shaders.wgsl

  1struct GlobalParams {
  2    viewport_size: vec2<f32>,
  3    pad: vec2<u32>,
  4}
  5
  6var<uniform> globals: GlobalParams;
  7var t_sprite: texture_2d<f32>;
  8var s_sprite: sampler;
  9
 10const M_PI_F: f32 = 3.1415926;
 11const GRAYSCALE_FACTORS: vec3<f32> = vec3<f32>(0.2126, 0.7152, 0.0722);
 12
 13struct Bounds {
 14    origin: vec2<f32>,
 15    size: vec2<f32>,
 16}
 17struct Corners {
 18    top_left: f32,
 19    top_right: f32,
 20    bottom_right: f32,
 21    bottom_left: f32,
 22}
 23struct Edges {
 24    top: f32,
 25    right: f32,
 26    bottom: f32,
 27    left: f32,
 28}
 29struct Hsla {
 30    h: f32,
 31    s: f32,
 32    l: f32,
 33    a: f32,
 34}
 35
 36struct AtlasTextureId {
 37    index: u32,
 38    kind: u32,
 39}
 40
 41struct AtlasBounds {
 42    origin: vec2<i32>,
 43    size: vec2<i32>,
 44}
 45struct AtlasTile {
 46    texture_id: AtlasTextureId,
 47    tile_id: u32,
 48    padding: u32,
 49    bounds: AtlasBounds,
 50}
 51
 52fn to_device_position_impl(position: vec2<f32>) -> vec4<f32> {
 53    let device_position = position / globals.viewport_size * vec2<f32>(2.0, -2.0) + vec2<f32>(-1.0, 1.0);
 54    return vec4<f32>(device_position, 0.0, 1.0);
 55}
 56
 57fn to_device_position(unit_vertex: vec2<f32>, bounds: Bounds) -> vec4<f32> {
 58    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 59    return to_device_position_impl(position);
 60}
 61
 62fn to_tile_position(unit_vertex: vec2<f32>, tile: AtlasTile) -> vec2<f32> {
 63  let atlas_size = vec2<f32>(textureDimensions(t_sprite, 0));
 64  return (vec2<f32>(tile.bounds.origin) + unit_vertex * vec2<f32>(tile.bounds.size)) / atlas_size;
 65}
 66
 67fn distance_from_clip_rect_impl(position: vec2<f32>, clip_bounds: Bounds) -> vec4<f32> {
 68    let tl = position - clip_bounds.origin;
 69    let br = clip_bounds.origin + clip_bounds.size - position;
 70    return vec4<f32>(tl.x, br.x, tl.y, br.y);
 71}
 72
 73fn distance_from_clip_rect(unit_vertex: vec2<f32>, bounds: Bounds, clip_bounds: Bounds) -> vec4<f32> {
 74    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 75    return distance_from_clip_rect_impl(position, clip_bounds);
 76}
 77
 78fn hsla_to_rgba(hsla: Hsla) -> vec4<f32> {
 79    let h = hsla.h * 6.0; // Now, it's an angle but scaled in [0, 6) range
 80    let s = hsla.s;
 81    let l = hsla.l;
 82    let a = hsla.a;
 83
 84    let c = (1.0 - abs(2.0 * l - 1.0)) * s;
 85    let x = c * (1.0 - abs(h % 2.0 - 1.0));
 86    let m = l - c / 2.0;
 87
 88    var color = vec4<f32>(m, m, m, a);
 89
 90    if (h >= 0.0 && h < 1.0) {
 91        color.r += c;
 92        color.g += x;
 93    } else if (h >= 1.0 && h < 2.0) {
 94        color.r += x;
 95        color.g += c;
 96    } else if (h >= 2.0 && h < 3.0) {
 97        color.g += c;
 98        color.b += x;
 99    } else if (h >= 3.0 && h < 4.0) {
100        color.g += x;
101        color.b += c;
102    } else if (h >= 4.0 && h < 5.0) {
103        color.r += x;
104        color.b += c;
105    } else {
106        color.r += c;
107        color.b += x;
108    }
109
110    return color;
111}
112
113fn over(below: vec4<f32>, above: vec4<f32>) -> vec4<f32> {
114    let alpha = above.a + below.a * (1.0 - above.a);
115    let color = (above.rgb * above.a + below.rgb * below.a * (1.0 - above.a)) / alpha;
