1use crate::{
2 px, size, transparent_black, Action, AnyDrag, AnyView, AppContext, Arena, AsyncWindowContext,
3 AvailableSpace, Bounds, Context, Corners, CursorStyle, DispatchActionListener, DispatchNodeId,
4 DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter, FileDropEvent, Flatten,
5 Global, GlobalElementId, Hsla, KeyBinding, KeyContext, KeyDownEvent, KeyMatch, KeymatchResult,
6 Keystroke, KeystrokeEvent, Model, ModelContext, Modifiers, MouseButton, MouseMoveEvent,
7 MouseUpEvent, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput, PlatformWindow, Point,
8 PromptLevel, Render, ScaledPixels, SharedString, Size, SubscriberSet, Subscription,
9 TaffyLayoutEngine, Task, View, VisualContext, WeakView, WindowAppearance, WindowBounds,
10 WindowOptions, WindowTextSystem,
11};
12use anyhow::{anyhow, Context as _, Result};
13use collections::FxHashSet;
14use derive_more::{Deref, DerefMut};
15use futures::channel::oneshot;
16use parking_lot::RwLock;
17use slotmap::SlotMap;
18use smallvec::SmallVec;
19use std::{
20 any::{Any, TypeId},
21 borrow::{Borrow, BorrowMut},
22 cell::{Cell, RefCell},
23 fmt::{Debug, Display},
24 future::Future,
25 hash::{Hash, Hasher},
26 marker::PhantomData,
27 mem,
28 rc::Rc,
29 sync::{
30 atomic::{AtomicUsize, Ordering::SeqCst},
31 Arc,
32 },
33 time::{Duration, Instant},
34};
35use util::{measure, ResultExt};
36
37mod element_cx;
38pub use element_cx::*;
39
40const ACTIVE_DRAG_Z_INDEX: u16 = 1;
41
42/// A global stacking order, which is created by stacking successive z-index values.
43/// Each z-index will always be interpreted in the context of its parent z-index.
44#[derive(Debug, Deref, DerefMut, Clone, Ord, PartialOrd, PartialEq, Eq, Default)]
45pub struct StackingOrder(SmallVec<[StackingContext; 64]>);
46
47/// A single entry in a primitive's z-index stacking order
48#[derive(Clone, Ord, PartialOrd, PartialEq, Eq, Default)]
49pub struct StackingContext {
50 pub(crate) z_index: u16,
51 pub(crate) id: u16,
52}
53
54impl std::fmt::Debug for StackingContext {
55 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
56 write!(f, "{{{}.{}}} ", self.z_index, self.id)
57 }
58}
59
60/// Represents the two different phases when dispatching events.
61#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
62pub enum DispatchPhase {
63 /// After the capture phase comes the bubble phase, in which mouse event listeners are
64 /// invoked front to back and keyboard event listeners are invoked from the focused element
65 /// to the root of the element tree. This is the phase you'll most commonly want to use when
66 /// registering event listeners.
67 #[default]
68 Bubble,
69 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
70 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
71 /// is used for special purposes such as clearing the "pressed" state for click events. If
72 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
73 /// outside of the immediate region may rely on detecting non-local events during this phase.
74 Capture,
75}
76
77impl DispatchPhase {
78 /// Returns true if this represents the "bubble" phase.
79 pub fn bubble(self) -> bool {
80 self == DispatchPhase::Bubble
81 }
82
83 /// Returns true if this represents the "capture" phase.
84 pub fn capture(self) -> bool {
85 self == DispatchPhase::Capture
86 }
87}
88
89type AnyObserver = Box<dyn FnMut(&mut WindowContext) -> bool + 'static>;
90
91type AnyWindowFocusListener = Box<dyn FnMut(&FocusEvent, &mut WindowContext) -> bool + 'static>;
92
93struct FocusEvent {
94 previous_focus_path: SmallVec<[FocusId; 8]>,
95 current_focus_path: SmallVec<[FocusId; 8]>,
96}
97
98slotmap::new_key_type! {
99 /// A globally unique identifier for a focusable element.
100 pub struct FocusId;
101}
102
103thread_local! {
104 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(8 * 1024 * 1024));
105}
106
107impl FocusId {
108 /// Obtains whether the element associated with this handle is currently focused.
109 pub fn is_focused(&self, cx: &WindowContext) -> bool {
110 cx.window.focus == Some(*self)
111 }
112
113 /// Obtains whether the element associated with this handle contains the focused
114 /// element or is itself focused.
115 pub fn contains_focused(&self, cx: &WindowContext) -> bool {
116 cx.focused()
117 .map_or(false, |focused| self.contains(focused.id, cx))
118 }
119
120 /// Obtains whether the element associated with this handle is contained within the
121 /// focused element or is itself focused.
122 pub fn within_focused(&self, cx: &WindowContext) -> bool {
123 let focused = cx.focused();
124 focused.map_or(false, |focused| focused.id.contains(*self, cx))
125 }
126
127 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
128 pub(crate) fn contains(&self, other: Self, cx: &WindowContext) -> bool {
129 cx.window
130 .rendered_frame
131 .dispatch_tree
132 .focus_contains(*self, other)
133 }
134}
135
136/// A handle which can be used to track and manipulate the focused element in a window.
137pub struct FocusHandle {
138 pub(crate) id: FocusId,
139 handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
140}
141
142impl std::fmt::Debug for FocusHandle {
143 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
144 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
145 }
146}
147
148impl FocusHandle {
149 pub(crate) fn new(handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>) -> Self {
150 let id = handles.write().insert(AtomicUsize::new(1));
151 Self {
152 id,
153 handles: handles.clone(),
154 }
155 }
156
157 pub(crate) fn for_id(
158 id: FocusId,
159 handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
160 ) -> Option<Self> {
161 let lock = handles.read();
162 let ref_count = lock.get(id)?;
163 if ref_count.load(SeqCst) == 0 {
164 None
165 } else {
166 ref_count.fetch_add(1, SeqCst);
167 Some(Self {
168 id,
169 handles: handles.clone(),
170 })
171 }
172 }
173
174 /// Moves the focus to the element associated with this handle.
175 pub fn focus(&self, cx: &mut WindowContext) {
176 cx.focus(self)
177 }
178
179 /// Obtains whether the element associated with this handle is currently focused.
180 pub fn is_focused(&self, cx: &WindowContext) -> bool {
181 self.id.is_focused(cx)
182 }
183
184 /// Obtains whether the element associated with this handle contains the focused
185 /// element or is itself focused.
186 pub fn contains_focused(&self, cx: &WindowContext) -> bool {
187 self.id.contains_focused(cx)
188 }
189
190 /// Obtains whether the element associated with this handle is contained within the
191 /// focused element or is itself focused.
192 pub fn within_focused(&self, cx: &WindowContext) -> bool {
193 self.id.within_focused(cx)
194 }
195
196 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
197 pub fn contains(&self, other: &Self, cx: &WindowContext) -> bool {
198 self.id.contains(other.id, cx)
199 }
200}
201
202impl Clone for FocusHandle {
203 fn clone(&self) -> Self {
204 Self::for_id(self.id, &self.handles).unwrap()
205 }
206}
207
208impl PartialEq for FocusHandle {
209 fn eq(&self, other: &Self) -> bool {
210 self.id == other.id
211 }
212}
213
214impl Eq for FocusHandle {}
215
216impl Drop for FocusHandle {
217 fn drop(&mut self) {
218 self.handles
219 .read()
220 .get(self.id)
221 .unwrap()
222 .fetch_sub(1, SeqCst);
223 }
224}
225
226/// FocusableView allows users of your view to easily
227/// focus it (using cx.focus_view(view))
228pub trait FocusableView: 'static + Render {
229 /// Returns the focus handle associated with this view.
230 fn focus_handle(&self, cx: &AppContext) -> FocusHandle;
231}
232
233/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
234/// where the lifecycle of the view is handled by another view.
235pub trait ManagedView: FocusableView + EventEmitter<DismissEvent> {}
236
237impl<M: FocusableView + EventEmitter<DismissEvent>> ManagedView for M {}
238
239/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
240pub struct DismissEvent;
241
242type FrameCallback = Box<dyn FnOnce(&mut WindowContext)>;
243
244// Holds the state for a specific window.
245#[doc(hidden)]
246pub struct Window {
247 pub(crate) handle: AnyWindowHandle,
248 pub(crate) removed: bool,
249 pub(crate) platform_window: Box<dyn PlatformWindow>,
250 display_id: DisplayId,
251 sprite_atlas: Arc<dyn PlatformAtlas>,
252 text_system: Arc<WindowTextSystem>,
253 pub(crate) rem_size: Pixels,
254 pub(crate) viewport_size: Size<Pixels>,
255 layout_engine: Option<TaffyLayoutEngine>,
256 pub(crate) root_view: Option<AnyView>,
257 pub(crate) element_id_stack: GlobalElementId,
258 pub(crate) rendered_frame: Frame,
259 pub(crate) next_frame: Frame,
260 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
261 pub(crate) dirty_views: FxHashSet<EntityId>,
262 pub(crate) focus_handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
263 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
264 focus_lost_listeners: SubscriberSet<(), AnyObserver>,
265 default_prevented: bool,
266 mouse_position: Point<Pixels>,
267 modifiers: Modifiers,
268 scale_factor: f32,
269 bounds: WindowBounds,
270 bounds_observers: SubscriberSet<(), AnyObserver>,
271 appearance: WindowAppearance,
272 appearance_observers: SubscriberSet<(), AnyObserver>,
273 active: Rc<Cell<bool>>,
274 pub(crate) dirty: Rc<Cell<bool>>,
275 pub(crate) needs_present: Rc<Cell<bool>>,
276 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
277 pub(crate) refreshing: bool,
278 pub(crate) drawing: bool,
279 activation_observers: SubscriberSet<(), AnyObserver>,
280 pub(crate) focus: Option<FocusId>,
281 focus_enabled: bool,
282 pending_input: Option<PendingInput>,
283 graphics_profiler_enabled: bool,
284}
285
286#[derive(Default, Debug)]
287struct PendingInput {
288 keystrokes: SmallVec<[Keystroke; 1]>,
289 bindings: SmallVec<[KeyBinding; 1]>,
290 focus: Option<FocusId>,
291 timer: Option<Task<()>>,
292}
293
294impl PendingInput {
295 fn input(&self) -> String {
296 self.keystrokes
297 .iter()
298 .flat_map(|k| k.ime_key.clone())
299 .collect::<Vec<String>>()
300 .join("")
301 }
302
303 fn used_by_binding(&self, binding: &KeyBinding) -> bool {
304 if self.keystrokes.is_empty() {
305 return true;
306 }
307 let keystroke = &self.keystrokes[0];
308 for candidate in keystroke.match_candidates() {
309 if binding.match_keystrokes(&[candidate]) == KeyMatch::Pending {
310 return true;
311 }
312 }
313 false
314 }
315}
316
317pub(crate) struct ElementStateBox {
318 pub(crate) inner: Box<dyn Any>,
319 pub(crate) parent_view_id: EntityId,
320 #[cfg(debug_assertions)]
321 pub(crate) type_name: &'static str,
322}
323
324impl Window {
325 pub(crate) fn new(
326 handle: AnyWindowHandle,
327 options: WindowOptions,
328 cx: &mut AppContext,
329 ) -> Self {
330 let platform_window = cx.platform.open_window(handle, options);
331 let display_id = platform_window.display().id();
332 let sprite_atlas = platform_window.sprite_atlas();
333 let mouse_position = platform_window.mouse_position();
334 let modifiers = platform_window.modifiers();
335 let content_size = platform_window.content_size();
336 let scale_factor = platform_window.scale_factor();
337 let bounds = platform_window.bounds();
338 let appearance = platform_window.appearance();
339 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
340 let dirty = Rc::new(Cell::new(true));
341 let active = Rc::new(Cell::new(false));
342 let needs_present = Rc::new(Cell::new(false));
343 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
344 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
345
346 platform_window.on_close(Box::new({
347 let mut cx = cx.to_async();
348 move || {
349 let _ = handle.update(&mut cx, |_, cx| cx.remove_window());
350 }
351 }));
352 platform_window.on_request_frame(Box::new({
353 let mut cx = cx.to_async();
354 let dirty = dirty.clone();
355 let active = active.clone();
356 let needs_present = needs_present.clone();
357 let next_frame_callbacks = next_frame_callbacks.clone();
358 let last_input_timestamp = last_input_timestamp.clone();
359 move || {
360 let next_frame_callbacks = next_frame_callbacks.take();
361 if !next_frame_callbacks.is_empty() {
362 handle
363 .update(&mut cx, |_, cx| {
364 for callback in next_frame_callbacks {
365 callback(cx);
366 }
367 })
368 .log_err();
369 }
370
371 // Keep presenting the current scene for 1 extra second since the
372 // last input to prevent the display from underclocking the refresh rate.
