sum_tree.rs

   1mod cursor;
   2mod tree_map;
   3
   4use arrayvec::ArrayVec;
   5pub use cursor::{Cursor, FilterCursor, Iter};
   6use rayon::prelude::*;
   7use std::marker::PhantomData;
   8use std::mem;
   9use std::{cmp::Ordering, fmt, iter::FromIterator, sync::Arc};
  10pub use tree_map::{MapSeekTarget, TreeMap, TreeSet};
  11
  12#[cfg(test)]
  13pub const TREE_BASE: usize = 2;
  14#[cfg(not(test))]
  15pub const TREE_BASE: usize = 6;
  16
  17/// An item that can be stored in a [`SumTree`]
  18///
  19/// Must be summarized by a type that implements [`Summary`]
  20pub trait Item: Clone {
  21    type Summary: Summary;
  22
  23    fn summary(&self) -> Self::Summary;
  24}
  25
  26/// An [`Item`] whose summary has a specific key that can be used to identify it
  27pub trait KeyedItem: Item {
  28    type Key: for<'a> Dimension<'a, Self::Summary> + Ord;
  29
  30    fn key(&self) -> Self::Key;
  31}
  32
  33/// A type that describes the Sum of all [`Item`]s in a subtree of the [`SumTree`]
  34///
  35/// Each Summary type can have multiple [`Dimensions`] that it measures,
  36/// which can be used to navigate the tree
  37pub trait Summary: Default + Clone + fmt::Debug {
  38    type Context;
  39
  40    fn add_summary(&mut self, summary: &Self, cx: &Self::Context);
  41}
  42
  43/// Each [`Summary`] type can have more than one [`Dimension`] type that it measures.
  44///
  45/// You can use dimensions to seek to a specific location in the [`SumTree`]
  46///
  47/// # Example:
  48/// Zed's rope has a `TextSummary` type that summarizes lines, characters, and bytes.
  49/// Each of these are different dimensions we may want to seek to
  50pub trait Dimension<'a, S: Summary>: Clone + fmt::Debug + Default {
  51    fn add_summary(&mut self, _summary: &'a S, _: &S::Context);
  52
  53    fn from_summary(summary: &'a S, cx: &S::Context) -> Self {
  54        let mut dimension = Self::default();
  55        dimension.add_summary(summary, cx);
  56        dimension
  57    }
  58}
  59
  60impl<'a, T: Summary> Dimension<'a, T> for T {
  61    fn add_summary(&mut self, summary: &'a T, cx: &T::Context) {
  62        Summary::add_summary(self, summary, cx);
  63    }
  64}
  65
  66pub trait SeekTarget<'a, S: Summary, D: Dimension<'a, S>>: fmt::Debug {
  67    fn cmp(&self, cursor_location: &D, cx: &S::Context) -> Ordering;
  68}
  69
  70impl<'a, S: Summary, D: Dimension<'a, S> + Ord> SeekTarget<'a, S, D> for D {
  71    fn cmp(&self, cursor_location: &Self, _: &S::Context) -> Ordering {
  72        Ord::cmp(self, cursor_location)
  73    }
  74}
  75
  76impl<'a, T: Summary> Dimension<'a, T> for () {
  77    fn add_summary(&mut self, _: &'a T, _: &T::Context) {}
  78}
  79
  80impl<'a, T: Summary, D1: Dimension<'a, T>, D2: Dimension<'a, T>> Dimension<'a, T> for (D1, D2) {
  81    fn add_summary(&mut self, summary: &'a T, cx: &T::Context) {
  82        self.0.add_summary(summary, cx);
  83        self.1.add_summary(summary, cx);
  84    }
  85}
  86
  87impl<'a, S: Summary, D1: SeekTarget<'a, S, D1> + Dimension<'a, S>, D2: Dimension<'a, S>>
  88    SeekTarget<'a, S, (D1, D2)> for D1
  89{
  90    fn cmp(&self, cursor_location: &(D1, D2), cx: &S::Context) -> Ordering {
  91        self.cmp(&cursor_location.0, cx)
  92    }
  93}
  94
  95struct End<D>(PhantomData<D>);
  96
  97impl<D> End<D> {
  98    fn new() -> Self {
  99        Self(PhantomData)
 100    }
 101}
 102
 103impl<'a, S: Summary, D: Dimension<'a, S>> SeekTarget<'a, S, D> for End<D> {
 104    fn cmp(&self, _: &D, _: &S::Context) -> Ordering {
 105        Ordering::Greater
 106    }
 107}
 108
 109impl<D> fmt::Debug for End<D> {
 110    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 111        f.debug_tuple("End").finish()
 112    }
 113}
 114
 115/// Bias is used to settle ambiguities when determining positions in an ordered sequence.
 116///
 117/// The primary use case is for text, where Bias influences
 118/// which character an offset or anchor is associated with.
 119///
 120/// # Examples
 121/// Given the buffer `AˇBCD`:
 122/// - The offset of the cursor is 1
 123/// - [Bias::Left] would attach the cursor to the character `A`
 124/// - [Bias::Right] would attach the cursor to the character `B`
 125///
 126/// Given the buffer `A«BCˇ»D`:
 127/// - The offset of the cursor is 3, and the selection is from 1 to 3
 128/// - The left anchor of the selection has [Bias::Right], attaching it to the character `B`
 129/// - The right anchor of the selection has [Bias::Left], attaching it to the character `C`
 130///
 131/// Given the buffer `{ˇ<...>`, where `<...>` is a folded region:
 132/// - The display offset of the cursor is 1, but the offset in the buffer is determined by the bias
 133/// - [Bias::Left] would attach the cursor to the character `{`, with a buffer offset of 1
 134/// - [Bias::Right] would attach the cursor to the first character of the folded region,
 135///   and the buffer offset would be the offset of the first character of the folded region
 136#[derive(Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Debug, Hash, Default)]
 137pub enum Bias {
 138    /// Attach to the character on the left
 139    #[default]
 140    Left,
 141    /// Attach to the character on the right
 142    Right,
 143}
 144
 145impl Bias {
 146    pub fn invert(self) -> Self {
 147        match self {
 148            Self::Left => Self::Right,
 149            Self::Right => Self::Left,
 150        }
 151    }
 152}
 153
 154/// A B-tree where each leaf node contains an [`Item`] of type `T`,
 155/// and each internal node contains a [`Summary`] of the items in its subtree.
