key_dispatch.rs

  1/// KeyDispatch is where GPUI deals with binding actions to key events.
  2///
  3/// The key pieces to making a key binding work are to define an action,
  4/// implement a method that takes that action as a type parameter,
  5/// and then to register the action during render on a focused node
  6/// with a keymap context:
  7///
  8/// ```rust
  9/// actions!(editor,[Undo, Redo]);;
 10///
 11/// impl Editor {
 12///   fn undo(&mut self, _: &Undo, _cx: &mut ViewContext<Self>) { ... }
 13///   fn redo(&mut self, _: &Redo, _cx: &mut ViewContext<Self>) { ... }
 14/// }
 15///
 16/// impl Render for Editor {
 17///   fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
 18///     div()
 19///       .track_focus(&self.focus_handle)
 20///       .keymap_context("Editor")
 21///       .on_action(cx.listener(Editor::undo))
 22///       .on_action(cx.listener(Editor::redo))
 23///     ...
 24///    }
 25/// }
 26///```
 27///
 28/// The keybindings themselves are managed independently by calling cx.bind_keys().
 29/// (Though mostly when developing Zed itself, you just need to add a new line to
 30///  assets/keymaps/default.json).
 31///
 32/// ```rust
 33/// cx.bind_keys([
 34///   KeyBinding::new("cmd-z", Editor::undo, Some("Editor")),
 35///   KeyBinding::new("cmd-shift-z", Editor::redo, Some("Editor")),
 36/// ])
 37/// ```
 38///
 39/// With all of this in place, GPUI will ensure that if you have an Editor that contains
 40/// the focus, hitting cmd-z will Undo.
 41///
 42/// In real apps, it is a little more complicated than this, because typically you have
 43/// several nested views that each register keyboard handlers. In this case action matching
 44/// bubbles up from the bottom. For example in Zed, the Workspace is the top-level view, which contains Pane's, which contain Editors. If there are conflicting keybindings defined
 45/// then the Editor's bindings take precedence over the Pane's bindings, which take precedence over the Workspace.
 46///
 47/// In GPUI, keybindings are not limited to just single keystrokes, you can define
 48/// sequences by separating the keys with a space:
 49///
 50///  KeyBinding::new("cmd-k left", pane::SplitLeft, Some("Pane"))
 51///
 52use crate::{
 53    Action, ActionRegistry, DispatchPhase, EntityId, FocusId, KeyBinding, KeyContext, Keymap,
 54    KeymatchResult, Keystroke, KeystrokeMatcher, ModifiersChangedEvent, WindowContext,
 55};
 56use collections::FxHashMap;
 57use smallvec::SmallVec;
 58use std::{
 59    any::{Any, TypeId},
 60    cell::RefCell,
 61    mem,
 62    ops::Range,
 63    rc::Rc,
 64};
 65
 66#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
 67pub(crate) struct DispatchNodeId(usize);
 68
 69pub(crate) struct DispatchTree {
 70    node_stack: Vec<DispatchNodeId>,
 71    pub(crate) context_stack: Vec<KeyContext>,
 72    view_stack: Vec<EntityId>,
 73    nodes: Vec<DispatchNode>,
 74    focusable_node_ids: FxHashMap<FocusId, DispatchNodeId>,
 75    view_node_ids: FxHashMap<EntityId, DispatchNodeId>,
 76    keystroke_matchers: FxHashMap<SmallVec<[KeyContext; 4]>, KeystrokeMatcher>,
 77    keymap: Rc<RefCell<Keymap>>,
 78    action_registry: Rc<ActionRegistry>,
 79}
 80
 81#[derive(Default)]
 82pub(crate) struct DispatchNode {
 83    pub key_listeners: Vec<KeyListener>,
 84    pub action_listeners: Vec<DispatchActionListener>,
 85    pub modifiers_changed_listeners: Vec<ModifiersChangedListener>,
 86    pub context: Option<KeyContext>,
 87    pub focus_id: Option<FocusId>,
 88    view_id: Option<EntityId>,
 89    parent: Option<DispatchNodeId>,
 90}
 91
 92pub(crate) struct ReusedSubtree {
 93    old_range: Range<usize>,
 94    new_range: Range<usize>,
 95}
 96
 97impl ReusedSubtree {
 98    pub fn refresh_node_id(&self, node_id: DispatchNodeId) -> DispatchNodeId {
 99        debug_assert!(
100            self.old_range.contains(&node_id.0),
101            "node {} was not part of the reused subtree {:?}",
102            node_id.0,
103            self.old_range
104        );
105        DispatchNodeId((node_id.0 - self.old_range.start) + self.new_range.start)
106    }
107}
108
109type KeyListener = Rc<dyn Fn(&dyn Any, DispatchPhase, &mut WindowContext)>;
110type ModifiersChangedListener = Rc<dyn Fn(&ModifiersChangedEvent, &mut WindowContext)>;
111
112#[derive(Clone)]
113pub(crate) struct DispatchActionListener {
114    pub(crate) action_type: TypeId,
115    pub(crate) listener: Rc<dyn Fn(&dyn Any, DispatchPhase, &mut WindowContext)>,
116}
117
118impl DispatchTree {
119    pub fn new(keymap: Rc<RefCell<Keymap>>, action_registry: Rc<ActionRegistry>) -> Self {
120        Self {
