geometry.rs

   1//! The GPUI geometry module is a collection of types and traits that
   2//! can be used to describe common units, concepts, and the relationships
   3//! between them.
   4
   5use core::fmt::Debug;
   6use derive_more::{Add, AddAssign, Div, DivAssign, Mul, Neg, Sub, SubAssign};
   7use refineable::Refineable;
   8use serde_derive::{Deserialize, Serialize};
   9use std::{
  10    cmp::{self, PartialOrd},
  11    fmt,
  12    hash::Hash,
  13    ops::{Add, Div, Mul, MulAssign, Sub},
  14};
  15
  16use crate::{AppContext, DisplayId};
  17
  18/// An axis along which a measurement can be made.
  19#[derive(Copy, Clone, PartialEq, Eq, Debug)]
  20pub enum Axis {
  21    /// The y axis, or up and down
  22    Vertical,
  23    /// The x axis, or left and right
  24    Horizontal,
  25}
  26
  27impl Axis {
  28    /// Swap this axis to the opposite axis.
  29    pub fn invert(self) -> Self {
  30        match self {
  31            Axis::Vertical => Axis::Horizontal,
  32            Axis::Horizontal => Axis::Vertical,
  33        }
  34    }
  35}
  36
  37/// A trait for accessing the given unit along a certain axis.
  38pub trait Along {
  39    /// The unit associated with this type
  40    type Unit;
  41
  42    /// Returns the unit along the given axis.
  43    fn along(&self, axis: Axis) -> Self::Unit;
  44
  45    /// Applies the given function to the unit along the given axis and returns a new value.
  46    fn apply_along(&self, axis: Axis, f: impl FnOnce(Self::Unit) -> Self::Unit) -> Self;
  47}
  48
  49/// Describes a location in a 2D cartesian coordinate space.
  50///
  51/// It holds two public fields, `x` and `y`, which represent the coordinates in the space.
  52/// The type `T` for the coordinates can be any type that implements `Default`, `Clone`, and `Debug`.
  53///
  54/// # Examples
  55///
  56/// ```
  57/// # use zed::Point;
  58/// let point = Point { x: 10, y: 20 };
  59/// println!("{:?}", point); // Outputs: Point { x: 10, y: 20 }
  60/// ```
  61#[derive(Refineable, Default, Add, AddAssign, Sub, SubAssign, Copy, Debug, PartialEq, Eq, Hash)]
  62#[refineable(Debug)]
  63#[repr(C)]
  64pub struct Point<T: Default + Clone + Debug> {
  65    /// The x coordinate of the point.
  66    pub x: T,
  67    /// The y coordinate of the point.
  68    pub y: T,
  69}
  70
  71/// Constructs a new `Point<T>` with the given x and y coordinates.
  72///
  73/// # Arguments
  74///
  75/// * `x` - The x coordinate of the point.
  76/// * `y` - The y coordinate of the point.
  77///
  78/// # Returns
  79///
  80/// Returns a `Point<T>` with the specified coordinates.
  81///
  82/// # Examples
  83///
  84/// ```
  85/// # use zed::Point;
  86/// let p = point(10, 20);
  87/// assert_eq!(p.x, 10);
  88/// assert_eq!(p.y, 20);
  89/// ```
  90pub const fn point<T: Clone + Debug + Default>(x: T, y: T) -> Point<T> {
  91    Point { x, y }
  92}
  93
  94impl<T: Clone + Debug + Default> Point<T> {
  95    /// Creates a new `Point` with the specified `x` and `y` coordinates.
  96    ///
  97    /// # Arguments
  98    ///
  99    /// * `x` - The horizontal coordinate of the point.
 100    /// * `y` - The vertical coordinate of the point.
 101    ///
 102    /// # Examples
 103    ///
 104    /// ```
 105    /// let p = Point::new(10, 20);
 106    /// assert_eq!(p.x, 10);
 107    /// assert_eq!(p.y, 20);
 108    /// ```
 109    pub const fn new(x: T, y: T) -> Self {
 110        Self { x, y }
 111    }
 112
 113    /// Transforms the point to a `Point<U>` by applying the given function to both coordinates.
 114    ///
 115    /// This method allows for converting a `Point<T>` to a `Point<U>` by specifying a closure
 116    /// that defines how to convert between the two types. The closure is applied to both the `x`
 117    /// and `y` coordinates, resulting in a new point of the desired type.
 118    ///
 119    /// # Arguments
 120    ///
 121    /// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
 122    ///
 123    /// # Examples
 124    ///
 125    /// ```
 126    /// # use zed::Point;
 127    /// let p = Point { x: 3, y: 4 };
 128    /// let p_float = p.map(|coord| coord as f32);
 129    /// assert_eq!(p_float, Point { x: 3.0, y: 4.0 });
 130    /// ```
 131    pub fn map<U: Clone + Default + Debug>(&self, f: impl Fn(T) -> U) -> Point<U> {
 132        Point {
 133            x: f(self.x.clone()),
 134            y: f(self.y.clone()),
 135        }
 136    }
 137}
 138
 139impl<T: Clone + Debug + Default> Along for Point<T> {
 140    type Unit = T;
 141
 142    fn along(&self, axis: Axis) -> T {
 143        match axis {
 144            Axis::Horizontal => self.x.clone(),
 145            Axis::Vertical => self.y.clone(),
 146        }
 147    }
 148
 149    fn apply_along(&self, axis: Axis, f: impl FnOnce(T) -> T) -> Point<T> {
 150        match axis {
 151            Axis::Horizontal => Point {
 152                x: f(self.x.clone()),
 153                y: self.y.clone(),
 154            },
 155            Axis::Vertical => Point {
 156                x: self.x.clone(),
 157                y: f(self.y.clone()),
 158            },
 159        }
 160    }
 161}
 162
 163impl<T: Clone + Debug + Default + Negate> Negate for Point<T> {
 164    fn negate(self) -> Self {
 165        self.map(Negate::negate)
 166    }
 167}
 168
 169impl Point<Pixels> {
 170    /// Scales the point by a given factor, which is typically derived from the resolution
 171    /// of a target display to ensure proper sizing of UI elements.
 172    ///
 173    /// # Arguments
 174    ///
 175    /// * `factor` - The scaling factor to apply to both the x and y coordinates.
 176    ///
 177    /// # Examples
 178    ///
 179    /// ```
 180    /// # use zed::{Point, Pixels, ScaledPixels};
 181    /// let p = Point { x: Pixels(10.0), y: Pixels(20.0) };
 182    /// let scaled_p = p.scale(1.5);
 183    /// assert_eq!(scaled_p, Point { x: ScaledPixels(15.0), y: ScaledPixels(30.0) });
 184    /// ```
 185    pub fn scale(&self, factor: f32) -> Point<ScaledPixels> {
 186        Point {
 187            x: self.x.scale(factor),
 188            y: self.y.scale(factor),
 189        }
 190    }
 191
 192    /// Calculates the Euclidean distance from the origin (0, 0) to this point.
 193    ///
 194    /// # Examples
 195    ///
 196    /// ```
 197    /// # use zed::Point;
 198    /// # use zed::Pixels;
 199    /// let p = Point { x: Pixels(3.0), y: Pixels(4.0) };
 200    /// assert_eq!(p.magnitude(), 5.0);
 201    /// ```
 202    pub fn magnitude(&self) -> f64 {
 203        ((self.x.0.powi(2) + self.y.0.powi(2)) as f64).sqrt()
 204    }
 205}
 206
 207impl<T, Rhs> Mul<Rhs> for Point<T>
 208where
 209    T: Mul<Rhs, Output = T> + Clone + Default + Debug,
 210    Rhs: Clone + Debug,
 211{
 212    type Output = Point<T>;
 213
 214    fn mul(self, rhs: Rhs) -> Self::Output {
 215        Point {
 216            x: self.x * rhs.clone(),
 217            y: self.y * rhs,
 218        }
 219    }
 220}
 221
 222impl<T, S> MulAssign<S> for Point<T>
 223where
 224    T: Clone + Mul<S, Output = T> + Default + Debug,
 225    S: Clone,
 226{
 227    fn mul_assign(&mut self, rhs: S) {
 228        self.x = self.x.clone() * rhs.clone();
 229        self.y = self.y.clone() * rhs;
 230    }
 231}
 232
 233impl<T, S> Div<S> for Point<T>
 234where
 235    T: Div<S, Output = T> + Clone + Default + Debug,
 236    S: Clone,
 237{
 238    type Output = Self;
 239
 240    fn div(self, rhs: S) -> Self::Output {
 241        Self {
 242            x: self.x / rhs.clone(),
 243            y: self.y / rhs,
 244        }
 245    }
 246}
 247
 248impl<T> Point<T>
 249where
 250    T: PartialOrd + Clone + Default + Debug,
 251{
 252    /// Returns a new point with the maximum values of each dimension from `self` and `other`.
 253    ///
 254    /// # Arguments
 255    ///
 256    /// * `other` - A reference to another `Point` to compare with `self`.
 257    ///
 258    /// # Examples
 259    ///
 260    /// ```
 261    /// # use zed::Point;
 262    /// let p1 = Point { x: 3, y: 7 };
 263    /// let p2 = Point { x: 5, y: 2 };
 264    /// let max_point = p1.max(&p2);
 265    /// assert_eq!(max_point, Point { x: 5, y: 7 });
 266    /// ```
 267    pub fn max(&self, other: &Self) -> Self {
 268        Point {
 269            x: if self.x > other.x {
 270                self.x.clone()
 271            } else {
 272                other.x.clone()
 273            },
 274            y: if self.y > other.y {
 275                self.y.clone()
 276            } else {
 277                other.y.clone()
 278            },
 279        }
 280    }
 281
 282    /// Returns a new point with the minimum values of each dimension from `self` and `other`.
 283    ///
 284    /// # Arguments
 285    ///
 286    /// * `other` - A reference to another `Point` to compare with `self`.
 287    ///
 288    /// # Examples
 289    ///
 290    /// ```
 291    /// # use zed::Point;
 292    /// let p1 = Point { x: 3, y: 7 };
 293    /// let p2 = Point { x: 5, y: 2 };
 294    /// let min_point = p1.min(&p2);
 295    /// assert_eq!(min_point, Point { x: 3, y: 2 });
 296    /// ```
 297    pub fn min(&self, other: &Self) -> Self {
 298        Point {
 299            x: if self.x <= other.x {
 300                self.x.clone()
 301            } else {
 302                other.x.clone()
 303            },
 304            y: if self.y <= other.y {
 305                self.y.clone()
 306            } else {
 307                other.y.clone()
 308            },
 309        }
 310    }
 311
 312    /// Clamps the point to a specified range.
 313    ///
 314    /// Given a minimum point and a maximum point, this method constrains the current point
 315    /// such that its coordinates do not exceed the range defined by the minimum and maximum points.
 316    /// If the current point's coordinates are less than the minimum, they are set to the minimum.
 317    /// If they are greater than the maximum, they are set to the maximum.
 318    ///
 319    /// # Arguments
 320    ///
 321    /// * `min` - A reference to a `Point` representing the minimum allowable coordinates.
 322    /// * `max` - A reference to a `Point` representing the maximum allowable coordinates.
 323    ///
 324    /// # Examples
 325    ///
 326    /// ```
 327    /// # use zed::Point;
 328    /// let p = Point { x: 10, y: 20 };
 329    /// let min = Point { x: 0, y: 5 };
 330    /// let max = Point { x: 15, y: 25 };
 331    /// let clamped_p = p.clamp(&min, &max);
 332    /// assert_eq!(clamped_p, Point { x: 10, y: 20 });
 333    ///
 334    /// let p_out_of_bounds = Point { x: -5, y: 30 };
 335    /// let clamped_p_out_of_bounds = p_out_of_bounds.clamp(&min, &max);
 336    /// assert_eq!(clamped_p_out_of_bounds, Point { x: 0, y: 25 });
 337    /// ```
 338    pub fn clamp(&self, min: &Self, max: &Self) -> Self {
 339        self.max(min).min(max)
 340    }
 341}
 342
 343impl<T: Clone + Default + Debug> Clone for Point<T> {
 344    fn clone(&self) -> Self {
 345        Self {
 346            x: self.x.clone(),
 347            y: self.y.clone(),
 348        }
 349    }
 350}
 351
 352/// A structure representing a two-dimensional size with width and height in a given unit.
 353///
 354/// This struct is generic over the type `T`, which can be any type that implements `Clone`, `Default`, and `Debug`.
 355/// It is commonly used to specify dimensions for elements in a UI, such as a window or element.
 356#[derive(Refineable, Default, Clone, Copy, PartialEq, Div, Hash, Serialize, Deserialize)]
 357#[refineable(Debug)]
 358#[repr(C)]
 359pub struct Size<T: Clone + Default + Debug> {
 360    /// The width component of the size.
 361    pub width: T,
 362    /// The height component of the size.
 363    pub height: T,
 364}
 365
 366/// Constructs a new `Size<T>` with the provided width and height.
 367///
 368/// # Arguments
 369///
 370/// * `width` - The width component of the `Size`.
 371/// * `height` - The height component of the `Size`.
 372///
 373/// # Examples
 374///
 375/// ```
 376/// # use zed::Size;
 377/// let my_size = size(10, 20);
 378/// assert_eq!(my_size.width, 10);
 379/// assert_eq!(my_size.height, 20);
 380/// ```
 381pub const fn size<T>(width: T, height: T) -> Size<T>
 382where
 383    T: Clone + Default + Debug,
 384{
 385    Size { width, height }
 386}
 387
 388impl<T> Size<T>
 389where
 390    T: Clone + Default + Debug,
 391{
 392    /// Applies a function to the width and height of the size, producing a new `Size<U>`.