 156///
 157/// Any [`Dimension`] supported by the [`Summary`] type can be used to seek to a specific location in the tree.
 158#[derive(Debug, Clone)]
 159pub struct SumTree<T: Item>(Arc<Node<T>>);
 160
 161impl<T: Item> SumTree<T> {
 162    pub fn new() -> Self {
 163        SumTree(Arc::new(Node::Leaf {
 164            summary: T::Summary::default(),
 165            items: ArrayVec::new(),
 166            item_summaries: ArrayVec::new(),
 167        }))
 168    }
 169
 170    pub fn from_item(item: T, cx: &<T::Summary as Summary>::Context) -> Self {
 171        let mut tree = Self::new();
 172        tree.push(item, cx);
 173        tree
 174    }
 175
 176    pub fn from_iter<I: IntoIterator<Item = T>>(
 177        iter: I,
 178        cx: &<T::Summary as Summary>::Context,
 179    ) -> Self {
 180        let mut nodes = Vec::new();
 181
 182        let mut iter = iter.into_iter().peekable();
 183        while iter.peek().is_some() {
 184            let items: ArrayVec<T, { 2 * TREE_BASE }> = iter.by_ref().take(2 * TREE_BASE).collect();
 185            let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
 186                items.iter().map(|item| item.summary()).collect();
 187
 188            let mut summary = item_summaries[0].clone();
 189            for item_summary in &item_summaries[1..] {
 190                <T::Summary as Summary>::add_summary(&mut summary, item_summary, cx);
 191            }
 192
 193            nodes.push(Node::Leaf {
 194                summary,
 195                items,
 196                item_summaries,
 197            });
 198        }
 199
 200        let mut parent_nodes = Vec::new();
 201        let mut height = 0;
 202        while nodes.len() > 1 {
 203            height += 1;
 204            let mut current_parent_node = None;
 205            for child_node in nodes.drain(..) {
 206                let parent_node = current_parent_node.get_or_insert_with(|| Node::Internal {
 207                    summary: T::Summary::default(),
 208                    height,
 209                    child_summaries: ArrayVec::new(),
 210                    child_trees: ArrayVec::new(),
 211                });
 212                let Node::Internal {
 213                    summary,
 214                    child_summaries,
 215                    child_trees,
 216                    ..
 217                } = parent_node
 218                else {
 219                    unreachable!()
 220                };
 221                let child_summary = child_node.summary();
 222                <T::Summary as Summary>::add_summary(summary, child_summary, cx);
 223                child_summaries.push(child_summary.clone());
 224                child_trees.push(Self(Arc::new(child_node)));
 225
 226                if child_trees.len() == 2 * TREE_BASE {
 227                    parent_nodes.extend(current_parent_node.take());
 228                }
 229            }
 230            parent_nodes.extend(current_parent_node.take());
 231            mem::swap(&mut nodes, &mut parent_nodes);
 232        }
 233
 234        if nodes.is_empty() {
 235            Self::new()
 236        } else {
 237            debug_assert_eq!(nodes.len(), 1);
 238            Self(Arc::new(nodes.pop().unwrap()))
 239        }
 240    }
 241
 242    pub fn from_par_iter<I, Iter>(iter: I, cx: &<T::Summary as Summary>::Context) -> Self
 243    where
 244        I: IntoParallelIterator<Iter = Iter>,
 245        Iter: IndexedParallelIterator<Item = T>,
 246        T: Send + Sync,
 247        T::Summary: Send + Sync,
 248        <T::Summary as Summary>::Context: Sync,
 249    {
 250        let mut nodes = iter
 251            .into_par_iter()
 252            .chunks(2 * TREE_BASE)
 253            .map(|items| {
 254                let items: ArrayVec<T, { 2 * TREE_BASE }> = items.into_iter().collect();
 255                let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
 256                    items.iter().map(|item| item.summary()).collect();
 257                let mut summary = item_summaries[0].clone();
 258                for item_summary in &item_summaries[1..] {
 259                    <T::Summary as Summary>::add_summary(&mut summary, item_summary, cx);
 260                }
 261                SumTree(Arc::new(Node::Leaf {
 262                    summary,
 263                    items,
 264                    item_summaries,
 265                }))
 266            })
 267            .collect::<Vec<_>>();
 268
 269        let mut height = 0;
 270        while nodes.len() > 1 {
 271            height += 1;
 272            nodes = nodes
 273                .into_par_iter()
 274                .chunks(2 * TREE_BASE)
 275                .map(|child_nodes| {
 276                    let child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }> =
 277                        child_nodes.into_iter().collect();
 278                    let child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> = child_trees
 279                        .iter()
 280                        .map(|child_tree| child_tree.summary().clone())
 281                        .collect();
 282                    let mut summary = child_summaries[0].clone();
 283                    for child_summary in &child_summaries[1..] {
 284                        <T::Summary as Summary>::add_summary(&mut summary, child_summary, cx);
 285                    }
 286                    SumTree(Arc::new(Node::Internal {
 287                        height,
 288                        summary,
 289                        child_summaries,
 290                        child_trees,
 291                    }))
 292                })
 293                .collect::<Vec<_>>();
 294        }
 295
 296        if nodes.is_empty() {
 297            Self::new()
 298        } else {
 299            debug_assert_eq!(nodes.len(), 1);
 300            nodes.pop().unwrap()
 301        }
 302    }
 303
 304    #[allow(unused)]
 305    pub fn items(&self, cx: &<T::Summary as Summary>::Context) -> Vec<T> {
 306        let mut items = Vec::new();
 307        let mut cursor = self.cursor::<()>();
 308        cursor.next(cx);
 309        while let Some(item) = cursor.item() {
 310            items.push(item.clone());
 311            cursor.next(cx);
 312        }
 313        items
 314    }
 315
 316    pub fn iter(&self) -> Iter<T> {
 317        Iter::new(self)
 318    }
 319
 320    pub fn cursor<'a, S>(&'a self) -> Cursor<T, S>
 321    where
 322        S: Dimension<'a, T::Summary>,
 323    {
 324        Cursor::new(self)
 325    }
 326
 327    /// Note: If the summary type requires a non `()` context, then the filter cursor
 328    /// that is returned cannot be used with Rust's iterators.