373 let needs_present = needs_present.get()
374 || (active.get()
375 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
376
377 if dirty.get() {
378 measure("frame duration", || {
379 handle
380 .update(&mut cx, |_, cx| {
381 cx.draw();
382 cx.present();
383 })
384 .log_err();
385 })
386 } else if needs_present {
387 handle.update(&mut cx, |_, cx| cx.present()).log_err();
388 }
389 }
390 }));
391 platform_window.on_resize(Box::new({
392 let mut cx = cx.to_async();
393 move |_, _| {
394 handle
395 .update(&mut cx, |_, cx| cx.window_bounds_changed())
396 .log_err();
397 }
398 }));
399 platform_window.on_moved(Box::new({
400 let mut cx = cx.to_async();
401 move || {
402 handle
403 .update(&mut cx, |_, cx| cx.window_bounds_changed())
404 .log_err();
405 }
406 }));
407 platform_window.on_appearance_changed(Box::new({
408 let mut cx = cx.to_async();
409 move || {
410 handle
411 .update(&mut cx, |_, cx| cx.appearance_changed())
412 .log_err();
413 }
414 }));
415 platform_window.on_active_status_change(Box::new({
416 let mut cx = cx.to_async();
417 move |active| {
418 handle
419 .update(&mut cx, |_, cx| {
420 cx.window.active.set(active);
421 cx.window
422 .activation_observers
423 .clone()
424 .retain(&(), |callback| callback(cx));
425 })
426 .log_err();
427 }
428 }));
429
430 platform_window.on_input({
431 let mut cx = cx.to_async();
432 Box::new(move |event| {
433 handle
434 .update(&mut cx, |_, cx| cx.dispatch_event(event))
435 .log_err()
436 .unwrap_or(false)
437 })
438 });
439
440 Window {
441 handle,
442 removed: false,
443 platform_window,
444 display_id,
445 sprite_atlas,
446 text_system,
447 rem_size: px(16.),
448 viewport_size: content_size,
449 layout_engine: Some(TaffyLayoutEngine::new()),
450 root_view: None,
451 element_id_stack: GlobalElementId::default(),
452 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
453 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
454 next_frame_callbacks,
455 dirty_views: FxHashSet::default(),
456 focus_handles: Arc::new(RwLock::new(SlotMap::with_key())),
457 focus_listeners: SubscriberSet::new(),
458 focus_lost_listeners: SubscriberSet::new(),
459 default_prevented: true,
460 mouse_position,
461 modifiers,
462 scale_factor,
463 bounds,
464 bounds_observers: SubscriberSet::new(),
465 appearance,
466 appearance_observers: SubscriberSet::new(),
467 active,
468 dirty,
469 needs_present,
470 last_input_timestamp,
471 refreshing: false,
472 drawing: false,
473 activation_observers: SubscriberSet::new(),
474 focus: None,
475 focus_enabled: true,
476 pending_input: None,
477 graphics_profiler_enabled: false,
478 }
479 }
480 fn new_focus_listener(
481 &mut self,
482 value: AnyWindowFocusListener,
483 ) -> (Subscription, impl FnOnce()) {
484 self.focus_listeners.insert((), value)
485 }
486}
487
488/// Indicates which region of the window is visible. Content falling outside of this mask will not be
489/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
490/// to leave room to support more complex shapes in the future.
491#[derive(Clone, Debug, Default, PartialEq, Eq)]
492#[repr(C)]
493pub struct ContentMask<P: Clone + Default + Debug> {
494 /// The bounds
495 pub bounds: Bounds<P>,
496}
497
498impl ContentMask<Pixels> {
499 /// Scale the content mask's pixel units by the given scaling factor.
500 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
501 ContentMask {
502 bounds: self.bounds.scale(factor),
503 }
504 }
505
506 /// Intersect the content mask with the given content mask.
507 pub fn intersect(&self, other: &Self) -> Self {
508 let bounds = self.bounds.intersect(&other.bounds);
509 ContentMask { bounds }
510 }
511}
512
513/// Provides access to application state in the context of a single window. Derefs
514/// to an [`AppContext`], so you can also pass a [`WindowContext`] to any method that takes
515/// an [`AppContext`] and call any [`AppContext`] methods.
516pub struct WindowContext<'a> {
517 pub(crate) app: &'a mut AppContext,
518 pub(crate) window: &'a mut Window,
519}
520
521impl<'a> WindowContext<'a> {
522 pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self {
523 Self { app, window }
524 }
525
526 /// Obtain a handle to the window that belongs to this context.
527 pub fn window_handle(&self) -> AnyWindowHandle {
528 self.window.handle
529 }
530
531 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
532 pub fn refresh(&mut self) {
533 if !self.window.drawing {
534 self.window.refreshing = true;
535 self.window.dirty.set(true);
536 }
537 }
538
539 /// Close this window.
540 pub fn remove_window(&mut self) {
541 self.window.removed = true;
542 }
543
544 /// Obtain a new [`FocusHandle`], which allows you to track and manipulate the keyboard focus
545 /// for elements rendered within this window.
546 pub fn focus_handle(&mut self) -> FocusHandle {
547 FocusHandle::new(&self.window.focus_handles)
548 }
549
550 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
551 pub fn focused(&self) -> Option<FocusHandle> {
552 self.window
553 .focus
554 .and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles))
555 }
556
557 /// Move focus to the element associated with the given [`FocusHandle`].
558 pub fn focus(&mut self, handle: &FocusHandle) {
559 if !self.window.focus_enabled || self.window.focus == Some(handle.id) {
560 return;
561 }
562
563 self.window.focus = Some(handle.id);
564 self.window
565 .rendered_frame
566 .dispatch_tree
567 .clear_pending_keystrokes();
568 self.refresh();
569 }
570
571 /// Remove focus from all elements within this context's window.
572 pub fn blur(&mut self) {
573 if !self.window.focus_enabled {
574 return;
575 }
576
577 self.window.focus = None;
578 self.refresh();
579 }
580
581 /// Blur the window and don't allow anything in it to be focused again.
582 pub fn disable_focus(&mut self) {
583 self.blur();
584 self.window.focus_enabled = false;
585 }
586
587 /// Accessor for the text system.
588 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
589 &self.window.text_system
590 }
591
592 /// Dispatch the given action on the currently focused element.
593 pub fn dispatch_action(&mut self, action: Box<dyn Action>) {
594 let focus_handle = self.focused();
595
596 self.defer(move |cx| {
597 let node_id = focus_handle
598 .and_then(|handle| {
599 cx.window
600 .rendered_frame
601 .dispatch_tree
602 .focusable_node_id(handle.id)
603 })
604 .unwrap_or_else(|| cx.window.rendered_frame.dispatch_tree.root_node_id());
605
606 cx.propagate_event = true;
607 cx.dispatch_action_on_node(node_id, action);
608 })
609 }
610
611 pub(crate) fn dispatch_keystroke_observers(
612 &mut self,
613 event: &dyn Any,
614 action: Option<Box<dyn Action>>,
615 ) {
616 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
617 return;
618 };
619
620 self.keystroke_observers
621 .clone()
622 .retain(&(), move |callback| {
623 (callback)(
624 &KeystrokeEvent {
625 keystroke: key_down_event.keystroke.clone(),
626 action: action.as_ref().map(|action| action.boxed_clone()),
627 },
628 self,
629 );
630 true
631 });
632 }
633
634 pub(crate) fn clear_pending_keystrokes(&mut self) {
635 self.window
636 .rendered_frame
637 .dispatch_tree
638 .clear_pending_keystrokes();
639 self.window
640 .next_frame
641 .dispatch_tree
642 .clear_pending_keystrokes();
643 }
644
645 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
646 /// that are currently on the stack to be returned to the app.
647 pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) {
648 let handle = self.window.handle;
649 self.app.defer(move |cx| {
650 handle.update(cx, |_, cx| f(cx)).ok();
651 });
652 }
653
654 /// Subscribe to events emitted by a model or view.
655 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
656 /// The callback will be invoked a handle to the emitting entity (either a [`View`] or [`Model`]), the event, and a window context for the current window.
657 pub fn subscribe<Emitter, E, Evt>(
658 &mut self,
659 entity: &E,
660 mut on_event: impl FnMut(E, &Evt, &mut WindowContext<'_>) + 'static,
661 ) -> Subscription
662 where
663 Emitter: EventEmitter<Evt>,
664 E: Entity<Emitter>,
665 Evt: 'static,
666 {
667 let entity_id = entity.entity_id();
668 let entity = entity.downgrade();
669 let window_handle = self.window.handle;
670 self.app.new_subscription(
671 entity_id,
672 (
673 TypeId::of::<Evt>(),
674 Box::new(move |event, cx| {
675 window_handle
676 .update(cx, |_, cx| {
677 if let Some(handle) = E::upgrade_from(&entity) {
678 let event = event.downcast_ref().expect("invalid event type");
679 on_event(handle, event, cx);
680 true
681 } else {
682 false
683 }
684 })
685 .unwrap_or(false)
686 }),
687 ),
688 )
689 }
690
691 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
692 /// await points in async code.
693 pub fn to_async(&self) -> AsyncWindowContext {
694 AsyncWindowContext::new(self.app.to_async(), self.window.handle)
695 }
696
697 /// Schedule the given closure to be run directly after the current frame is rendered.
698 pub fn on_next_frame(&mut self, callback: impl FnOnce(&mut WindowContext) + 'static) {
699 RefCell::borrow_mut(&self.window.next_frame_callbacks).push(Box::new(callback));
700 }
701
702 /// Spawn the future returned by the given closure on the application thread pool.
703 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
704 /// use within your future.
705 pub fn spawn<Fut, R>(&mut self, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
706 where
707 R: 'static,
708 Fut: Future<Output = R> + 'static,
709 {
710 self.app
711 .spawn(|app| f(AsyncWindowContext::new(app, self.window.handle)))
712 }
713
714 /// Updates the global of the given type. The given closure is given simultaneous mutable
715 /// access both to the global and the context.
