shaders.wgsl

  1struct GlobalParams {
  2    viewport_size: vec2<f32>,
  3    pad: vec2<u32>,
  4}
  5
  6var<uniform> globals: GlobalParams;
  7var t_sprite: texture_2d<f32>;
  8var s_sprite: sampler;
  9
 10const M_PI_F: f32 = 3.1415926;
 11const GRAYSCALE_FACTORS: vec3<f32> = vec3<f32>(0.2126, 0.7152, 0.0722);
 12
 13struct ViewId {
 14    lo: u32,
 15    hi: u32,
 16}
 17
 18struct Bounds {
 19    origin: vec2<f32>,
 20    size: vec2<f32>,
 21}
 22struct Corners {
 23    top_left: f32,
 24    top_right: f32,
 25    bottom_right: f32,
 26    bottom_left: f32,
 27}
 28struct Edges {
 29    top: f32,
 30    right: f32,
 31    bottom: f32,
 32    left: f32,
 33}
 34struct Hsla {
 35    h: f32,
 36    s: f32,
 37    l: f32,
 38    a: f32,
 39}
 40
 41struct AtlasTextureId {
 42    index: u32,
 43    kind: u32,
 44}
 45
 46struct AtlasBounds {
 47    origin: vec2<i32>,
 48    size: vec2<i32>,
 49}
 50struct AtlasTile {
 51    texture_id: AtlasTextureId,
 52    tile_id: u32,
 53    padding: u32,
 54    bounds: AtlasBounds,
 55}
 56
 57fn to_device_position_impl(position: vec2<f32>) -> vec4<f32> {
 58    let device_position = position / globals.viewport_size * vec2<f32>(2.0, -2.0) + vec2<f32>(-1.0, 1.0);
 59    return vec4<f32>(device_position, 0.0, 1.0);
 60}
 61
 62fn to_device_position(unit_vertex: vec2<f32>, bounds: Bounds) -> vec4<f32> {
 63    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 64    return to_device_position_impl(position);
 65}
 66
 67fn to_tile_position(unit_vertex: vec2<f32>, tile: AtlasTile) -> vec2<f32> {
 68  let atlas_size = vec2<f32>(textureDimensions(t_sprite, 0));
 69  return (vec2<f32>(tile.bounds.origin) + unit_vertex * vec2<f32>(tile.bounds.size)) / atlas_size;
 70}
 71
 72fn distance_from_clip_rect_impl(position: vec2<f32>, clip_bounds: Bounds) -> vec4<f32> {
 73    let tl = position - clip_bounds.origin;
 74    let br = clip_bounds.origin + clip_bounds.size - position;
 75    return vec4<f32>(tl.x, br.x, tl.y, br.y);
 76}
 77
 78fn distance_from_clip_rect(unit_vertex: vec2<f32>, bounds: Bounds, clip_bounds: Bounds) -> vec4<f32> {
 79    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 80    return distance_from_clip_rect_impl(position, clip_bounds);
 81}
 82
 83fn hsla_to_rgba(hsla: Hsla) -> vec4<f32> {
 84    let h = hsla.h * 6.0; // Now, it's an angle but scaled in [0, 6) range
 85    let s = hsla.s;
 86    let l = hsla.l;
 87    let a = hsla.a;
 88
 89    let c = (1.0 - abs(2.0 * l - 1.0)) * s;
 90    let x = c * (1.0 - abs(h % 2.0 - 1.0));
 91    let m = l - c / 2.0;
 92
 93    var color = vec4<f32>(m, m, m, a);
 94
 95    if (h >= 0.0 && h < 1.0) {
 96        color.r += c;
 97        color.g += x;
 98    } else if (h >= 1.0 && h < 2.0) {
 99        color.r += x;
100        color.g += c;
101    } else if (h >= 2.0 && h < 3.0) {
102        color.g += c;
103        color.b += x;
104    } else if (h >= 3.0 && h < 4.0) {
105        color.g += x;
106        color.b += c;
107    } else if (h >= 4.0 && h < 5.0) {
108        color.r += x;
109        color.b += c;
110    } else {
111        color.r += c;
112        color.b += x;
113    }
114
115    return color;
116}
117
118fn over(below: vec4<f32>, above: vec4<f32>) -> vec4<f32> {
119    let alpha = above.a + below.a * (1.0 - above.a);
120    let color = (above.rgb * above.a + below.rgb * below.a * (1.0 - above.a)) / alpha;