 329    pub fn filter<'a, F, U>(&'a self, filter_node: F) -> FilterCursor<F, T, U>
 330    where
 331        F: FnMut(&T::Summary) -> bool,
 332        U: Dimension<'a, T::Summary>,
 333    {
 334        FilterCursor::new(self, filter_node)
 335    }
 336
 337    #[allow(dead_code)]
 338    pub fn first(&self) -> Option<&T> {
 339        self.leftmost_leaf().0.items().first()
 340    }
 341
 342    pub fn last(&self) -> Option<&T> {
 343        self.rightmost_leaf().0.items().last()
 344    }
 345
 346    pub fn update_last(&mut self, f: impl FnOnce(&mut T), cx: &<T::Summary as Summary>::Context) {
 347        self.update_last_recursive(f, cx);
 348    }
 349
 350    fn update_last_recursive(
 351        &mut self,
 352        f: impl FnOnce(&mut T),
 353        cx: &<T::Summary as Summary>::Context,
 354    ) -> Option<T::Summary> {
 355        match Arc::make_mut(&mut self.0) {
 356            Node::Internal {
 357                summary,
 358                child_summaries,
 359                child_trees,
 360                ..
 361            } => {
 362                let last_summary = child_summaries.last_mut().unwrap();
 363                let last_child = child_trees.last_mut().unwrap();
 364                *last_summary = last_child.update_last_recursive(f, cx).unwrap();
 365                *summary = sum(child_summaries.iter(), cx);
 366                Some(summary.clone())
 367            }
 368            Node::Leaf {
 369                summary,
 370                items,
 371                item_summaries,
 372            } => {
 373                if let Some((item, item_summary)) = items.last_mut().zip(item_summaries.last_mut())
 374                {
 375                    (f)(item);
 376                    *item_summary = item.summary();
 377                    *summary = sum(item_summaries.iter(), cx);
 378                    Some(summary.clone())
 379                } else {
 380                    None
 381                }
 382            }
 383        }
 384    }
 385
 386    pub fn extent<'a, D: Dimension<'a, T::Summary>>(
 387        &'a self,
 388        cx: &<T::Summary as Summary>::Context,
 389    ) -> D {
 390        let mut extent = D::default();
 391        match self.0.as_ref() {
 392            Node::Internal { summary, .. } | Node::Leaf { summary, .. } => {
 393                extent.add_summary(summary, cx);
 394            }
 395        }
 396        extent
 397    }
 398
 399    pub fn summary(&self) -> &T::Summary {
 400        match self.0.as_ref() {
 401            Node::Internal { summary, .. } => summary,
 402            Node::Leaf { summary, .. } => summary,
 403        }
 404    }
 405
 406    pub fn is_empty(&self) -> bool {
 407        match self.0.as_ref() {
 408            Node::Internal { .. } => false,
 409            Node::Leaf { items, .. } => items.is_empty(),
 410        }
 411    }
 412
 413    pub fn extend<I>(&mut self, iter: I, cx: &<T::Summary as Summary>::Context)
 414    where
 415        I: IntoIterator<Item = T>,
 416    {
 417        self.append(Self::from_iter(iter, cx), cx);
 418    }
 419
 420    pub fn par_extend<I, Iter>(&mut self, iter: I, cx: &<T::Summary as Summary>::Context)
 421    where
 422        I: IntoParallelIterator<Iter = Iter>,
 423        Iter: IndexedParallelIterator<Item = T>,
 424        T: Send + Sync,
 425        T::Summary: Send + Sync,
 426        <T::Summary as Summary>::Context: Sync,
 427    {
 428        self.append(Self::from_par_iter(iter, cx), cx);
 429    }
 430
 431    pub fn push(&mut self, item: T, cx: &<T::Summary as Summary>::Context) {
 432        let summary = item.summary();
 433        self.append(
 434            SumTree(Arc::new(Node::Leaf {
 435                summary: summary.clone(),
 436                items: ArrayVec::from_iter(Some(item)),
 437                item_summaries: ArrayVec::from_iter(Some(summary)),
 438            })),
 439            cx,
 440        );
 441    }
 442
 443    pub fn append(&mut self, other: Self, cx: &<T::Summary as Summary>::Context) {
 444        if self.is_empty() {
 445            *self = other;
 446        } else if !other.0.is_leaf() || !other.0.items().is_empty() {
 447            if self.0.height() < other.0.height() {
 448                for tree in other.0.child_trees() {
 449                    self.append(tree.clone(), cx);
 450                }
 451            } else if let Some(split_tree) = self.push_tree_recursive(other, cx) {
 452                *self = Self::from_child_trees(self.clone(), split_tree, cx);
 453            }
 454        }
 455    }
 456
 457    fn push_tree_recursive(
 458        &mut self,
 459        other: SumTree<T>,
 460        cx: &<T::Summary as Summary>::Context,
 461    ) -> Option<SumTree<T>> {
 462        match Arc::make_mut(&mut self.0) {
 463            Node::Internal {
 464                height,
 465                summary,
 466                child_summaries,
 467                child_trees,
 468                ..