716 pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
717 where
718 G: Global,
719 {
720 let mut global = self.app.lease_global::<G>();
721 let result = f(&mut global, self);
722 self.app.end_global_lease(global);
723 result
724 }
725
726 fn window_bounds_changed(&mut self) {
727 self.window.scale_factor = self.window.platform_window.scale_factor();
728 self.window.viewport_size = self.window.platform_window.content_size();
729 self.window.bounds = self.window.platform_window.bounds();
730 self.window.display_id = self.window.platform_window.display().id();
731 self.refresh();
732
733 self.window
734 .bounds_observers
735 .clone()
736 .retain(&(), |callback| callback(self));
737 }
738
739 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
740 pub fn window_bounds(&self) -> WindowBounds {
741 self.window.bounds
742 }
743
744 fn appearance_changed(&mut self) {
745 self.window.appearance = self.window.platform_window.appearance();
746
747 self.window
748 .appearance_observers
749 .clone()
750 .retain(&(), |callback| callback(self));
751 }
752
753 /// Returns the appearance of the current window.
754 pub fn appearance(&self) -> WindowAppearance {
755 self.window.appearance
756 }
757
758 /// Returns the size of the drawable area within the window.
759 pub fn viewport_size(&self) -> Size<Pixels> {
760 self.window.viewport_size
761 }
762
763 /// Returns whether this window is focused by the operating system (receiving key events).
764 pub fn is_window_active(&self) -> bool {
765 self.window.active.get()
766 }
767
768 /// Toggle zoom on the window.
769 pub fn zoom_window(&self) {
770 self.window.platform_window.zoom();
771 }
772
773 /// Updates the window's title at the platform level.
774 pub fn set_window_title(&mut self, title: &str) {
775 self.window.platform_window.set_title(title);
776 }
777
778 /// Mark the window as dirty at the platform level.
779 pub fn set_window_edited(&mut self, edited: bool) {
780 self.window.platform_window.set_edited(edited);
781 }
782
783 /// Determine the display on which the window is visible.
784 pub fn display(&self) -> Option<Rc<dyn PlatformDisplay>> {
785 self.platform
786 .displays()
787 .into_iter()
788 .find(|display| display.id() == self.window.display_id)
789 }
790
791 /// Show the platform character palette.
792 pub fn show_character_palette(&self) {
793 self.window.platform_window.show_character_palette();
794 }
795
796 /// The scale factor of the display associated with the window. For example, it could
797 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
798 /// be rendered as two pixels on screen.
799 pub fn scale_factor(&self) -> f32 {
800 self.window.scale_factor
801 }
802
803 /// The size of an em for the base font of the application. Adjusting this value allows the
804 /// UI to scale, just like zooming a web page.
805 pub fn rem_size(&self) -> Pixels {
806 self.window.rem_size
807 }
808
809 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
810 /// UI to scale, just like zooming a web page.
811 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
812 self.window.rem_size = rem_size.into();
813 }
814
815 /// The line height associated with the current text style.
816 pub fn line_height(&self) -> Pixels {
817 let rem_size = self.rem_size();
818 let text_style = self.text_style();
819 text_style
820 .line_height
821 .to_pixels(text_style.font_size, rem_size)
822 }
823
824 /// Call to prevent the default action of an event. Currently only used to prevent
825 /// parent elements from becoming focused on mouse down.
826 pub fn prevent_default(&mut self) {
827 self.window.default_prevented = true;
828 }
829
830 /// Obtain whether default has been prevented for the event currently being dispatched.
831 pub fn default_prevented(&self) -> bool {
832 self.window.default_prevented
833 }
834
835 /// Determine whether the given action is available along the dispatch path to the currently focused element.
836 pub fn is_action_available(&self, action: &dyn Action) -> bool {
837 let target = self
838 .focused()
839 .and_then(|focused_handle| {
840 self.window
841 .rendered_frame
842 .dispatch_tree
843 .focusable_node_id(focused_handle.id)
844 })
845 .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
846 self.window
847 .rendered_frame
848 .dispatch_tree
849 .is_action_available(action, target)
850 }
851
852 /// The position of the mouse relative to the window.
853 pub fn mouse_position(&self) -> Point<Pixels> {
854 self.window.mouse_position
855 }
856
857 /// The current state of the keyboard's modifiers
858 pub fn modifiers(&self) -> Modifiers {
859 self.window.modifiers
860 }
861
862 /// Returns true if there is no opaque layer containing the given point
863 /// on top of the given level. Layers who are extensions of the queried layer
864 /// are not considered to be on top of queried layer.
865 pub fn was_top_layer(&self, point: &Point<Pixels>, layer: &StackingOrder) -> bool {
866 // Precondition: the depth map is ordered from topmost to bottomost.
867
868 for (opaque_layer, _, bounds) in self.window.rendered_frame.depth_map.iter() {
869 if layer >= opaque_layer {
870 // The queried layer is either above or is the same as the this opaque layer.
871 // Anything after this point is guaranteed to be below the queried layer.
872 return true;
873 }
874
875 if !bounds.contains(point) {
876 // This opaque layer is above the queried layer but it doesn't contain
877 // the given position, so we can ignore it even if it's above.
878 continue;
879 }
880
881 // At this point, we've established that this opaque layer is on top of the queried layer
882 // and contains the position:
883 // If neither the opaque layer or the queried layer is an extension of the other then
884 // we know they are on different stacking orders, and return false.
885 let is_on_same_layer = opaque_layer
886 .iter()
887 .zip(layer.iter())
888 .all(|(a, b)| a.z_index == b.z_index);
889
890 if !is_on_same_layer {
891 return false;
892 }
893 }
894
895 true
896 }
897
898 pub(crate) fn was_top_layer_under_active_drag(
899 &self,
900 point: &Point<Pixels>,
901 layer: &StackingOrder,
902 ) -> bool {
903 // Precondition: the depth map is ordered from topmost to bottomost.
904
905 for (opaque_layer, _, bounds) in self.window.rendered_frame.depth_map.iter() {
906 if layer >= opaque_layer {
907 // The queried layer is either above or is the same as the this opaque layer.
908 // Anything after this point is guaranteed to be below the queried layer.
909 return true;
910 }
911
912 if !bounds.contains(point) {
913 // This opaque layer is above the queried layer but it doesn't contain
914 // the given position, so we can ignore it even if it's above.
915 continue;
916 }
917
918 // All normal content is rendered with a base z-index of 0, we know that if the root of this opaque layer
919 // equals `ACTIVE_DRAG_Z_INDEX` then it must be the drag layer and we can ignore it as we are
920 // looking to see if the queried layer was the topmost underneath the drag layer.
921 if opaque_layer
922 .first()
923 .map(|c| c.z_index == ACTIVE_DRAG_Z_INDEX)
924 .unwrap_or(false)
925 {
926 continue;
927 }
928
929 // At this point, we've established that this opaque layer is on top of the queried layer
930 // and contains the position:
931 // If neither the opaque layer or the queried layer is an extension of the other then
932 // we know they are on different stacking orders, and return false.
933 let is_on_same_layer = opaque_layer
934 .iter()
935 .zip(layer.iter())
936 .all(|(a, b)| a.z_index == b.z_index);
937
938 if !is_on_same_layer {
939 return false;
940 }
941 }
942
943 true
944 }
945
946 /// Called during painting to get the current stacking order.
947 pub fn stacking_order(&self) -> &StackingOrder {
948 &self.window.next_frame.z_index_stack
949 }
950
951 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
952 /// the contents of the new [Scene], use [present].
953 #[profiling::function]
954 pub fn draw(&mut self) {
955 self.window.dirty.set(false);
956 self.window.drawing = true;
957
958 if let Some(requested_handler) = self.window.rendered_frame.requested_input_handler.as_mut()
959 {
960 let input_handler = self.window.platform_window.take_input_handler();
961 requested_handler.handler = input_handler;
962 }
963
964 let root_view = self.window.root_view.take().unwrap();
965 self.with_element_context(|cx| {
966 cx.with_z_index(0, |cx| {
967 cx.with_key_dispatch(Some(KeyContext::default()), None, |_, cx| {
968 // We need to use cx.cx here so we can utilize borrow splitting
969 for (action_type, action_listeners) in &cx.cx.app.global_action_listeners {
970 for action_listener in action_listeners.iter().cloned() {
971 cx.cx.window.next_frame.dispatch_tree.on_action(
972 *action_type,
973 Rc::new(
974 move |action: &dyn Any, phase, cx: &mut WindowContext<'_>| {
975 action_listener(action, phase, cx)
976 },
977 ),
978 )
979 }
980 }
981
982 let available_space = cx.window.viewport_size.map(Into::into);
983 root_view.draw(Point::default(), available_space, cx);
984 })
985 })
986 });
987
988 if let Some(active_drag) = self.app.active_drag.take() {
989 self.with_element_context(|cx| {
990 cx.with_z_index(ACTIVE_DRAG_Z_INDEX, |cx| {
991 let offset = cx.mouse_position() - active_drag.cursor_offset;
992 let available_space =
993 size(AvailableSpace::MinContent, AvailableSpace::MinContent);
994 active_drag.view.draw(offset, available_space, cx);
995 })
996 });
997 self.active_drag = Some(active_drag);
998 } else if let Some(tooltip_request) = self.window.next_frame.tooltip_request.take() {
999 self.with_element_context(|cx| {
1000 cx.with_z_index(1, |cx| {
1001 let available_space =
1002 size(AvailableSpace::MinContent, AvailableSpace::MinContent);
1003 tooltip_request.tooltip.view.draw(
1004 tooltip_request.tooltip.cursor_offset,
1005 available_space,
1006 cx,
1007 );
1008 })
1009 });
1010 self.window.next_frame.tooltip_request = Some(tooltip_request);
1011 }
1012 self.window.dirty_views.clear();
1013
1014 self.window
1015 .next_frame
1016 .dispatch_tree
1017 .preserve_pending_keystrokes(
1018 &mut self.window.rendered_frame.dispatch_tree,
1019 self.window.focus,
1020 );
1021 self.window.next_frame.focus = self.window.focus;
1022 self.window.next_frame.window_active = self.window.active.get();
1023 self.window.root_view = Some(root_view);
1024
1025 // Set the cursor only if we're the active window.
1026 let cursor_style_request = self.window.next_frame.requested_cursor_style.take();
1027 if self.is_window_active() {
1028 let cursor_style =
1029 cursor_style_request.map_or(CursorStyle::Arrow, |request| request.style);
1030 self.platform.set_cursor_style(cursor_style);
1031 }
1032
1033 // Register requested input handler with the platform window.