116    return vec4<f32>(color, alpha);
117}
118
119// A standard gaussian function, used for weighting samples
120fn gaussian(x: f32, sigma: f32) -> f32{
121    return exp(-(x * x) / (2.0 * sigma * sigma)) / (sqrt(2.0 * M_PI_F) * sigma);
122}
123
124// This approximates the error function, needed for the gaussian integral
125fn erf(v: vec2<f32>) -> vec2<f32> {
126    let s = sign(v);
127    let a = abs(v);
128    let r1 = 1.0 + (0.278393 + (0.230389 + 0.078108 * (a * a)) * a) * a;
129    let r2 = r1 * r1;
130    return s - s / (r2 * r2);
131}
132
133fn blur_along_x(x: f32, y: f32, sigma: f32, corner: f32, half_size: vec2<f32>) -> f32 {
134  let delta = min(half_size.y - corner - abs(y), 0.0);
135  let curved = half_size.x - corner + sqrt(max(0.0, corner * corner - delta * delta));
136  let integral = 0.5 + 0.5 * erf((x + vec2<f32>(-curved, curved)) * (sqrt(0.5) / sigma));
137  return integral.y - integral.x;
138}
139
140fn pick_corner_radius(point: vec2<f32>, radii: Corners) -> f32 {
141    if (point.x < 0.0) {
142        if (point.y < 0.0) {
143            return radii.top_left;
144        } else {
145            return radii.bottom_left;
146        }
147    } else {
148        if (point.y < 0.0) {
149            return radii.top_right;
150        } else {
151            return radii.bottom_right;
152        }
153    }
154}
155
156fn quad_sdf(point: vec2<f32>, bounds: Bounds, corner_radii: Corners) -> f32 {
157    let half_size = bounds.size / 2.0;
158    let center = bounds.origin + half_size;
159    let center_to_point = point - center;
160    let corner_radius = pick_corner_radius(center_to_point, corner_radii);
161    let rounded_edge_to_point = abs(center_to_point) - half_size + corner_radius;
162    return length(max(vec2<f32>(0.0), rounded_edge_to_point)) +
163        min(0.0, max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
164        corner_radius;
165}
166
167// --- quads --- //
168
169struct Quad {
170    order: u32,
171    pad: u32,
172    bounds: Bounds,
173    content_mask: Bounds,
174    background: Hsla,
175    border_color: Hsla,
176    corner_radii: Corners,
177    border_widths: Edges,
178}
179var<storage, read> b_quads: array<Quad>;
180
181struct QuadVarying {
182    @builtin(position) position: vec4<f32>,
183    @location(0) @interpolate(flat) background_color: vec4<f32>,
184    @location(1) @interpolate(flat) border_color: vec4<f32>,
185    @location(2) @interpolate(flat) quad_id: u32,
186    //TODO: use `clip_distance` once Naga supports it
187    @location(3) clip_distances: vec4<f32>,
188}
189
190@vertex
191fn vs_quad(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> QuadVarying {
192    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
193    let quad = b_quads[instance_id];
194
195    var out = QuadVarying();
196    out.position = to_device_position(unit_vertex, quad.bounds);
197    out.background_color = hsla_to_rgba(quad.background);
198    out.border_color = hsla_to_rgba(quad.border_color);
199    out.quad_id = instance_id;
200    out.clip_distances = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask);
201    return out;
202}
203
204@fragment
205fn fs_quad(input: QuadVarying) -> @location(0) vec4<f32> {
206    // Alpha clip first, since we don't have `clip_distance`.