 469            } => {
 470                let other_node = other.0.clone();
 471                <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
 472
 473                let height_delta = *height - other_node.height();
 474                let mut summaries_to_append = ArrayVec::<T::Summary, { 2 * TREE_BASE }>::new();
 475                let mut trees_to_append = ArrayVec::<SumTree<T>, { 2 * TREE_BASE }>::new();
 476                if height_delta == 0 {
 477                    summaries_to_append.extend(other_node.child_summaries().iter().cloned());
 478                    trees_to_append.extend(other_node.child_trees().iter().cloned());
 479                } else if height_delta == 1 && !other_node.is_underflowing() {
 480                    summaries_to_append.push(other_node.summary().clone());
 481                    trees_to_append.push(other)
 482                } else {
 483                    let tree_to_append = child_trees
 484                        .last_mut()
 485                        .unwrap()
 486                        .push_tree_recursive(other, cx);
 487                    *child_summaries.last_mut().unwrap() =
 488                        child_trees.last().unwrap().0.summary().clone();
 489
 490                    if let Some(split_tree) = tree_to_append {
 491                        summaries_to_append.push(split_tree.0.summary().clone());
 492                        trees_to_append.push(split_tree);
 493                    }
 494                }
 495
 496                let child_count = child_trees.len() + trees_to_append.len();
 497                if child_count > 2 * TREE_BASE {
 498                    let left_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
 499                    let right_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
 500                    let left_trees;
 501                    let right_trees;
 502
 503                    let midpoint = (child_count + child_count % 2) / 2;
 504                    {
 505                        let mut all_summaries = child_summaries
 506                            .iter()
 507                            .chain(summaries_to_append.iter())
 508                            .cloned();
 509                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
 510                        right_summaries = all_summaries.collect();
 511                        let mut all_trees =
 512                            child_trees.iter().chain(trees_to_append.iter()).cloned();
 513                        left_trees = all_trees.by_ref().take(midpoint).collect();
 514                        right_trees = all_trees.collect();
 515                    }
 516                    *summary = sum(left_summaries.iter(), cx);
 517                    *child_summaries = left_summaries;
 518                    *child_trees = left_trees;
 519
 520                    Some(SumTree(Arc::new(Node::Internal {
 521                        height: *height,
 522                        summary: sum(right_summaries.iter(), cx),
 523                        child_summaries: right_summaries,
 524                        child_trees: right_trees,
 525                    })))
 526                } else {
 527                    child_summaries.extend(summaries_to_append);
 528                    child_trees.extend(trees_to_append);
 529                    None
 530                }
 531            }
 532            Node::Leaf {
 533                summary,
 534                items,
 535                item_summaries,
 536            } => {
 537                let other_node = other.0;
 538
 539                let child_count = items.len() + other_node.items().len();
 540                if child_count > 2 * TREE_BASE {
 541                    let left_items;
 542                    let right_items;
 543                    let left_summaries;
 544                    let right_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>;
 545
 546                    let midpoint = (child_count + child_count % 2) / 2;
 547                    {
 548                        let mut all_items = items.iter().chain(other_node.items().iter()).cloned();
 549                        left_items = all_items.by_ref().take(midpoint).collect();
 550                        right_items = all_items.collect();
 551
 552                        let mut all_summaries = item_summaries
 553                            .iter()
 554                            .chain(other_node.child_summaries())
 555                            .cloned();
 556                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
 557                        right_summaries = all_summaries.collect();
 558                    }
 559                    *items = left_items;
 560                    *item_summaries = left_summaries;
 561                    *summary = sum(item_summaries.iter(), cx);
 562                    Some(SumTree(Arc::new(Node::Leaf {
 563                        items: right_items,
 564                        summary: sum(right_summaries.iter(), cx),
 565                        item_summaries: right_summaries,
 566                    })))
 567                } else {
 568                    <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
 569                    items.extend(other_node.items().iter().cloned());
 570                    item_summaries.extend(other_node.child_summaries().iter().cloned());
 571                    None
 572                }
 573            }
 574        }
 575    }
 576
 577    fn from_child_trees(
 578        left: SumTree<T>,
 579        right: SumTree<T>,
 580        cx: &<T::Summary as Summary>::Context,
 581    ) -> Self {
 582        let height = left.0.height() + 1;
 583        let mut child_summaries = ArrayVec::new();
 584        child_summaries.push(left.0.summary().clone());
 585        child_summaries.push(right.0.summary().clone());
 586        let mut child_trees = ArrayVec::new();
 587        child_trees.push(left);
 588        child_trees.push(right);
 589        SumTree(Arc::new(Node::Internal {
 590            height,
 591            summary: sum(child_summaries.iter(), cx),
 592            child_summaries,
 593            child_trees,
 594        }))
 595    }
 596
 597    fn leftmost_leaf(&self) -> &Self {
 598        match *self.0 {
 599            Node::Leaf { .. } => self,
 600            Node::Internal {
 601                ref child_trees, ..
 602            } => child_trees.first().unwrap().leftmost_leaf(),
 603        }
 604    }
 605
 606    fn rightmost_leaf(&self) -> &Self {
 607        match *self.0 {
