executor.rs

  1use crate::{AppContext, PlatformDispatcher};
  2use futures::{channel::mpsc, pin_mut, FutureExt};
  3use smol::prelude::*;
  4use std::{
  5    fmt::Debug,
  6    marker::PhantomData,
  7    mem,
  8    num::NonZeroUsize,
  9    pin::Pin,
 10    rc::Rc,
 11    sync::{
 12        atomic::{AtomicBool, AtomicUsize, Ordering::SeqCst},
 13        Arc,
 14    },
 15    task::{Context, Poll},
 16    time::Duration,
 17};
 18use util::TryFutureExt;
 19use waker_fn::waker_fn;
 20
 21#[cfg(any(test, feature = "test-support"))]
 22use rand::rngs::StdRng;
 23
 24/// A pointer to the executor that is currently running,
 25/// for spawning background tasks.
 26#[derive(Clone)]
 27pub struct BackgroundExecutor {
 28    dispatcher: Arc<dyn PlatformDispatcher>,
 29}
 30
 31/// A pointer to the executor that is currently running,
 32/// for spawning tasks on the main thread.
 33#[derive(Clone)]
 34pub struct ForegroundExecutor {
 35    dispatcher: Arc<dyn PlatformDispatcher>,
 36    not_send: PhantomData<Rc<()>>,
 37}
 38
 39/// Task is a primitive that allows work to happen in the background.
 40///
 41/// It implements [`Future`] so you can `.await` on it.
 42///
 43/// If you drop a task it will be cancelled immediately. Calling [`Task::detach`] allows
 44/// the task to continue running, but with no way to return a value.
 45#[must_use]
 46#[derive(Debug)]
 47pub enum Task<T> {
 48    /// A task that is ready to return a value
 49    Ready(Option<T>),
 50
 51    /// A task that is currently running.
 52    Spawned(async_task::Task<T>),
 53}
 54
 55impl<T> Task<T> {
 56    /// Creates a new task that will resolve with the value
 57    pub fn ready(val: T) -> Self {
 58        Task::Ready(Some(val))
 59    }
 60
 61    /// Detaching a task runs it to completion in the background
 62    pub fn detach(self) {
 63        match self {
 64            Task::Ready(_) => {}
 65            Task::Spawned(task) => task.detach(),
 66        }
 67    }
 68}
 69
 70impl<E, T> Task<Result<T, E>>
 71where
 72    T: 'static,
 73    E: 'static + Debug,
 74{
 75    /// Run the task to completion in the background and log any
 76    /// errors that occur.
 77    #[track_caller]
 78    pub fn detach_and_log_err(self, cx: &AppContext) {
 79        let location = core::panic::Location::caller();
 80        cx.foreground_executor()
 81            .spawn(self.log_tracked_err(*location))
 82            .detach();
 83    }
 84}
 85
 86impl<T> Future for Task<T> {
 87    type Output = T;
 88
 89    fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
 90        match unsafe { self.get_unchecked_mut() } {
 91            Task::Ready(val) => Poll::Ready(val.take().unwrap()),
 92            Task::Spawned(task) => task.poll(cx),
 93        }
 94    }
 95}
 96
 97/// A task label is an opaque identifier that you can use to
 98/// refer to a task in tests.
 99#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
100pub struct TaskLabel(NonZeroUsize);
101
102impl Default for TaskLabel {
103    fn default() -> Self {
104        Self::new()
105    }
106}
107
108impl TaskLabel {
109    /// Construct a new task label.
110    pub fn new() -> Self {
111        static NEXT_TASK_LABEL: AtomicUsize = AtomicUsize::new(1);
112        Self(NEXT_TASK_LABEL.fetch_add(1, SeqCst).try_into().unwrap())
113    }
114}
115
116type AnyLocalFuture<R> = Pin<Box<dyn 'static + Future<Output = R>>>;
117
118type AnyFuture<R> = Pin<Box<dyn 'static + Send + Future<Output = R>>>;
119
120/// BackgroundExecutor lets you run things on background threads.
121/// In production this is a thread pool with no ordering guarantees.
122/// In tests this is simulated by running tasks one by one in a deterministic
123/// (but arbitrary) order controlled by the `SEED` environment variable.