 393    ///
 394    /// This method allows for converting a `Size<T>` to a `Size<U>` by specifying a closure
 395    /// that defines how to convert between the two types. The closure is applied to both the `width`
 396    /// and `height`, resulting in a new size of the desired type.
 397    ///
 398    /// # Arguments
 399    ///
 400    /// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
 401    ///
 402    /// # Examples
 403    ///
 404    /// ```
 405    /// # use zed::Size;
 406    /// let my_size = Size { width: 10, height: 20 };
 407    /// let my_new_size = my_size.map(|dimension| dimension as f32 * 1.5);
 408    /// assert_eq!(my_new_size, Size { width: 15.0, height: 30.0 });
 409    /// ```
 410    pub fn map<U>(&self, f: impl Fn(T) -> U) -> Size<U>
 411    where
 412        U: Clone + Default + Debug,
 413    {
 414        Size {
 415            width: f(self.width.clone()),
 416            height: f(self.height.clone()),
 417        }
 418    }
 419}
 420
 421impl<T> Size<T>
 422where
 423    T: Clone + Default + Debug + Half,
 424{
 425    /// Compute the center point of the size.g
 426    pub fn center(&self) -> Point<T> {
 427        Point {
 428            x: self.width.half(),
 429            y: self.height.half(),
 430        }
 431    }
 432}
 433
 434impl Size<Pixels> {
 435    /// Scales the size by a given factor.
 436    ///
 437    /// This method multiplies both the width and height by the provided scaling factor,
 438    /// resulting in a new `Size<ScaledPixels>` that is proportionally larger or smaller
 439    /// depending on the factor.
 440    ///
 441    /// # Arguments
 442    ///
 443    /// * `factor` - The scaling factor to apply to the width and height.
 444    ///
 445    /// # Examples
 446    ///
 447    /// ```
 448    /// # use zed::{Size, Pixels, ScaledPixels};
 449    /// let size = Size { width: Pixels(100.0), height: Pixels(50.0) };
 450    /// let scaled_size = size.scale(2.0);
 451    /// assert_eq!(scaled_size, Size { width: ScaledPixels(200.0), height: ScaledPixels(100.0) });
 452    /// ```
 453    pub fn scale(&self, factor: f32) -> Size<ScaledPixels> {
 454        Size {
 455            width: self.width.scale(factor),
 456            height: self.height.scale(factor),
 457        }
 458    }
 459}
 460
 461impl<T> Along for Size<T>
 462where
 463    T: Clone + Default + Debug,
 464{
 465    type Unit = T;
 466
 467    fn along(&self, axis: Axis) -> T {
 468        match axis {
 469            Axis::Horizontal => self.width.clone(),
 470            Axis::Vertical => self.height.clone(),
 471        }
 472    }
 473
 474    /// Returns the value of this size along the given axis.
 475    fn apply_along(&self, axis: Axis, f: impl FnOnce(T) -> T) -> Self {
 476        match axis {
 477            Axis::Horizontal => Size {
 478                width: f(self.width.clone()),
 479                height: self.height.clone(),
 480            },
 481            Axis::Vertical => Size {
 482                width: self.width.clone(),
 483                height: f(self.height.clone()),
 484            },
 485        }
 486    }
 487}
 488
 489impl<T> Size<T>
 490where
 491    T: PartialOrd + Clone + Default + Debug,
 492{
 493    /// Returns a new `Size` with the maximum width and height from `self` and `other`.
 494    ///
 495    /// # Arguments
 496    ///
 497    /// * `other` - A reference to another `Size` to compare with `self`.
 498    ///
 499    /// # Examples
 500    ///
 501    /// ```
 502    /// # use zed::Size;
 503    /// let size1 = Size { width: 30, height: 40 };
 504    /// let size2 = Size { width: 50, height: 20 };
 505    /// let max_size = size1.max(&size2);
 506    /// assert_eq!(max_size, Size { width: 50, height: 40 });
 507    /// ```
 508    pub fn max(&self, other: &Self) -> Self {
 509        Size {
 510            width: if self.width >= other.width {
 511                self.width.clone()
 512            } else {
 513                other.width.clone()
 514            },
 515            height: if self.height >= other.height {
 516                self.height.clone()
 517            } else {
 518                other.height.clone()
 519            },
 520        }
 521    }
 522    /// Returns a new `Size` with the minimum width and height from `self` and `other`.
 523    ///
 524    /// # Arguments
 525    ///
 526    /// * `other` - A reference to another `Size` to compare with `self`.
 527    ///
 528    /// # Examples
 529    ///
 530    /// ```
 531    /// # use zed::Size;
 532    /// let size1 = Size { width: 30, height: 40 };
 533    /// let size2 = Size { width: 50, height: 20 };
 534    /// let min_size = size1.min(&size2);
 535    /// assert_eq!(min_size, Size { width: 30, height: 20 });
 536    /// ```
 537    pub fn min(&self, other: &Self) -> Self {
 538        Size {
 539            width: if self.width >= other.width {
 540                other.width.clone()
 541            } else {
 542                self.width.clone()
 543            },
 544            height: if self.height >= other.height {
 545                other.height.clone()
 546            } else {
 547                self.height.clone()
 548            },
 549        }
 550    }
 551}
 552
 553impl<T> Sub for Size<T>
 554where
 555    T: Sub<Output = T> + Clone + Default + Debug,
 556{
 557    type Output = Size<T>;
 558
 559    fn sub(self, rhs: Self) -> Self::Output {
 560        Size {
 561            width: self.width - rhs.width,
 562            height: self.height - rhs.height,
 563        }
 564    }
 565}
 566
 567impl<T> Add for Size<T>
 568where
 569    T: Add<Output = T> + Clone + Default + Debug,
 570{
 571    type Output = Size<T>;
 572
 573    fn add(self, rhs: Self) -> Self::Output {
 574        Size {
 575            width: self.width + rhs.width,
 576            height: self.height + rhs.height,
 577        }
 578    }
 579}
 580
 581impl<T, Rhs> Mul<Rhs> for Size<T>
 582where
 583    T: Mul<Rhs, Output = Rhs> + Clone + Default + Debug,
 584    Rhs: Clone + Default + Debug,
 585{
 586    type Output = Size<Rhs>;
 587
 588    fn mul(self, rhs: Rhs) -> Self::Output {
 589        Size {
 590            width: self.width * rhs.clone(),
 591            height: self.height * rhs,
 592        }
 593    }
 594}
 595
 596impl<T, S> MulAssign<S> for Size<T>
 597where
 598    T: Mul<S, Output = T> + Clone + Default + Debug,
 599    S: Clone,
 600{
 601    fn mul_assign(&mut self, rhs: S) {
 602        self.width = self.width.clone() * rhs.clone();
 603        self.height = self.height.clone() * rhs;
 604    }
 605}
 606
 607impl<T> Eq for Size<T> where T: Eq + Default + Debug + Clone {}
 608
 609impl<T> Debug for Size<T>
 610where
 611    T: Clone + Default + Debug,
 612{
 613    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 614        write!(f, "Size {{ {:?} × {:?} }}", self.width, self.height)
 615    }
 616}
 617
 618impl<T: Clone + Default + Debug> From<Point<T>> for Size<T> {
 619    fn from(point: Point<T>) -> Self {
 620        Self {
 621            width: point.x,
 622            height: point.y,
 623        }
 624    }
 625}
 626
 627impl From<Size<Pixels>> for Size<DefiniteLength> {
 628    fn from(size: Size<Pixels>) -> Self {
 629        Size {
 630            width: size.width.into(),
 631            height: size.height.into(),
 632        }
 633    }
 634}
 635
 636impl From<Size<Pixels>> for Size<AbsoluteLength> {
 637    fn from(size: Size<Pixels>) -> Self {
 638        Size {
 639            width: size.width.into(),
 640            height: size.height.into(),
 641        }
 642    }
 643}
 644
 645impl Size<Length> {
 646    /// Returns a `Size` with both width and height set to fill the available space.
 647    ///
 648    /// This function creates a `Size` instance where both the width and height are set to `Length::Definite(DefiniteLength::Fraction(1.0))`,
 649    /// which represents 100% of the available space in both dimensions.
 650    ///
 651    /// # Returns
 652    ///
 653    /// A `Size<Length>` that will fill the available space when used in a layout.
 654    pub fn full() -> Self {
 655        Self {
 656            width: relative(1.).into(),
 657            height: relative(1.).into(),
 658        }
 659    }
 660}
 661
 662impl Size<Length> {
 663    /// Returns a `Size` with both width and height set to `auto`, which allows the layout engine to determine the size.
 664    ///
 665    /// This function creates a `Size` instance where both the width and height are set to `Length::Auto`,
 666    /// indicating that their size should be computed based on the layout context, such as the content size or
 667    /// available space.
 668    ///
 669    /// # Returns
 670    ///
 671    /// A `Size<Length>` with width and height set to `Length::Auto`.
 672    pub fn auto() -> Self {
 673        Self {
 674            width: Length::Auto,
 675            height: Length::Auto,
 676        }
 677    }
 678}
 679
 680/// Represents a rectangular area in a 2D space with an origin point and a size.
 681///
 682/// The `Bounds` struct is generic over a type `T` which represents the type of the coordinate system.
 683/// The origin is represented as a `Point<T>` which defines the upper-left corner of the rectangle,
 684/// and the size is represented as a `Size<T>` which defines the width and height of the rectangle.
 685///
 686/// # Examples
 687///
 688/// ```
 689/// # use zed::{Bounds, Point, Size};
 690/// let origin = Point { x: 0, y: 0 };
 691/// let size = Size { width: 10, height: 20 };
 692/// let bounds = Bounds::new(origin, size);
 693///
 694/// assert_eq!(bounds.origin, origin);
 695/// assert_eq!(bounds.size, size);
 696/// ```
 697#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq, Hash)]
 698#[refineable(Debug)]
 699#[repr(C)]
 700pub struct Bounds<T: Clone + Default + Debug> {
 701    /// The origin point of this area.
 702    pub origin: Point<T>,
 703    /// The size of the rectangle.
 704    pub size: Size<T>,
 705}
 706
 707impl Bounds<Pixels> {
 708    /// Generate a centered bounds for the given display or primary display if none is provided
 709    pub fn centered(
 710        display_id: Option<DisplayId>,
 711        size: Size<Pixels>,
 712        cx: &mut AppContext,
 713    ) -> Self {
 714        let display = display_id
 715            .and_then(|id| cx.find_display(id))
 716            .or_else(|| cx.primary_display());
 717
 718        display
 719            .map(|display| {
 720                let center = display.bounds().center();
 721                Bounds {
 722                    origin: point(center.x - size.width / 2., center.y - size.height / 2.),
 723                    size,
 724                }
 725            })
 726            .unwrap_or_else(|| Bounds {
 727                origin: point(px(0.), px(0.)),
 728                size,
 729            })
 730    }
 731
 732    /// Generate maximized bounds for the given display or primary display if none is provided
 733    pub fn maximized(display_id: Option<DisplayId>, cx: &mut AppContext) -> Self {
 734        let display = display_id
 735            .and_then(|id| cx.find_display(id))
 736            .or_else(|| cx.primary_display());
 737
 738        display
 739            .map(|display| display.bounds())
 740            .unwrap_or_else(|| Bounds {
 741                origin: point(px(0.), px(0.)),
 742                size: size(px(1024.), px(768.)),
 743            })
 744    }
 745}
 746
 747impl<T> Bounds<T>
 748where
 749    T: Clone + Debug + Sub<Output = T> + Default,
 750{
 751    /// Constructs a `Bounds` from two corner points: the upper-left and lower-right corners.
 752    ///
 753    /// This function calculates the origin and size of the `Bounds` based on the provided corner points.
 754    /// The origin is set to the upper-left corner, and the size is determined by the difference between
 755    /// the x and y coordinates of the lower-right and upper-left points.
 756    ///
 757    /// # Arguments
 758    ///
 759    /// * `upper_left` - A `Point<T>` representing the upper-left corner of the rectangle.
 760    /// * `lower_right` - A `Point<T>` representing the lower-right corner of the rectangle.
 761    ///
 762    /// # Returns
 763    ///
 764    /// Returns a `Bounds<T>` that encompasses the area defined by the two corner points.
 765    ///
 766    /// # Examples
 767    ///
 768    /// ```
 769    /// # use zed::{Bounds, Point};
 770    /// let upper_left = Point { x: 0, y: 0 };
 771    /// let lower_right = Point { x: 10, y: 10 };
 772    /// let bounds = Bounds::from_corners(upper_left, lower_right);
 773    ///
 774    /// assert_eq!(bounds.origin, upper_left);
 775    /// assert_eq!(bounds.size.width, 10);
 776    /// assert_eq!(bounds.size.height, 10);
 777    /// ```
 778    pub fn from_corners(upper_left: Point<T>, lower_right: Point<T>) -> Self {
 779        let origin = Point {
 780            x: upper_left.x.clone(),
 781            y: upper_left.y.clone(),
 782        };
 783        let size = Size {
 784            width: lower_right.x - upper_left.x,
 785            height: lower_right.y - upper_left.y,
 786        };
 787        Bounds { origin, size }
 788    }
 789
 790    /// Creates a new `Bounds` with the specified origin and size.
 791    ///
 792    /// # Arguments
 793    ///
 794    /// * `origin` - A `Point<T>` representing the origin of the bounds.
 795    /// * `size` - A `Size<T>` representing the size of the bounds.