207    if (any(input.clip_distances < vec4<f32>(0.0))) {
208        return vec4<f32>(0.0);
209    }
210
211    let quad = b_quads[input.quad_id];
212    // Fast path when the quad is not rounded and doesn't have any border.
213    if (quad.corner_radii.top_left == 0.0 && quad.corner_radii.bottom_left == 0.0 &&
214        quad.corner_radii.top_right == 0.0 &&
215        quad.corner_radii.bottom_right == 0.0 && quad.border_widths.top == 0.0 &&
216        quad.border_widths.left == 0.0 && quad.border_widths.right == 0.0 &&
217        quad.border_widths.bottom == 0.0) {
218        return input.background_color;
219    }
220
221    let half_size = quad.bounds.size / 2.0;
222    let center = quad.bounds.origin + half_size;
223    let center_to_point = input.position.xy - center;
224
225    let corner_radius = pick_corner_radius(center_to_point, quad.corner_radii);
226
227    let rounded_edge_to_point = abs(center_to_point) - half_size + corner_radius;
228    let distance =
229      length(max(vec2<f32>(0.0), rounded_edge_to_point)) +
230      min(0.0, max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
231      corner_radius;
232
233    let vertical_border = select(quad.border_widths.left, quad.border_widths.right, center_to_point.x > 0.0);
234    let horizontal_border = select(quad.border_widths.top, quad.border_widths.bottom, center_to_point.y > 0.0);
235    let inset_size = half_size - corner_radius - vec2<f32>(vertical_border, horizontal_border);
236    let point_to_inset_corner = abs(center_to_point) - inset_size;
237
238    var border_width = 0.0;
239    if (point_to_inset_corner.x < 0.0 && point_to_inset_corner.y < 0.0) {
240        border_width = 0.0;
241    } else if (point_to_inset_corner.y > point_to_inset_corner.x) {
242        border_width = horizontal_border;
243    } else {
244        border_width = vertical_border;
245    }
246
247    var color = input.background_color;
248    if (border_width > 0.0) {
249        let inset_distance = distance + border_width;
250        // Blend the border on top of the background and then linearly interpolate
251        // between the two as we slide inside the background.
252        let blended_border = over(input.background_color, input.border_color);
253        color = mix(blended_border, input.background_color,
254                    saturate(0.5 - inset_distance));
255    }
256
257    return color * vec4<f32>(1.0, 1.0, 1.0, saturate(0.5 - distance));
258}
259
260// --- shadows --- //
261
262struct Shadow {
263    order: u32,
264    blur_radius: f32,
265    bounds: Bounds,
266    corner_radii: Corners,
267    content_mask: Bounds,
268    color: Hsla,
269}
270var<storage, read> b_shadows: array<Shadow>;
271
272struct ShadowVarying {
273    @builtin(position) position: vec4<f32>,
274    @location(0) @interpolate(flat) color: vec4<f32>,
275    @location(1) @interpolate(flat) shadow_id: u32,
276    //TODO: use `clip_distance` once Naga supports it
277    @location(3) clip_distances: vec4<f32>,
278}
279
280@vertex
281fn vs_shadow(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> ShadowVarying {
282    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
283    var shadow = b_shadows[instance_id];
284
285    let margin = 3.0 * shadow.blur_radius;
286    // Set the bounds of the shadow and adjust its size based on the shadow's
287    // spread radius to achieve the spreading effect
288    shadow.bounds.origin -= vec2<f32>(margin);
289    shadow.bounds.size += 2.0 * vec2<f32>(margin);
290
291    var out = ShadowVarying();
292    out.position = to_device_position(unit_vertex, shadow.bounds);
293    out.color = hsla_to_rgba(shadow.color);
294    out.shadow_id = instance_id;
295    out.clip_distances = distance_from_clip_rect(unit_vertex, shadow.bounds, shadow.content_mask);
296    return out;
297}
298
299@fragment
300fn fs_shadow(input: ShadowVarying) -> @location(0) vec4<f32> {
301    // Alpha clip first, since we don't have `clip_distance`.