1034 if let Some(requested_input) = self.window.next_frame.requested_input_handler.as_mut() {
1035 if let Some(handler) = requested_input.handler.take() {
1036 self.window.platform_window.set_input_handler(handler);
1037 }
1038 }
1039
1040 self.window.layout_engine.as_mut().unwrap().clear();
1041 self.text_system()
1042 .finish_frame(&self.window.next_frame.reused_views);
1043 self.window
1044 .next_frame
1045 .finish(&mut self.window.rendered_frame);
1046 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
1047 let percentage = (element_arena.len() as f32 / element_arena.capacity() as f32) * 100.;
1048 if percentage >= 80. {
1049 log::warn!("elevated element arena occupation: {}.", percentage);
1050 }
1051 element_arena.clear();
1052 });
1053
1054 let previous_focus_path = self.window.rendered_frame.focus_path();
1055 let previous_window_active = self.window.rendered_frame.window_active;
1056 mem::swap(&mut self.window.rendered_frame, &mut self.window.next_frame);
1057 self.window.next_frame.clear();
1058 let current_focus_path = self.window.rendered_frame.focus_path();
1059 let current_window_active = self.window.rendered_frame.window_active;
1060
1061 if previous_focus_path != current_focus_path
1062 || previous_window_active != current_window_active
1063 {
1064 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1065 self.window
1066 .focus_lost_listeners
1067 .clone()
1068 .retain(&(), |listener| listener(self));
1069 }
1070
1071 let event = FocusEvent {
1072 previous_focus_path: if previous_window_active {
1073 previous_focus_path
1074 } else {
1075 Default::default()
1076 },
1077 current_focus_path: if current_window_active {
1078 current_focus_path
1079 } else {
1080 Default::default()
1081 },
1082 };
1083 self.window
1084 .focus_listeners
1085 .clone()
1086 .retain(&(), |listener| listener(&event, self));
1087 }
1088 self.window.refreshing = false;
1089 self.window.drawing = false;
1090 self.window.needs_present.set(true);
1091 }
1092
1093 #[profiling::function]
1094 fn present(&self) {
1095 self.window
1096 .platform_window
1097 .draw(&self.window.rendered_frame.scene);
1098 self.window.needs_present.set(false);
1099 profiling::finish_frame!();
1100 }
1101
1102 /// Dispatch a given keystroke as though the user had typed it.
1103 /// You can create a keystroke with Keystroke::parse("").
1104 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke) -> bool {
1105 let keystroke = keystroke.with_simulated_ime();
1106 if self.dispatch_event(PlatformInput::KeyDown(KeyDownEvent {
1107 keystroke: keystroke.clone(),
1108 is_held: false,
1109 })) {
1110 return true;
1111 }
1112
1113 if let Some(input) = keystroke.ime_key {
1114 if let Some(mut input_handler) = self.window.platform_window.take_input_handler() {
1115 input_handler.dispatch_input(&input, self);
1116 self.window.platform_window.set_input_handler(input_handler);
1117 return true;
1118 }
1119 }
1120
1121 false
1122 }
1123
1124 /// Represent this action as a key binding string, to display in the UI.
1125 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
1126 self.bindings_for_action(action)
1127 .into_iter()
1128 .next()
1129 .map(|binding| {
1130 binding
1131 .keystrokes()
1132 .iter()
1133 .map(ToString::to_string)
1134 .collect::<Vec<_>>()
1135 .join(" ")
1136 })
1137 .unwrap_or_else(|| action.name().to_string())
1138 }
1139
1140 /// Dispatch a mouse or keyboard event on the window.
1141 #[profiling::function]
1142 pub fn dispatch_event(&mut self, event: PlatformInput) -> bool {
1143 self.window.last_input_timestamp.set(Instant::now());
1144 // Handlers may set this to false by calling `stop_propagation`.
1145 self.app.propagate_event = true;
1146 // Handlers may set this to true by calling `prevent_default`.
1147 self.window.default_prevented = false;
1148
1149 let event = match event {
1150 // Track the mouse position with our own state, since accessing the platform
1151 // API for the mouse position can only occur on the main thread.
1152 PlatformInput::MouseMove(mouse_move) => {
1153 self.window.mouse_position = mouse_move.position;
1154 self.window.modifiers = mouse_move.modifiers;
1155 PlatformInput::MouseMove(mouse_move)
1156 }
1157 PlatformInput::MouseDown(mouse_down) => {
1158 self.window.mouse_position = mouse_down.position;
1159 self.window.modifiers = mouse_down.modifiers;
1160 PlatformInput::MouseDown(mouse_down)
1161 }
1162 PlatformInput::MouseUp(mouse_up) => {
1163 self.window.mouse_position = mouse_up.position;
1164 self.window.modifiers = mouse_up.modifiers;
1165 PlatformInput::MouseUp(mouse_up)
1166 }
1167 PlatformInput::MouseExited(mouse_exited) => {
1168 self.window.modifiers = mouse_exited.modifiers;
1169 PlatformInput::MouseExited(mouse_exited)
1170 }
1171 PlatformInput::ModifiersChanged(modifiers_changed) => {
1172 self.window.modifiers = modifiers_changed.modifiers;
1173 PlatformInput::ModifiersChanged(modifiers_changed)
1174 }
1175 PlatformInput::ScrollWheel(scroll_wheel) => {
1176 self.window.mouse_position = scroll_wheel.position;
1177 self.window.modifiers = scroll_wheel.modifiers;
1178 PlatformInput::ScrollWheel(scroll_wheel)
1179 }
1180 // Translate dragging and dropping of external files from the operating system
1181 // to internal drag and drop events.
1182 PlatformInput::FileDrop(file_drop) => match file_drop {
1183 FileDropEvent::Entered { position, paths } => {
1184 self.window.mouse_position = position;
1185 if self.active_drag.is_none() {
1186 self.active_drag = Some(AnyDrag {
1187 value: Box::new(paths.clone()),
1188 view: self.new_view(|_| paths).into(),
1189 cursor_offset: position,
1190 });
1191 }
1192 PlatformInput::MouseMove(MouseMoveEvent {
1193 position,
1194 pressed_button: Some(MouseButton::Left),
1195 modifiers: Modifiers::default(),
1196 })
1197 }
1198 FileDropEvent::Pending { position } => {
1199 self.window.mouse_position = position;
1200 PlatformInput::MouseMove(MouseMoveEvent {
1201 position,
1202 pressed_button: Some(MouseButton::Left),
1203 modifiers: Modifiers::default(),
1204 })
1205 }
1206 FileDropEvent::Submit { position } => {
1207 self.activate(true);
1208 self.window.mouse_position = position;
1209 PlatformInput::MouseUp(MouseUpEvent {
1210 button: MouseButton::Left,
1211 position,
1212 modifiers: Modifiers::default(),
1213 click_count: 1,
1214 })
1215 }
1216 FileDropEvent::Exited => PlatformInput::MouseUp(MouseUpEvent {
1217 button: MouseButton::Left,
1218 position: Point::default(),
1219 modifiers: Modifiers::default(),
1220 click_count: 1,
1221 }),
1222 },
1223 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
1224 };
1225
1226 if let Some(any_mouse_event) = event.mouse_event() {
1227 self.dispatch_mouse_event(any_mouse_event);
1228 } else if let Some(any_key_event) = event.keyboard_event() {
1229 self.dispatch_key_event(any_key_event);
1230 }
1231
1232 !self.app.propagate_event
1233 }
1234
1235 fn dispatch_mouse_event(&mut self, event: &dyn Any) {
1236 if let Some(mut handlers) = self
1237 .window
1238 .rendered_frame
1239 .mouse_listeners
1240 .remove(&event.type_id())
1241 {
1242 // Because handlers may add other handlers, we sort every time.
1243 handlers.sort_by(|(a, _, _), (b, _, _)| a.cmp(b));
1244
1245 // Capture phase, events bubble from back to front. Handlers for this phase are used for
1246 // special purposes, such as detecting events outside of a given Bounds.
1247 for (_, _, handler) in &mut handlers {
1248 self.with_element_context(|cx| {
1249 handler(event, DispatchPhase::Capture, cx);
1250 });
1251 if !self.app.propagate_event {
1252 break;
1253 }
1254 }
1255
1256 // Bubble phase, where most normal handlers do their work.
1257 if self.app.propagate_event {
1258 for (_, _, handler) in handlers.iter_mut().rev() {
1259 self.with_element_context(|cx| {
1260 handler(event, DispatchPhase::Bubble, cx);
1261 });
1262 if !self.app.propagate_event {
1263 break;
1264 }
1265 }
1266 }
1267
1268 self.window
1269 .rendered_frame
1270 .mouse_listeners
1271 .insert(event.type_id(), handlers);
1272 }
1273
1274 if self.app.propagate_event && self.has_active_drag() {
1275 if event.is::<MouseMoveEvent>() {
1276 // If this was a mouse move event, redraw the window so that the
1277 // active drag can follow the mouse cursor.
1278 self.refresh();
1279 } else if event.is::<MouseUpEvent>() {
1280 // If this was a mouse up event, cancel the active drag and redraw
1281 // the window.
1282 self.active_drag = None;
1283 self.refresh();
1284 }
1285 }
1286 }
1287
1288 fn dispatch_key_event(&mut self, event: &dyn Any) {
1289 if self.window.dirty.get() {
1290 self.draw();
1291 }
1292
1293 let node_id = self
1294 .window
1295 .focus
1296 .and_then(|focus_id| {
1297 self.window
1298 .rendered_frame
1299 .dispatch_tree
1300 .focusable_node_id(focus_id)
1301 })
1302 .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
1303
1304 let dispatch_path = self
1305 .window
1306 .rendered_frame
1307 .dispatch_tree
1308 .dispatch_path(node_id);
1309
1310 if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
1311 let KeymatchResult { bindings, pending } = self
1312 .window
1313 .rendered_frame
1314 .dispatch_tree
1315 .dispatch_key(&key_down_event.keystroke, &dispatch_path);
1316
1317 if pending {
1318 let mut currently_pending = self.window.pending_input.take().unwrap_or_default();
1319 if currently_pending.focus.is_some() && currently_pending.focus != self.window.focus
1320 {
1321 currently_pending = PendingInput::default();
1322 }
1323 currently_pending.focus = self.window.focus;
1324 currently_pending
1325 .keystrokes
1326 .push(key_down_event.keystroke.clone());
1327 for binding in bindings {
1328 currently_pending.bindings.push(binding);
1329 }
1330
1331 currently_pending.timer = Some(self.spawn(|mut cx| async move {
1332 cx.background_executor.timer(Duration::from_secs(1)).await;
1333 cx.update(move |cx| {
1334 cx.clear_pending_keystrokes();
1335 let Some(currently_pending) = cx.window.pending_input.take() else {
1336 return;
1337 };
1338 cx.replay_pending_input(currently_pending)
1339 })
1340 .log_err();
1341 }));
1342 self.window.pending_input = Some(currently_pending);
1343
1344 self.propagate_event = false;
1345 return;
1346 } else if let Some(currently_pending) = self.window.pending_input.take() {
1347 if bindings
1348 .iter()
1349 .all(|binding| !currently_pending.used_by_binding(binding))
1350 {
1351 self.replay_pending_input(currently_pending)
1352 }
1353 }
1354
1355 if !bindings.is_empty() {
1356 self.clear_pending_keystrokes();
1357 }
1358
1359 self.propagate_event = true;
1360 for binding in bindings {
1361 self.dispatch_action_on_node(node_id, binding.action.boxed_clone());
1362 if !self.propagate_event {
1363 self.dispatch_keystroke_observers(event, Some(binding.action));
1364 return;
1365 }
1366 }
1367 }
1368
1369 self.dispatch_key_down_up_event(event, &dispatch_path);
1370 if !self.propagate_event {
1371 return;
1372 }
1373
1374 self.dispatch_keystroke_observers(event, None);
1375 }
1376
1377 fn dispatch_key_down_up_event(
1378 &mut self,
1379 event: &dyn Any,
1380 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
1381 ) {
1382 // Capture phase
1383 for node_id in dispatch_path {
1384 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1385
1386 for key_listener in node.key_listeners.clone() {
1387 self.with_element_context(|cx| {
1388 key_listener(event, DispatchPhase::Capture, cx);
1389 });
1390 if !self.propagate_event {
1391 return;
1392 }
1393 }
1394 }
1395
1396 // Bubble phase
1397 for node_id in dispatch_path.iter().rev() {
1398 // Handle low level key events
1399 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1400 for key_listener in node.key_listeners.clone() {
1401 self.with_element_context(|cx| {
1402 key_listener(event, DispatchPhase::Bubble, cx);
1403 });
1404 if !self.propagate_event {
1405 return;
1406 }
1407 }
1408 }
1409 }
1410
1411 /// Determine whether a potential multi-stroke key binding is in progress on this window.