 796    ///
 797    /// # Returns
 798    ///
 799    /// Returns a `Bounds<T>` that has the given origin and size.
 800    pub fn new(origin: Point<T>, size: Size<T>) -> Self {
 801        Bounds { origin, size }
 802    }
 803}
 804
 805impl<T> Bounds<T>
 806where
 807    T: Clone + Debug + PartialOrd + Add<T, Output = T> + Sub<Output = T> + Default + Half,
 808{
 809    /// Checks if this `Bounds` intersects with another `Bounds`.
 810    ///
 811    /// Two `Bounds` instances intersect if they overlap in the 2D space they occupy.
 812    /// This method checks if there is any overlapping area between the two bounds.
 813    ///
 814    /// # Arguments
 815    ///
 816    /// * `other` - A reference to another `Bounds` to check for intersection with.
 817    ///
 818    /// # Returns
 819    ///
 820    /// Returns `true` if there is any intersection between the two bounds, `false` otherwise.
 821    ///
 822    /// # Examples
 823    ///
 824    /// ```
 825    /// # use zed::{Bounds, Point, Size};
 826    /// let bounds1 = Bounds {
 827    ///     origin: Point { x: 0, y: 0 },
 828    ///     size: Size { width: 10, height: 10 },
 829    /// };
 830    /// let bounds2 = Bounds {
 831    ///     origin: Point { x: 5, y: 5 },
 832    ///     size: Size { width: 10, height: 10 },
 833    /// };
 834    /// let bounds3 = Bounds {
 835    ///     origin: Point { x: 20, y: 20 },
 836    ///     size: Size { width: 10, height: 10 },
 837    /// };
 838    ///
 839    /// assert_eq!(bounds1.intersects(&bounds2), true); // Overlapping bounds
 840    /// assert_eq!(bounds1.intersects(&bounds3), false); // Non-overlapping bounds
 841    /// ```
 842    pub fn intersects(&self, other: &Bounds<T>) -> bool {
 843        let my_lower_right = self.lower_right();
 844        let their_lower_right = other.lower_right();
 845
 846        self.origin.x < their_lower_right.x
 847            && my_lower_right.x > other.origin.x
 848            && self.origin.y < their_lower_right.y
 849            && my_lower_right.y > other.origin.y
 850    }
 851
 852    /// Dilates the bounds by a specified amount in all directions.
 853    ///
 854    /// This method expands the bounds by the given `amount`, increasing the size
 855    /// and adjusting the origin so that the bounds grow outwards equally in all directions.
 856    /// The resulting bounds will have its width and height increased by twice the `amount`
 857    /// (since it grows in both directions), and the origin will be moved by `-amount`
 858    /// in both the x and y directions.
 859    ///
 860    /// # Arguments
 861    ///
 862    /// * `amount` - The amount by which to dilate the bounds.
 863    ///
 864    /// # Examples
 865    ///
 866    /// ```
 867    /// # use zed::{Bounds, Point, Size};
 868    /// let mut bounds = Bounds {
 869    ///     origin: Point { x: 10, y: 10 },
 870    ///     size: Size { width: 10, height: 10 },
 871    /// };
 872    /// bounds.dilate(5);
 873    /// assert_eq!(bounds, Bounds {
 874    ///     origin: Point { x: 5, y: 5 },
 875    ///     size: Size { width: 20, height: 20 },
 876    /// });
 877    /// ```
 878    pub fn dilate(&mut self, amount: T) {
 879        self.origin.x = self.origin.x.clone() - amount.clone();
 880        self.origin.y = self.origin.y.clone() - amount.clone();
 881        let double_amount = amount.clone() + amount;
 882        self.size.width = self.size.width.clone() + double_amount.clone();
 883        self.size.height = self.size.height.clone() + double_amount;
 884    }
 885
 886    /// inset the bounds by a specified amount
 887    /// Note that this may panic if T does not support negative values
 888    pub fn inset(&self, amount: T) -> Self {
 889        let mut result = self.clone();
 890        result.dilate(T::default() - amount);
 891        result
 892    }
 893
 894    /// Returns the center point of the bounds.
 895    ///
 896    /// Calculates the center by taking the origin's x and y coordinates and adding half the width and height
 897    /// of the bounds, respectively. The center is represented as a `Point<T>` where `T` is the type of the
 898    /// coordinate system.
 899    ///
 900    /// # Returns
 901    ///
 902    /// A `Point<T>` representing the center of the bounds.
 903    ///
 904    /// # Examples
 905    ///
 906    /// ```
 907    /// # use zed::{Bounds, Point, Size};
 908    /// let bounds = Bounds {
 909    ///     origin: Point { x: 0, y: 0 },
 910    ///     size: Size { width: 10, height: 20 },
 911    /// };
 912    /// let center = bounds.center();
 913    /// assert_eq!(center, Point { x: 5, y: 10 });
 914    /// ```
 915    pub fn center(&self) -> Point<T> {
 916        Point {
 917            x: self.origin.x.clone() + self.size.width.clone().half(),
 918            y: self.origin.y.clone() + self.size.height.clone().half(),
 919        }
 920    }
 921
 922    /// Calculates the half perimeter of a rectangle defined by the bounds.
 923    ///
 924    /// The half perimeter is calculated as the sum of the width and the height of the rectangle.
 925    /// This method is generic over the type `T` which must implement the `Sub` trait to allow
 926    /// calculation of the width and height from the bounds' origin and size, as well as the `Add` trait
 927    /// to sum the width and height for the half perimeter.
 928    ///
 929    /// # Examples
 930    ///
 931    /// ```
 932    /// # use zed::{Bounds, Point, Size};
 933    /// let bounds = Bounds {
 934    ///     origin: Point { x: 0, y: 0 },
 935    ///     size: Size { width: 10, height: 20 },
 936    /// };
 937    /// let half_perimeter = bounds.half_perimeter();
 938    /// assert_eq!(half_perimeter, 30);
 939    /// ```
 940    pub fn half_perimeter(&self) -> T {
 941        self.size.width.clone() + self.size.height.clone()
 942    }
 943
 944    /// centered_at creates a new bounds centered at the given point.
 945    pub fn centered_at(center: Point<T>, size: Size<T>) -> Self {
 946        let origin = Point {
 947            x: center.x - size.width.half(),
 948            y: center.y - size.height.half(),
 949        };
 950        Self::new(origin, size)
 951    }
 952}
 953
 954impl<T: Clone + Default + Debug + PartialOrd + Add<T, Output = T> + Sub<Output = T>> Bounds<T> {
 955    /// Calculates the intersection of two `Bounds` objects.
 956    ///
 957    /// This method computes the overlapping region of two `Bounds`. If the bounds do not intersect,
 958    /// the resulting `Bounds` will have a size with width and height of zero.
 959    ///
 960    /// # Arguments
 961    ///
 962    /// * `other` - A reference to another `Bounds` to intersect with.
 963    ///
 964    /// # Returns
 965    ///
 966    /// Returns a `Bounds` representing the intersection area. If there is no intersection,
 967    /// the returned `Bounds` will have a size with width and height of zero.
 968    ///
 969    /// # Examples
 970    ///
 971    /// ```
 972    /// # use zed::{Bounds, Point, Size};
 973    /// let bounds1 = Bounds {
 974    ///     origin: Point { x: 0, y: 0 },
 975    ///     size: Size { width: 10, height: 10 },
 976    /// };
 977    /// let bounds2 = Bounds {
 978    ///     origin: Point { x: 5, y: 5 },
 979    ///     size: Size { width: 10, height: 10 },
 980    /// };
 981    /// let intersection = bounds1.intersect(&bounds2);
 982    ///
 983    /// assert_eq!(intersection, Bounds {
 984    ///     origin: Point { x: 5, y: 5 },
 985    ///     size: Size { width: 5, height: 5 },
 986    /// });
 987    /// ```
 988    pub fn intersect(&self, other: &Self) -> Self {
 989        let upper_left = self.origin.max(&other.origin);
 990        let lower_right = self.lower_right().min(&other.lower_right());
 991        Self::from_corners(upper_left, lower_right)
 992    }
 993
 994    /// Computes the union of two `Bounds`.
 995    ///
 996    /// This method calculates the smallest `Bounds` that contains both the current `Bounds` and the `other` `Bounds`.
 997    /// The resulting `Bounds` will have an origin that is the minimum of the origins of the two `Bounds`,
 998    /// and a size that encompasses the furthest extents of both `Bounds`.
 999    ///
1000    /// # Arguments
1001    ///
1002    /// * `other` - A reference to another `Bounds` to create a union with.
1003    ///
1004    /// # Returns
1005    ///
1006    /// Returns a `Bounds` representing the union of the two `Bounds`.
1007    ///
1008    /// # Examples
1009    ///
1010    /// ```
1011    /// # use zed::{Bounds, Point, Size};
1012    /// let bounds1 = Bounds {
1013    ///     origin: Point { x: 0, y: 0 },
1014    ///     size: Size { width: 10, height: 10 },
1015    /// };
1016    /// let bounds2 = Bounds {
1017    ///     origin: Point { x: 5, y: 5 },
1018    ///     size: Size { width: 15, height: 15 },
1019    /// };
1020    /// let union_bounds = bounds1.union(&bounds2);
1021    ///
1022    /// assert_eq!(union_bounds, Bounds {
1023    ///     origin: Point { x: 0, y: 0 },
1024    ///     size: Size { width: 20, height: 20 },
1025    /// });
1026    /// ```
1027    pub fn union(&self, other: &Self) -> Self {
1028        let top_left = self.origin.min(&other.origin);
1029        let bottom_right = self.lower_right().max(&other.lower_right());
1030        Bounds::from_corners(top_left, bottom_right)
1031    }
1032}
1033
1034impl<T, Rhs> Mul<Rhs> for Bounds<T>
1035where
1036    T: Mul<Rhs, Output = Rhs> + Clone + Default + Debug,
1037    Point<T>: Mul<Rhs, Output = Point<Rhs>>,
1038    Rhs: Clone + Default + Debug,
1039{
1040    type Output = Bounds<Rhs>;
1041
1042    fn mul(self, rhs: Rhs) -> Self::Output {
1043        Bounds {
1044            origin: self.origin * rhs.clone(),
1045            size: self.size * rhs,
1046        }
1047    }
1048}
1049
1050impl<T, S> MulAssign<S> for Bounds<T>
1051where
1052    T: Mul<S, Output = T> + Clone + Default + Debug,
1053    S: Clone,
1054{
1055    fn mul_assign(&mut self, rhs: S) {
1056        self.origin *= rhs.clone();
1057        self.size *= rhs;
1058    }
1059}
1060
1061impl<T, S> Div<S> for Bounds<T>
1062where
1063    Size<T>: Div<S, Output = Size<T>>,
1064    T: Div<S, Output = T> + Default + Clone + Debug,
1065    S: Clone,
1066{
1067    type Output = Self;
1068
1069    fn div(self, rhs: S) -> Self {
1070        Self {
1071            origin: self.origin / rhs.clone(),
1072            size: self.size / rhs,
1073        }
1074    }
1075}
1076
1077impl<T> Bounds<T>
1078where
1079    T: Add<T, Output = T> + Clone + Default + Debug,
1080{
1081    /// Returns the top edge of the bounds.
1082    ///
1083    /// # Returns
1084    ///
1085    /// A value of type `T` representing the y-coordinate of the top edge of the bounds.
1086    pub fn top(&self) -> T {
1087        self.origin.y.clone()
1088    }
1089
1090    /// Returns the bottom edge of the bounds.
1091    ///
1092    /// # Returns
1093    ///
1094    /// A value of type `T` representing the y-coordinate of the bottom edge of the bounds.
1095    pub fn bottom(&self) -> T {
1096        self.origin.y.clone() + self.size.height.clone()
1097    }
1098
1099    /// Returns the left edge of the bounds.
1100    ///
1101    /// # Returns
1102    ///
1103    /// A value of type `T` representing the x-coordinate of the left edge of the bounds.
1104    pub fn left(&self) -> T {
1105        self.origin.x.clone()
1106    }
1107
1108    /// Returns the right edge of the bounds.
1109    ///
1110    /// # Returns
1111    ///
1112    /// A value of type `T` representing the x-coordinate of the right edge of the bounds.
1113    pub fn right(&self) -> T {
1114        self.origin.x.clone() + self.size.width.clone()
1115    }
1116
1117    /// Returns the upper-right corner point of the bounds.
1118    ///
1119    /// # Returns
1120    ///
1121    /// A `Point<T>` representing the upper-right corner of the bounds.
1122    ///
1123    /// # Examples
1124    ///
1125    /// ```
1126    /// # use zed::{Bounds, Point, Size};
1127    /// let bounds = Bounds {
1128    ///     origin: Point { x: 0, y: 0 },
1129    ///     size: Size { width: 10, height: 20 },
1130    /// };
1131    /// let upper_right = bounds.upper_right();
1132    /// assert_eq!(upper_right, Point { x: 10, y: 0 });
1133    /// ```
1134    pub fn upper_right(&self) -> Point<T> {
1135        Point {
1136            x: self.origin.x.clone() + self.size.width.clone(),
1137            y: self.origin.y.clone(),
1138        }
1139    }
1140
1141    /// Returns the lower-right corner point of the bounds.
1142    ///
1143    /// # Returns
1144    ///
1145    /// A `Point<T>` representing the lower-right corner of the bounds.