302    if (any(input.clip_distances < vec4<f32>(0.0))) {
303        return vec4<f32>(0.0);
304    }
305
306    let shadow = b_shadows[input.shadow_id];
307    let half_size = shadow.bounds.size / 2.0;
308    let center = shadow.bounds.origin + half_size;
309    let center_to_point = input.position.xy - center;
310
311    let corner_radius = pick_corner_radius(center_to_point, shadow.corner_radii);
312
313    // The signal is only non-zero in a limited range, so don't waste samples
314    let low = center_to_point.y - half_size.y;
315    let high = center_to_point.y + half_size.y;
316    let start = clamp(-3.0 * shadow.blur_radius, low, high);
317    let end = clamp(3.0 * shadow.blur_radius, low, high);
318
319    // Accumulate samples (we can get away with surprisingly few samples)
320    let step = (end - start) / 4.0;
321    var y = start + step * 0.5;
322    var alpha = 0.0;
323    for (var i = 0; i < 4; i += 1) {
324        let blur = blur_along_x(center_to_point.x, center_to_point.y - y,
325            shadow.blur_radius, corner_radius, half_size);
326        alpha +=  blur * gaussian(y, shadow.blur_radius) * step;
327        y += step;
328    }
329
330    return input.color * vec4<f32>(1.0, 1.0, 1.0, alpha);
331}
332
333// --- path rasterization --- //
334
335struct PathVertex {
336    xy_position: vec2<f32>,
337    st_position: vec2<f32>,
338    content_mask: Bounds,
339}
340var<storage, read> b_path_vertices: array<PathVertex>;
341
342struct PathRasterizationVarying {
343    @builtin(position) position: vec4<f32>,
344    @location(0) st_position: vec2<f32>,
345    //TODO: use `clip_distance` once Naga supports it
346    @location(3) clip_distances: vec4<f32>,
347}
348
349@vertex
350fn vs_path_rasterization(@builtin(vertex_index) vertex_id: u32) -> PathRasterizationVarying {
351    let v = b_path_vertices[vertex_id];
352
353    var out = PathRasterizationVarying();
354    out.position = to_device_position_impl(v.xy_position);
355    out.st_position = v.st_position;
356    out.clip_distances = distance_from_clip_rect_impl(v.xy_position, v.content_mask);
357    return out;
358}
359
360@fragment
361fn fs_path_rasterization(input: PathRasterizationVarying) -> @location(0) f32 {
362    let dx = dpdx(input.st_position);
363    let dy = dpdy(input.st_position);
364    if (any(input.clip_distances < vec4<f32>(0.0))) {
365        return 0.0;
366    }
367
368    let gradient = 2.0 * input.st_position.xx * vec2<f32>(dx.x, dy.x) - vec2<f32>(dx.y, dy.y);
369    let f = input.st_position.x * input.st_position.x - input.st_position.y;
370    let distance = f / length(gradient);
371    return saturate(0.5 - distance);
372}
373
374// --- paths --- //
375
376struct PathSprite {
377    bounds: Bounds,
378    color: Hsla,
379    tile: AtlasTile,
380}
381var<storage, read> b_path_sprites: array<PathSprite>;
382
383struct PathVarying {
384    @builtin(position) position: vec4<f32>,
385    @location(0) tile_position: vec2<f32>,
386    @location(1) color: vec4<f32>,
387}
388
389@vertex
390fn vs_path(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PathVarying {
391    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
392    let sprite = b_path_sprites[instance_id];
393    // Don't apply content mask because it was already accounted for when rasterizing the path.