1412 pub fn has_pending_keystrokes(&self) -> bool {
1413 self.window
1414 .rendered_frame
1415 .dispatch_tree
1416 .has_pending_keystrokes()
1417 }
1418
1419 fn replay_pending_input(&mut self, currently_pending: PendingInput) {
1420 let node_id = self
1421 .window
1422 .focus
1423 .and_then(|focus_id| {
1424 self.window
1425 .rendered_frame
1426 .dispatch_tree
1427 .focusable_node_id(focus_id)
1428 })
1429 .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
1430
1431 if self.window.focus != currently_pending.focus {
1432 return;
1433 }
1434
1435 let input = currently_pending.input();
1436
1437 self.propagate_event = true;
1438 for binding in currently_pending.bindings {
1439 self.dispatch_action_on_node(node_id, binding.action.boxed_clone());
1440 if !self.propagate_event {
1441 return;
1442 }
1443 }
1444
1445 let dispatch_path = self
1446 .window
1447 .rendered_frame
1448 .dispatch_tree
1449 .dispatch_path(node_id);
1450
1451 for keystroke in currently_pending.keystrokes {
1452 let event = KeyDownEvent {
1453 keystroke,
1454 is_held: false,
1455 };
1456
1457 self.dispatch_key_down_up_event(&event, &dispatch_path);
1458 if !self.propagate_event {
1459 return;
1460 }
1461 }
1462
1463 if !input.is_empty() {
1464 if let Some(mut input_handler) = self.window.platform_window.take_input_handler() {
1465 input_handler.dispatch_input(&input, self);
1466 self.window.platform_window.set_input_handler(input_handler)
1467 }
1468 }
1469 }
1470
1471 fn dispatch_action_on_node(&mut self, node_id: DispatchNodeId, action: Box<dyn Action>) {
1472 let dispatch_path = self
1473 .window
1474 .rendered_frame
1475 .dispatch_tree
1476 .dispatch_path(node_id);
1477
1478 // Capture phase
1479 for node_id in &dispatch_path {
1480 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1481 for DispatchActionListener {
1482 action_type,
1483 listener,
1484 } in node.action_listeners.clone()
1485 {
1486 let any_action = action.as_any();
1487 if action_type == any_action.type_id() {
1488 self.with_element_context(|cx| {
1489 listener(any_action, DispatchPhase::Capture, cx);
1490 });
1491
1492 if !self.propagate_event {
1493 return;
1494 }
1495 }
1496 }
1497 }
1498 // Bubble phase
1499 for node_id in dispatch_path.iter().rev() {
1500 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1501 for DispatchActionListener {
1502 action_type,
1503 listener,
1504 } in node.action_listeners.clone()
1505 {
1506 let any_action = action.as_any();
1507 if action_type == any_action.type_id() {
1508 self.propagate_event = false; // Actions stop propagation by default during the bubble phase
1509
1510 self.with_element_context(|cx| {
1511 listener(any_action, DispatchPhase::Bubble, cx);
1512 });
1513
1514 if !self.propagate_event {
1515 return;
1516 }
1517 }
1518 }
1519 }
1520 }
1521
1522 /// Toggle the graphics profiler to debug your application's rendering performance.
1523 pub fn toggle_graphics_profiler(&mut self) {
1524 self.window.graphics_profiler_enabled = !self.window.graphics_profiler_enabled;
1525 self.window
1526 .platform_window
1527 .set_graphics_profiler_enabled(self.window.graphics_profiler_enabled);
1528 }
1529
1530 /// Register the given handler to be invoked whenever the global of the given type
1531 /// is updated.
1532 pub fn observe_global<G: Global>(
1533 &mut self,
1534 f: impl Fn(&mut WindowContext<'_>) + 'static,
1535 ) -> Subscription {
1536 let window_handle = self.window.handle;
1537 let (subscription, activate) = self.global_observers.insert(
1538 TypeId::of::<G>(),
1539 Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()),
1540 );
1541 self.app.defer(move |_| activate());
1542 subscription
1543 }
1544
1545 /// Focus the current window and bring it to the foreground at the platform level.
1546 pub fn activate_window(&self) {
1547 self.window.platform_window.activate();
1548 }
1549
1550 /// Minimize the current window at the platform level.
1551 pub fn minimize_window(&self) {
1552 self.window.platform_window.minimize();
1553 }
1554
1555 /// Toggle full screen status on the current window at the platform level.
1556 pub fn toggle_full_screen(&self) {
1557 self.window.platform_window.toggle_full_screen();
1558 }
1559
1560 /// Present a platform dialog.
1561 /// The provided message will be presented, along with buttons for each answer.
1562 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
1563 pub fn prompt(
1564 &self,
1565 level: PromptLevel,
1566 message: &str,
1567 detail: Option<&str>,
1568 answers: &[&str],
1569 ) -> oneshot::Receiver<usize> {
1570 self.window
1571 .platform_window
1572 .prompt(level, message, detail, answers)
1573 }
1574
1575 /// Returns all available actions for the focused element.
1576 pub fn available_actions(&self) -> Vec<Box<dyn Action>> {
1577 let node_id = self
1578 .window
1579 .focus
1580 .and_then(|focus_id| {
1581 self.window
1582 .rendered_frame
1583 .dispatch_tree
1584 .focusable_node_id(focus_id)
1585 })
1586 .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
1587
1588 self.window
1589 .rendered_frame
1590 .dispatch_tree
1591 .available_actions(node_id)
1592 }
1593
1594 /// Returns key bindings that invoke the given action on the currently focused element.
1595 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
1596 self.window
1597 .rendered_frame
1598 .dispatch_tree
1599 .bindings_for_action(
1600 action,
1601 &self.window.rendered_frame.dispatch_tree.context_stack,
1602 )
1603 }
1604
1605 /// Returns any bindings that would invoke the given action on the given focus handle if it were focused.
1606 pub fn bindings_for_action_in(
1607 &self,
1608 action: &dyn Action,
1609 focus_handle: &FocusHandle,
1610 ) -> Vec<KeyBinding> {
1611 let dispatch_tree = &self.window.rendered_frame.dispatch_tree;
1612
1613 let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
1614 return vec![];
1615 };
1616 let context_stack: Vec<_> = dispatch_tree
1617 .dispatch_path(node_id)
1618 .into_iter()
1619 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
1620 .collect();
1621 dispatch_tree.bindings_for_action(action, &context_stack)
1622 }
1623
1624 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
1625 pub fn listener_for<V: Render, E>(
1626 &self,
1627 view: &View<V>,
1628 f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
1629 ) -> impl Fn(&E, &mut WindowContext) + 'static {
1630 let view = view.downgrade();
1631 move |e: &E, cx: &mut WindowContext| {
1632 view.update(cx, |view, cx| f(view, e, cx)).ok();
1633 }
1634 }
1635
1636 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
1637 pub fn handler_for<V: Render>(
1638 &self,
1639 view: &View<V>,
1640 f: impl Fn(&mut V, &mut ViewContext<V>) + 'static,
1641 ) -> impl Fn(&mut WindowContext) {
1642 let view = view.downgrade();
1643 move |cx: &mut WindowContext| {
1644 view.update(cx, |view, cx| f(view, cx)).ok();
1645 }
1646 }
1647
1648 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
1649 /// If the callback returns false, the window won't be closed.
1650 pub fn on_window_should_close(&mut self, f: impl Fn(&mut WindowContext) -> bool + 'static) {
1651 let mut this = self.to_async();
1652 self.window
1653 .platform_window
1654 .on_should_close(Box::new(move || this.update(|cx| f(cx)).unwrap_or(true)))
1655 }
1656
1657 pub(crate) fn parent_view_id(&self) -> EntityId {
1658 *self
1659 .window
1660 .next_frame
1661 .view_stack
1662 .last()
1663 .expect("a view should always be on the stack while drawing")
1664 }
1665
1666 /// Register an action listener on the window for the next frame. The type of action
1667 /// is determined by the first parameter of the given listener. When the next frame is rendered
1668 /// the listener will be cleared.
1669 ///
1670 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
1671 /// a specific need to register a global listener.
1672 pub fn on_action(
1673 &mut self,
1674 action_type: TypeId,
1675 listener: impl Fn(&dyn Any, DispatchPhase, &mut WindowContext) + 'static,
1676 ) {
1677 self.window
1678 .next_frame
1679 .dispatch_tree
1680 .on_action(action_type, Rc::new(listener));
1681 }
1682}
1683
1684impl Context for WindowContext<'_> {
1685 type Result<T> = T;
1686
1687 fn new_model<T>(&mut self, build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T) -> Model<T>
1688 where
1689 T: 'static,
1690 {
1691 let slot = self.app.entities.reserve();
1692 let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade()));
1693 self.entities.insert(slot, model)
1694 }
1695
1696 fn update_model<T: 'static, R>(
1697 &mut self,
1698 model: &Model<T>,
1699 update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
1700 ) -> R {
1701 let mut entity = self.entities.lease(model);
1702 let result = update(
1703 &mut *entity,
1704 &mut ModelContext::new(&mut *self.app, model.downgrade()),
1705 );
1706 self.entities.end_lease(entity);
1707 result
1708 }
1709
1710 fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
1711 where
1712 F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
1713 {
1714 if window == self.window.handle {
1715 let root_view = self.window.root_view.clone().unwrap();
1716 Ok(update(root_view, self))
1717 } else {
1718 window.update(self.app, update)
1719 }
1720 }
1721
1722 fn read_model<T, R>(
1723 &self,
1724 handle: &Model<T>,
1725 read: impl FnOnce(&T, &AppContext) -> R,
1726 ) -> Self::Result<R>
1727 where
1728 T: 'static,
1729 {
1730 let entity = self.entities.read(handle);
1731 read(entity, &*self.app)
1732 }
1733
1734 fn read_window<T, R>(
1735 &self,
1736 window: &WindowHandle<T>,
1737 read: impl FnOnce(View<T>, &AppContext) -> R,
1738 ) -> Result<R>
1739 where
1740 T: 'static,
1741 {
1742 if window.any_handle == self.window.handle {
1743 let root_view = self
1744 .window
1745 .root_view
1746 .clone()
1747 .unwrap()
1748 .downcast::<T>()
1749 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
1750 Ok(read(root_view, self))
1751 } else {
1752 self.app.read_window(window, read)
1753 }
1754 }
1755}
1756
1757impl VisualContext for WindowContext<'_> {
1758 fn new_view<V>(
1759 &mut self,
1760 build_view_state: impl FnOnce(&mut ViewContext<'_, V>) -> V,
1761 ) -> Self::Result<View<V>>
1762 where
1763 V: 'static + Render,
1764 {
1765 let slot = self.app.entities.reserve();
1766 let view = View {
1767 model: slot.clone(),
1768 };
1769 let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1770 let entity = build_view_state(&mut cx);
1771 cx.entities.insert(slot, entity);
1772
1773 // Non-generic part to avoid leaking SubscriberSet to invokers of `new_view`.