1146    ///
1147    /// # Examples
1148    ///
1149    /// ```
1150    /// # use zed::{Bounds, Point, Size};
1151    /// let bounds = Bounds {
1152    ///     origin: Point { x: 0, y: 0 },
1153    ///     size: Size { width: 10, height: 20 },
1154    /// };
1155    /// let lower_right = bounds.lower_right();
1156    /// assert_eq!(lower_right, Point { x: 10, y: 20 });
1157    /// ```
1158    pub fn lower_right(&self) -> Point<T> {
1159        Point {
1160            x: self.origin.x.clone() + self.size.width.clone(),
1161            y: self.origin.y.clone() + self.size.height.clone(),
1162        }
1163    }
1164
1165    /// Returns the lower-left corner point of the bounds.
1166    ///
1167    /// # Returns
1168    ///
1169    /// A `Point<T>` representing the lower-left corner of the bounds.
1170    ///
1171    /// # Examples
1172    ///
1173    /// ```
1174    /// # use zed::{Bounds, Point, Size};
1175    /// let bounds = Bounds {
1176    ///     origin: Point { x: 0, y: 0 },
1177    ///     size: Size { width: 10, height: 20 },
1178    /// };
1179    /// let lower_left = bounds.lower_left();
1180    /// assert_eq!(lower_left, Point { x: 0, y: 20 });
1181    /// ```
1182    pub fn lower_left(&self) -> Point<T> {
1183        Point {
1184            x: self.origin.x.clone(),
1185            y: self.origin.y.clone() + self.size.height.clone(),
1186        }
1187    }
1188}
1189
1190impl<T> Bounds<T>
1191where
1192    T: Add<T, Output = T> + PartialOrd + Clone + Default + Debug,
1193{
1194    /// Checks if the given point is within the bounds.
1195    ///
1196    /// This method determines whether a point lies inside the rectangle defined by the bounds,
1197    /// including the edges. The point is considered inside if its x-coordinate is greater than
1198    /// or equal to the left edge and less than or equal to the right edge, and its y-coordinate
1199    /// is greater than or equal to the top edge and less than or equal to the bottom edge of the bounds.
1200    ///
1201    /// # Arguments
1202    ///
1203    /// * `point` - A reference to a `Point<T>` that represents the point to check.
1204    ///
1205    /// # Returns
1206    ///
1207    /// Returns `true` if the point is within the bounds, `false` otherwise.
1208    ///
1209    /// # Examples
1210    ///
1211    /// ```
1212    /// # use zed::{Point, Bounds};
1213    /// let bounds = Bounds {
1214    ///     origin: Point { x: 0, y: 0 },
1215    ///     size: Size { width: 10, height: 10 },
1216    /// };
1217    /// let inside_point = Point { x: 5, y: 5 };
1218    /// let outside_point = Point { x: 15, y: 15 };
1219    ///
1220    /// assert!(bounds.contains_point(&inside_point));
1221    /// assert!(!bounds.contains_point(&outside_point));
1222    /// ```
1223    pub fn contains(&self, point: &Point<T>) -> bool {
1224        point.x >= self.origin.x
1225            && point.x <= self.origin.x.clone() + self.size.width.clone()
1226            && point.y >= self.origin.y
1227            && point.y <= self.origin.y.clone() + self.size.height.clone()
1228    }
1229
1230    /// Applies a function to the origin and size of the bounds, producing a new `Bounds<U>`.
1231    ///
1232    /// This method allows for converting a `Bounds<T>` to a `Bounds<U>` by specifying a closure
1233    /// that defines how to convert between the two types. The closure is applied to the `origin` and
1234    /// `size` fields, resulting in new bounds of the desired type.
1235    ///
1236    /// # Arguments
1237    ///
1238    /// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
1239    ///
1240    /// # Returns
1241    ///
1242    /// Returns a new `Bounds<U>` with the origin and size mapped by the provided function.
1243    ///
1244    /// # Examples
1245    ///
1246    /// ```
1247    /// # use zed::{Bounds, Point, Size};
1248    /// let bounds = Bounds {
1249    ///     origin: Point { x: 10.0, y: 10.0 },
1250    ///     size: Size { width: 10.0, height: 20.0 },
1251    /// };
1252    /// let new_bounds = bounds.map(|value| value as f64 * 1.5);
1253    ///
1254    /// assert_eq!(new_bounds, Bounds {
1255    ///     origin: Point { x: 15.0, y: 15.0 },
1256    ///     size: Size { width: 15.0, height: 30.0 },
1257    /// });
1258    /// ```
1259    pub fn map<U>(&self, f: impl Fn(T) -> U) -> Bounds<U>
1260    where
1261        U: Clone + Default + Debug,
1262    {
1263        Bounds {
1264            origin: self.origin.map(&f),
1265            size: self.size.map(f),
1266        }
1267    }
1268
1269    /// Applies a function to the origin  of the bounds, producing a new `Bounds` with the new origin
1270    ///
1271    /// # Examples
1272    ///
1273    /// ```
1274    /// # use zed::{Bounds, Point, Size};
1275    /// let bounds = Bounds {
1276    ///     origin: Point { x: 10.0, y: 10.0 },
1277    ///     size: Size { width: 10.0, height: 20.0 },
1278    /// };
1279    /// let new_bounds = bounds.map_origin(|value| value * 1.5);
1280    ///
1281    /// assert_eq!(new_bounds, Bounds {
1282    ///     origin: Point { x: 15.0, y: 15.0 },
1283    ///     size: Size { width: 10.0, height: 20.0 },
1284    /// });
1285    /// ```
1286    pub fn map_origin(self, f: impl Fn(T) -> T) -> Bounds<T> {
1287        Bounds {
1288            origin: self.origin.map(f),
1289            size: self.size,
1290        }
1291    }
1292
1293    /// Applies a function to the origin  of the bounds, producing a new `Bounds` with the new origin
1294    ///
1295    /// # Examples
1296    ///
1297    /// ```
1298    /// # use zed::{Bounds, Point, Size};
1299    /// let bounds = Bounds {
1300    ///     origin: Point { x: 10.0, y: 10.0 },
1301    ///     size: Size { width: 10.0, height: 20.0 },
1302    /// };
1303    /// let new_bounds = bounds.map_size(|value| value * 1.5);
1304    ///
1305    /// assert_eq!(new_bounds, Bounds {
1306    ///     origin: Point { x: 10.0, y: 10.0 },
1307    ///     size: Size { width: 15.0, height: 30.0 },
1308    /// });
1309    /// ```
1310    pub fn map_size(self, f: impl Fn(T) -> T) -> Bounds<T> {
1311        Bounds {
1312            origin: self.origin,
1313            size: self.size.map(f),
1314        }
1315    }
1316}
1317
1318/// Checks if the bounds represent an empty area.
1319///
1320/// # Returns
1321///
1322/// Returns `true` if either the width or the height of the bounds is less than or equal to zero, indicating an empty area.
1323impl<T: PartialOrd + Default + Debug + Clone> Bounds<T> {
1324    /// Checks if the bounds represent an empty area.
1325    ///
1326    /// # Returns
1327    ///
1328    /// Returns `true` if either the width or the height of the bounds is less than or equal to zero, indicating an empty area.
1329    pub fn is_empty(&self) -> bool {
1330        self.size.width <= T::default() || self.size.height <= T::default()
1331    }
1332}
1333
1334impl Size<DevicePixels> {
1335    /// Converts the size from physical to logical pixels.
1336    pub(crate) fn to_pixels(self, scale_factor: f32) -> Size<Pixels> {
1337        size(
1338            px(self.width.0 as f32 / scale_factor),
1339            px(self.height.0 as f32 / scale_factor),
1340        )
1341    }
1342}
1343
1344impl Size<Pixels> {
1345    /// Converts the size from physical to logical pixels.
1346    pub(crate) fn to_device_pixels(self, scale_factor: f32) -> Size<DevicePixels> {
1347        size(
1348            DevicePixels((self.width.0 * scale_factor) as i32),
1349            DevicePixels((self.height.0 * scale_factor) as i32),
1350        )
1351    }
1352}
1353
1354impl Bounds<Pixels> {
1355    /// Scales the bounds by a given factor, typically used to adjust for display scaling.
1356    ///
1357    /// This method multiplies the origin and size of the bounds by the provided scaling factor,
1358    /// resulting in a new `Bounds<ScaledPixels>` that is proportionally larger or smaller
1359    /// depending on the scaling factor. This can be used to ensure that the bounds are properly
1360    /// scaled for different display densities.
1361    ///
1362    /// # Arguments
1363    ///
1364    /// * `factor` - The scaling factor to apply to the origin and size, typically the display's scaling factor.
1365    ///
1366    /// # Returns
1367    ///
1368    /// Returns a new `Bounds<ScaledPixels>` that represents the scaled bounds.
1369    ///
1370    /// # Examples
1371    ///
1372    /// ```
1373    /// # use zed::{Bounds, Point, Size, Pixels};
1374    /// let bounds = Bounds {
1375    ///     origin: Point { x: Pixels(10.0), y: Pixels(20.0) },
1376    ///     size: Size { width: Pixels(30.0), height: Pixels(40.0) },
1377    /// };
1378    /// let display_scale_factor = 2.0;
1379    /// let scaled_bounds = bounds.scale(display_scale_factor);
1380    /// assert_eq!(scaled_bounds, Bounds {
1381    ///     origin: Point { x: ScaledPixels(20.0), y: ScaledPixels(40.0) },
1382    ///     size: Size { width: ScaledPixels(60.0), height: ScaledPixels(80.0) },
1383    /// });
1384    /// ```
1385    pub fn scale(&self, factor: f32) -> Bounds<ScaledPixels> {
1386        Bounds {
1387            origin: self.origin.scale(factor),
1388            size: self.size.scale(factor),
1389        }
1390    }
1391
1392    /// Convert the bounds from logical pixels to physical pixels
1393    pub fn to_device_pixels(&self, factor: f32) -> Bounds<DevicePixels> {
1394        Bounds {
1395            origin: point(
1396                DevicePixels((self.origin.x.0 * factor) as i32),
1397                DevicePixels((self.origin.y.0 * factor) as i32),
1398            ),
1399            size: self.size.to_device_pixels(factor),
1400        }
1401    }
1402}
1403
1404impl Bounds<DevicePixels> {
1405    /// Convert the bounds from physical pixels to logical pixels
1406    pub fn to_pixels(self, scale_factor: f32) -> Bounds<Pixels> {
1407        Bounds {
1408            origin: point(
1409                px(self.origin.x.0 as f32 / scale_factor),
1410                px(self.origin.y.0 as f32 / scale_factor),
1411            ),
1412            size: self.size.to_pixels(scale_factor),
1413        }
1414    }
1415}
1416
1417impl<T: Clone + Debug + Copy + Default> Copy for Bounds<T> {}
1418
1419/// Represents the edges of a box in a 2D space, such as padding or margin.
1420///
1421/// Each field represents the size of the edge on one side of the box: `top`, `right`, `bottom`, and `left`.
1422///
1423/// # Examples
1424///
1425/// ```
1426/// # use zed::Edges;
1427/// let edges = Edges {
1428///     top: 10.0,
1429///     right: 20.0,
1430///     bottom: 30.0,
1431///     left: 40.0,
1432/// };
1433///
1434/// assert_eq!(edges.top, 10.0);
1435/// assert_eq!(edges.right, 20.0);
1436/// assert_eq!(edges.bottom, 30.0);
1437/// assert_eq!(edges.left, 40.0);
1438/// ```
1439#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq)]
1440#[refineable(Debug)]
1441#[repr(C)]
1442pub struct Edges<T: Clone + Default + Debug> {
1443    /// The size of the top edge.
1444    pub top: T,
1445    /// The size of the right edge.
1446    pub right: T,
1447    /// The size of the bottom edge.
1448    pub bottom: T,
1449    /// The size of the left edge.
1450    pub left: T,
1451}
1452
1453impl<T> Mul for Edges<T>
1454where
1455    T: Mul<Output = T> + Clone + Default + Debug,
1456{
1457    type Output = Self;
1458
1459    fn mul(self, rhs: Self) -> Self::Output {
1460        Self {
1461            top: self.top.clone() * rhs.top,
1462            right: self.right.clone() * rhs.right,
1463            bottom: self.bottom.clone() * rhs.bottom,
1464            left: self.left.clone() * rhs.left,
1465        }
1466    }
1467}
1468
1469impl<T, S> MulAssign<S> for Edges<T>
1470where
1471    T: Mul<S, Output = T> + Clone + Default + Debug,
1472    S: Clone,
1473{
1474    fn mul_assign(&mut self, rhs: S) {
1475        self.top = self.top.clone() * rhs.clone();
1476        self.right = self.right.clone() * rhs.clone();
1477        self.bottom = self.bottom.clone() * rhs.clone();
1478        self.left = self.left.clone() * rhs;
1479    }
1480}
1481
1482impl<T: Clone + Default + Debug + Copy> Copy for Edges<T> {}
1483
1484impl<T: Clone + Default + Debug> Edges<T> {
1485    /// Constructs `Edges` where all sides are set to the same specified value.
1486    ///
1487    /// This function creates an `Edges` instance with the `top`, `right`, `bottom`, and `left` fields all initialized
1488    /// to the same value provided as an argument. This is useful when you want to have uniform edges around a box,
1489    /// such as padding or margin with the same size on all sides.
1490    ///
1491    /// # Arguments
1492    ///
1493    /// * `value` - The value to set for all four sides of the edges.
1494    ///
1495    /// # Returns
1496    ///
1497    /// An `Edges` instance with all sides set to the given value.
