cloud.rs

  1use super::open_ai::count_open_ai_tokens;
  2use crate::{
  3    settings::AllLanguageModelSettings, CloudModel, LanguageModel, LanguageModelId,
  4    LanguageModelName, LanguageModelProviderId, LanguageModelProviderName,
  5    LanguageModelProviderState, LanguageModelRequest, RateLimiter,
  6};
  7use anyhow::{anyhow, Context as _, Result};
  8use client::Client;
  9use collections::BTreeMap;
 10use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
 11use gpui::{AnyView, AppContext, AsyncAppContext, ModelContext, Subscription, Task};
 12use schemars::JsonSchema;
 13use serde::{Deserialize, Serialize};
 14use settings::{Settings, SettingsStore};
 15use std::{future, sync::Arc};
 16use strum::IntoEnumIterator;
 17use ui::prelude::*;
 18
 19use crate::LanguageModelProvider;
 20
 21use super::anthropic::count_anthropic_tokens;
 22
 23pub const PROVIDER_ID: &str = "zed.dev";
 24pub const PROVIDER_NAME: &str = "zed.dev";
 25
 26#[derive(Default, Clone, Debug, PartialEq)]
 27pub struct ZedDotDevSettings {
 28    pub available_models: Vec<AvailableModel>,
 29}
 30
 31#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 32#[serde(rename_all = "lowercase")]
 33pub enum AvailableProvider {
 34    Anthropic,
 35    OpenAi,
 36    Google,
 37}
 38
 39#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 40pub struct AvailableModel {
 41    provider: AvailableProvider,
 42    name: String,
 43    max_tokens: usize,
 44    tool_override: Option<String>,
 45}
 46
 47pub struct CloudLanguageModelProvider {
 48    client: Arc<Client>,
 49    state: gpui::Model<State>,
 50    _maintain_client_status: Task<()>,
 51}
 52
 53pub struct State {
 54    client: Arc<Client>,
 55    status: client::Status,
 56    _subscription: Subscription,
 57}
 58
 59impl State {
 60    fn authenticate(&self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
 61        let client = self.client.clone();
 62        cx.spawn(move |this, mut cx| async move {
 63            client.authenticate_and_connect(true, &cx).await?;
 64            this.update(&mut cx, |_, cx| cx.notify())
 65        })
 66    }
 67}
 68
 69impl CloudLanguageModelProvider {
 70    pub fn new(client: Arc<Client>, cx: &mut AppContext) -> Self {
 71        let mut status_rx = client.status();
 72        let status = *status_rx.borrow();
 73
 74        let state = cx.new_model(|cx| State {
 75            client: client.clone(),
 76            status,
 77            _subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 78                cx.notify();
 79            }),
 80        });
 81
 82        let state_ref = state.downgrade();
 83        let maintain_client_status = cx.spawn(|mut cx| async move {
 84            while let Some(status) = status_rx.next().await {
 85                if let Some(this) = state_ref.upgrade() {
 86                    _ = this.update(&mut cx, |this, cx| {
 87                        if this.status != status {
 88                            this.status = status;
 89                            cx.notify();
 90                        }
 91                    });
 92                } else {
 93                    break;
 94                }
 95            }
 96        });
 97
 98        Self {
 99            client,
100            state,
101            _maintain_client_status: maintain_client_status,
102        }
103    }
104}
105
106impl LanguageModelProviderState for CloudLanguageModelProvider {
107    type ObservableEntity = State;
108
109    fn observable_entity(&self) -> Option<gpui::Model<Self::ObservableEntity>> {
110        Some(self.state.clone())
111    }
112}
113
114impl LanguageModelProvider for CloudLanguageModelProvider {
115    fn id(&self) -> LanguageModelProviderId {
116        LanguageModelProviderId(PROVIDER_ID.into())
117    }
118
119    fn name(&self) -> LanguageModelProviderName {
120        LanguageModelProviderName(PROVIDER_NAME.into())
121    }
122
123    fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
124        let mut models = BTreeMap::default();
125
126        for model in anthropic::Model::iter() {
127            if !matches!(model, anthropic::Model::Custom { .. }) {
128                models.insert(model.id().to_string(), CloudModel::Anthropic(model));
129            }
130        }
131        for model in open_ai::Model::iter() {
132            if !matches!(model, open_ai::Model::Custom { .. }) {
133                models.insert(model.id().to_string(), CloudModel::OpenAi(model));
134            }
135        }
136        for model in google_ai::Model::iter() {
137            if !matches!(model, google_ai::Model::Custom { .. }) {
138                models.insert(model.id().to_string(), CloudModel::Google(model));
139            }
140        }
141
142        // Override with available models from settings
143        for model in &AllLanguageModelSettings::get_global(cx)
144            .zed_dot_dev
145            .available_models
146        {
147            let model = match model.provider {
148                AvailableProvider::Anthropic => CloudModel::Anthropic(anthropic::Model::Custom {
149                    name: model.name.clone(),
150                    max_tokens: model.max_tokens,
151                    tool_override: model.tool_override.clone(),
152                }),
153                AvailableProvider::OpenAi => CloudModel::OpenAi(open_ai::Model::Custom {