394
395    var out = PathVarying();
396    out.position = to_device_position(unit_vertex, sprite.bounds);
397    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
398    out.color = hsla_to_rgba(sprite.color);
399    return out;
400}
401
402@fragment
403fn fs_path(input: PathVarying) -> @location(0) vec4<f32> {
404    let sample = textureSample(t_sprite, s_sprite, input.tile_position).r;
405    let mask = 1.0 - abs(1.0 - sample % 2.0);
406    return input.color * mask;
407}
408
409// --- underlines --- //
410
411struct Underline {
412    order: u32,
413    pad: u32,
414    bounds: Bounds,
415    content_mask: Bounds,
416    color: Hsla,
417    thickness: f32,
418    wavy: u32,
419}
420var<storage, read> b_underlines: array<Underline>;
421
422struct UnderlineVarying {
423    @builtin(position) position: vec4<f32>,
424    @location(0) @interpolate(flat) color: vec4<f32>,
425    @location(1) @interpolate(flat) underline_id: u32,
426    //TODO: use `clip_distance` once Naga supports it
427    @location(3) clip_distances: vec4<f32>,
428}
429
430@vertex
431fn vs_underline(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> UnderlineVarying {
432    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
433    let underline = b_underlines[instance_id];
434
435    var out = UnderlineVarying();
436    out.position = to_device_position(unit_vertex, underline.bounds);
437    out.color = hsla_to_rgba(underline.color);
438    out.underline_id = instance_id;
439    out.clip_distances = distance_from_clip_rect(unit_vertex, underline.bounds, underline.content_mask);
440    return out;
441}
442
443@fragment
444fn fs_underline(input: UnderlineVarying) -> @location(0) vec4<f32> {
445    // Alpha clip first, since we don't have `clip_distance`.
446    if (any(input.clip_distances < vec4<f32>(0.0))) {
447        return vec4<f32>(0.0);
448    }
449
450    let underline = b_underlines[input.underline_id];
451    if ((underline.wavy & 0xFFu) == 0u)
452    {
453        return vec4<f32>(0.0);
454    }
455
456    let half_thickness = underline.thickness * 0.5;
457    let st = (input.position.xy - underline.bounds.origin) / underline.bounds.size.y - vec2<f32>(0.0, 0.5);
458    let frequency = M_PI_F * 3.0 * underline.thickness / 8.0;
459    let amplitude = 1.0 / (2.0 * underline.thickness);
460    let sine = sin(st.x * frequency) * amplitude;
461    let dSine = cos(st.x * frequency) * amplitude * frequency;
462    let distance = (st.y - sine) / sqrt(1.0 + dSine * dSine);
463    let distance_in_pixels = distance * underline.bounds.size.y;
464    let distance_from_top_border = distance_in_pixels - half_thickness;
465    let distance_from_bottom_border = distance_in_pixels + half_thickness;
466    let alpha = saturate(0.5 - max(-distance_from_bottom_border, distance_from_top_border));
467    return input.color * vec4<f32>(1.0, 1.0, 1.0, alpha);
468}
469
470// --- monochrome sprites --- //
471
472struct MonochromeSprite {
473    order: u32,
474    pad: u32,
475    bounds: Bounds,
476    content_mask: Bounds,
477    color: Hsla,
478    tile: AtlasTile,
479}
480var<storage, read> b_mono_sprites: array<MonochromeSprite>;
481
482struct MonoSpriteVarying {
483    @builtin(position) position: vec4<f32>,
484    @location(0) tile_position: vec2<f32>,
485    @location(1) @interpolate(flat) color: vec4<f32>,
486    @location(3) clip_distances: vec4<f32>,
487}
488
489@vertex
490fn vs_mono_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> MonoSpriteVarying {
491    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
492    let sprite = b_mono_sprites[instance_id];
493
494    var out = MonoSpriteVarying();
495    out.position = to_device_position(unit_vertex, sprite.bounds);
496    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
497    out.color = hsla_to_rgba(sprite.color);
498    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
499    return out;
500}
501
502@fragment
503fn fs_mono_sprite(input: MonoSpriteVarying) -> @location(0) vec4<f32> {
504    let sample = textureSample(t_sprite, s_sprite, input.tile_position).r;
505    // Alpha clip after using the derivatives.