121    return vec4<f32>(color, alpha);
122}
123
124// A standard gaussian function, used for weighting samples
125fn gaussian(x: f32, sigma: f32) -> f32{
126    return exp(-(x * x) / (2.0 * sigma * sigma)) / (sqrt(2.0 * M_PI_F) * sigma);
127}
128
129// This approximates the error function, needed for the gaussian integral
130fn erf(v: vec2<f32>) -> vec2<f32> {
131    let s = sign(v);
132    let a = abs(v);
133    let r1 = 1.0 + (0.278393 + (0.230389 + 0.078108 * (a * a)) * a) * a;
134    let r2 = r1 * r1;
135    return s - s / (r2 * r2);
136}
137
138fn blur_along_x(x: f32, y: f32, sigma: f32, corner: f32, half_size: vec2<f32>) -> f32 {
139  let delta = min(half_size.y - corner - abs(y), 0.0);
140  let curved = half_size.x - corner + sqrt(max(0.0, corner * corner - delta * delta));
141  let integral = 0.5 + 0.5 * erf((x + vec2<f32>(-curved, curved)) * (sqrt(0.5) / sigma));
142  return integral.y - integral.x;
143}
144
145fn pick_corner_radius(point: vec2<f32>, radii: Corners) -> f32 {
146    if (point.x < 0.0) {
147        if (point.y < 0.0) {
148            return radii.top_left;
149        } else {
150            return radii.bottom_left;
151        }
152    } else {
153        if (point.y < 0.0) {
154            return radii.top_right;
155        } else {
156            return radii.bottom_right;
157        }
158    }
159}
160
161fn quad_sdf(point: vec2<f32>, bounds: Bounds, corner_radii: Corners) -> f32 {
162    let half_size = bounds.size / 2.0;
163    let center = bounds.origin + half_size;
164    let center_to_point = point - center;
165    let corner_radius = pick_corner_radius(center_to_point, corner_radii);
166    let rounded_edge_to_point = abs(center_to_point) - half_size + corner_radius;
167    return length(max(vec2<f32>(0.0), rounded_edge_to_point)) +
168        min(0.0, max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
169        corner_radius;
170}
171
172// --- quads --- //
173
174struct Quad {
175    view_id: ViewId,
176    layer_id: u32,
177    order: u32,
178    bounds: Bounds,
179    content_mask: Bounds,
180    background: Hsla,
181    border_color: Hsla,
182    corner_radii: Corners,
183    border_widths: Edges,
184}
185var<storage, read> b_quads: array<Quad>;
186
187struct QuadVarying {
188    @builtin(position) position: vec4<f32>,
189    @location(0) @interpolate(flat) background_color: vec4<f32>,
190    @location(1) @interpolate(flat) border_color: vec4<f32>,
191    @location(2) @interpolate(flat) quad_id: u32,
192    //TODO: use `clip_distance` once Naga supports it
193    @location(3) clip_distances: vec4<f32>,
194}
195
196@vertex
197fn vs_quad(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> QuadVarying {
198    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
199    let quad = b_quads[instance_id];
200
201    var out = QuadVarying();
202    out.position = to_device_position(unit_vertex, quad.bounds);
203    out.background_color = hsla_to_rgba(quad.background);
204    out.border_color = hsla_to_rgba(quad.border_color);
205    out.quad_id = instance_id;
206    out.clip_distances = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask);
207    return out;
208}
209
210@fragment
211fn fs_quad(input: QuadVarying) -> @location(0) vec4<f32> {
212    // Alpha clip first, since we don't have `clip_distance`.