 608            Node::Leaf { .. } => self,
 609            Node::Internal {
 610                ref child_trees, ..
 611            } => child_trees.last().unwrap().rightmost_leaf(),
 612        }
 613    }
 614
 615    #[cfg(debug_assertions)]
 616    pub fn _debug_entries(&self) -> Vec<&T> {
 617        self.iter().collect::<Vec<_>>()
 618    }
 619}
 620
 621impl<T: Item + PartialEq> PartialEq for SumTree<T> {
 622    fn eq(&self, other: &Self) -> bool {
 623        self.iter().eq(other.iter())
 624    }
 625}
 626
 627impl<T: Item + Eq> Eq for SumTree<T> {}
 628
 629impl<T: KeyedItem> SumTree<T> {
 630    pub fn insert_or_replace(
 631        &mut self,
 632        item: T,
 633        cx: &<T::Summary as Summary>::Context,
 634    ) -> Option<T> {
 635        let mut replaced = None;
 636        *self = {
 637            let mut cursor = self.cursor::<T::Key>();
 638            let mut new_tree = cursor.slice(&item.key(), Bias::Left, cx);
 639            if let Some(cursor_item) = cursor.item() {
 640                if cursor_item.key() == item.key() {
 641                    replaced = Some(cursor_item.clone());
 642                    cursor.next(cx);
 643                }
 644            }
 645            new_tree.push(item, cx);
 646            new_tree.append(cursor.suffix(cx), cx);
 647            new_tree
 648        };
 649        replaced
 650    }
 651
 652    pub fn remove(&mut self, key: &T::Key, cx: &<T::Summary as Summary>::Context) -> Option<T> {
 653        let mut removed = None;
 654        *self = {
 655            let mut cursor = self.cursor::<T::Key>();
 656            let mut new_tree = cursor.slice(key, Bias::Left, cx);
 657            if let Some(item) = cursor.item() {
 658                if item.key() == *key {
 659                    removed = Some(item.clone());
 660                    cursor.next(cx);
 661                }
 662            }
 663            new_tree.append(cursor.suffix(cx), cx);
 664            new_tree
 665        };
 666        removed
 667    }
 668
 669    pub fn edit(
 670        &mut self,
 671        mut edits: Vec<Edit<T>>,
 672        cx: &<T::Summary as Summary>::Context,
 673    ) -> Vec<T> {
 674        if edits.is_empty() {
 675            return Vec::new();
 676        }
 677
 678        let mut removed = Vec::new();
 679        edits.sort_unstable_by_key(|item| item.key());
 680
 681        *self = {
 682            let mut cursor = self.cursor::<T::Key>();
 683            let mut new_tree = SumTree::new();
 684            let mut buffered_items = Vec::new();
 685
 686            cursor.seek(&T::Key::default(), Bias::Left, cx);
 687            for edit in edits {
 688                let new_key = edit.key();
 689                let mut old_item = cursor.item();
 690
 691                if old_item
 692                    .as_ref()
 693                    .map_or(false, |old_item| old_item.key() < new_key)
 694                {
 695                    new_tree.extend(buffered_items.drain(..), cx);
 696                    let slice = cursor.slice(&new_key, Bias::Left, cx);
 697                    new_tree.append(slice, cx);
 698                    old_item = cursor.item();
 699                }
 700
 701                if let Some(old_item) = old_item {
 702                    if old_item.key() == new_key {
 703                        removed.push(old_item.clone());
 704                        cursor.next(cx);
 705                    }
 706                }
 707
 708                match edit {
 709                    Edit::Insert(item) => {
 710                        buffered_items.push(item);
 711                    }
 712                    Edit::Remove(_) => {}
 713                }
 714            }
 715
 716            new_tree.extend(buffered_items, cx);
 717            new_tree.append(cursor.suffix(cx), cx);
 718            new_tree
 719        };
 720
 721        removed
 722    }
 723
 724    pub fn get(&self, key: &T::Key, cx: &<T::Summary as Summary>::Context) -> Option<&T> {
 725        let mut cursor = self.cursor::<T::Key>();
 726        if cursor.seek(key, Bias::Left, cx) {
 727            cursor.item()
 728        } else {
 729            None
 730        }
 731    }
 732}
 733
 734impl<T: Item> Default for SumTree<T> {
 735    fn default() -> Self {
 736        Self::new()
 737    }
 738}
 739
 740#[derive(Clone, Debug)]
 741pub enum Node<T: Item> {
 742    Internal {
 743        height: u8,
 744        summary: T::Summary,
 745        child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
 746        child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }>,
 747    },
 748    Leaf {
 749        summary: T::Summary,
 750        items: ArrayVec<T, { 2 * TREE_BASE }>,
 751        item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
 752    },
 753}
 754
 755impl<T: Item> Node<T> {
 756    fn is_leaf(&self) -> bool {
 757        matches!(self, Node::Leaf { .. })
 758    }
 759
 760    fn height(&self) -> u8 {
 761        match self {
 762            Node::Internal { height, .. } => *height,
 763            Node::Leaf { .. } => 0,
 764        }
 765    }
 766
 767    fn summary(&self) -> &T::Summary {
 768        match self {
 769            Node::Internal { summary, .. } => summary,
 770            Node::Leaf { summary, .. } => summary,
 771        }
 772    }
 773
 774    fn child_summaries(&self) -> &[T::Summary] {
 775        match self {
 776            Node::Internal {
 777                child_summaries, ..
 778            } => child_summaries.as_slice(),
 779            Node::Leaf { item_summaries, .. } => item_summaries.as_slice(),
 780        }
 781    }
 782
 783    fn child_trees(&self) -> &ArrayVec<SumTree<T>, { 2 * TREE_BASE }> {
 784        match self {
 785            Node::Internal { child_trees, .. } => child_trees,
 786            Node::Leaf { .. } => panic!("Leaf nodes have no child trees"),
 787        }
 788    }
 789
 790    fn items(&self) -> &ArrayVec<T, { 2 * TREE_BASE }> {
 791        match self {
 792            Node::Leaf { items, .. } => items,
 793            Node::Internal { .. } => panic!("Internal nodes have no items"),
 794        }
 795    }
 796
 797    fn is_underflowing(&self) -> bool {
 798        match self {
 799            Node::Internal { child_trees, .. } => child_trees.len() < TREE_BASE,
 800            Node::Leaf { items, .. } => items.len() < TREE_BASE,
 801        }
 802    }
 803}
 804
 805#[derive(Debug)]
 806pub enum Edit<T: KeyedItem> {
 807    Insert(T),
 808    Remove(T::Key),
 809}
 810
 811impl<T: KeyedItem> Edit<T> {
 812    fn key(&self) -> T::Key {