506    if (any(input.clip_distances < vec4<f32>(0.0))) {
507        return vec4<f32>(0.0);
508    }
509    return input.color * vec4<f32>(1.0, 1.0, 1.0, sample);
510}
511
512// --- polychrome sprites --- //
513
514struct PolychromeSprite {
515    order: u32,
516    grayscale: u32,
517    bounds: Bounds,
518    content_mask: Bounds,
519    corner_radii: Corners,
520    tile: AtlasTile,
521}
522var<storage, read> b_poly_sprites: array<PolychromeSprite>;
523
524struct PolySpriteVarying {
525    @builtin(position) position: vec4<f32>,
526    @location(0) tile_position: vec2<f32>,
527    @location(1) @interpolate(flat) sprite_id: u32,
528    @location(3) clip_distances: vec4<f32>,
529}
530
531@vertex
532fn vs_poly_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PolySpriteVarying {
533    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
534    let sprite = b_poly_sprites[instance_id];
535
536    var out = PolySpriteVarying();
537    out.position = to_device_position(unit_vertex, sprite.bounds);
538    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
539    out.sprite_id = instance_id;
540    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
541    return out;
542}
543
544@fragment
545fn fs_poly_sprite(input: PolySpriteVarying) -> @location(0) vec4<f32> {
546    let sample = textureSample(t_sprite, s_sprite, input.tile_position);
547    // Alpha clip after using the derivatives.
548    if (any(input.clip_distances < vec4<f32>(0.0))) {
549        return vec4<f32>(0.0);
550    }
551
552    let sprite = b_poly_sprites[input.sprite_id];
553    let distance = quad_sdf(input.position.xy, sprite.bounds, sprite.corner_radii);
554
555    var color = sample;
556    if ((sprite.grayscale & 0xFFu) != 0u) {
557        let grayscale = dot(color.rgb, GRAYSCALE_FACTORS);
558        color = vec4<f32>(vec3<f32>(grayscale), sample.a);
559    }
560    color.a *= saturate(0.5 - distance);
561    return color;
562}
563
564// --- surfaces --- //
565
566struct SurfaceParams {
567    bounds: Bounds,
568    content_mask: Bounds,
569}
570
571var<uniform> surface_locals: SurfaceParams;
572var t_y: texture_2d<f32>;
573var t_cb_cr: texture_2d<f32>;
574var s_surface: sampler;
575
576const ycbcr_to_RGB = mat4x4<f32>(
577    vec4<f32>( 1.0000f,  1.0000f,  1.0000f, 0.0),
578    vec4<f32>( 0.0000f, -0.3441f,  1.7720f, 0.0),
579    vec4<f32>( 1.4020f, -0.7141f,  0.0000f, 0.0),
580    vec4<f32>(-0.7010f,  0.5291f, -0.8860f, 1.0),
581);
582
583struct SurfaceVarying {
584    @builtin(position) position: vec4<f32>,
585    @location(0) texture_position: vec2<f32>,
586    @location(3) clip_distances: vec4<f32>,
587}
588
589@vertex
590fn vs_surface(@builtin(vertex_index) vertex_id: u32) -> SurfaceVarying {
591    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
592
593    var out = SurfaceVarying();
594    out.position = to_device_position(unit_vertex, surface_locals.bounds);
595    out.texture_position = unit_vertex;
596    out.clip_distances = distance_from_clip_rect(unit_vertex, surface_locals.bounds, surface_locals.content_mask);
597    return out;
598}
599
600@fragment
601fn fs_surface(input: SurfaceVarying) -> @location(0) vec4<f32> {
602    // Alpha clip after using the derivatives.
603    if (any(input.clip_distances < vec4<f32>(0.0))) {
604        return vec4<f32>(0.0);
605    }
606
607    let y_cb_cr = vec4<f32>(
608        textureSampleLevel(t_y, s_surface, input.texture_position, 0.0).r,
609        textureSampleLevel(t_cb_cr, s_surface, input.texture_position, 0.0).rg,
610        1.0);
611
612    return ycbcr_to_RGB * y_cb_cr;
613}