213    if (any(input.clip_distances < vec4<f32>(0.0))) {
214        return vec4<f32>(0.0);
215    }
216
217    let quad = b_quads[input.quad_id];
218    // Fast path when the quad is not rounded and doesn't have any border.
219    if (quad.corner_radii.top_left == 0.0 && quad.corner_radii.bottom_left == 0.0 &&
220        quad.corner_radii.top_right == 0.0 &&
221        quad.corner_radii.bottom_right == 0.0 && quad.border_widths.top == 0.0 &&
222        quad.border_widths.left == 0.0 && quad.border_widths.right == 0.0 &&
223        quad.border_widths.bottom == 0.0) {
224        return input.background_color;
225    }
226
227    let half_size = quad.bounds.size / 2.0;
228    let center = quad.bounds.origin + half_size;
229    let center_to_point = input.position.xy - center;
230
231    let corner_radius = pick_corner_radius(center_to_point, quad.corner_radii);
232
233    let rounded_edge_to_point = abs(center_to_point) - half_size + corner_radius;
234    let distance =
235      length(max(vec2<f32>(0.0), rounded_edge_to_point)) +
236      min(0.0, max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
237      corner_radius;
238
239    let vertical_border = select(quad.border_widths.left, quad.border_widths.right, center_to_point.x > 0.0);
240    let horizontal_border = select(quad.border_widths.top, quad.border_widths.bottom, center_to_point.y > 0.0);
241    let inset_size = half_size - corner_radius - vec2<f32>(vertical_border, horizontal_border);
242    let point_to_inset_corner = abs(center_to_point) - inset_size;
243
244    var border_width = 0.0;
245    if (point_to_inset_corner.x < 0.0 && point_to_inset_corner.y < 0.0) {
246        border_width = 0.0;
247    } else if (point_to_inset_corner.y > point_to_inset_corner.x) {
248        border_width = horizontal_border;
249    } else {
250        border_width = vertical_border;
251    }
252
253    var color = input.background_color;
254    if (border_width > 0.0) {
255        let inset_distance = distance + border_width;
256        // Blend the border on top of the background and then linearly interpolate
257        // between the two as we slide inside the background.
258        let blended_border = over(input.background_color, input.border_color);
259        color = mix(blended_border, input.background_color,
260                    saturate(0.5 - inset_distance));
261    }
262
263    return color * vec4<f32>(1.0, 1.0, 1.0, saturate(0.5 - distance));
264}
265
266// --- shadows --- //
267
268struct Shadow {
269    view_id: ViewId,
270    layer_id: u32,
271    order: u32,
272    bounds: Bounds,
273    corner_radii: Corners,
274    content_mask: Bounds,
275    color: Hsla,
276    blur_radius: f32,
277    pad: u32,
278}
279var<storage, read> b_shadows: array<Shadow>;
280
281struct ShadowVarying {
282    @builtin(position) position: vec4<f32>,
283    @location(0) @interpolate(flat) color: vec4<f32>,
284    @location(1) @interpolate(flat) shadow_id: u32,
285    //TODO: use `clip_distance` once Naga supports it
286    @location(3) clip_distances: vec4<f32>,
287}
288
289@vertex
290fn vs_shadow(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> ShadowVarying {
291    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
292    var shadow = b_shadows[instance_id];
293
294    let margin = 3.0 * shadow.blur_radius;
295    // Set the bounds of the shadow and adjust its size based on the shadow's
296    // spread radius to achieve the spreading effect
297    shadow.bounds.origin -= vec2<f32>(margin);
298    shadow.bounds.size += 2.0 * vec2<f32>(margin);
299
300    var out = ShadowVarying();
301    out.position = to_device_position(unit_vertex, shadow.bounds);
302    out.color = hsla_to_rgba(shadow.color);
303    out.shadow_id = instance_id;
304    out.clip_distances = distance_from_clip_rect(unit_vertex, shadow.bounds, shadow.content_mask);
305    return out;
306}
307
308@fragment
309fn fs_shadow(input: ShadowVarying) -> @location(0) vec4<f32> {
310    // Alpha clip first, since we don't have `clip_distance`.