 813        match self {
 814            Edit::Insert(item) => item.key(),
 815            Edit::Remove(key) => key.clone(),
 816        }
 817    }
 818}
 819
 820fn sum<'a, T, I>(iter: I, cx: &T::Context) -> T
 821where
 822    T: 'a + Summary,
 823    I: Iterator<Item = &'a T>,
 824{
 825    let mut sum = T::default();
 826    for value in iter {
 827        sum.add_summary(value, cx);
 828    }
 829    sum
 830}
 831
 832#[cfg(test)]
 833mod tests {
 834    use super::*;
 835    use rand::{distributions, prelude::*};
 836    use std::cmp;
 837
 838    #[ctor::ctor]
 839    fn init_logger() {
 840        if std::env::var("RUST_LOG").is_ok() {
 841            env_logger::init();
 842        }
 843    }
 844
 845    #[test]
 846    fn test_extend_and_push_tree() {
 847        let mut tree1 = SumTree::new();
 848        tree1.extend(0..20, &());
 849
 850        let mut tree2 = SumTree::new();
 851        tree2.extend(50..100, &());
 852
 853        tree1.append(tree2, &());
 854        assert_eq!(
 855            tree1.items(&()),
 856            (0..20).chain(50..100).collect::<Vec<u8>>()
 857        );
 858    }
 859
 860    #[test]
 861    fn test_random() {
 862        let mut starting_seed = 0;
 863        if let Ok(value) = std::env::var("SEED") {
 864            starting_seed = value.parse().expect("invalid SEED variable");
 865        }
 866        let mut num_iterations = 100;
 867        if let Ok(value) = std::env::var("ITERATIONS") {
 868            num_iterations = value.parse().expect("invalid ITERATIONS variable");
 869        }
 870        let num_operations = std::env::var("OPERATIONS")
 871            .map_or(5, |o| o.parse().expect("invalid OPERATIONS variable"));
 872
 873        for seed in starting_seed..(starting_seed + num_iterations) {
 874            eprintln!("seed = {}", seed);
 875            let mut rng = StdRng::seed_from_u64(seed);
 876
 877            let rng = &mut rng;
 878            let mut tree = SumTree::<u8>::new();
 879            let count = rng.gen_range(0..10);
 880            if rng.gen() {
 881                tree.extend(rng.sample_iter(distributions::Standard).take(count), &());
 882            } else {
 883                let items = rng
 884                    .sample_iter(distributions::Standard)
 885                    .take(count)
 886                    .collect::<Vec<_>>();
 887                tree.par_extend(items, &());
 888            }
 889
 890            for _ in 0..num_operations {
 891                let splice_end = rng.gen_range(0..tree.extent::<Count>(&()).0 + 1);
 892                let splice_start = rng.gen_range(0..splice_end + 1);
 893                let count = rng.gen_range(0..10);
 894                let tree_end = tree.extent::<Count>(&());
 895                let new_items = rng
 896                    .sample_iter(distributions::Standard)
 897                    .take(count)
 898                    .collect::<Vec<u8>>();
 899
 900                let mut reference_items = tree.items(&());
 901                reference_items.splice(splice_start..splice_end, new_items.clone());
 902
 903                tree = {
 904                    let mut cursor = tree.cursor::<Count>();
 905                    let mut new_tree = cursor.slice(&Count(splice_start), Bias::Right, &());
 906                    if rng.gen() {
 907                        new_tree.extend(new_items, &());
 908                    } else {
 909                        new_tree.par_extend(new_items, &());
 910                    }
 911                    cursor.seek(&Count(splice_end), Bias::Right, &());
 912                    new_tree.append(cursor.slice(&tree_end, Bias::Right, &()), &());
 913                    new_tree
 914                };
 915
 916                assert_eq!(tree.items(&()), reference_items);
 917                assert_eq!(
 918                    tree.iter().collect::<Vec<_>>(),
 919                    tree.cursor::<()>().collect::<Vec<_>>()
 920                );
 921
 922                log::info!("tree items: {:?}", tree.items(&()));
 923
 924                let mut filter_cursor = tree.filter::<_, Count>(|summary| summary.contains_even);
 925                let expected_filtered_items = tree
 926                    .items(&())
 927                    .into_iter()
 928                    .enumerate()
 929                    .filter(|(_, item)| (item & 1) == 0)
 930                    .collect::<Vec<_>>();
 931
 932                let mut item_ix = if rng.gen() {
 933                    filter_cursor.next(&());
 934                    0
 935                } else {
 936                    filter_cursor.prev(&());
 937                    expected_filtered_items.len().saturating_sub(1)
 938                };
 939                while item_ix < expected_filtered_items.len() {
 940                    log::info!("filter_cursor, item_ix: {}", item_ix);
 941                    let actual_item = filter_cursor.item().unwrap();
 942                    let (reference_index, reference_item) = expected_filtered_items[item_ix];
 943                    assert_eq!(actual_item, &reference_item);
 944                    assert_eq!(filter_cursor.start().0, reference_index);
 945                    log::info!("next");
 946                    filter_cursor.next(&());
 947                    item_ix += 1;
 948
 949                    while item_ix > 0 && rng.gen_bool(0.2) {
 950                        log::info!("prev");
 951                        filter_cursor.prev(&());
 952                        item_ix -= 1;
 953
 954                        if item_ix == 0 && rng.gen_bool(0.2) {
 955                            filter_cursor.prev(&());
 956                            assert_eq!(filter_cursor.item(), None);
 957                            assert_eq!(filter_cursor.start().0, 0);
 958                            filter_cursor.next(&());
 959                        }
 960                    }
 961                }
 962                assert_eq!(filter_cursor.item(), None);
 963
 964                let mut before_start = false;
 965                let mut cursor = tree.cursor::<Count>();
 966                let start_pos = rng.gen_range(0..=reference_items.len());
 967                cursor.seek(&Count(start_pos), Bias::Right, &());
 968                let mut pos = rng.gen_range(start_pos..=reference_items.len());
 969                cursor.seek_forward(&Count(pos), Bias::Right, &());
 970
 971                for i in 0..10 {
 972                    assert_eq!(cursor.start().0, pos);
 973
 974                    if pos > 0 {