121            node_stack: Vec::new(),
122            context_stack: Vec::new(),
123            view_stack: Vec::new(),
124            nodes: Vec::new(),
125            focusable_node_ids: FxHashMap::default(),
126            view_node_ids: FxHashMap::default(),
127            keystroke_matchers: FxHashMap::default(),
128            keymap,
129            action_registry,
130        }
131    }
132
133    pub fn clear(&mut self) {
134        self.node_stack.clear();
135        self.context_stack.clear();
136        self.view_stack.clear();
137        self.nodes.clear();
138        self.focusable_node_ids.clear();
139        self.view_node_ids.clear();
140        self.keystroke_matchers.clear();
141    }
142
143    pub fn len(&self) -> usize {
144        self.nodes.len()
145    }
146
147    pub fn push_node(&mut self) -> DispatchNodeId {
148        let parent = self.node_stack.last().copied();
149        let node_id = DispatchNodeId(self.nodes.len());
150
151        self.nodes.push(DispatchNode {
152            parent,
153            ..Default::default()
154        });
155        self.node_stack.push(node_id);
156        node_id
157    }
158
159    pub fn set_active_node(&mut self, node_id: DispatchNodeId) {
160        let next_node_parent = self.nodes[node_id.0].parent;
161        while self.node_stack.last().copied() != next_node_parent && !self.node_stack.is_empty() {
162            self.pop_node();
163        }
164
165        if self.node_stack.last().copied() == next_node_parent {
166            self.node_stack.push(node_id);
167            let active_node = &self.nodes[node_id.0];
168            if let Some(view_id) = active_node.view_id {
169                self.view_stack.push(view_id)
170            }
171            if let Some(context) = active_node.context.clone() {
172                self.context_stack.push(context);
173            }
174        } else {
175            debug_assert_eq!(self.node_stack.len(), 0);
176
177            let mut current_node_id = Some(node_id);
178            while let Some(node_id) = current_node_id {
179                let node = &self.nodes[node_id.0];
180                if let Some(context) = node.context.clone() {
181                    self.context_stack.push(context);
182                }
183                if node.view_id.is_some() {
184                    self.view_stack.push(node.view_id.unwrap());
185                }
186                self.node_stack.push(node_id);
187                current_node_id = node.parent;
188            }
189
190            self.context_stack.reverse();
191            self.view_stack.reverse();
192            self.node_stack.reverse();
193        }
194    }
195
196    pub fn set_key_context(&mut self, context: KeyContext) {
197        self.active_node().context = Some(context.clone());
198        self.context_stack.push(context);
199    }
200
201    pub fn set_focus_id(&mut self, focus_id: FocusId) {
202        let node_id = *self.node_stack.last().unwrap();
203        self.nodes[node_id.0].focus_id = Some(focus_id);
204        self.focusable_node_ids.insert(focus_id, node_id);
205    }
206
207    pub fn parent_view_id(&mut self) -> Option<EntityId> {
208        self.view_stack.last().copied()
209    }
210
211    pub fn set_view_id(&mut self, view_id: EntityId) {
212        if self.view_stack.last().copied() != Some(view_id) {
213            let node_id = *self.node_stack.last().unwrap();
214            self.nodes[node_id.0].view_id = Some(view_id);
215            self.view_node_ids.insert(view_id, node_id);
216            self.view_stack.push(view_id);
217        }
218    }
219
220    pub fn pop_node(&mut self) {
221        let node = &self.nodes[self.active_node_id().unwrap().0];
222        if node.context.is_some() {
223            self.context_stack.pop();
224        }
225        if node.view_id.is_some() {
226            self.view_stack.pop();
227        }
228        self.node_stack.pop();
229    }
230
231    fn move_node(&mut self, source: &mut DispatchNode) {
232        self.push_node();
233        if let Some(context) = source.context.clone() {
234            self.set_key_context(context);
235        }
236        if let Some(focus_id) = source.focus_id {
237            self.set_focus_id(focus_id);
238        }
239        if let Some(view_id) = source.view_id {
240            self.set_view_id(view_id);
241        }
242
243        let target = self.active_node();
244        target.key_listeners = mem::take(&mut source.key_listeners);
245        target.action_listeners = mem::take(&mut source.action_listeners);
246        target.modifiers_changed_listeners = mem::take(&mut source.modifiers_changed_listeners);