311    if (any(input.clip_distances < vec4<f32>(0.0))) {
312        return vec4<f32>(0.0);
313    }
314
315    let shadow = b_shadows[input.shadow_id];
316    let half_size = shadow.bounds.size / 2.0;
317    let center = shadow.bounds.origin + half_size;
318    let center_to_point = input.position.xy - center;
319
320    let corner_radius = pick_corner_radius(center_to_point, shadow.corner_radii);
321
322    // The signal is only non-zero in a limited range, so don't waste samples
323    let low = center_to_point.y - half_size.y;
324    let high = center_to_point.y + half_size.y;
325    let start = clamp(-3.0 * shadow.blur_radius, low, high);
326    let end = clamp(3.0 * shadow.blur_radius, low, high);
327
328    // Accumulate samples (we can get away with surprisingly few samples)
329    let step = (end - start) / 4.0;
330    var y = start + step * 0.5;
331    var alpha = 0.0;
332    for (var i = 0; i < 4; i += 1) {
333        let blur = blur_along_x(center_to_point.x, center_to_point.y - y,
334            shadow.blur_radius, corner_radius, half_size);
335        alpha +=  blur * gaussian(y, shadow.blur_radius) * step;
336        y += step;
337    }
338
339    return input.color * vec4<f32>(1.0, 1.0, 1.0, alpha);
340}
341
342// --- path rasterization --- //
343
344struct PathVertex {
345    xy_position: vec2<f32>,
346    st_position: vec2<f32>,
347    content_mask: Bounds,
348}
349var<storage, read> b_path_vertices: array<PathVertex>;
350
351struct PathRasterizationVarying {
352    @builtin(position) position: vec4<f32>,
353    @location(0) st_position: vec2<f32>,
354    //TODO: use `clip_distance` once Naga supports it
355    @location(3) clip_distances: vec4<f32>,
356}
357
358@vertex
359fn vs_path_rasterization(@builtin(vertex_index) vertex_id: u32) -> PathRasterizationVarying {
360    let v = b_path_vertices[vertex_id];
361
362    var out = PathRasterizationVarying();
363    out.position = to_device_position_impl(v.xy_position);
364    out.st_position = v.st_position;
365    out.clip_distances = distance_from_clip_rect_impl(v.xy_position, v.content_mask);
366    return out;
367}
368
369@fragment
370fn fs_path_rasterization(input: PathRasterizationVarying) -> @location(0) f32 {
371    let dx = dpdx(input.st_position);
372    let dy = dpdy(input.st_position);
373    if (any(input.clip_distances < vec4<f32>(0.0))) {
374        return 0.0;
375    }
376
377    let gradient = 2.0 * input.st_position.xx * vec2<f32>(dx.x, dy.x) - vec2<f32>(dx.y, dy.y);
378    let f = input.st_position.x * input.st_position.x - input.st_position.y;
379    let distance = f / length(gradient);
380    return saturate(0.5 - distance);
381}
382
383// --- paths --- //
384
385struct PathSprite {
386    bounds: Bounds,
387    color: Hsla,
388    tile: AtlasTile,
389}
390var<storage, read> b_path_sprites: array<PathSprite>;
391
392struct PathVarying {
393    @builtin(position) position: vec4<f32>,
394    @location(0) tile_position: vec2<f32>,
395    @location(1) color: vec4<f32>,
396}
397
398@vertex
399fn vs_path(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PathVarying {
400    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
401    let sprite = b_path_sprites[instance_id];
402    // Don't apply content mask because it was already accounted for when rasterizing the path.