1498    ///
1499    /// # Examples
1500    ///
1501    /// ```
1502    /// # use zed::Edges;
1503    /// let uniform_edges = Edges::all(10.0);
1504    /// assert_eq!(uniform_edges.top, 10.0);
1505    /// assert_eq!(uniform_edges.right, 10.0);
1506    /// assert_eq!(uniform_edges.bottom, 10.0);
1507    /// assert_eq!(uniform_edges.left, 10.0);
1508    /// ```
1509    pub fn all(value: T) -> Self {
1510        Self {
1511            top: value.clone(),
1512            right: value.clone(),
1513            bottom: value.clone(),
1514            left: value,
1515        }
1516    }
1517
1518    /// Applies a function to each field of the `Edges`, producing a new `Edges<U>`.
1519    ///
1520    /// This method allows for converting an `Edges<T>` to an `Edges<U>` by specifying a closure
1521    /// that defines how to convert between the two types. The closure is applied to each field
1522    /// (`top`, `right`, `bottom`, `left`), resulting in new edges of the desired type.
1523    ///
1524    /// # Arguments
1525    ///
1526    /// * `f` - A closure that takes a reference to a value of type `T` and returns a value of type `U`.
1527    ///
1528    /// # Returns
1529    ///
1530    /// Returns a new `Edges<U>` with each field mapped by the provided function.
1531    ///
1532    /// # Examples
1533    ///
1534    /// ```
1535    /// # use zed::Edges;
1536    /// let edges = Edges { top: 10, right: 20, bottom: 30, left: 40 };
1537    /// let edges_float = edges.map(|&value| value as f32 * 1.1);
1538    /// assert_eq!(edges_float, Edges { top: 11.0, right: 22.0, bottom: 33.0, left: 44.0 });
1539    /// ```
1540    pub fn map<U>(&self, f: impl Fn(&T) -> U) -> Edges<U>
1541    where
1542        U: Clone + Default + Debug,
1543    {
1544        Edges {
1545            top: f(&self.top),
1546            right: f(&self.right),
1547            bottom: f(&self.bottom),
1548            left: f(&self.left),
1549        }
1550    }
1551
1552    /// Checks if any of the edges satisfy a given predicate.
1553    ///
1554    /// This method applies a predicate function to each field of the `Edges` and returns `true` if any field satisfies the predicate.
1555    ///
1556    /// # Arguments
1557    ///
1558    /// * `predicate` - A closure that takes a reference to a value of type `T` and returns a `bool`.
1559    ///
1560    /// # Returns
1561    ///
1562    /// Returns `true` if the predicate returns `true` for any of the edge values, `false` otherwise.
1563    ///
1564    /// # Examples
1565    ///
1566    /// ```
1567    /// # use zed::Edges;
1568    /// let edges = Edges {
1569    ///     top: 10,
1570    ///     right: 0,
1571    ///     bottom: 5,
1572    ///     left: 0,
1573    /// };
1574    ///
1575    /// assert!(edges.any(|value| *value == 0));
1576    /// assert!(edges.any(|value| *value > 0));
1577    /// assert!(!edges.any(|value| *value > 10));
1578    /// ```
1579    pub fn any<F: Fn(&T) -> bool>(&self, predicate: F) -> bool {
1580        predicate(&self.top)
1581            || predicate(&self.right)
1582            || predicate(&self.bottom)
1583            || predicate(&self.left)
1584    }
1585}
1586
1587impl Edges<Length> {
1588    /// Sets the edges of the `Edges` struct to `auto`, which is a special value that allows the layout engine to automatically determine the size of the edges.
1589    ///
1590    /// This is typically used in layout contexts where the exact size of the edges is not important, or when the size should be calculated based on the content or container.
1591    ///
1592    /// # Returns
1593    ///
1594    /// Returns an `Edges<Length>` with all edges set to `Length::Auto`.
1595    ///
1596    /// # Examples
1597    ///
1598    /// ```
1599    /// # use zed::Edges;
1600    /// let auto_edges = Edges::auto();
1601    /// assert_eq!(auto_edges.top, Length::Auto);
1602    /// assert_eq!(auto_edges.right, Length::Auto);
1603    /// assert_eq!(auto_edges.bottom, Length::Auto);
1604    /// assert_eq!(auto_edges.left, Length::Auto);
1605    /// ```
1606    pub fn auto() -> Self {
1607        Self {
1608            top: Length::Auto,
1609            right: Length::Auto,
1610            bottom: Length::Auto,
1611            left: Length::Auto,
1612        }
1613    }
1614
1615    /// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
1616    ///
1617    /// This is typically used when you want to specify that a box (like a padding or margin area)
1618    /// should have no edges, effectively making it non-existent or invisible in layout calculations.
1619    ///
1620    /// # Returns
1621    ///
1622    /// Returns an `Edges<Length>` with all edges set to zero length.
1623    ///
1624    /// # Examples
1625    ///
1626    /// ```
1627    /// # use zed::Edges;
1628    /// let no_edges = Edges::zero();
1629    /// assert_eq!(no_edges.top, Length::Definite(DefiniteLength::from(Pixels(0.))));
1630    /// assert_eq!(no_edges.right, Length::Definite(DefiniteLength::from(Pixels(0.))));
1631    /// assert_eq!(no_edges.bottom, Length::Definite(DefiniteLength::from(Pixels(0.))));
1632    /// assert_eq!(no_edges.left, Length::Definite(DefiniteLength::from(Pixels(0.))));
1633    /// ```
1634    pub fn zero() -> Self {
1635        Self {
1636            top: px(0.).into(),
1637            right: px(0.).into(),
1638            bottom: px(0.).into(),
1639            left: px(0.).into(),
1640        }
1641    }
1642}
1643
1644impl Edges<DefiniteLength> {
1645    /// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
1646    ///
1647    /// This is typically used when you want to specify that a box (like a padding or margin area)
1648    /// should have no edges, effectively making it non-existent or invisible in layout calculations.
1649    ///
1650    /// # Returns
1651    ///
1652    /// Returns an `Edges<DefiniteLength>` with all edges set to zero length.
1653    ///
1654    /// # Examples
1655    ///
1656    /// ```
1657    /// # use zed::Edges;
1658    /// let no_edges = Edges::zero();
1659    /// assert_eq!(no_edges.top, DefiniteLength::from(zed::px(0.)));
1660    /// assert_eq!(no_edges.right, DefiniteLength::from(zed::px(0.)));
1661    /// assert_eq!(no_edges.bottom, DefiniteLength::from(zed::px(0.)));
1662    /// assert_eq!(no_edges.left, DefiniteLength::from(zed::px(0.)));
1663    /// ```
1664    pub fn zero() -> Self {
1665        Self {
1666            top: px(0.).into(),
1667            right: px(0.).into(),
1668            bottom: px(0.).into(),
1669            left: px(0.).into(),
1670        }
1671    }
1672
1673    /// Converts the `DefiniteLength` to `Pixels` based on the parent size and the REM size.
1674    ///
1675    /// This method allows for a `DefiniteLength` value to be converted into pixels, taking into account
1676    /// the size of the parent element (for percentage-based lengths) and the size of a rem unit (for rem-based lengths).
1677    ///
1678    /// # Arguments
1679    ///
1680    /// * `parent_size` - `Size<AbsoluteLength>` representing the size of the parent element.
1681    /// * `rem_size` - `Pixels` representing the size of one REM unit.
1682    ///
1683    /// # Returns
1684    ///
1685    /// Returns an `Edges<Pixels>` representing the edges with lengths converted to pixels.
1686    ///
1687    /// # Examples
1688    ///
1689    /// ```
1690    /// # use zed::{Edges, DefiniteLength, px, AbsoluteLength, Size};
1691    /// let edges = Edges {
1692    ///     top: DefiniteLength::Absolute(AbsoluteLength::Pixels(px(10.0))),
1693    ///     right: DefiniteLength::Fraction(0.5),
1694    ///     bottom: DefiniteLength::Absolute(AbsoluteLength::Rems(rems(2.0))),
1695    ///     left: DefiniteLength::Fraction(0.25),
1696    /// };
1697    /// let parent_size = Size {
1698    ///     width: AbsoluteLength::Pixels(px(200.0)),
1699    ///     height: AbsoluteLength::Pixels(px(100.0)),
1700    /// };
1701    /// let rem_size = px(16.0);
1702    /// let edges_in_pixels = edges.to_pixels(parent_size, rem_size);
1703    ///
1704    /// assert_eq!(edges_in_pixels.top, px(10.0)); // Absolute length in pixels
1705    /// assert_eq!(edges_in_pixels.right, px(100.0)); // 50% of parent width
1706    /// assert_eq!(edges_in_pixels.bottom, px(32.0)); // 2 rems
1707    /// assert_eq!(edges_in_pixels.left, px(50.0)); // 25% of parent width
1708    /// ```
1709    pub fn to_pixels(&self, parent_size: Size<AbsoluteLength>, rem_size: Pixels) -> Edges<Pixels> {
1710        Edges {
1711            top: self.top.to_pixels(parent_size.height, rem_size),
1712            right: self.right.to_pixels(parent_size.width, rem_size),
1713            bottom: self.bottom.to_pixels(parent_size.height, rem_size),
1714            left: self.left.to_pixels(parent_size.width, rem_size),
1715        }
1716    }
1717}
1718
1719impl Edges<AbsoluteLength> {
1720    /// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
1721    ///
1722    /// This is typically used when you want to specify that a box (like a padding or margin area)
1723    /// should have no edges, effectively making it non-existent or invisible in layout calculations.
1724    ///
1725    /// # Returns
1726    ///
1727    /// Returns an `Edges<AbsoluteLength>` with all edges set to zero length.
1728    ///
1729    /// # Examples
1730    ///
1731    /// ```
1732    /// # use zed::Edges;
1733    /// let no_edges = Edges::zero();
1734    /// assert_eq!(no_edges.top, AbsoluteLength::Pixels(Pixels(0.0)));
1735    /// assert_eq!(no_edges.right, AbsoluteLength::Pixels(Pixels(0.0)));
1736    /// assert_eq!(no_edges.bottom, AbsoluteLength::Pixels(Pixels(0.0)));
1737    /// assert_eq!(no_edges.left, AbsoluteLength::Pixels(Pixels(0.0)));
1738    /// ```
1739    pub fn zero() -> Self {
1740        Self {
1741            top: px(0.).into(),
1742            right: px(0.).into(),
1743            bottom: px(0.).into(),
1744            left: px(0.).into(),
1745        }
1746    }
1747
1748    /// Converts the `AbsoluteLength` to `Pixels` based on the `rem_size`.
1749    ///
1750    /// If the `AbsoluteLength` is already in pixels, it simply returns the corresponding `Pixels` value.
1751    /// If the `AbsoluteLength` is in rems, it multiplies the number of rems by the `rem_size` to convert it to pixels.
1752    ///
1753    /// # Arguments
1754    ///
1755    /// * `rem_size` - The size of one rem unit in pixels.
1756    ///
1757    /// # Returns
1758    ///
1759    /// Returns an `Edges<Pixels>` representing the edges with lengths converted to pixels.
1760    ///
1761    /// # Examples
1762    ///
1763    /// ```
1764    /// # use zed::{Edges, AbsoluteLength, Pixels, px};
1765    /// let edges = Edges {
1766    ///     top: AbsoluteLength::Pixels(px(10.0)),
1767    ///     right: AbsoluteLength::Rems(rems(1.0)),
1768    ///     bottom: AbsoluteLength::Pixels(px(20.0)),
1769    ///     left: AbsoluteLength::Rems(rems(2.0)),
1770    /// };
1771    /// let rem_size = px(16.0);
1772    /// let edges_in_pixels = edges.to_pixels(rem_size);
1773    ///
1774    /// assert_eq!(edges_in_pixels.top, px(10.0)); // Already in pixels
1775    /// assert_eq!(edges_in_pixels.right, px(16.0)); // 1 rem converted to pixels
1776    /// assert_eq!(edges_in_pixels.bottom, px(20.0)); // Already in pixels
1777    /// assert_eq!(edges_in_pixels.left, px(32.0)); // 2 rems converted to pixels
1778    /// ```
1779    pub fn to_pixels(&self, rem_size: Pixels) -> Edges<Pixels> {
1780        Edges {
1781            top: self.top.to_pixels(rem_size),
1782            right: self.right.to_pixels(rem_size),
1783            bottom: self.bottom.to_pixels(rem_size),
1784            left: self.left.to_pixels(rem_size),
1785        }
1786    }
1787}
1788
1789impl Edges<Pixels> {
1790    /// Scales the `Edges<Pixels>` by a given factor, returning `Edges<ScaledPixels>`.
1791    ///
1792    /// This method is typically used for adjusting the edge sizes for different display densities or scaling factors.
1793    ///
1794    /// # Arguments
1795    ///
1796    /// * `factor` - The scaling factor to apply to each edge.
1797    ///
1798    /// # Returns
1799    ///
1800    /// Returns a new `Edges<ScaledPixels>` where each edge is the result of scaling the original edge by the given factor.
1801    ///
1802    /// # Examples
1803    ///
1804    /// ```
1805    /// # use zed::{Edges, Pixels};
1806    /// let edges = Edges {
1807    ///     top: Pixels(10.0),
1808    ///     right: Pixels(20.0),
1809    ///     bottom: Pixels(30.0),
1810    ///     left: Pixels(40.0),
1811    /// };
1812    /// let scaled_edges = edges.scale(2.0);
1813    /// assert_eq!(scaled_edges.top, ScaledPixels(20.0));
1814    /// assert_eq!(scaled_edges.right, ScaledPixels(40.0));
1815    /// assert_eq!(scaled_edges.bottom, ScaledPixels(60.0));
1816    /// assert_eq!(scaled_edges.left, ScaledPixels(80.0));
1817    /// ```
1818    pub fn scale(&self, factor: f32) -> Edges<ScaledPixels> {
1819        Edges {
1820            top: self.top.scale(factor),
1821            right: self.right.scale(factor),
1822            bottom: self.bottom.scale(factor),
1823            left: self.left.scale(factor),
1824        }
1825    }
1826
1827    /// Returns the maximum value of any edge.