 975                        assert_eq!(cursor.prev_item().unwrap(), &reference_items[pos - 1]);
 976                    } else {
 977                        assert_eq!(cursor.prev_item(), None);
 978                    }
 979
 980                    if pos < reference_items.len() && !before_start {
 981                        assert_eq!(cursor.item().unwrap(), &reference_items[pos]);
 982                    } else {
 983                        assert_eq!(cursor.item(), None);
 984                    }
 985
 986                    if before_start {
 987                        assert_eq!(cursor.next_item(), reference_items.get(0));
 988                    } else if pos + 1 < reference_items.len() {
 989                        assert_eq!(cursor.next_item().unwrap(), &reference_items[pos + 1]);
 990                    } else {
 991                        assert_eq!(cursor.next_item(), None);
 992                    }
 993
 994                    if i < 5 {
 995                        cursor.next(&());
 996                        if pos < reference_items.len() {
 997                            pos += 1;
 998                            before_start = false;
 999                        }
1000                    } else {
1001                        cursor.prev(&());
1002                        if pos == 0 {
1003                            before_start = true;
1004                        }
1005                        pos = pos.saturating_sub(1);
1006                    }
1007                }
1008            }
1009
1010            for _ in 0..10 {
1011                let end = rng.gen_range(0..tree.extent::<Count>(&()).0 + 1);
1012                let start = rng.gen_range(0..end + 1);
1013                let start_bias = if rng.gen() { Bias::Left } else { Bias::Right };
1014                let end_bias = if rng.gen() { Bias::Left } else { Bias::Right };
1015
1016                let mut cursor = tree.cursor::<Count>();
1017                cursor.seek(&Count(start), start_bias, &());
1018                let slice = cursor.slice(&Count(end), end_bias, &());
1019
1020                cursor.seek(&Count(start), start_bias, &());
1021                let summary = cursor.summary::<_, Sum>(&Count(end), end_bias, &());
1022
1023                assert_eq!(summary.0, slice.summary().sum);
1024            }
1025        }
1026    }
1027
1028    #[test]
1029    fn test_cursor() {
1030        // Empty tree
1031        let tree = SumTree::<u8>::new();
1032        let mut cursor = tree.cursor::<IntegersSummary>();
1033        assert_eq!(
1034            cursor.slice(&Count(0), Bias::Right, &()).items(&()),
1035            Vec::<u8>::new()
1036        );
1037        assert_eq!(cursor.item(), None);
1038        assert_eq!(cursor.prev_item(), None);
1039        assert_eq!(cursor.next_item(), None);
1040        assert_eq!(cursor.start().sum, 0);
1041        cursor.prev(&());
1042        assert_eq!(cursor.item(), None);
1043        assert_eq!(cursor.prev_item(), None);
1044        assert_eq!(cursor.next_item(), None);
1045        assert_eq!(cursor.start().sum, 0);
1046        cursor.next(&());
1047        assert_eq!(cursor.item(), None);
1048        assert_eq!(cursor.prev_item(), None);
1049        assert_eq!(cursor.next_item(), None);
1050        assert_eq!(cursor.start().sum, 0);
1051
1052        // Single-element tree
1053        let mut tree = SumTree::<u8>::new();
1054        tree.extend(vec![1], &());
1055        let mut cursor = tree.cursor::<IntegersSummary>();
1056        assert_eq!(
1057            cursor.slice(&Count(0), Bias::Right, &()).items(&()),
1058            Vec::<u8>::new()
1059        );
1060        assert_eq!(cursor.item(), Some(&1));
1061        assert_eq!(cursor.prev_item(), None);
1062        assert_eq!(cursor.next_item(), None);
1063        assert_eq!(cursor.start().sum, 0);
1064
1065        cursor.next(&());
1066        assert_eq!(cursor.item(), None);
1067        assert_eq!(cursor.prev_item(), Some(&1));
1068        assert_eq!(cursor.next_item(), None);
1069        assert_eq!(cursor.start().sum, 1);
1070
1071        cursor.prev(&());
1072        assert_eq!(cursor.item(), Some(&1));
1073        assert_eq!(cursor.prev_item(), None);
1074        assert_eq!(cursor.next_item(), None);
1075        assert_eq!(cursor.start().sum, 0);
1076
1077        let mut cursor = tree.cursor::<IntegersSummary>();
1078        assert_eq!(cursor.slice(&Count(1), Bias::Right, &()).items(&()), [1]);
1079        assert_eq!(cursor.item(), None);
1080        assert_eq!(cursor.prev_item(), Some(&1));
1081        assert_eq!(cursor.next_item(), None);
1082        assert_eq!(cursor.start().sum, 1);
1083
1084        cursor.seek(&Count(0), Bias::Right, &());
1085        assert_eq!(
1086            cursor
1087                .slice(&tree.extent::<Count>(&()), Bias::Right, &())
1088                .items(&()),
1089            [1]
1090        );
1091        assert_eq!(cursor.item(), None);
1092        assert_eq!(cursor.prev_item(), Some(&1));
1093        assert_eq!(cursor.next_item(), None);
1094        assert_eq!(cursor.start().sum, 1);
1095
1096        // Multiple-element tree
1097        let mut tree = SumTree::new();
1098        tree.extend(vec![1, 2, 3, 4, 5, 6], &());
1099        let mut cursor = tree.cursor::<IntegersSummary>();
1100
1101        assert_eq!(cursor.slice(&Count(2), Bias::Right, &()).items(&()), [1, 2]);
1102        assert_eq!(cursor.item(), Some(&3));
1103        assert_eq!(cursor.prev_item(), Some(&2));
1104        assert_eq!(cursor.next_item(), Some(&4));
1105        assert_eq!(cursor.start().sum, 3);
1106
1107        cursor.next(&());
1108        assert_eq!(cursor.item(), Some(&4));
1109        assert_eq!(cursor.prev_item(), Some(&3));
1110        assert_eq!(cursor.next_item(), Some(&5));
1111        assert_eq!(cursor.start().sum, 6);
1112
1113        cursor.next(&());
1114        assert_eq!(cursor.item(), Some(&5));
1115        assert_eq!(cursor.prev_item(), Some(&4));
1116        assert_eq!(cursor.next_item(), Some(&6));
1117        assert_eq!(cursor.start().sum, 10);
1118
1119        cursor.next(&());
1120        assert_eq!(cursor.item(), Some(&6));
1121        assert_eq!(cursor.prev_item(), Some(&5));
1122        assert_eq!(cursor.next_item(), None);
1123        assert_eq!(cursor.start().sum, 15);
1124
1125        cursor.next(&());
1126        cursor.next(&());
1127        assert_eq!(cursor.item(), None);
1128        assert_eq!(cursor.prev_item(), Some(&6));
1129        assert_eq!(cursor.next_item(), None);
1130        assert_eq!(cursor.start().sum, 21);
1131
1132        cursor.prev(&());
1133        assert_eq!(cursor.item(), Some(&6));