403
404    var out = PathVarying();
405    out.position = to_device_position(unit_vertex, sprite.bounds);
406    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
407    out.color = hsla_to_rgba(sprite.color);
408    return out;
409}
410
411@fragment
412fn fs_path(input: PathVarying) -> @location(0) vec4<f32> {
413    let sample = textureSample(t_sprite, s_sprite, input.tile_position).r;
414    let mask = 1.0 - abs(1.0 - sample % 2.0);
415    return input.color * mask;
416}
417
418// --- underlines --- //
419
420struct Underline {
421    view_id: ViewId,
422    layer_id: u32,
423    order: u32,
424    bounds: Bounds,
425    content_mask: Bounds,
426    color: Hsla,
427    thickness: f32,
428    wavy: u32,
429}
430var<storage, read> b_underlines: array<Underline>;
431
432struct UnderlineVarying {
433    @builtin(position) position: vec4<f32>,
434    @location(0) @interpolate(flat) color: vec4<f32>,
435    @location(1) @interpolate(flat) underline_id: u32,
436    //TODO: use `clip_distance` once Naga supports it
437    @location(3) clip_distances: vec4<f32>,
438}
439
440@vertex
441fn vs_underline(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> UnderlineVarying {
442    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
443    let underline = b_underlines[instance_id];
444
445    var out = UnderlineVarying();
446    out.position = to_device_position(unit_vertex, underline.bounds);
447    out.color = hsla_to_rgba(underline.color);
448    out.underline_id = instance_id;
449    out.clip_distances = distance_from_clip_rect(unit_vertex, underline.bounds, underline.content_mask);
450    return out;
451}
452
453@fragment
454fn fs_underline(input: UnderlineVarying) -> @location(0) vec4<f32> {
455    // Alpha clip first, since we don't have `clip_distance`.
456    if (any(input.clip_distances < vec4<f32>(0.0))) {
457        return vec4<f32>(0.0);
458    }
459
460    let underline = b_underlines[input.underline_id];
461    if ((underline.wavy & 0xFFu) == 0u)
462    {
463        return vec4<f32>(0.0);
464    }
465
466    let half_thickness = underline.thickness * 0.5;
467    let st = (input.position.xy - underline.bounds.origin) / underline.bounds.size.y - vec2<f32>(0.0, 0.5);
468    let frequency = M_PI_F * 3.0 * underline.thickness / 8.0;
469    let amplitude = 1.0 / (2.0 * underline.thickness);
470    let sine = sin(st.x * frequency) * amplitude;
471    let dSine = cos(st.x * frequency) * amplitude * frequency;
472    let distance = (st.y - sine) / sqrt(1.0 + dSine * dSine);
473    let distance_in_pixels = distance * underline.bounds.size.y;
474    let distance_from_top_border = distance_in_pixels - half_thickness;
475    let distance_from_bottom_border = distance_in_pixels + half_thickness;
476    let alpha = saturate(0.5 - max(-distance_from_bottom_border, distance_from_top_border));
477    return input.color * vec4<f32>(1.0, 1.0, 1.0, alpha);
478}
479
480// --- monochrome sprites --- //
481
482struct MonochromeSprite {
483    view_id: ViewId,
484    layer_id: u32,
485    order: u32,
486    bounds: Bounds,
487    content_mask: Bounds,
488    color: Hsla,
489    tile: AtlasTile,
490}
491var<storage, read> b_mono_sprites: array<MonochromeSprite>;
492
493struct MonoSpriteVarying {
494    @builtin(position) position: vec4<f32>,
495    @location(0) tile_position: vec2<f32>,
496    @location(1) @interpolate(flat) color: vec4<f32>,
497    @location(3) clip_distances: vec4<f32>,
498}
499
500@vertex
501fn vs_mono_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> MonoSpriteVarying {
502    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
503    let sprite = b_mono_sprites[instance_id];
504
505    var out = MonoSpriteVarying();
506    out.position = to_device_position(unit_vertex, sprite.bounds);
507    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
508    out.color = hsla_to_rgba(sprite.color);
509    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
510    return out;
511}
512
513@fragment
514fn fs_mono_sprite(input: MonoSpriteVarying) -> @location(0) vec4<f32> {
515    let sample = textureSample(t_sprite, s_sprite, input.tile_position).r;
516    // Alpha clip after using the derivatives.