1828    ///
1829    /// # Returns
1830    ///
1831    /// The maximum `Pixels` value among all four edges.
1832    pub fn max(&self) -> Pixels {
1833        self.top.max(self.right).max(self.bottom).max(self.left)
1834    }
1835}
1836
1837impl From<f32> for Edges<Pixels> {
1838    fn from(val: f32) -> Self {
1839        Edges {
1840            top: val.into(),
1841            right: val.into(),
1842            bottom: val.into(),
1843            left: val.into(),
1844        }
1845    }
1846}
1847
1848/// Represents the corners of a box in a 2D space, such as border radius.
1849///
1850/// Each field represents the size of the corner on one side of the box: `top_left`, `top_right`, `bottom_right`, and `bottom_left`.
1851#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq)]
1852#[refineable(Debug)]
1853#[repr(C)]
1854pub struct Corners<T: Clone + Default + Debug> {
1855    /// The value associated with the top left corner.
1856    pub top_left: T,
1857    /// The value associated with the top right corner.
1858    pub top_right: T,
1859    /// The value associated with the bottom right corner.
1860    pub bottom_right: T,
1861    /// The value associated with the bottom left corner.
1862    pub bottom_left: T,
1863}
1864
1865impl<T> Corners<T>
1866where
1867    T: Clone + Default + Debug,
1868{
1869    /// Constructs `Corners` where all sides are set to the same specified value.
1870    ///
1871    /// This function creates a `Corners` instance with the `top_left`, `top_right`, `bottom_right`, and `bottom_left` fields all initialized
1872    /// to the same value provided as an argument. This is useful when you want to have uniform corners around a box,
1873    /// such as a uniform border radius on a rectangle.
1874    ///
1875    /// # Arguments
1876    ///
1877    /// * `value` - The value to set for all four corners.
1878    ///
1879    /// # Returns
1880    ///
1881    /// An `Corners` instance with all corners set to the given value.
1882    ///
1883    /// # Examples
1884    ///
1885    /// ```
1886    /// # use zed::Corners;
1887    /// let uniform_corners = Corners::all(5.0);
1888    /// assert_eq!(uniform_corners.top_left, 5.0);
1889    /// assert_eq!(uniform_corners.top_right, 5.0);
1890    /// assert_eq!(uniform_corners.bottom_right, 5.0);
1891    /// assert_eq!(uniform_corners.bottom_left, 5.0);
1892    /// ```
1893    pub fn all(value: T) -> Self {
1894        Self {
1895            top_left: value.clone(),
1896            top_right: value.clone(),
1897            bottom_right: value.clone(),
1898            bottom_left: value,
1899        }
1900    }
1901}
1902
1903impl Corners<AbsoluteLength> {
1904    /// Converts the `AbsoluteLength` to `Pixels` based on the provided size and rem size, ensuring the resulting
1905    /// `Pixels` do not exceed half of the minimum of the provided size's width and height.
1906    ///
1907    /// This method is particularly useful when dealing with corner radii, where the radius in pixels should not
1908    /// exceed half the size of the box it applies to, to avoid the corners overlapping.
1909    ///
1910    /// # Arguments
1911    ///
1912    /// * `size` - The `Size<Pixels>` against which the minimum allowable radius is determined.
1913    /// * `rem_size` - The size of one REM unit in pixels, used for conversion if the `AbsoluteLength` is in REMs.
1914    ///
1915    /// # Returns
1916    ///
1917    /// Returns a `Corners<Pixels>` instance with each corner's length converted to pixels and clamped to the
1918    /// minimum allowable radius based on the provided size.
1919    ///
1920    /// # Examples
1921    ///
1922    /// ```
1923    /// # use zed::{Corners, AbsoluteLength, Pixels, Size};
1924    /// let corners = Corners {
1925    ///     top_left: AbsoluteLength::Pixels(Pixels(15.0)),
1926    ///     top_right: AbsoluteLength::Rems(Rems(1.0)),
1927    ///     bottom_right: AbsoluteLength::Pixels(Pixels(30.0)),
1928    ///     bottom_left: AbsoluteLength::Rems(Rems(2.0)),
1929    /// };
1930    /// let size = Size { width: Pixels(100.0), height: Pixels(50.0) };
1931    /// let rem_size = Pixels(16.0);
1932    /// let corners_in_pixels = corners.to_pixels(size, rem_size);
1933    ///
1934    /// // The resulting corners should not exceed half the size of the smallest dimension (50.0 / 2.0 = 25.0).
1935    /// assert_eq!(corners_in_pixels.top_left, Pixels(15.0));
1936    /// assert_eq!(corners_in_pixels.top_right, Pixels(16.0)); // 1 rem converted to pixels
1937    /// assert_eq!(corners_in_pixels.bottom_right, Pixels(30.0).min(Pixels(25.0))); // Clamped to 25.0
1938    /// assert_eq!(corners_in_pixels.bottom_left, Pixels(32.0).min(Pixels(25.0))); // 2 rems converted to pixels and clamped to 25.0
1939    /// ```
1940    pub fn to_pixels(&self, size: Size<Pixels>, rem_size: Pixels) -> Corners<Pixels> {
1941        let max = size.width.min(size.height) / 2.;
1942        Corners {
1943            top_left: self.top_left.to_pixels(rem_size).min(max),
1944            top_right: self.top_right.to_pixels(rem_size).min(max),
1945            bottom_right: self.bottom_right.to_pixels(rem_size).min(max),
1946            bottom_left: self.bottom_left.to_pixels(rem_size).min(max),
1947        }
1948    }
1949}
1950
1951impl Corners<Pixels> {
1952    /// Scales the `Corners<Pixels>` by a given factor, returning `Corners<ScaledPixels>`.
1953    ///
1954    /// This method is typically used for adjusting the corner sizes for different display densities or scaling factors.
1955    ///
1956    /// # Arguments
1957    ///
1958    /// * `factor` - The scaling factor to apply to each corner.
1959    ///
1960    /// # Returns
1961    ///
1962    /// Returns a new `Corners<ScaledPixels>` where each corner is the result of scaling the original corner by the given factor.
1963    ///
1964    /// # Examples
1965    ///
1966    /// ```
1967    /// # use zed::{Corners, Pixels};
1968    /// let corners = Corners {
1969    ///     top_left: Pixels(10.0),
1970    ///     top_right: Pixels(20.0),
1971    ///     bottom_right: Pixels(30.0),
1972    ///     bottom_left: Pixels(40.0),
1973    /// };
1974    /// let scaled_corners = corners.scale(2.0);
1975    /// assert_eq!(scaled_corners.top_left, ScaledPixels(20.0));
1976    /// assert_eq!(scaled_corners.top_right, ScaledPixels(40.0));
1977    /// assert_eq!(scaled_corners.bottom_right, ScaledPixels(60.0));
1978    /// assert_eq!(scaled_corners.bottom_left, ScaledPixels(80.0));
1979    /// ```
1980    pub fn scale(&self, factor: f32) -> Corners<ScaledPixels> {
1981        Corners {
1982            top_left: self.top_left.scale(factor),
1983            top_right: self.top_right.scale(factor),
1984            bottom_right: self.bottom_right.scale(factor),
1985            bottom_left: self.bottom_left.scale(factor),
1986        }
1987    }
1988
1989    /// Returns the maximum value of any corner.
1990    ///
1991    /// # Returns
1992    ///
1993    /// The maximum `Pixels` value among all four corners.
1994    pub fn max(&self) -> Pixels {
1995        self.top_left
1996            .max(self.top_right)
1997            .max(self.bottom_right)
1998            .max(self.bottom_left)
1999    }
2000}
2001
2002impl<T: Clone + Default + Debug> Corners<T> {
2003    /// Applies a function to each field of the `Corners`, producing a new `Corners<U>`.
2004    ///
2005    /// This method allows for converting a `Corners<T>` to a `Corners<U>` by specifying a closure
2006    /// that defines how to convert between the two types. The closure is applied to each field
2007    /// (`top_left`, `top_right`, `bottom_right`, `bottom_left`), resulting in new corners of the desired type.
2008    ///
2009    /// # Arguments
2010    ///
2011    /// * `f` - A closure that takes a reference to a value of type `T` and returns a value of type `U`.
2012    ///
2013    /// # Returns
2014    ///
2015    /// Returns a new `Corners<U>` with each field mapped by the provided function.
2016    ///
2017    /// # Examples
2018    ///
2019    /// ```
2020    /// # use zed::{Corners, Pixels};
2021    /// let corners = Corners {
2022    ///     top_left: Pixels(10.0),
2023    ///     top_right: Pixels(20.0),
2024    ///     bottom_right: Pixels(30.0),
2025    ///     bottom_left: Pixels(40.0),
2026    /// };
2027    /// let corners_in_rems = corners.map(|&px| Rems(px.0 / 16.0));
2028    /// assert_eq!(corners_in_rems, Corners {
2029    ///     top_left: Rems(0.625),
2030    ///     top_right: Rems(1.25),
2031    ///     bottom_right: Rems(1.875),
2032    ///     bottom_left: Rems(2.5),
2033    /// });
2034    /// ```
2035    pub fn map<U>(&self, f: impl Fn(&T) -> U) -> Corners<U>
2036    where
2037        U: Clone + Default + Debug,
2038    {
2039        Corners {
2040            top_left: f(&self.top_left),
2041            top_right: f(&self.top_right),
2042            bottom_right: f(&self.bottom_right),
2043            bottom_left: f(&self.bottom_left),
2044        }
2045    }
2046}
2047
2048impl<T> Mul for Corners<T>
2049where
2050    T: Mul<Output = T> + Clone + Default + Debug,
2051{
2052    type Output = Self;
2053
2054    fn mul(self, rhs: Self) -> Self::Output {
2055        Self {
2056            top_left: self.top_left.clone() * rhs.top_left,
2057            top_right: self.top_right.clone() * rhs.top_right,
2058            bottom_right: self.bottom_right.clone() * rhs.bottom_right,
2059            bottom_left: self.bottom_left.clone() * rhs.bottom_left,
2060        }
2061    }
2062}
2063
2064impl<T, S> MulAssign<S> for Corners<T>
2065where
2066    T: Mul<S, Output = T> + Clone + Default + Debug,
2067    S: Clone,
2068{
2069    fn mul_assign(&mut self, rhs: S) {
2070        self.top_left = self.top_left.clone() * rhs.clone();
2071        self.top_right = self.top_right.clone() * rhs.clone();
2072        self.bottom_right = self.bottom_right.clone() * rhs.clone();
2073        self.bottom_left = self.bottom_left.clone() * rhs;
2074    }
2075}
2076
2077impl<T> Copy for Corners<T> where T: Copy + Clone + Default + Debug {}
2078
2079impl From<f32> for Corners<Pixels> {
2080    fn from(val: f32) -> Self {
2081        Corners {
2082            top_left: val.into(),
2083            top_right: val.into(),
2084            bottom_right: val.into(),
2085            bottom_left: val.into(),
2086        }
2087    }
2088}
2089
2090impl From<Pixels> for Corners<Pixels> {
2091    fn from(val: Pixels) -> Self {
2092        Corners {
2093            top_left: val,
2094            top_right: val,
2095            bottom_right: val,
2096            bottom_left: val,
2097        }
2098    }
2099}
2100
2101/// Represents an angle in Radians
2102#[derive(
2103    Clone,
2104    Copy,
2105    Default,
2106    Add,
2107    AddAssign,
2108    Sub,
2109    SubAssign,
2110    Neg,
2111    Div,
2112    DivAssign,
2113    PartialEq,
2114    Serialize,
2115    Deserialize,
2116    Debug,
2117)]
2118#[repr(transparent)]
2119pub struct Radians(pub f32);
2120
2121/// Create a `Radian` from a raw value
2122pub fn radians(value: f32) -> Radians {
2123    Radians(value)
2124}
2125
2126/// A type representing a percentage value.
2127#[derive(
2128    Clone,
2129    Copy,
2130    Default,
2131    Add,
2132    AddAssign,
2133    Sub,
2134    SubAssign,
2135    Neg,
2136    Div,
2137    DivAssign,
2138    PartialEq,
2139    Serialize,
2140    Deserialize,
2141    Debug,
2142)]
2143#[repr(transparent)]
2144pub struct Percentage(pub f32);
2145
2146/// Generate a `Radian` from a percentage of a full circle.
2147pub fn percentage(value: f32) -> Percentage {
2148    debug_assert!(
2149        value >= 0.0 && value <= 1.0,
2150        "Percentage must be between 0 and 1"
2151    );
2152    Percentage(value)
2153}
2154
2155impl From<Percentage> for Radians {
2156    fn from(value: Percentage) -> Self {
2157        radians(value.0 * std::f32::consts::PI * 2.0)
2158    }
2159}
2160
2161/// Represents a length in pixels, the base unit of measurement in the UI framework.
2162///
2163/// `Pixels` is a value type that represents an absolute length in pixels, which is used
2164/// for specifying sizes, positions, and distances in the UI. It is the fundamental unit
2165/// of measurement for all visual elements and layout calculations.
2166///
2167/// The inner value is an `f32`, allowing for sub-pixel precision which can be useful for
2168/// anti-aliasing and animations. However, when applied to actual pixel grids, the value
2169/// is typically rounded to the nearest integer.
