlas_sampler(mag_filter::linear, min_filter::linear);
213    float4 color = input.color;
214    float4 sample = atlas.sample(atlas_sampler, input.atlas_position);
215    float mask;
216    if (input.compute_winding) {
217        mask = 1. - abs(1. - fmod(sample.r, 2.));
218    } else {
219        mask = sample.a;
220    }
221    color.a *= mask;
222    return color;
223}
224
225vertex QuadFragmentInput image_vertex(
226    uint unit_vertex_id [[vertex_id]],
227    uint image_id [[instance_id]],
228    constant float2 *unit_vertices [[buffer(GPUIImageVertexInputIndexVertices)]],
229    constant GPUIImage *images [[buffer(GPUIImageVertexInputIndexImages)]],
230    constant float2 *viewport_size [[buffer(GPUIImageVertexInputIndexViewportSize)]],
231    constant float2 *atlas_size [[buffer(GPUIImageVertexInputIndexAtlasSize)]]
232) {
233    float2 unit_vertex = unit_vertices[unit_vertex_id];
234    GPUIImage image = images[image_id];
235    float2 position = unit_vertex * image.target_size + image.origin;
236    float4 device_position = to_device_position(position, *viewport_size);
237    float2 atlas_position = (unit_vertex * image.source_size + image.atlas_origin) / *atlas_size;
238
239    return QuadFragmentInput {
240        device_position,
241        atlas_position,
242        image.origin,
243        image.target_size,
244        float4(0.),
245        image.border_top,
246        image.border_right,
247        image.border_bottom,
248        image.border_left,
249        coloru_to_colorf(image.border_color),
250        image.corner_radius,
251    };
252}
253
254fragment float4 image_fragment(
255    QuadFragmentInput input [[stage_in]],
256    texture2d<float> atlas [[ texture(GPUIImageFragmentInputIndexAtlas) ]]
257) {
258    constexpr sampler atlas_sampler(mag_filter::linear, min_filter::linear);
259    input.background_color = atlas.sample(atlas_sampler, input.atlas_position);
260    return quad_sdf(input);
261}
262
263struct PathAtlasVertexOutput {
264    float4 position [[position]];
265    float2 st_position;
266    float clip_rect_distance [[clip_distance]] [4];
267};
268
269struct PathAtlasFragmentInput {
270    float4 position [[position]];
271    float2 st_position;
272};
273
274vertex PathAtlasVertexOutput path_atlas_vertex(
275    uint vertex_id [[vertex_id]],
276    constant GPUIPathVertex *vertices [[buffer(GPUIPathAtlasVertexInputIndexVertices)]],
277    constant float2 *atlas_size [[buffer(GPUIPathAtlasVertexInputIndexAtlasSize)]]
278) {
279    GPUIPathVertex v = vertices[vertex_id];
280    float4 device_position = to_device_position(v.xy_position, *atlas_size);
281    return PathAtlasVertexOutput {
282        device_position,
283        v.st_position,
284        {
285            v.xy_position.x - v.clip_rect_origin.x,
286            v.clip_rect_origin.x + v.clip_rect_size.x - v.xy_position.x,
287            v.xy_position.y - v.clip_rect_origin.y,
288            v.clip_rect_origin.y + v.clip_rect_size.y - v.xy_position.y
289        }
290    };
291}
292
293fragment float4 path_atlas_fragment(
294    PathAtlasFragmentInput input [[stage_in]]
295) {
296    float2 dx = dfdx(input.st_position);
297    float2 dy = dfdy(input.st_position);
298    float2 gradient = float2(
299        (2. * input.st_position.x) * dx.x - dx.y,
300        (2. * input.st_position.x) * dy.x - dy.y
301    );
302    float f = (input.st_position.x * input.st_position.x) - input.st_position.y;
303    float distance = f / length(gradient);
304    float alpha = saturate(0.5 - distance);
305    return float4(alpha, 0., 0., 1.);
306}