154                    name: model.name.clone(),
155                    max_tokens: model.max_tokens,
156                }),
157                AvailableProvider::Google => CloudModel::Google(google_ai::Model::Custom {
158                    name: model.name.clone(),
159                    max_tokens: model.max_tokens,
160                }),
161            };
162            models.insert(model.id().to_string(), model.clone());
163        }
164
165        models
166            .into_values()
167            .map(|model| {
168                Arc::new(CloudLanguageModel {
169                    id: LanguageModelId::from(model.id().to_string()),
170                    model,
171                    client: self.client.clone(),
172                    request_limiter: RateLimiter::new(4),
173                }) as Arc<dyn LanguageModel>
174            })
175            .collect()
176    }
177
178    fn is_authenticated(&self, cx: &AppContext) -> bool {
179        self.state.read(cx).status.is_connected()
180    }
181
182    fn authenticate(&self, cx: &mut AppContext) -> Task<Result<()>> {
183        self.state.update(cx, |state, cx| state.authenticate(cx))
184    }
185
186    fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
187        cx.new_view(|_cx| AuthenticationPrompt {
188            state: self.state.clone(),
189        })
190        .into()
191    }
192
193    fn reset_credentials(&self, _cx: &mut AppContext) -> Task<Result<()>> {
194        Task::ready(Ok(()))
195    }
196}
197
198pub struct CloudLanguageModel {
199    id: LanguageModelId,
200    model: CloudModel,
201    client: Arc<Client>,
202    request_limiter: RateLimiter,
203}
204
205impl LanguageModel for CloudLanguageModel {
206    fn id(&self) -> LanguageModelId {
207        self.id.clone()
208    }
209
210    fn name(&self) -> LanguageModelName {
211        LanguageModelName::from(self.model.display_name().to_string())
212    }
213
214    fn provider_id(&self) -> LanguageModelProviderId {
215        LanguageModelProviderId(PROVIDER_ID.into())
216    }
217
218    fn provider_name(&self) -> LanguageModelProviderName {
219        LanguageModelProviderName(PROVIDER_NAME.into())
220    }
221
222    fn telemetry_id(&self) -> String {
223        format!("zed.dev/{}", self.model.id())
224    }
225
226    fn max_token_count(&self) -> usize {
227        self.model.max_token_count()
228    }
229
230    fn count_tokens(
231        &self,
232        request: LanguageModelRequest,
233        cx: &AppContext,
234    ) -> BoxFuture<'static, Result<usize>> {
235        match self.model.clone() {
236            CloudModel::Anthropic(_) => count_anthropic_tokens(request, cx),
237            CloudModel::OpenAi(model) => count_open_ai_tokens(request, model, cx),
238            CloudModel::Google(model) => {
239                let client = self.client.clone();
240                let request = request.into_google(model.id().into());
241                let request = google_ai::CountTokensRequest {
242                    contents: request.contents,
243                };
244                async move {
245                    let request = serde_json::to_string(&request)?;
246                    let response = client
247                        .request(proto::CountLanguageModelTokens {
248                            provider: proto::LanguageModelProvider::Google as i32,
249                            request,
250                        })
251                        .await?;
252                    Ok(response.token_count as usize)
253                }
254                .boxed()
255            }
256        }
257    }
258
259    fn stream_completion(
260        &self,
261        request: LanguageModelRequest,
262        _: &AsyncAppContext,
263    ) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
264        match &self.model {
265            CloudModel::Anthropic(model) => {
266                let client = self.client.clone();
267                let request = request.into_anthropic(model.id().into());
268                let future = self.request_limiter.stream(async move {
269                    let request = serde_json::to_string(&request)?;
270                    let stream = client
271                        .request_stream(proto::StreamCompleteWithLanguageModel {
272                            provider: proto::LanguageModelProvider::Anthropic as i32,
273                            request,
274                        })
275                        .await?;
276                    Ok(anthropic::extract_text_from_events(
277                        stream.map(|item| Ok(serde_json::from_str(&item?.event)?)),
278                    ))
279                });
280                async move { Ok(future.await?.boxed()) }.boxed()
281            }
282            CloudModel::OpenAi(model) => {
283                let client = self.client.clone();
284                let request = request.into_open_ai(model.id().into());
285                let future = self.request_limiter.stream(async move {
286                    let request = serde_json::to_string(&request)?;
287                    let stream = client
288                        .request_stream(proto::StreamCompleteWithLanguageModel {
289                            provider: proto::LanguageModelProvider::OpenAi as i32,
290                            request,
291                        })
292                        .await?;