247    }
248
249    pub fn reuse_subtree(&mut self, old_range: Range<usize>, source: &mut Self) -> ReusedSubtree {
250        let new_range = self.nodes.len()..self.nodes.len() + old_range.len();
251
252        let mut source_stack = vec![];
253        for (source_node_id, source_node) in source
254            .nodes
255            .iter_mut()
256            .enumerate()
257            .skip(old_range.start)
258            .take(old_range.len())
259        {
260            let source_node_id = DispatchNodeId(source_node_id);
261            while let Some(source_ancestor) = source_stack.last() {
262                if source_node.parent == Some(*source_ancestor) {
263                    break;
264                } else {
265                    source_stack.pop();
266                    self.pop_node();
267                }
268            }
269
270            source_stack.push(source_node_id);
271            self.move_node(source_node);
272        }
273
274        while !source_stack.is_empty() {
275            source_stack.pop();
276            self.pop_node();
277        }
278
279        ReusedSubtree {
280            old_range,
281            new_range,
282        }
283    }
284
285    pub fn truncate(&mut self, index: usize) {
286        for node in &self.nodes[index..] {
287            if let Some(focus_id) = node.focus_id {
288                self.focusable_node_ids.remove(&focus_id);
289            }
290
291            if let Some(view_id) = node.view_id {
292                self.view_node_ids.remove(&view_id);
293            }
294        }
295        self.nodes.truncate(index);
296    }
297
298    pub fn clear_pending_keystrokes(&mut self) {
299        self.keystroke_matchers.clear();
300    }
301
302    /// Preserve keystroke matchers from previous frames to support multi-stroke
303    /// bindings across multiple frames.
304    pub fn preserve_pending_keystrokes(&mut self, old_tree: &mut Self, focus_id: Option<FocusId>) {
305        if let Some(node_id) = focus_id.and_then(|focus_id| self.focusable_node_id(focus_id)) {
306            let dispatch_path = self.dispatch_path(node_id);
307
308            self.context_stack.clear();
309            for node_id in dispatch_path {
310                let node = self.node(node_id);
311                if let Some(context) = node.context.clone() {
312                    self.context_stack.push(context);
313                }
314
315                if let Some((context_stack, matcher)) = old_tree
316                    .keystroke_matchers
317                    .remove_entry(self.context_stack.as_slice())
318                {
319                    self.keystroke_matchers.insert(context_stack, matcher);
320                }
321            }
322        }
323    }
324
325    pub fn on_key_event(&mut self, listener: KeyListener) {
326        self.active_node().key_listeners.push(listener);
327    }
328
329    pub fn on_modifiers_changed(&mut self, listener: ModifiersChangedListener) {
330        self.active_node()
331            .modifiers_changed_listeners
332            .push(listener);
333    }
334
335    pub fn on_action(
336        &mut self,
337        action_type: TypeId,
338        listener: Rc<dyn Fn(&dyn Any, DispatchPhase, &mut WindowContext)>,
339    ) {
340        self.active_node()
341            .action_listeners
342            .push(DispatchActionListener {
343                action_type,
344                listener,
345            });
346    }
347
348    pub fn focus_contains(&self, parent: FocusId, child: FocusId) -> bool {
349        if parent == child {
350            return true;
351        }
352
353        if let Some(parent_node_id) = self.focusable_node_ids.get(&parent) {
354            let mut current_node_id = self.focusable_node_ids.get(&child).copied();
355            while let Some(node_id) = current_node_id {
356                if node_id == *parent_node_id {
357                    return true;
358                }
359                current_node_id = self.nodes[node_id.0].parent;
360            }
361        }
362        false
363    }
364
365    pub fn available_actions(&self, target: DispatchNodeId) -> Vec<Box<dyn Action>> {
366        let mut actions = Vec::<Box<dyn Action>>::new();
367        for node_id in self.dispatch_path(target) {
368            let node = &self.nodes[node_id.0];
369            for DispatchActionListener { action_type, .. } in &node.action_listeners {
370                if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id())
371                {
372                    // Intentionally silence these errors without logging.