2170///
2171/// # Examples
2172///
2173/// ```
2174/// use zed::Pixels;
2175///
2176/// // Define a length of 10 pixels
2177/// let length = Pixels(10.0);
2178///
2179/// // Define a length and scale it by a factor of 2
2180/// let scaled_length = length.scale(2.0);
2181/// assert_eq!(scaled_length, Pixels(20.0));
2182/// ```
2183#[derive(
2184    Clone,
2185    Copy,
2186    Default,
2187    Add,
2188    AddAssign,
2189    Sub,
2190    SubAssign,
2191    Neg,
2192    Div,
2193    DivAssign,
2194    PartialEq,
2195    Serialize,
2196    Deserialize,
2197)]
2198#[repr(transparent)]
2199pub struct Pixels(pub f32);
2200
2201impl std::fmt::Display for Pixels {
2202    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2203        f.write_fmt(format_args!("{}px", self.0))
2204    }
2205}
2206
2207impl std::ops::Div for Pixels {
2208    type Output = f32;
2209
2210    fn div(self, rhs: Self) -> Self::Output {
2211        self.0 / rhs.0
2212    }
2213}
2214
2215impl std::ops::DivAssign for Pixels {
2216    fn div_assign(&mut self, rhs: Self) {
2217        *self = Self(self.0 / rhs.0);
2218    }
2219}
2220
2221impl std::ops::RemAssign for Pixels {
2222    fn rem_assign(&mut self, rhs: Self) {
2223        self.0 %= rhs.0;
2224    }
2225}
2226
2227impl std::ops::Rem for Pixels {
2228    type Output = Self;
2229
2230    fn rem(self, rhs: Self) -> Self {
2231        Self(self.0 % rhs.0)
2232    }
2233}
2234
2235impl Mul<f32> for Pixels {
2236    type Output = Pixels;
2237
2238    fn mul(self, other: f32) -> Pixels {
2239        Pixels(self.0 * other)
2240    }
2241}
2242
2243impl Mul<usize> for Pixels {
2244    type Output = Pixels;
2245
2246    fn mul(self, other: usize) -> Pixels {
2247        Pixels(self.0 * other as f32)
2248    }
2249}
2250
2251impl Mul<Pixels> for f32 {
2252    type Output = Pixels;
2253
2254    fn mul(self, rhs: Pixels) -> Self::Output {
2255        Pixels(self * rhs.0)
2256    }
2257}
2258
2259impl MulAssign<f32> for Pixels {
2260    fn mul_assign(&mut self, other: f32) {
2261        self.0 *= other;
2262    }
2263}
2264
2265impl Pixels {
2266    /// Represents zero pixels.
2267    pub const ZERO: Pixels = Pixels(0.0);
2268    /// The maximum value that can be represented by `Pixels`.
2269    pub const MAX: Pixels = Pixels(f32::MAX);
2270
2271    /// Floors the `Pixels` value to the nearest whole number.
2272    ///
2273    /// # Returns
2274    ///
2275    /// Returns a new `Pixels` instance with the floored value.
2276    pub fn floor(&self) -> Self {
2277        Self(self.0.floor())
2278    }
2279
2280    /// Rounds the `Pixels` value to the nearest whole number.
2281    ///
2282    /// # Returns
2283    ///
2284    /// Returns a new `Pixels` instance with the rounded value.
2285    pub fn round(&self) -> Self {
2286        Self(self.0.round())
2287    }
2288
2289    /// Returns the ceiling of the `Pixels` value to the nearest whole number.
2290    ///
2291    /// # Returns
2292    ///
2293    /// Returns a new `Pixels` instance with the ceiling value.
2294    pub fn ceil(&self) -> Self {
2295        Self(self.0.ceil())
2296    }
2297
2298    /// Scales the `Pixels` value by a given factor, producing `ScaledPixels`.
2299    ///
2300    /// This method is used when adjusting pixel values for display scaling factors,
2301    /// such as high DPI (dots per inch) or Retina displays, where the pixel density is higher and
2302    /// thus requires scaling to maintain visual consistency and readability.
2303    ///
2304    /// The resulting `ScaledPixels` represent the scaled value which can be used for rendering
2305    /// calculations where display scaling is considered.
2306    pub fn scale(&self, factor: f32) -> ScaledPixels {
2307        ScaledPixels(self.0 * factor)
2308    }
2309
2310    /// Raises the `Pixels` value to a given power.
2311    ///
2312    /// # Arguments
2313    ///
2314    /// * `exponent` - The exponent to raise the `Pixels` value by.
2315    ///
2316    /// # Returns
2317    ///
2318    /// Returns a new `Pixels` instance with the value raised to the given exponent.
2319    pub fn pow(&self, exponent: f32) -> Self {
2320        Self(self.0.powf(exponent))
2321    }
2322
2323    /// Returns the absolute value of the `Pixels`.
2324    ///
2325    /// # Returns
2326    ///
2327    /// A new `Pixels` instance with the absolute value of the original `Pixels`.
2328    pub fn abs(&self) -> Self {
2329        Self(self.0.abs())
2330    }
2331
2332    /// Returns the sign of the `Pixels` value.
2333    ///
2334    /// # Returns
2335    ///
2336    /// Returns:
2337    /// * `1.0` if the value is positive
2338    /// * `-1.0` if the value is negative
2339    /// * `0.0` if the value is zero
2340    pub fn signum(&self) -> f32 {
2341        self.0.signum()
2342    }
2343
2344    /// Returns the f64 value of `Pixels`.
2345    ///
2346    /// # Returns
2347    ///
2348    /// A f64 value of the `Pixels`.
2349    pub fn to_f64(self) -> f64 {
2350        self.0 as f64
2351    }
2352}
2353
2354impl Mul<Pixels> for Pixels {
2355    type Output = Pixels;
2356
2357    fn mul(self, rhs: Pixels) -> Self::Output {
2358        Pixels(self.0 * rhs.0)
2359    }
2360}
2361
2362impl Eq for Pixels {}
2363
2364impl PartialOrd for Pixels {
2365    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2366        Some(self.cmp(other))
2367    }
2368}
2369
2370impl Ord for Pixels {
2371    fn cmp(&self, other: &Self) -> cmp::Ordering {
2372        self.0.total_cmp(&other.0)
2373    }
2374}
2375
2376impl std::hash::Hash for Pixels {
2377    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
2378        self.0.to_bits().hash(state);
2379    }
2380}
2381
2382impl From<f64> for Pixels {
2383    fn from(pixels: f64) -> Self {
2384        Pixels(pixels as f32)
2385    }
2386}
2387
2388impl From<f32> for Pixels {
2389    fn from(pixels: f32) -> Self {
2390        Pixels(pixels)
2391    }
2392}
2393
2394impl Debug for Pixels {
2395    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2396        write!(f, "{} px", self.0)
2397    }
2398}
2399
2400impl From<Pixels> for f32 {
2401    fn from(pixels: Pixels) -> Self {
2402        pixels.0
2403    }
2404}
2405
2406impl From<&Pixels> for f32 {
2407    fn from(pixels: &Pixels) -> Self {
2408        pixels.0
2409    }
2410}
2411
2412impl From<Pixels> for f64 {
2413    fn from(pixels: Pixels) -> Self {
2414        pixels.0 as f64
2415    }
2416}
2417
2418impl From<Pixels> for u32 {
2419    fn from(pixels: Pixels) -> Self {
2420        pixels.0 as u32
2421    }
2422}
2423
2424impl From<u32> for Pixels {
2425    fn from(pixels: u32) -> Self {
2426        Pixels(pixels as f32)
2427    }
2428}
2429
2430impl From<Pixels> for usize {
2431    fn from(pixels: Pixels) -> Self {
2432        pixels.0 as usize
2433    }
2434}
2435
2436impl From<usize> for Pixels {
2437    fn from(pixels: usize) -> Self {
2438        Pixels(pixels as f32)
2439    }
2440}
2441
2442/// Represents physical pixels on the display.
2443///
2444/// `DevicePixels` is a unit of measurement that refers to the actual pixels on a device's screen.
2445/// This type is used when precise pixel manipulation is required, such as rendering graphics or
2446/// interfacing with hardware that operates on the pixel level. Unlike logical pixels that may be
2447/// affected by the device's scale factor, `DevicePixels` always correspond to real pixels on the
2448/// display.
2449#[derive(
2450    Add,
2451    AddAssign,
2452    Clone,
2453    Copy,
2454    Default,
2455    Div,
2456    Eq,
2457    Hash,
2458    Ord,
2459    PartialEq,
2460    PartialOrd,
2461    Sub,
2462    SubAssign,
2463    Serialize,
2464    Deserialize,
2465)]
2466#[repr(transparent)]
2467pub struct DevicePixels(pub i32);
2468
2469impl DevicePixels {
2470    /// Converts the `DevicePixels` value to the number of bytes needed to represent it in memory.
2471    ///
2472    /// This function is useful when working with graphical data that needs to be stored in a buffer,
2473    /// such as images or framebuffers, where each pixel may be represented by a specific number of bytes.
2474    ///
2475    /// # Arguments
2476    ///
2477    /// * `bytes_per_pixel` - The number of bytes used to represent a single pixel.
2478    ///
2479    /// # Returns
2480    ///
2481    /// The number of bytes required to represent the `DevicePixels` value in memory.
2482    ///
2483    /// # Examples
2484    ///
2485    /// ```
2486    /// # use zed::DevicePixels;
2487    /// let pixels = DevicePixels(10); // 10 device pixels
2488    /// let bytes_per_pixel = 4; // Assume each pixel is represented by 4 bytes (e.g., RGBA)
2489    /// let total_bytes = pixels.to_bytes(bytes_per_pixel);
2490    /// assert_eq!(total_bytes, 40); // 10 pixels * 4 bytes/pixel = 40 bytes
2491    /// ```
2492    pub fn to_bytes(&self, bytes_per_pixel: u8) -> u32 {
2493        self.0 as u32 * bytes_per_pixel as u32
2494    }
2495}
2496
2497impl fmt::Debug for DevicePixels {
2498    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2499        write!(f, "{} px (device)", self.0)
2500    }
2501}
2502
2503impl From<DevicePixels> for i32 {
2504    fn from(device_pixels: DevicePixels) -> Self {
2505        device_pixels.0
2506    }
2507}
2508
2509impl From<i32> for DevicePixels {
2510    fn from(device_pixels: i32) -> Self {
2511        DevicePixels(device_pixels)
2512    }
2513}
2514
2515impl From<u32> for DevicePixels {
2516    fn from(device_pixels: u32) -> Self {
2517        DevicePixels(device_pixels as i32)
2518    }
2519}
2520
2521impl From<DevicePixels> for u32 {
2522    fn from(device_pixels: DevicePixels) -> Self {
2523        device_pixels.0 as u32
2524    }
2525}
2526
2527impl From<DevicePixels> for u64 {
2528    fn from(device_pixels: DevicePixels) -> Self {
2529        device_pixels.0 as u64
2530    }
2531}
2532
2533impl From<u64> for DevicePixels {
2534    fn from(device_pixels: u64) -> Self {
2535        DevicePixels(device_pixels as i32)
2536    }
2537}
2538
2539impl From<DevicePixels> for usize {
2540    fn from(device_pixels: DevicePixels) -> Self {
2541        device_pixels.0 as usize
2542    }
2543}
2544
2545impl From<usize> for DevicePixels {
2546    fn from(device_pixels: usize) -> Self {
2547        DevicePixels(device_pixels as i32)
2548    }
2549}
2550
2551/// Represents scaled pixels that take into account the device's scale factor.
2552///
2553/// `ScaledPixels` are used to ensure that UI elements appear at the correct size on devices
2554/// with different pixel densities. When a device has a higher scale factor (such as Retina displays),
2555/// a single logical pixel may correspond to multiple physical pixels. By using `ScaledPixels`,
2556/// dimensions and positions can be specified in a way that scales appropriately across different
2557/// display resolutions.
2558#[derive(Clone, Copy, Default, Add, AddAssign, Sub, SubAssign, Div, PartialEq, PartialOrd)]
2559#[repr(transparent)]
2560pub struct ScaledPixels(pub(crate) f32);
2561
2562impl ScaledPixels {
2563    /// Floors the `ScaledPixels` value to the nearest whole number.
2564    ///
2565    /// # Returns
2566    ///
2567    /// Returns a new `ScaledPixels` instance with the floored value.
2568    pub fn floor(&self) -> Self {
2569        Self(self.0.floor())
2570    }
2571
2572    /// Rounds the `ScaledPixels` value to the nearest whole number.
2573    ///
2574    /// # Returns
2575    ///
2576    /// Returns a new `ScaledPixels` instance with the rounded value.
2577    pub fn ceil(&self) -> Self {
2578        Self(self.0.ceil())
2579    }
2580}
2581
2582impl Eq for ScaledPixels {}
2583
2584impl Debug for ScaledPixels {
2585    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2586        write!(f, "{} px (scaled)", self.0)
2587    }
2588}
2589
2590impl From<ScaledPixels> for DevicePixels {
2591    fn from(scaled: ScaledPixels) -> Self {
2592        DevicePixels(scaled.0.ceil() as i32)
2593    }
2594}
2595
2596impl From<DevicePixels> for ScaledPixels {
2597    fn from(device: DevicePixels) -> Self {
2598        ScaledPixels(device.0 as f32)
2599    }
2600}
2601
2602impl From<ScaledPixels> for f64 {
2603    fn from(scaled_pixels: ScaledPixels) -> Self {
2604        scaled_pixels.0 as f64
2605    }
2606}
2607
2608/// Represents a length in rems, a unit based on the font-size of the window, which can be assigned with [`WindowContext::set_rem_size`][set_rem_size].