1774 fn notify_observers(cx: &mut WindowContext, tid: TypeId, view: AnyView) {
1775 cx.new_view_observers.clone().retain(&tid, |observer| {
1776 let any_view = view.clone();
1777 (observer)(any_view, cx);
1778 true
1779 });
1780 }
1781 notify_observers(self, TypeId::of::<V>(), AnyView::from(view.clone()));
1782
1783 view
1784 }
1785
1786 /// Updates the given view. Prefer calling [`View::update`] instead, which calls this method.
1787 fn update_view<T: 'static, R>(
1788 &mut self,
1789 view: &View<T>,
1790 update: impl FnOnce(&mut T, &mut ViewContext<'_, T>) -> R,
1791 ) -> Self::Result<R> {
1792 let mut lease = self.app.entities.lease(&view.model);
1793 let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, view);
1794 let result = update(&mut *lease, &mut cx);
1795 cx.app.entities.end_lease(lease);
1796 result
1797 }
1798
1799 fn replace_root_view<V>(
1800 &mut self,
1801 build_view: impl FnOnce(&mut ViewContext<'_, V>) -> V,
1802 ) -> Self::Result<View<V>>
1803 where
1804 V: 'static + Render,
1805 {
1806 let view = self.new_view(build_view);
1807 self.window.root_view = Some(view.clone().into());
1808 self.refresh();
1809 view
1810 }
1811
1812 fn focus_view<V: crate::FocusableView>(&mut self, view: &View<V>) -> Self::Result<()> {
1813 self.update_view(view, |view, cx| {
1814 view.focus_handle(cx).clone().focus(cx);
1815 })
1816 }
1817
1818 fn dismiss_view<V>(&mut self, view: &View<V>) -> Self::Result<()>
1819 where
1820 V: ManagedView,
1821 {
1822 self.update_view(view, |_, cx| cx.emit(DismissEvent))
1823 }
1824}
1825
1826impl<'a> std::ops::Deref for WindowContext<'a> {
1827 type Target = AppContext;
1828
1829 fn deref(&self) -> &Self::Target {
1830 self.app
1831 }
1832}
1833
1834impl<'a> std::ops::DerefMut for WindowContext<'a> {
1835 fn deref_mut(&mut self) -> &mut Self::Target {
1836 self.app
1837 }
1838}
1839
1840impl<'a> Borrow<AppContext> for WindowContext<'a> {
1841 fn borrow(&self) -> &AppContext {
1842 self.app
1843 }
1844}
1845
1846impl<'a> BorrowMut<AppContext> for WindowContext<'a> {
1847 fn borrow_mut(&mut self) -> &mut AppContext {
1848 self.app
1849 }
1850}
1851
1852/// This trait contains functionality that is shared across [`ViewContext`] and [`WindowContext`]
1853pub trait BorrowWindow: BorrowMut<Window> + BorrowMut<AppContext> {
1854 #[doc(hidden)]
1855 fn app_mut(&mut self) -> &mut AppContext {
1856 self.borrow_mut()
1857 }
1858
1859 #[doc(hidden)]
1860 fn app(&self) -> &AppContext {
1861 self.borrow()
1862 }
1863
1864 #[doc(hidden)]
1865 fn window(&self) -> &Window {
1866 self.borrow()
1867 }
1868
1869 #[doc(hidden)]
1870 fn window_mut(&mut self) -> &mut Window {
1871 self.borrow_mut()
1872 }
1873}
1874
1875impl Borrow<Window> for WindowContext<'_> {
1876 fn borrow(&self) -> &Window {
1877 self.window
1878 }
1879}
1880
1881impl BorrowMut<Window> for WindowContext<'_> {
1882 fn borrow_mut(&mut self) -> &mut Window {
1883 self.window
1884 }
1885}
1886
1887impl<T> BorrowWindow for T where T: BorrowMut<AppContext> + BorrowMut<Window> {}
1888
1889/// Provides access to application state that is specialized for a particular [`View`].
1890/// Allows you to interact with focus, emit events, etc.
1891/// ViewContext also derefs to [`WindowContext`], giving you access to all of its methods as well.
1892/// When you call [`View::update`], you're passed a `&mut V` and an `&mut ViewContext<V>`.
1893pub struct ViewContext<'a, V> {
1894 window_cx: WindowContext<'a>,
1895 view: &'a View<V>,
1896}
1897
1898impl<V> Borrow<AppContext> for ViewContext<'_, V> {
1899 fn borrow(&self) -> &AppContext {
1900 &*self.window_cx.app
1901 }
1902}
1903
1904impl<V> BorrowMut<AppContext> for ViewContext<'_, V> {
1905 fn borrow_mut(&mut self) -> &mut AppContext {
1906 &mut *self.window_cx.app
1907 }
1908}
1909
1910impl<V> Borrow<Window> for ViewContext<'_, V> {
1911 fn borrow(&self) -> &Window {
1912 &*self.window_cx.window
1913 }
1914}
1915
1916impl<V> BorrowMut<Window> for ViewContext<'_, V> {
1917 fn borrow_mut(&mut self) -> &mut Window {
1918 &mut *self.window_cx.window
1919 }
1920}
1921
1922impl<'a, V: 'static> ViewContext<'a, V> {
1923 pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View<V>) -> Self {
1924 Self {
1925 window_cx: WindowContext::new(app, window),
1926 view,
1927 }
1928 }
1929
1930 /// Get the entity_id of this view.
1931 pub fn entity_id(&self) -> EntityId {
1932 self.view.entity_id()
1933 }
1934
1935 /// Get the view pointer underlying this context.
1936 pub fn view(&self) -> &View<V> {
1937 self.view
1938 }
1939
1940 /// Get the model underlying this view.
1941 pub fn model(&self) -> &Model<V> {
1942 &self.view.model
1943 }
1944
1945 /// Access the underlying window context.
1946 pub fn window_context(&mut self) -> &mut WindowContext<'a> {
1947 &mut self.window_cx
1948 }
1949
1950 /// Sets a given callback to be run on the next frame.
1951 pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static)
1952 where
1953 V: 'static,
1954 {
1955 let view = self.view().clone();
1956 self.window_cx.on_next_frame(move |cx| view.update(cx, f));
1957 }
1958
1959 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1960 /// that are currently on the stack to be returned to the app.
1961 pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static) {
1962 let view = self.view().downgrade();
1963 self.window_cx.defer(move |cx| {
1964 view.update(cx, f).ok();
1965 });
1966 }
1967
1968 /// Observe another model or view for changes to its state, as tracked by [`ModelContext::notify`].
1969 pub fn observe<V2, E>(
1970 &mut self,
1971 entity: &E,
1972 mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + 'static,
1973 ) -> Subscription
1974 where
1975 V2: 'static,
1976 V: 'static,
1977 E: Entity<V2>,
1978 {
1979 let view = self.view().downgrade();
1980 let entity_id = entity.entity_id();
1981 let entity = entity.downgrade();
1982 let window_handle = self.window.handle;
1983 self.app.new_observer(
1984 entity_id,
1985 Box::new(move |cx| {
1986 window_handle
1987 .update(cx, |_, cx| {
1988 if let Some(handle) = E::upgrade_from(&entity) {
1989 view.update(cx, |this, cx| on_notify(this, handle, cx))
1990 .is_ok()
1991 } else {
1992 false
1993 }
1994 })
1995 .unwrap_or(false)
1996 }),
1997 )
1998 }
1999
2000 /// Subscribe to events emitted by another model or view.
2001 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
2002 /// The callback will be invoked with a reference to the current view, a handle to the emitting entity (either a [`View`] or [`Model`]), the event, and a view context for the current view.
2003 pub fn subscribe<V2, E, Evt>(
2004 &mut self,
2005 entity: &E,
2006 mut on_event: impl FnMut(&mut V, E, &Evt, &mut ViewContext<'_, V>) + 'static,
2007 ) -> Subscription
2008 where
2009 V2: EventEmitter<Evt>,
2010 E: Entity<V2>,
2011 Evt: 'static,
2012 {
2013 let view = self.view().downgrade();
2014 let entity_id = entity.entity_id();
2015 let handle = entity.downgrade();
2016 let window_handle = self.window.handle;
2017 self.app.new_subscription(
2018 entity_id,
2019 (
2020 TypeId::of::<Evt>(),
2021 Box::new(move |event, cx| {
2022 window_handle
2023 .update(cx, |_, cx| {
2024 if let Some(handle) = E::upgrade_from(&handle) {
2025 let event = event.downcast_ref().expect("invalid event type");
2026 view.update(cx, |this, cx| on_event(this, handle, event, cx))
2027 .is_ok()
2028 } else {
2029 false
2030 }
2031 })
2032 .unwrap_or(false)
2033 }),
2034 ),
2035 )
2036 }
2037
2038 /// Register a callback to be invoked when the view is released.
2039 ///
2040 /// The callback receives a handle to the view's window. This handle may be
2041 /// invalid, if the window was closed before the view was released.
2042 pub fn on_release(
2043 &mut self,
2044 on_release: impl FnOnce(&mut V, AnyWindowHandle, &mut AppContext) + 'static,
2045 ) -> Subscription {
2046 let window_handle = self.window.handle;
2047 let (subscription, activate) = self.app.release_listeners.insert(
2048 self.view.model.entity_id,
2049 Box::new(move |this, cx| {
2050 let this = this.downcast_mut().expect("invalid entity type");
2051 on_release(this, window_handle, cx)
2052 }),
2053 );
2054 activate();
2055 subscription
2056 }
2057
2058 /// Register a callback to be invoked when the given Model or View is released.
2059 pub fn observe_release<V2, E>(
2060 &mut self,
2061 entity: &E,
2062 mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + 'static,
2063 ) -> Subscription
2064 where
2065 V: 'static,
2066 V2: 'static,
2067 E: Entity<V2>,
2068 {
2069 let view = self.view().downgrade();
2070 let entity_id = entity.entity_id();
2071 let window_handle = self.window.handle;
2072 let (subscription, activate) = self.app.release_listeners.insert(
2073 entity_id,
2074 Box::new(move |entity, cx| {
2075 let entity = entity.downcast_mut().expect("invalid entity type");
2076 let _ = window_handle.update(cx, |_, cx| {
2077 view.update(cx, |this, cx| on_release(this, entity, cx))
2078 });
2079 }),
2080 );
2081 activate();
2082 subscription
2083 }
2084
2085 /// Indicate that this view has changed, which will invoke any observers and also mark the window as dirty.
2086 /// If this view or any of its ancestors are *cached*, notifying it will cause it or its ancestors to be redrawn.
2087 pub fn notify(&mut self) {
2088 for view_id in self
2089 .window
2090 .rendered_frame
2091 .dispatch_tree
2092 .view_path(self.view.entity_id())
2093 .into_iter()
2094 .rev()
2095 {
2096 if !self.window.dirty_views.insert(view_id) {
2097 break;
2098 }
2099 }
2100
2101 if !self.window.drawing {
2102 self.window_cx.window.dirty.set(true);
2103 self.window_cx.app.push_effect(Effect::Notify {
2104 emitter: self.view.model.entity_id,
2105 });
2106 }
2107 }
2108
2109 /// Register a callback to be invoked when the window is resized.