1134        assert_eq!(cursor.prev_item(), Some(&5));
1135        assert_eq!(cursor.next_item(), None);
1136        assert_eq!(cursor.start().sum, 15);
1137
1138        cursor.prev(&());
1139        assert_eq!(cursor.item(), Some(&5));
1140        assert_eq!(cursor.prev_item(), Some(&4));
1141        assert_eq!(cursor.next_item(), Some(&6));
1142        assert_eq!(cursor.start().sum, 10);
1143
1144        cursor.prev(&());
1145        assert_eq!(cursor.item(), Some(&4));
1146        assert_eq!(cursor.prev_item(), Some(&3));
1147        assert_eq!(cursor.next_item(), Some(&5));
1148        assert_eq!(cursor.start().sum, 6);
1149
1150        cursor.prev(&());
1151        assert_eq!(cursor.item(), Some(&3));
1152        assert_eq!(cursor.prev_item(), Some(&2));
1153        assert_eq!(cursor.next_item(), Some(&4));
1154        assert_eq!(cursor.start().sum, 3);
1155
1156        cursor.prev(&());
1157        assert_eq!(cursor.item(), Some(&2));
1158        assert_eq!(cursor.prev_item(), Some(&1));
1159        assert_eq!(cursor.next_item(), Some(&3));
1160        assert_eq!(cursor.start().sum, 1);
1161
1162        cursor.prev(&());
1163        assert_eq!(cursor.item(), Some(&1));
1164        assert_eq!(cursor.prev_item(), None);
1165        assert_eq!(cursor.next_item(), Some(&2));
1166        assert_eq!(cursor.start().sum, 0);
1167
1168        cursor.prev(&());
1169        assert_eq!(cursor.item(), None);
1170        assert_eq!(cursor.prev_item(), None);
1171        assert_eq!(cursor.next_item(), Some(&1));
1172        assert_eq!(cursor.start().sum, 0);
1173
1174        cursor.next(&());
1175        assert_eq!(cursor.item(), Some(&1));
1176        assert_eq!(cursor.prev_item(), None);
1177        assert_eq!(cursor.next_item(), Some(&2));
1178        assert_eq!(cursor.start().sum, 0);
1179
1180        let mut cursor = tree.cursor::<IntegersSummary>();
1181        assert_eq!(
1182            cursor
1183                .slice(&tree.extent::<Count>(&()), Bias::Right, &())
1184                .items(&()),
1185            tree.items(&())
1186        );
1187        assert_eq!(cursor.item(), None);
1188        assert_eq!(cursor.prev_item(), Some(&6));
1189        assert_eq!(cursor.next_item(), None);
1190        assert_eq!(cursor.start().sum, 21);
1191
1192        cursor.seek(&Count(3), Bias::Right, &());
1193        assert_eq!(
1194            cursor
1195                .slice(&tree.extent::<Count>(&()), Bias::Right, &())
1196                .items(&()),
1197            [4, 5, 6]
1198        );
1199        assert_eq!(cursor.item(), None);
1200        assert_eq!(cursor.prev_item(), Some(&6));
1201        assert_eq!(cursor.next_item(), None);
1202        assert_eq!(cursor.start().sum, 21);
1203
1204        // Seeking can bias left or right
1205        cursor.seek(&Count(1), Bias::Left, &());
1206        assert_eq!(cursor.item(), Some(&1));
1207        cursor.seek(&Count(1), Bias::Right, &());
1208        assert_eq!(cursor.item(), Some(&2));
1209
1210        // Slicing without resetting starts from where the cursor is parked at.
1211        cursor.seek(&Count(1), Bias::Right, &());
1212        assert_eq!(
1213            cursor.slice(&Count(3), Bias::Right, &()).items(&()),
1214            vec![2, 3]
1215        );
1216        assert_eq!(
1217            cursor.slice(&Count(6), Bias::Left, &()).items(&()),
1218            vec![4, 5]
1219        );
1220        assert_eq!(
1221            cursor.slice(&Count(6), Bias::Right, &()).items(&()),
1222            vec![6]
1223        );
1224    }
1225
1226    #[test]
1227    fn test_edit() {
1228        let mut tree = SumTree::<u8>::new();
1229
1230        let removed = tree.edit(vec![Edit::Insert(1), Edit::Insert(2), Edit::Insert(0)], &());
1231        assert_eq!(tree.items(&()), vec![0, 1, 2]);
1232        assert_eq!(removed, Vec::<u8>::new());
1233        assert_eq!(tree.get(&0, &()), Some(&0));
1234        assert_eq!(tree.get(&1, &()), Some(&1));
1235        assert_eq!(tree.get(&2, &()), Some(&2));
1236        assert_eq!(tree.get(&4, &()), None);
1237
1238        let removed = tree.edit(vec![Edit::Insert(2), Edit::Insert(4), Edit::Remove(0)], &());
1239        assert_eq!(tree.items(&()), vec![1, 2, 4]);
1240        assert_eq!(removed, vec![0, 2]);
1241        assert_eq!(tree.get(&0, &()), None);
1242        assert_eq!(tree.get(&1, &()), Some(&1));
1243        assert_eq!(tree.get(&2, &()), Some(&2));
1244        assert_eq!(tree.get(&4, &()), Some(&4));
1245    }
1246
1247    #[derive(Clone, Default, Debug)]
1248    pub struct IntegersSummary {
1249        count: usize,
1250        sum: usize,
1251        contains_even: bool,
1252        max: u8,
1253    }
1254
1255    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1256    struct Count(usize);
1257
1258    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1259    struct Sum(usize);
1260
1261    impl Item for u8 {
1262        type Summary = IntegersSummary;
1263
1264        fn summary(&self) -> Self::Summary {
1265            IntegersSummary {
1266                count: 1,
1267                sum: *self as usize,
1268                contains_even: (*self & 1) == 0,
1269                max: *self,
1270            }
1271        }
1272    }
1273
1274    impl KeyedItem for u8 {
1275        type Key = u8;
1276
1277        fn key(&self) -> Self::Key {
1278            *self
1279        }
1280    }
1281
1282    impl Summary for IntegersSummary {
1283        type Context = ();
1284
1285        fn add_summary(&mut self, other: &Self, _: &()) {
1286            self.count += other.count;
1287            self.sum += other.sum;
1288            self.contains_even |= other.contains_even;
1289            self.max = cmp::max(self.max, other.max);
1290        }
1291    }
1292
1293    impl<'a> Dimension<'a, IntegersSummary> for u8 {
1294        fn add_summary(&mut self, summary: &IntegersSummary, _: &()) {
1295            *self = summary.max;
1296        }
1297    }
1298
1299    impl<'a> Dimension<'a, IntegersSummary> for Count {
1300        fn add_summary(&mut self, summary: &IntegersSummary, _: &()) {
1301            self.0 += summary.count;
1302        }
1303    }
1304
1305    impl<'a> SeekTarget<'a, IntegersSummary, IntegersSummary> for Count {
1306        fn cmp(&self, cursor_location: &IntegersSummary, _: &()) -> Ordering {
1307            self.0.cmp(&cursor_location.count)
1308        }
1309    }
1310
1311    impl<'a> Dimension<'a, IntegersSummary> for Sum {
1312        fn add_summary(&mut self, summary: &IntegersSummary, _: &()) {
1313            self.0 += summary.sum;
1314        }
1315    }
1316}