373                    // If an action cannot be built by default, it's not available.
374                    let action = self.action_registry.build_action_type(action_type).ok();
375                    if let Some(action) = action {
376                        actions.insert(ix, action);
377                    }
378                }
379            }
380        }
381        actions
382    }
383
384    pub fn is_action_available(&self, action: &dyn Action, target: DispatchNodeId) -> bool {
385        for node_id in self.dispatch_path(target) {
386            let node = &self.nodes[node_id.0];
387            if node
388                .action_listeners
389                .iter()
390                .any(|listener| listener.action_type == action.as_any().type_id())
391            {
392                return true;
393            }
394        }
395        false
396    }
397
398    pub fn bindings_for_action(
399        &self,
400        action: &dyn Action,
401        context_stack: &[KeyContext],
402    ) -> Vec<KeyBinding> {
403        let keymap = self.keymap.borrow();
404        keymap
405            .bindings_for_action(action)
406            .filter(|binding| {
407                for i in 0..context_stack.len() {
408                    let context = &context_stack[0..=i];
409                    if keymap.binding_enabled(binding, context) {
410                        return true;
411                    }
412                }
413                false
414            })
415            .cloned()
416            .collect()
417    }
418
419    // dispatch_key pushes the next keystroke into any key binding matchers.
420    // any matching bindings are returned in the order that they should be dispatched:
421    // * First by length of binding (so if you have a binding for "b" and "ab", the "ab" binding fires first)
422    // * Secondly by depth in the tree (so if Editor has a binding for "b" and workspace a
423    // binding for "b", the Editor action fires first).
424    pub fn dispatch_key(
425        &mut self,
426        keystroke: &Keystroke,
427        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
428    ) -> KeymatchResult {
429        let mut bindings = SmallVec::<[KeyBinding; 1]>::new();
430        let mut pending = false;
431
432        let mut context_stack: SmallVec<[KeyContext; 4]> = SmallVec::new();
433        for node_id in dispatch_path {
434            let node = self.node(*node_id);
435
436            if let Some(context) = node.context.clone() {
437                context_stack.push(context);
438            }
439        }
440
441        while !context_stack.is_empty() {
442            let keystroke_matcher = self
443                .keystroke_matchers
444                .entry(context_stack.clone())
445                .or_insert_with(|| KeystrokeMatcher::new(self.keymap.clone()));
446
447            let result = keystroke_matcher.match_keystroke(keystroke, &context_stack);
448            if result.pending && !pending && !bindings.is_empty() {
449                context_stack.pop();
450                continue;
451            }
452
453            pending = result.pending || pending;
454            for new_binding in result.bindings {
455                match bindings
456                    .iter()
457                    .position(|el| el.keystrokes.len() < new_binding.keystrokes.len())
458                {
459                    Some(idx) => {
460                        bindings.insert(idx, new_binding);
461                    }
462                    None => bindings.push(new_binding),
463                }
464            }
465            context_stack.pop();
466        }
467
468        KeymatchResult { bindings, pending }
469    }
470
471    pub fn has_pending_keystrokes(&self) -> bool {
472        self.keystroke_matchers
473            .iter()
474            .any(|(_, matcher)| matcher.has_pending_keystrokes())
475    }
476
477    pub fn dispatch_path(&self, target: DispatchNodeId) -> SmallVec<[DispatchNodeId; 32]> {
478        let mut dispatch_path: SmallVec<[DispatchNodeId; 32]> = SmallVec::new();
479        let mut current_node_id = Some(target);
480        while let Some(node_id) = current_node_id {
481            dispatch_path.push(node_id);
482            current_node_id = self.nodes[node_id.0].parent;
483        }
484        dispatch_path.reverse(); // Reverse the path so it goes from the root to the focused node.