124impl BackgroundExecutor {
125    #[doc(hidden)]
126    pub fn new(dispatcher: Arc<dyn PlatformDispatcher>) -> Self {
127        Self { dispatcher }
128    }
129
130    /// Enqueues the given future to be run to completion on a background thread.
131    pub fn spawn<R>(&self, future: impl Future<Output = R> + Send + 'static) -> Task<R>
132    where
133        R: Send + 'static,
134    {
135        self.spawn_internal::<R>(Box::pin(future), None)
136    }
137
138    /// Enqueues the given future to be run to completion on a background thread.
139    /// The given label can be used to control the priority of the task in tests.
140    pub fn spawn_labeled<R>(
141        &self,
142        label: TaskLabel,
143        future: impl Future<Output = R> + Send + 'static,
144    ) -> Task<R>
145    where
146        R: Send + 'static,
147    {
148        self.spawn_internal::<R>(Box::pin(future), Some(label))
149    }
150
151    fn spawn_internal<R: Send + 'static>(
152        &self,
153        future: AnyFuture<R>,
154        label: Option<TaskLabel>,
155    ) -> Task<R> {
156        let dispatcher = self.dispatcher.clone();
157        let (runnable, task) =
158            async_task::spawn(future, move |runnable| dispatcher.dispatch(runnable, label));
159        runnable.schedule();
160        Task::Spawned(task)
161    }
162
163    /// Used by the test harness to run an async test in a synchronous fashion.
164    #[cfg(any(test, feature = "test-support"))]
165    #[track_caller]
166    pub fn block_test<R>(&self, future: impl Future<Output = R>) -> R {
167        if let Ok(value) = self.block_internal(false, future, usize::MAX) {
168            value
169        } else {
170            unreachable!()
171        }
172    }
173
174    /// Block the current thread until the given future resolves.
175    /// Consider using `block_with_timeout` instead.
176    pub fn block<R>(&self, future: impl Future<Output = R>) -> R {
177        if let Ok(value) = self.block_internal(true, future, usize::MAX) {
178            value
179        } else {
180            unreachable!()
181        }
182    }
183
184    #[track_caller]
185    pub(crate) fn block_internal<R>(
186        &self,
187        background_only: bool,
188        future: impl Future<Output = R>,
189        mut max_ticks: usize,
190    ) -> Result<R, ()> {
191        pin_mut!(future);
192        let unparker = self.dispatcher.unparker();
193        let awoken = Arc::new(AtomicBool::new(false));
194
195        let waker = waker_fn({
196            let awoken = awoken.clone();
197            move || {
198                awoken.store(true, SeqCst);
199                unparker.unpark();
200            }
201        });
202        let mut cx = std::task::Context::from_waker(&waker);
203
204        loop {
205            match future.as_mut().poll(&mut cx) {
206                Poll::Ready(result) => return Ok(result),
207                Poll::Pending => {
208                    if max_ticks == 0 {
209                        return Err(());
210                    }
211                    max_ticks -= 1;
212
213                    if !self.dispatcher.tick(background_only) {
214                        if awoken.swap(false, SeqCst) {
215                            continue;
216                        }
217
218                        #[cfg(any(test, feature = "test-support"))]
219                        if let Some(test) = self.dispatcher.as_test() {
220                            if !test.parking_allowed() {
221                                let mut backtrace_message = String::new();
222                                let mut waiting_message = String::new();
223                                if let Some(backtrace) = test.waiting_backtrace() {
224                                    backtrace_message =
225                                        format!("\nbacktrace of waiting future:\n{:?}", backtrace);
226                                }
227                                if let Some(waiting_hint) = test.waiting_hint() {
228                                    waiting_message = format!("\n  waiting on: {}\n", waiting_hint);
229                                }
230                                panic!(
231                                    "parked with nothing left to run{waiting_message}{backtrace_message}",
232                                )
233                            }
234                        }
235
236                        self.dispatcher.park();
237                    }
238                }
239            }
240        }
241    }
242
243    /// Block the current thread until the given future resolves
244    /// or `duration` has elapsed.