293                    Ok(open_ai::extract_text_from_events(
294                        stream.map(|item| Ok(serde_json::from_str(&item?.event)?)),
295                    ))
296                });
297                async move { Ok(future.await?.boxed()) }.boxed()
298            }
299            CloudModel::Google(model) => {
300                let client = self.client.clone();
301                let request = request.into_google(model.id().into());
302                let future = self.request_limiter.stream(async move {
303                    let request = serde_json::to_string(&request)?;
304                    let stream = client
305                        .request_stream(proto::StreamCompleteWithLanguageModel {
306                            provider: proto::LanguageModelProvider::Google as i32,
307                            request,
308                        })
309                        .await?;
310                    Ok(google_ai::extract_text_from_events(
311                        stream.map(|item| Ok(serde_json::from_str(&item?.event)?)),
312                    ))
313                });
314                async move { Ok(future.await?.boxed()) }.boxed()
315            }
316        }
317    }
318
319    fn use_any_tool(
320        &self,
321        request: LanguageModelRequest,
322        tool_name: String,
323        tool_description: String,
324        input_schema: serde_json::Value,
325        _cx: &AsyncAppContext,
326    ) -> BoxFuture<'static, Result<serde_json::Value>> {
327        match &self.model {
328            CloudModel::Anthropic(model) => {
329                let client = self.client.clone();
330                let mut request = request.into_anthropic(model.tool_model_id().into());
331                request.tool_choice = Some(anthropic::ToolChoice::Tool {
332                    name: tool_name.clone(),
333                });
334                request.tools = vec![anthropic::Tool {
335                    name: tool_name.clone(),
336                    description: tool_description,
337                    input_schema,
338                }];
339
340                self.request_limiter
341                    .run(async move {
342                        let request = serde_json::to_string(&request)?;
343                        let response = client
344                            .request(proto::CompleteWithLanguageModel {
345                                provider: proto::LanguageModelProvider::Anthropic as i32,
346                                request,
347                            })
348                            .await?;
349                        let response: anthropic::Response =
350                            serde_json::from_str(&response.completion)?;
351                        response
352                            .content
353                            .into_iter()
354                            .find_map(|content| {
355                                if let anthropic::Content::ToolUse { name, input, .. } = content {
356                                    if name == tool_name {
357                                        Some(input)
358                                    } else {
359                                        None
360                                    }
361                                } else {
362                                    None
363                                }
364                            })
365                            .context("tool not used")
366                    })
367                    .boxed()
368            }
369            CloudModel::OpenAi(_) => {
370                future::ready(Err(anyhow!("tool use not implemented for OpenAI"))).boxed()
371            }
372            CloudModel::Google(_) => {
373                future::ready(Err(anyhow!("tool use not implemented for Google AI"))).boxed()
374            }
375        }
376    }
377}
378
379struct AuthenticationPrompt {
380    state: gpui::Model<State>,
381}
382
383impl Render for AuthenticationPrompt {
384    fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
385        const LABEL: &str = "Generate and analyze code with language models. You can dialog with the assistant in this panel or transform code inline.";
386
387        v_flex().gap_6().p_4().child(Label::new(LABEL)).child(
388            v_flex()
389                .gap_2()
390                .child(
391                    Button::new("sign_in", "Sign in")
392                        .icon_color(Color::Muted)
393                        .icon(IconName::Github)
394                        .icon_position(IconPosition::Start)
395                        .style(ButtonStyle::Filled)
396                        .full_width()
397                        .on_click(cx.listener(move |this, _, cx| {
398                            this.state.update(cx, |provider, cx| {
399                                provider.authenticate(cx).detach_and_log_err(cx);
400                                cx.notify();
401                            });
402                        })),
403                )
404                .child(
405                    div().flex().w_full().items_center().child(
406                        Label::new("Sign in to enable collaboration.")
407                            .color(Color::Muted)
408                            .size(LabelSize::Small),
409                    ),
410                ),
411        )
412    }
413}