485        dispatch_path
486    }
487
488    pub fn focus_path(&self, focus_id: FocusId) -> SmallVec<[FocusId; 8]> {
489        let mut focus_path: SmallVec<[FocusId; 8]> = SmallVec::new();
490        let mut current_node_id = self.focusable_node_ids.get(&focus_id).copied();
491        while let Some(node_id) = current_node_id {
492            let node = self.node(node_id);
493            if let Some(focus_id) = node.focus_id {
494                focus_path.push(focus_id);
495            }
496            current_node_id = node.parent;
497        }
498        focus_path.reverse(); // Reverse the path so it goes from the root to the focused node.
499        focus_path
500    }
501
502    pub fn view_path(&self, view_id: EntityId) -> SmallVec<[EntityId; 8]> {
503        let mut view_path: SmallVec<[EntityId; 8]> = SmallVec::new();
504        let mut current_node_id = self.view_node_ids.get(&view_id).copied();
505        while let Some(node_id) = current_node_id {
506            let node = self.node(node_id);
507            if let Some(view_id) = node.view_id {
508                view_path.push(view_id);
509            }
510            current_node_id = node.parent;
511        }
512        view_path.reverse(); // Reverse the path so it goes from the root to the view node.
513        view_path
514    }
515
516    pub fn node(&self, node_id: DispatchNodeId) -> &DispatchNode {
517        &self.nodes[node_id.0]
518    }
519
520    fn active_node(&mut self) -> &mut DispatchNode {
521        let active_node_id = self.active_node_id().unwrap();
522        &mut self.nodes[active_node_id.0]
523    }
524
525    pub fn focusable_node_id(&self, target: FocusId) -> Option<DispatchNodeId> {
526        self.focusable_node_ids.get(&target).copied()
527    }
528
529    pub fn root_node_id(&self) -> DispatchNodeId {
530        debug_assert!(!self.nodes.is_empty());
531        DispatchNodeId(0)
532    }
533
534    pub fn active_node_id(&self) -> Option<DispatchNodeId> {
535        self.node_stack.last().copied()
536    }
537}
538
539#[cfg(test)]
540mod tests {
541    use std::{cell::RefCell, rc::Rc};
542
543    use crate::{Action, ActionRegistry, DispatchTree, KeyBinding, KeyContext, Keymap};
544
545    #[derive(PartialEq, Eq)]
546    struct TestAction;
547
548    impl Action for TestAction {
549        fn name(&self) -> &'static str {
550            "test::TestAction"
551        }
552
553        fn debug_name() -> &'static str
554        where
555            Self: ::std::marker::Sized,
556        {
557            "test::TestAction"
558        }
559
560        fn partial_eq(&self, action: &dyn Action) -> bool {
561            action
562                .as_any()
563                .downcast_ref::<Self>()
564                .map_or(false, |a| self == a)
565        }
566
567        fn boxed_clone(&self) -> std::boxed::Box<dyn Action> {
568            Box::new(TestAction)
569        }
570
571        fn as_any(&self) -> &dyn ::std::any::Any {
572            self
573        }
574
575        fn build(_value: serde_json::Value) -> anyhow::Result<Box<dyn Action>>
576        where
577            Self: Sized,
578        {
579            Ok(Box::new(TestAction))
580        }
581    }
582
583    #[test]
584    fn test_keybinding_for_action_bounds() {
585        let keymap = Keymap::new(vec![KeyBinding::new(
586            "cmd-n",
587            TestAction,
588            Some("ProjectPanel"),
589        )]);
590
591        let mut registry = ActionRegistry::default();
592
593        registry.load_action::<TestAction>();
594
595        let keymap = Rc::new(RefCell::new(keymap));
596
597        let tree = DispatchTree::new(keymap, Rc::new(registry));
598
599        let contexts = vec![
600            KeyContext::parse("Workspace").unwrap(),
601            KeyContext::parse("ProjectPanel").unwrap(),
602        ];
603
604        let keybinding = tree.bindings_for_action(&TestAction, &contexts);
605
606        assert!(keybinding[0].action.partial_eq(&TestAction))
607    }
608}