245    pub fn block_with_timeout<R>(
246        &self,
247        duration: Duration,
248        future: impl Future<Output = R>,
249    ) -> Result<R, impl Future<Output = R>> {
250        let mut future = Box::pin(future.fuse());
251        if duration.is_zero() {
252            return Err(future);
253        }
254
255        #[cfg(any(test, feature = "test-support"))]
256        let max_ticks = self
257            .dispatcher
258            .as_test()
259            .map_or(usize::MAX, |dispatcher| dispatcher.gen_block_on_ticks());
260        #[cfg(not(any(test, feature = "test-support")))]
261        let max_ticks = usize::MAX;
262
263        let mut timer = self.timer(duration).fuse();
264
265        let timeout = async {
266            futures::select_biased! {
267                value = future => Ok(value),
268                _ = timer => Err(()),
269            }
270        };
271        match self.block_internal(true, timeout, max_ticks) {
272            Ok(Ok(value)) => Ok(value),
273            _ => Err(future),
274        }
275    }
276
277    /// Scoped lets you start a number of tasks and waits
278    /// for all of them to complete before returning.
279    pub async fn scoped<'scope, F>(&self, scheduler: F)
280    where
281        F: FnOnce(&mut Scope<'scope>),
282    {
283        let mut scope = Scope::new(self.clone());
284        (scheduler)(&mut scope);
285        let spawned = mem::take(&mut scope.futures)
286            .into_iter()
287            .map(|f| self.spawn(f))
288            .collect::<Vec<_>>();
289        for task in spawned {
290            task.await;
291        }
292    }
293
294    /// Returns a task that will complete after the given duration.
295    /// Depending on other concurrent tasks the elapsed duration may be longer
296    /// than requested.
297    pub fn timer(&self, duration: Duration) -> Task<()> {
298        let (runnable, task) = async_task::spawn(async move {}, {
299            let dispatcher = self.dispatcher.clone();
300            move |runnable| dispatcher.dispatch_after(duration, runnable)
301        });
302        runnable.schedule();
303        Task::Spawned(task)
304    }
305
306    /// in tests, start_waiting lets you indicate which task is waiting (for debugging only)
307    #[cfg(any(test, feature = "test-support"))]
308    pub fn start_waiting(&self) {
309        self.dispatcher.as_test().unwrap().start_waiting();
310    }
311
312    /// in tests, removes the debugging data added by start_waiting
313    #[cfg(any(test, feature = "test-support"))]
314    pub fn finish_waiting(&self) {
315        self.dispatcher.as_test().unwrap().finish_waiting();
316    }
317
318    /// in tests, run an arbitrary number of tasks (determined by the SEED environment variable)
319    #[cfg(any(test, feature = "test-support"))]
320    pub fn simulate_random_delay(&self) -> impl Future<Output = ()> {
321        self.dispatcher.as_test().unwrap().simulate_random_delay()
322    }
323
324    /// in tests, indicate that a given task from `spawn_labeled` should run after everything else
325    #[cfg(any(test, feature = "test-support"))]
326    pub fn deprioritize(&self, task_label: TaskLabel) {
327        self.dispatcher.as_test().unwrap().deprioritize(task_label)
328    }
329
330    /// in tests, move time forward. This does not run any tasks, but does make `timer`s ready.
331    #[cfg(any(test, feature = "test-support"))]
332    pub fn advance_clock(&self, duration: Duration) {
333        self.dispatcher.as_test().unwrap().advance_clock(duration)
334    }
335
336    /// in tests, run one task.
337    #[cfg(any(test, feature = "test-support"))]
338    pub fn tick(&self) -> bool {
339        self.dispatcher.as_test().unwrap().tick(false)
340    }
341
342    /// in tests, run all tasks that are ready to run. If after doing so
343    /// the test still has outstanding tasks, this will panic. (See also `allow_parking`)
344    #[cfg(any(test, feature = "test-support"))]
345    pub fn run_until_parked(&self) {
346        self.dispatcher.as_test().unwrap().run_until_parked()
347    }
348
349    /// in tests, prevents `run_until_parked` from panicking if there are outstanding tasks.
350    /// This is useful when you are integrating other (non-GPUI) futures, like disk access, that
351    /// do take real async time to run.
352    #[cfg(any(test, feature = "test-support"))]
353    pub fn allow_parking(&self) {
354        self.dispatcher.as_test().unwrap().allow_parking();
355    }
356
357    /// undoes the effect of [`allow_parking`].