2110 pub fn observe_window_bounds(
2111 &mut self,
2112 mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2113 ) -> Subscription {
2114 let view = self.view.downgrade();
2115 let (subscription, activate) = self.window.bounds_observers.insert(
2116 (),
2117 Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
2118 );
2119 activate();
2120 subscription
2121 }
2122
2123 /// Register a callback to be invoked when the window is activated or deactivated.
2124 pub fn observe_window_activation(
2125 &mut self,
2126 mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2127 ) -> Subscription {
2128 let view = self.view.downgrade();
2129 let (subscription, activate) = self.window.activation_observers.insert(
2130 (),
2131 Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
2132 );
2133 activate();
2134 subscription
2135 }
2136
2137 /// Registers a callback to be invoked when the window appearance changes.
2138 pub fn observe_window_appearance(
2139 &mut self,
2140 mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2141 ) -> Subscription {
2142 let view = self.view.downgrade();
2143 let (subscription, activate) = self.window.appearance_observers.insert(
2144 (),
2145 Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
2146 );
2147 activate();
2148 subscription
2149 }
2150
2151 /// Register a listener to be called when the given focus handle receives focus.
2152 /// Returns a subscription and persists until the subscription is dropped.
2153 pub fn on_focus(
2154 &mut self,
2155 handle: &FocusHandle,
2156 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2157 ) -> Subscription {
2158 let view = self.view.downgrade();
2159 let focus_id = handle.id;
2160 let (subscription, activate) =
2161 self.window.new_focus_listener(Box::new(move |event, cx| {
2162 view.update(cx, |view, cx| {
2163 if event.previous_focus_path.last() != Some(&focus_id)
2164 && event.current_focus_path.last() == Some(&focus_id)
2165 {
2166 listener(view, cx)
2167 }
2168 })
2169 .is_ok()
2170 }));
2171 self.app.defer(|_| activate());
2172 subscription
2173 }
2174
2175 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
2176 /// Returns a subscription and persists until the subscription is dropped.
2177 pub fn on_focus_in(
2178 &mut self,
2179 handle: &FocusHandle,
2180 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2181 ) -> Subscription {
2182 let view = self.view.downgrade();
2183 let focus_id = handle.id;
2184 let (subscription, activate) =
2185 self.window.new_focus_listener(Box::new(move |event, cx| {
2186 view.update(cx, |view, cx| {
2187 if !event.previous_focus_path.contains(&focus_id)
2188 && event.current_focus_path.contains(&focus_id)
2189 {
2190 listener(view, cx)
2191 }
2192 })
2193 .is_ok()
2194 }));
2195 self.app.defer(move |_| activate());
2196 subscription
2197 }
2198
2199 /// Register a listener to be called when the given focus handle loses focus.
2200 /// Returns a subscription and persists until the subscription is dropped.
2201 pub fn on_blur(
2202 &mut self,
2203 handle: &FocusHandle,
2204 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2205 ) -> Subscription {
2206 let view = self.view.downgrade();
2207 let focus_id = handle.id;
2208 let (subscription, activate) =
2209 self.window.new_focus_listener(Box::new(move |event, cx| {
2210 view.update(cx, |view, cx| {
2211 if event.previous_focus_path.last() == Some(&focus_id)
2212 && event.current_focus_path.last() != Some(&focus_id)
2213 {
2214 listener(view, cx)
2215 }
2216 })
2217 .is_ok()
2218 }));
2219 self.app.defer(move |_| activate());
2220 subscription
2221 }
2222
2223 /// Register a listener to be called when nothing in the window has focus.
2224 /// This typically happens when the node that was focused is removed from the tree,
2225 /// and this callback lets you chose a default place to restore the users focus.
2226 /// Returns a subscription and persists until the subscription is dropped.
2227 pub fn on_focus_lost(
2228 &mut self,
2229 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2230 ) -> Subscription {
2231 let view = self.view.downgrade();
2232 let (subscription, activate) = self.window.focus_lost_listeners.insert(
2233 (),
2234 Box::new(move |cx| view.update(cx, |view, cx| listener(view, cx)).is_ok()),
2235 );
2236 activate();
2237 subscription
2238 }
2239
2240 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
2241 /// Returns a subscription and persists until the subscription is dropped.
2242 pub fn on_focus_out(
2243 &mut self,
2244 handle: &FocusHandle,
2245 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2246 ) -> Subscription {
2247 let view = self.view.downgrade();
2248 let focus_id = handle.id;
2249 let (subscription, activate) =
2250 self.window.new_focus_listener(Box::new(move |event, cx| {
2251 view.update(cx, |view, cx| {
2252 if event.previous_focus_path.contains(&focus_id)
2253 && !event.current_focus_path.contains(&focus_id)
2254 {
2255 listener(view, cx)
2256 }
2257 })
2258 .is_ok()
2259 }));
2260 self.app.defer(move |_| activate());
2261 subscription
2262 }
2263
2264 /// Schedule a future to be run asynchronously.
2265 /// The given callback is invoked with a [`WeakView<V>`] to avoid leaking the view for a long-running process.
2266 /// It's also given an [`AsyncWindowContext`], which can be used to access the state of the view across await points.
2267 /// The returned future will be polled on the main thread.
2268 pub fn spawn<Fut, R>(
2269 &mut self,
2270 f: impl FnOnce(WeakView<V>, AsyncWindowContext) -> Fut,
2271 ) -> Task<R>
2272 where
2273 R: 'static,
2274 Fut: Future<Output = R> + 'static,
2275 {
2276 let view = self.view().downgrade();
2277 self.window_cx.spawn(|cx| f(view, cx))
2278 }
2279
2280 /// Updates the global state of the given type.
2281 pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
2282 where
2283 G: Global,
2284 {
2285 let mut global = self.app.lease_global::<G>();
2286 let result = f(&mut global, self);
2287 self.app.end_global_lease(global);
2288 result
2289 }
2290
2291 /// Register a callback to be invoked when the given global state changes.
2292 pub fn observe_global<G: Global>(
2293 &mut self,
2294 mut f: impl FnMut(&mut V, &mut ViewContext<'_, V>) + 'static,
2295 ) -> Subscription {
2296 let window_handle = self.window.handle;
2297 let view = self.view().downgrade();
2298 let (subscription, activate) = self.global_observers.insert(
2299 TypeId::of::<G>(),
2300 Box::new(move |cx| {
2301 window_handle
2302 .update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok())
2303 .unwrap_or(false)
2304 }),
2305 );
2306 self.app.defer(move |_| activate());
2307 subscription
2308 }
2309
2310 /// Register a callback to be invoked when the given Action type is dispatched to the window.
2311 pub fn on_action(
2312 &mut self,
2313 action_type: TypeId,
2314 listener: impl Fn(&mut V, &dyn Any, DispatchPhase, &mut ViewContext<V>) + 'static,
2315 ) {
2316 let handle = self.view().clone();
2317 self.window_cx
2318 .on_action(action_type, move |action, phase, cx| {
2319 handle.update(cx, |view, cx| {
2320 listener(view, action, phase, cx);
2321 })
2322 });
2323 }
2324
2325 /// Emit an event to be handled any other views that have subscribed via [ViewContext::subscribe].
2326 pub fn emit<Evt>(&mut self, event: Evt)
2327 where
2328 Evt: 'static,
2329 V: EventEmitter<Evt>,
2330 {
2331 let emitter = self.view.model.entity_id;
2332 self.app.push_effect(Effect::Emit {
2333 emitter,
2334 event_type: TypeId::of::<Evt>(),
2335 event: Box::new(event),
2336 });
2337 }
2338
2339 /// Move focus to the current view, assuming it implements [`FocusableView`].
2340 pub fn focus_self(&mut self)
2341 where
2342 V: FocusableView,
2343 {
2344 self.defer(|view, cx| view.focus_handle(cx).focus(cx))
2345 }
2346
2347 /// Convenience method for accessing view state in an event callback.
2348 ///
2349 /// Many GPUI callbacks take the form of `Fn(&E, &mut WindowContext)`,
2350 /// but it's often useful to be able to access view state in these
2351 /// callbacks. This method provides a convenient way to do so.
2352 pub fn listener<E>(
2353 &self,
2354 f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
2355 ) -> impl Fn(&E, &mut WindowContext) + 'static {
2356 let view = self.view().downgrade();
2357 move |e: &E, cx: &mut WindowContext| {
2358 view.update(cx, |view, cx| f(view, e, cx)).ok();
2359 }
2360 }
2361}
2362
2363impl<V> Context for ViewContext<'_, V> {
2364 type Result<U> = U;
2365
2366 fn new_model<T: 'static>(
2367 &mut self,
2368 build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
2369 ) -> Model<T> {
2370 self.window_cx.new_model(build_model)
2371 }
2372
2373 fn update_model<T: 'static, R>(
2374 &mut self,
2375 model: &Model<T>,
2376 update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
2377 ) -> R {
2378 self.window_cx.update_model(model, update)
2379 }
2380
2381 fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
2382 where
2383 F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
2384 {
2385 self.window_cx.update_window(window, update)
2386 }
2387
2388 fn read_model<T, R>(
2389 &self,
2390 handle: &Model<T>,
2391 read: impl FnOnce(&T, &AppContext) -> R,
2392 ) -> Self::Result<R>
2393 where
2394 T: 'static,
2395 {
2396 self.window_cx.read_model(handle, read)
2397 }
2398
2399 fn read_window<T, R>(
2400 &self,
2401 window: &WindowHandle<T>,
2402 read: impl FnOnce(View<T>, &AppContext) -> R,
2403 ) -> Result<R>
2404 where
2405 T: 'static,
2406 {
2407 self.window_cx.read_window(window, read)
2408 }
2409}
2410
2411impl<V: 'static> VisualContext for ViewContext<'_, V> {
2412 fn new_view<W: Render + 'static>(
2413 &mut self,
2414 build_view_state: impl FnOnce(&mut ViewContext<'_, W>) -> W,
2415 ) -> Self::Result<View<W>> {
2416 self.window_cx.new_view(build_view_state)
2417 }
2418
2419 fn update_view<V2: 'static, R>(
2420 &mut self,
2421 view: &View<V2>,
2422 update: impl FnOnce(&mut V2, &mut ViewContext<'_, V2>) -> R,
2423 ) -> Self::Result<R> {
2424 self.window_cx.update_view(view, update)
2425 }
2426
2427 fn replace_root_view<W>(
2428 &mut self,
2429 build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
2430 ) -> Self::Result<View<W>>
2431 where
2432 W: 'static + Render,
2433 {
2434 self.window_cx.replace_root_view(build_view)
2435 }
2436
2437 fn focus_view<W: FocusableView>(&mut self, view: &View<W>) -> Self::Result<()> {
2438 self.window_cx.focus_view(view)
2439 }
2440
2441 fn dismiss_view<W: ManagedView>(&mut self, view: &View<W>) -> Self::Result<()> {
2442 self.window_cx.dismiss_view(view)
2443 }
2444}
2445
2446impl<'a, V> std::ops::Deref for ViewContext<'a, V> {
2447 type Target = WindowContext<'a>;
2448
2449 fn deref(&self) -> &Self::Target {
2450 &self.window_cx
2451 }
2452}
2453
2454impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> {
2455 fn deref_mut(&mut self) -> &mut Self::Target {
2456 &mut self.window_cx
2457 }
2458}
2459
2460// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
2461slotmap::new_key_type! {
2462 /// A unique identifier for a window.
2463 pub struct WindowId;
2464}
2465
2466impl WindowId {
2467 /// Converts this window ID to a `u64`.