517    if (any(input.clip_distances < vec4<f32>(0.0))) {
518        return vec4<f32>(0.0);
519    }
520    return input.color * vec4<f32>(1.0, 1.0, 1.0, sample);
521}
522
523// --- polychrome sprites --- //
524
525struct PolychromeSprite {
526    view_id: ViewId,
527    layer_id: u32,
528    order: u32,
529    bounds: Bounds,
530    content_mask: Bounds,
531    corner_radii: Corners,
532    tile: AtlasTile,
533    grayscale: u32,
534    pad: u32,
535}
536var<storage, read> b_poly_sprites: array<PolychromeSprite>;
537
538struct PolySpriteVarying {
539    @builtin(position) position: vec4<f32>,
540    @location(0) tile_position: vec2<f32>,
541    @location(1) @interpolate(flat) sprite_id: u32,
542    @location(3) clip_distances: vec4<f32>,
543}
544
545@vertex
546fn vs_poly_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PolySpriteVarying {
547    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
548    let sprite = b_poly_sprites[instance_id];
549
550    var out = PolySpriteVarying();
551    out.position = to_device_position(unit_vertex, sprite.bounds);
552    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
553    out.sprite_id = instance_id;
554    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
555    return out;
556}
557
558@fragment
559fn fs_poly_sprite(input: PolySpriteVarying) -> @location(0) vec4<f32> {
560    let sample = textureSample(t_sprite, s_sprite, input.tile_position);
561    // Alpha clip after using the derivatives.
562    if (any(input.clip_distances < vec4<f32>(0.0))) {
563        return vec4<f32>(0.0);
564    }
565
566    let sprite = b_poly_sprites[input.sprite_id];
567    let distance = quad_sdf(input.position.xy, sprite.bounds, sprite.corner_radii);
568
569    var color = sample;
570    if ((sprite.grayscale & 0xFFu) != 0u) {
571        let grayscale = dot(color.rgb, GRAYSCALE_FACTORS);
572        color = vec4<f32>(vec3<f32>(grayscale), sample.a);
573    }
574    color.a *= saturate(0.5 - distance);
575    return color;
576}
577
578// --- surfaces --- //
579
580struct SurfaceParams {
581    bounds: Bounds,
582    content_mask: Bounds,
583}
584
585var<uniform> surface_locals: SurfaceParams;
586var t_y: texture_2d<f32>;
587var t_cb_cr: texture_2d<f32>;
588var s_surface: sampler;
589
590const ycbcr_to_RGB = mat4x4<f32>(
591    vec4<f32>( 1.0000f,  1.0000f,  1.0000f, 0.0),
592    vec4<f32>( 0.0000f, -0.3441f,  1.7720f, 0.0),
593    vec4<f32>( 1.4020f, -0.7141f,  0.0000f, 0.0),
594    vec4<f32>(-0.7010f,  0.5291f, -0.8860f, 1.0),
595);
596
597struct SurfaceVarying {
598    @builtin(position) position: vec4<f32>,
599    @location(0) texture_position: vec2<f32>,
600    @location(3) clip_distances: vec4<f32>,
601}
602
603@vertex
604fn vs_surface(@builtin(vertex_index) vertex_id: u32) -> SurfaceVarying {
605    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
606
607    var out = SurfaceVarying();
608    out.position = to_device_position(unit_vertex, surface_locals.bounds);
609    out.texture_position = unit_vertex;
610    out.clip_distances = distance_from_clip_rect(unit_vertex, surface_locals.bounds, surface_locals.content_mask);
611    return out;
612}
613
614@fragment
615fn fs_surface(input: SurfaceVarying) -> @location(0) vec4<f32> {
616    // Alpha clip after using the derivatives.
617    if (any(input.clip_distances < vec4<f32>(0.0))) {
618        return vec4<f32>(0.0);
619    }
620
621    let y_cb_cr = vec4<f32>(
622        textureSampleLevel(t_y, s_surface, input.texture_position, 0.0).r,
623        textureSampleLevel(t_cb_cr, s_surface, input.texture_position, 0.0).rg,
624        1.0);
625
626    return ycbcr_to_RGB * y_cb_cr;
627}