358    #[cfg(any(test, feature = "test-support"))]
359    pub fn forbid_parking(&self) {
360        self.dispatcher.as_test().unwrap().forbid_parking();
361    }
362
363    /// adds detail to the "parked with nothing let to run" message.
364    #[cfg(any(test, feature = "test-support"))]
365    pub fn set_waiting_hint(&self, msg: Option<String>) {
366        self.dispatcher.as_test().unwrap().set_waiting_hint(msg);
367    }
368
369    /// in tests, returns the rng used by the dispatcher and seeded by the `SEED` environment variable
370    #[cfg(any(test, feature = "test-support"))]
371    pub fn rng(&self) -> StdRng {
372        self.dispatcher.as_test().unwrap().rng()
373    }
374
375    /// How many CPUs are available to the dispatcher
376    pub fn num_cpus(&self) -> usize {
377        num_cpus::get()
378    }
379
380    /// Whether we're on the main thread.
381    pub fn is_main_thread(&self) -> bool {
382        self.dispatcher.is_main_thread()
383    }
384
385    #[cfg(any(test, feature = "test-support"))]
386    /// in tests, control the number of ticks that `block_with_timeout` will run before timing out.
387    pub fn set_block_on_ticks(&self, range: std::ops::RangeInclusive<usize>) {
388        self.dispatcher.as_test().unwrap().set_block_on_ticks(range);
389    }
390}
391
392/// ForegroundExecutor runs things on the main thread.
393impl ForegroundExecutor {
394    /// Creates a new ForegroundExecutor from the given PlatformDispatcher.
395    pub fn new(dispatcher: Arc<dyn PlatformDispatcher>) -> Self {
396        Self {
397            dispatcher,
398            not_send: PhantomData,
399        }
400    }
401
402    /// Enqueues the given Task to run on the main thread at some point in the future.
403    pub fn spawn<R>(&self, future: impl Future<Output = R> + 'static) -> Task<R>
404    where
405        R: 'static,
406    {
407        let dispatcher = self.dispatcher.clone();
408        fn inner<R: 'static>(
409            dispatcher: Arc<dyn PlatformDispatcher>,
410            future: AnyLocalFuture<R>,
411        ) -> Task<R> {
412            let (runnable, task) = async_task::spawn_local(future, move |runnable| {
413                dispatcher.dispatch_on_main_thread(runnable)
414            });
415            runnable.schedule();
416            Task::Spawned(task)
417        }
418        inner::<R>(dispatcher, Box::pin(future))
419    }
420}
421
422/// Scope manages a set of tasks that are enqueued and waited on together. See [`BackgroundExecutor::scoped`].
423pub struct Scope<'a> {
424    executor: BackgroundExecutor,
425    futures: Vec<Pin<Box<dyn Future<Output = ()> + Send + 'static>>>,
426    tx: Option<mpsc::Sender<()>>,
427    rx: mpsc::Receiver<()>,
428    lifetime: PhantomData<&'a ()>,
429}
430
431impl<'a> Scope<'a> {
432    fn new(executor: BackgroundExecutor) -> Self {
433        let (tx, rx) = mpsc::channel(1);
434        Self {
435            executor,
436            tx: Some(tx),
437            rx,
438            futures: Default::default(),
439            lifetime: PhantomData,
440        }
441    }
442
443    /// Spawn a future into this scope.
444    pub fn spawn<F>(&mut self, f: F)
445    where
446        F: Future<Output = ()> + Send + 'a,
447    {
448        let tx = self.tx.clone().unwrap();
449
450        // SAFETY: The 'a lifetime is guaranteed to outlive any of these futures because
451        // dropping this `Scope` blocks until all of the futures have resolved.
452        let f = unsafe {
453            mem::transmute::<
454                Pin<Box<dyn Future<Output = ()> + Send + 'a>>,
455                Pin<Box<dyn Future<Output = ()> + Send + 'static>>,
456            >(Box::pin(async move {
457                f.await;
458                drop(tx);
459            }))
460        };
461        self.futures.push(f);
462    }
463}
464
465impl<'a> Drop for Scope<'a> {
466    fn drop(&mut self) {
467        self.tx.take().unwrap();
468
469        // Wait until the channel is closed, which means that all of the spawned
470        // futures have resolved.
471        self.executor.block(self.rx.next());
472    }
473}