2468 pub fn as_u64(&self) -> u64 {
2469 self.0.as_ffi()
2470 }
2471}
2472
2473/// A handle to a window with a specific root view type.
2474/// Note that this does not keep the window alive on its own.
2475#[derive(Deref, DerefMut)]
2476pub struct WindowHandle<V> {
2477 #[deref]
2478 #[deref_mut]
2479 pub(crate) any_handle: AnyWindowHandle,
2480 state_type: PhantomData<V>,
2481}
2482
2483impl<V: 'static + Render> WindowHandle<V> {
2484 /// Creates a new handle from a window ID.
2485 /// This does not check if the root type of the window is `V`.
2486 pub fn new(id: WindowId) -> Self {
2487 WindowHandle {
2488 any_handle: AnyWindowHandle {
2489 id,
2490 state_type: TypeId::of::<V>(),
2491 },
2492 state_type: PhantomData,
2493 }
2494 }
2495
2496 /// Get the root view out of this window.
2497 ///
2498 /// This will fail if the window is closed or if the root view's type does not match `V`.
2499 pub fn root<C>(&self, cx: &mut C) -> Result<View<V>>
2500 where
2501 C: Context,
2502 {
2503 Flatten::flatten(cx.update_window(self.any_handle, |root_view, _| {
2504 root_view
2505 .downcast::<V>()
2506 .map_err(|_| anyhow!("the type of the window's root view has changed"))
2507 }))
2508 }
2509
2510 /// Updates the root view of this window.
2511 ///
2512 /// This will fail if the window has been closed or if the root view's type does not match
2513 pub fn update<C, R>(
2514 &self,
2515 cx: &mut C,
2516 update: impl FnOnce(&mut V, &mut ViewContext<'_, V>) -> R,
2517 ) -> Result<R>
2518 where
2519 C: Context,
2520 {
2521 cx.update_window(self.any_handle, |root_view, cx| {
2522 let view = root_view
2523 .downcast::<V>()
2524 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
2525 Ok(cx.update_view(&view, update))
2526 })?
2527 }
2528
2529 /// Read the root view out of this window.
2530 ///
2531 /// This will fail if the window is closed or if the root view's type does not match `V`.
2532 pub fn read<'a>(&self, cx: &'a AppContext) -> Result<&'a V> {
2533 let x = cx
2534 .windows
2535 .get(self.id)
2536 .and_then(|window| {
2537 window
2538 .as_ref()
2539 .and_then(|window| window.root_view.clone())
2540 .map(|root_view| root_view.downcast::<V>())
2541 })
2542 .ok_or_else(|| anyhow!("window not found"))?
2543 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
2544
2545 Ok(x.read(cx))
2546 }
2547
2548 /// Read the root view out of this window, with a callback
2549 ///
2550 /// This will fail if the window is closed or if the root view's type does not match `V`.
2551 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &AppContext) -> R) -> Result<R>
2552 where
2553 C: Context,
2554 {
2555 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
2556 }
2557
2558 /// Read the root view pointer off of this window.
2559 ///
2560 /// This will fail if the window is closed or if the root view's type does not match `V`.
2561 pub fn root_view<C>(&self, cx: &C) -> Result<View<V>>
2562 where
2563 C: Context,
2564 {
2565 cx.read_window(self, |root_view, _cx| root_view.clone())
2566 }
2567
2568 /// Check if this window is 'active'.
2569 ///
2570 /// Will return `None` if the window is closed or currently
2571 /// borrowed.
2572 pub fn is_active(&self, cx: &mut AppContext) -> Option<bool> {
2573 cx.update_window(self.any_handle, |_, cx| cx.is_window_active())
2574 .ok()
2575 }
2576}
2577
2578impl<V> Copy for WindowHandle<V> {}
2579
2580impl<V> Clone for WindowHandle<V> {
2581 fn clone(&self) -> Self {
2582 *self
2583 }
2584}
2585
2586impl<V> PartialEq for WindowHandle<V> {
2587 fn eq(&self, other: &Self) -> bool {
2588 self.any_handle == other.any_handle
2589 }
2590}
2591
2592impl<V> Eq for WindowHandle<V> {}
2593
2594impl<V> Hash for WindowHandle<V> {
2595 fn hash<H: Hasher>(&self, state: &mut H) {
2596 self.any_handle.hash(state);
2597 }
2598}
2599
2600impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
2601 fn from(val: WindowHandle<V>) -> Self {
2602 val.any_handle
2603 }
2604}
2605
2606/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
2607#[derive(Copy, Clone, PartialEq, Eq, Hash)]
2608pub struct AnyWindowHandle {
2609 pub(crate) id: WindowId,
2610 state_type: TypeId,
2611}
2612
2613impl AnyWindowHandle {
2614 /// Get the ID of this window.
2615 pub fn window_id(&self) -> WindowId {
2616 self.id
2617 }
2618
2619 /// Attempt to convert this handle to a window handle with a specific root view type.
2620 /// If the types do not match, this will return `None`.
2621 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
2622 if TypeId::of::<T>() == self.state_type {
2623 Some(WindowHandle {
2624 any_handle: *self,
2625 state_type: PhantomData,
2626 })
2627 } else {
2628 None
2629 }
2630 }
2631
2632 /// Updates the state of the root view of this window.
2633 ///
2634 /// This will fail if the window has been closed.
2635 pub fn update<C, R>(
2636 self,
2637 cx: &mut C,
2638 update: impl FnOnce(AnyView, &mut WindowContext<'_>) -> R,
2639 ) -> Result<R>
2640 where
2641 C: Context,
2642 {
2643 cx.update_window(self, update)
2644 }
2645
2646 /// Read the state of the root view of this window.
2647 ///
2648 /// This will fail if the window has been closed.
2649 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(View<T>, &AppContext) -> R) -> Result<R>
2650 where
2651 C: Context,
2652 T: 'static,
2653 {
2654 let view = self
2655 .downcast::<T>()
2656 .context("the type of the window's root view has changed")?;
2657
2658 cx.read_window(&view, read)
2659 }
2660}
2661
2662/// An identifier for an [`Element`](crate::Element).
2663///
2664/// Can be constructed with a string, a number, or both, as well
2665/// as other internal representations.
2666#[derive(Clone, Debug, Eq, PartialEq, Hash)]
2667pub enum ElementId {
2668 /// The ID of a View element
2669 View(EntityId),
2670 /// An integer ID.
2671 Integer(usize),
2672 /// A string based ID.
2673 Name(SharedString),
2674 /// An ID that's equated with a focus handle.
2675 FocusHandle(FocusId),
2676 /// A combination of a name and an integer.
2677 NamedInteger(SharedString, usize),
2678}
2679
2680impl Display for ElementId {
2681 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
2682 match self {
2683 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
2684 ElementId::Integer(ix) => write!(f, "{}", ix)?,
2685 ElementId::Name(name) => write!(f, "{}", name)?,
2686 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
2687 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
2688 }
2689
2690 Ok(())
2691 }
2692}
2693
2694impl ElementId {
2695 pub(crate) fn from_entity_id(entity_id: EntityId) -> Self {
2696 ElementId::View(entity_id)
2697 }
2698}
2699
2700impl TryInto<SharedString> for ElementId {
2701 type Error = anyhow::Error;
2702
2703 fn try_into(self) -> anyhow::Result<SharedString> {
2704 if let ElementId::Name(name) = self {
2705 Ok(name)
2706 } else {
2707 Err(anyhow!("element id is not string"))
2708 }
2709 }
2710}
2711
2712impl From<usize> for ElementId {
2713 fn from(id: usize) -> Self {
2714 ElementId::Integer(id)
2715 }
2716}
2717
2718impl From<i32> for ElementId {
2719 fn from(id: i32) -> Self {
2720 Self::Integer(id as usize)
2721 }
2722}
2723
2724impl From<SharedString> for ElementId {
2725 fn from(name: SharedString) -> Self {
2726 ElementId::Name(name)
2727 }
2728}
2729
2730impl From<&'static str> for ElementId {
2731 fn from(name: &'static str) -> Self {
2732 ElementId::Name(name.into())
2733 }
2734}
2735
2736impl<'a> From<&'a FocusHandle> for ElementId {
2737 fn from(handle: &'a FocusHandle) -> Self {
2738 ElementId::FocusHandle(handle.id)
2739 }
2740}
2741
2742impl From<(&'static str, EntityId)> for ElementId {
2743 fn from((name, id): (&'static str, EntityId)) -> Self {
2744 ElementId::NamedInteger(name.into(), id.as_u64() as usize)
2745 }
2746}
2747
2748impl From<(&'static str, usize)> for ElementId {
2749 fn from((name, id): (&'static str, usize)) -> Self {
2750 ElementId::NamedInteger(name.into(), id)
2751 }
2752}
2753
2754impl From<(&'static str, u64)> for ElementId {
2755 fn from((name, id): (&'static str, u64)) -> Self {
2756 ElementId::NamedInteger(name.into(), id as usize)
2757 }
2758}
2759
2760/// A rectangle to be rendered in the window at the given position and size.
2761/// Passed as an argument [`ElementContext::paint_quad`].
2762#[derive(Clone)]
2763pub struct PaintQuad {
2764 bounds: Bounds<Pixels>,
2765 corner_radii: Corners<Pixels>,
2766 background: Hsla,
2767 border_widths: Edges<Pixels>,
2768 border_color: Hsla,
2769}
2770
2771impl PaintQuad {
2772 /// Sets the corner radii of the quad.
2773 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
2774 PaintQuad {
2775 corner_radii: corner_radii.into(),
2776 ..self
2777 }
2778 }
2779
2780 /// Sets the border widths of the quad.
2781 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
2782 PaintQuad {
2783 border_widths: border_widths.into(),
2784 ..self
2785 }
2786 }
2787
2788 /// Sets the border color of the quad.
2789 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
2790 PaintQuad {
2791 border_color: border_color.into(),
2792 ..self
2793 }
2794 }
2795
2796 /// Sets the background color of the quad.
2797 pub fn background(self, background: impl Into<Hsla>) -> Self {
2798 PaintQuad {
2799 background: background.into(),
2800 ..self
2801 }
2802 }
2803}
2804
2805/// Creates a quad with the given parameters.
2806pub fn quad(
2807 bounds: Bounds<Pixels>,
2808 corner_radii: impl Into<Corners<Pixels>>,
2809 background: impl Into<Hsla>,
2810 border_widths: impl Into<Edges<Pixels>>,
2811 border_color: impl Into<Hsla>,
2812) -> PaintQuad {
2813 PaintQuad {
2814 bounds,
2815 corner_radii: corner_radii.into(),
2816 background: background.into(),
2817 border_widths: border_widths.into(),
2818 border_color: border_color.into(),
2819 }
2820}
2821
2822/// Creates a filled quad with the given bounds and background color.
2823pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Hsla>) -> PaintQuad {
2824 PaintQuad {
2825 bounds: bounds.into(),
2826 corner_radii: (0.).into(),
2827 background: background.into(),
2828 border_widths: (0.).into(),
2829 border_color: transparent_black(),
2830 }
2831}
2832
2833/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
2834pub fn outline(bounds: impl Into<Bounds<Pixels>>, border_color: impl Into<Hsla>) -> PaintQuad {
2835 PaintQuad {
2836 bounds: bounds.into(),
2837 corner_radii: (0.).into(),
2838 background: transparent_black(),
2839 border_widths: (1.).into(),
2840 border_color: border_color.into(),
2841 }
2842}