2609///
2610/// Rems are used for defining lengths that are scalable and consistent across different UI elements.
2611/// The value of `1rem` is typically equal to the font-size of the root element (often the `<html>` element in browsers),
2612/// making it a flexible unit that adapts to the user's text size preferences. In this framework, `rems` serve a similar
2613/// purpose, allowing for scalable and accessible design that can adjust to different display settings or user preferences.
2614///
2615/// For example, if the root element's font-size is `16px`, then `1rem` equals `16px`. A length of `2rems` would then be `32px`.
2616///
2617/// [set_rem_size]: crate::WindowContext::set_rem_size
2618#[derive(Clone, Copy, Default, Add, Sub, Mul, Div, Neg, PartialEq)]
2619pub struct Rems(pub f32);
2620
2621impl Rems {
2622    /// Convert this Rem value to pixels.
2623    pub fn to_pixels(&self, rem_size: Pixels) -> Pixels {
2624        *self * rem_size
2625    }
2626}
2627
2628impl Mul<Pixels> for Rems {
2629    type Output = Pixels;
2630
2631    fn mul(self, other: Pixels) -> Pixels {
2632        Pixels(self.0 * other.0)
2633    }
2634}
2635
2636impl Debug for Rems {
2637    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2638        write!(f, "{} rem", self.0)
2639    }
2640}
2641
2642/// Represents an absolute length in pixels or rems.
2643///
2644/// `AbsoluteLength` can be either a fixed number of pixels, which is an absolute measurement not
2645/// affected by the current font size, or a number of rems, which is relative to the font size of
2646/// the root element. It is used for specifying dimensions that are either independent of or
2647/// related to the typographic scale.
2648#[derive(Clone, Copy, Debug, Neg, PartialEq)]
2649pub enum AbsoluteLength {
2650    /// A length in pixels.
2651    Pixels(Pixels),
2652    /// A length in rems.
2653    Rems(Rems),
2654}
2655
2656impl AbsoluteLength {
2657    /// Checks if the absolute length is zero.
2658    pub fn is_zero(&self) -> bool {
2659        match self {
2660            AbsoluteLength::Pixels(px) => px.0 == 0.0,
2661            AbsoluteLength::Rems(rems) => rems.0 == 0.0,
2662        }
2663    }
2664}
2665
2666impl From<Pixels> for AbsoluteLength {
2667    fn from(pixels: Pixels) -> Self {
2668        AbsoluteLength::Pixels(pixels)
2669    }
2670}
2671
2672impl From<Rems> for AbsoluteLength {
2673    fn from(rems: Rems) -> Self {
2674        AbsoluteLength::Rems(rems)
2675    }
2676}
2677
2678impl AbsoluteLength {
2679    /// Converts an `AbsoluteLength` to `Pixels` based on a given `rem_size`.
2680    ///
2681    /// # Arguments
2682    ///
2683    /// * `rem_size` - The size of one rem in pixels.
2684    ///
2685    /// # Returns
2686    ///
2687    /// Returns the `AbsoluteLength` as `Pixels`.
2688    ///
2689    /// # Examples
2690    ///
2691    /// ```
2692    /// # use zed::{AbsoluteLength, Pixels};
2693    /// let length_in_pixels = AbsoluteLength::Pixels(Pixels(42.0));
2694    /// let length_in_rems = AbsoluteLength::Rems(Rems(2.0));
2695    /// let rem_size = Pixels(16.0);
2696    ///
2697    /// assert_eq!(length_in_pixels.to_pixels(rem_size), Pixels(42.0));
2698    /// assert_eq!(length_in_rems.to_pixels(rem_size), Pixels(32.0));
2699    /// ```
2700    pub fn to_pixels(&self, rem_size: Pixels) -> Pixels {
2701        match self {
2702            AbsoluteLength::Pixels(pixels) => *pixels,
2703            AbsoluteLength::Rems(rems) => rems.to_pixels(rem_size),
2704        }
2705    }
2706}
2707
2708impl Default for AbsoluteLength {
2709    fn default() -> Self {
2710        px(0.).into()
2711    }
2712}
2713
2714/// A non-auto length that can be defined in pixels, rems, or percent of parent.
2715///
2716/// This enum represents lengths that have a specific value, as opposed to lengths that are automatically
2717/// determined by the context. It includes absolute lengths in pixels or rems, and relative lengths as a
2718/// fraction of the parent's size.
2719#[derive(Clone, Copy, Neg, PartialEq)]
2720pub enum DefiniteLength {
2721    /// An absolute length specified in pixels or rems.
2722    Absolute(AbsoluteLength),
2723    /// A relative length specified as a fraction of the parent's size, between 0 and 1.
2724    Fraction(f32),
2725}
2726
2727impl DefiniteLength {
2728    /// Converts the `DefiniteLength` to `Pixels` based on a given `base_size` and `rem_size`.
2729    ///
2730    /// If the `DefiniteLength` is an absolute length, it will be directly converted to `Pixels`.
2731    /// If it is a fraction, the fraction will be multiplied by the `base_size` to get the length in pixels.
2732    ///
2733    /// # Arguments
2734    ///
2735    /// * `base_size` - The base size in `AbsoluteLength` to which the fraction will be applied.
2736    /// * `rem_size` - The size of one rem in pixels, used to convert rems to pixels.
2737    ///
2738    /// # Returns
2739    ///
2740    /// Returns the `DefiniteLength` as `Pixels`.
2741    ///
2742    /// # Examples
2743    ///
2744    /// ```
2745    /// # use zed::{DefiniteLength, AbsoluteLength, Pixels, px, rems};
2746    /// let length_in_pixels = DefiniteLength::Absolute(AbsoluteLength::Pixels(px(42.0)));
2747    /// let length_in_rems = DefiniteLength::Absolute(AbsoluteLength::Rems(rems(2.0)));
2748    /// let length_as_fraction = DefiniteLength::Fraction(0.5);
2749    /// let base_size = AbsoluteLength::Pixels(px(100.0));
2750    /// let rem_size = px(16.0);
2751    ///
2752    /// assert_eq!(length_in_pixels.to_pixels(base_size, rem_size), Pixels(42.0));
2753    /// assert_eq!(length_in_rems.to_pixels(base_size, rem_size), Pixels(32.0));
2754    /// assert_eq!(length_as_fraction.to_pixels(base_size, rem_size), Pixels(50.0));
2755    /// ```
2756    pub fn to_pixels(&self, base_size: AbsoluteLength, rem_size: Pixels) -> Pixels {
2757        match self {
2758            DefiniteLength::Absolute(size) => size.to_pixels(rem_size),
2759            DefiniteLength::Fraction(fraction) => match base_size {
2760                AbsoluteLength::Pixels(px) => px * *fraction,
2761                AbsoluteLength::Rems(rems) => rems * rem_size * *fraction,
2762            },
2763        }
2764    }
2765}
2766
2767impl Debug for DefiniteLength {
2768    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2769        match self {
2770            DefiniteLength::Absolute(length) => Debug::fmt(length, f),
2771            DefiniteLength::Fraction(fract) => write!(f, "{}%", (fract * 100.0) as i32),
2772        }
2773    }
2774}
2775
2776impl From<Pixels> for DefiniteLength {
2777    fn from(pixels: Pixels) -> Self {
2778        Self::Absolute(pixels.into())
2779    }
2780}
2781
2782impl From<Rems> for DefiniteLength {
2783    fn from(rems: Rems) -> Self {
2784        Self::Absolute(rems.into())
2785    }
2786}
2787
2788impl From<AbsoluteLength> for DefiniteLength {
2789    fn from(length: AbsoluteLength) -> Self {
2790        Self::Absolute(length)
2791    }
2792}
2793
2794impl Default for DefiniteLength {
2795    fn default() -> Self {
2796        Self::Absolute(AbsoluteLength::default())
2797    }
2798}
2799
2800/// A length that can be defined in pixels, rems, percent of parent, or auto.
2801#[derive(Clone, Copy)]
2802pub enum Length {
2803    /// A definite length specified either in pixels, rems, or as a fraction of the parent's size.
2804    Definite(DefiniteLength),
2805    /// An automatic length that is determined by the context in which it is used.
2806    Auto,
2807}
2808
2809impl Debug for Length {
2810    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2811        match self {
2812            Length::Definite(definite_length) => write!(f, "{:?}", definite_length),
2813            Length::Auto => write!(f, "auto"),
2814        }
2815    }
2816}
2817
2818/// Constructs a `DefiniteLength` representing a relative fraction of a parent size.
2819///
2820/// This function creates a `DefiniteLength` that is a specified fraction of a parent's dimension.
2821/// The fraction should be a floating-point number between 0.0 and 1.0, where 1.0 represents 100% of the parent's size.
2822///
2823/// # Arguments
2824///
2825/// * `fraction` - The fraction of the parent's size, between 0.0 and 1.0.
2826///
2827/// # Returns
2828///
2829/// A `DefiniteLength` representing the relative length as a fraction of the parent's size.
2830pub fn relative(fraction: f32) -> DefiniteLength {
2831    DefiniteLength::Fraction(fraction)
2832}
2833
2834/// Returns the Golden Ratio, i.e. `~(1.0 + sqrt(5.0)) / 2.0`.
2835pub fn phi() -> DefiniteLength {
2836    relative(1.618_034)
2837}
2838
2839/// Constructs a `Rems` value representing a length in rems.
2840///
2841/// # Arguments
2842///
2843/// * `rems` - The number of rems for the length.
2844///
2845/// # Returns
2846///
2847/// A `Rems` representing the specified number of rems.
2848pub fn rems(rems: f32) -> Rems {
2849    Rems(rems)
2850}
2851
2852/// Constructs a `Pixels` value representing a length in pixels.
2853///
2854/// # Arguments
2855///
2856/// * `pixels` - The number of pixels for the length.
2857///
2858/// # Returns
2859///
2860/// A `Pixels` representing the specified number of pixels.
2861pub const fn px(pixels: f32) -> Pixels {
2862    Pixels(pixels)
2863}
2864
2865/// Returns a `Length` representing an automatic length.
2866///
2867/// The `auto` length is often used in layout calculations where the length should be determined
2868/// by the layout context itself rather than being explicitly set. This is commonly used in CSS
2869/// for properties like `width`, `height`, `margin`, `padding`, etc., where `auto` can be used
2870/// to instruct the layout engine to calculate the size based on other factors like the size of the
2871/// container or the intrinsic size of the content.
2872///
2873/// # Returns
2874///
2875/// A `Length` variant set to `Auto`.
2876pub fn auto() -> Length {
2877    Length::Auto
2878}
2879
2880impl From<Pixels> for Length {
2881    fn from(pixels: Pixels) -> Self {
2882        Self::Definite(pixels.into())
2883    }
2884}
2885
2886impl From<Rems> for Length {
2887    fn from(rems: Rems) -> Self {
2888        Self::Definite(rems.into())
2889    }
2890}
2891
2892impl From<DefiniteLength> for Length {
2893    fn from(length: DefiniteLength) -> Self {
2894        Self::Definite(length)
2895    }
2896}
2897
2898impl From<AbsoluteLength> for Length {
2899    fn from(length: AbsoluteLength) -> Self {
2900        Self::Definite(length.into())
2901    }
2902}
2903
2904impl Default for Length {
2905    fn default() -> Self {
2906        Self::Definite(DefiniteLength::default())
2907    }
2908}
2909
2910impl From<()> for Length {
2911    fn from(_: ()) -> Self {
2912        Self::Definite(DefiniteLength::default())
2913    }
2914}
2915
2916/// Provides a trait for types that can calculate half of their value.
2917///
2918/// The `Half` trait is used for types that can be evenly divided, returning a new instance of the same type
2919/// representing half of the original value. This is commonly used for types that represent measurements or sizes,
2920/// such as lengths or pixels, where halving is a frequent operation during layout calculations or animations.
2921pub trait Half {
2922    /// Returns half of the current value.
2923    ///
2924    /// # Returns
2925    ///
2926    /// A new instance of the implementing type, representing half of the original value.
2927    fn half(&self) -> Self;
2928}
2929
2930impl Half for i32 {
2931    fn half(&self) -> Self {
2932        self / 2
2933    }
2934}
2935
2936impl Half for f32 {
2937    fn half(&self) -> Self {
2938        self / 2.
2939    }
2940}
2941
2942impl Half for DevicePixels {
2943    fn half(&self) -> Self {
2944        Self(self.0 / 2)
2945    }
2946}
2947
2948impl Half for ScaledPixels {
2949    fn half(&self) -> Self {
2950        Self(self.0 / 2.)
2951    }
2952}
2953
2954impl Half for Pixels {
2955    fn half(&self) -> Self {
2956        Self(self.0 / 2.)
2957    }
2958}
2959
2960impl Half for Rems {
2961    fn half(&self) -> Self {
2962        Self(self.0 / 2.)
2963    }
2964}
2965
2966/// Provides a trait for types that can negate their values.
2967pub trait Negate {
2968    /// Returns the negation of the given value
2969    fn negate(self) -> Self;
2970}
2971
2972impl Negate for i32 {
2973    fn negate(self) -> Self {
2974        -self
2975    }
2976}
2977
2978impl Negate for f32 {
2979    fn negate(self) -> Self {
2980        -self
2981    }
2982}
2983
2984impl Negate for DevicePixels {
2985    fn negate(self) -> Self {
2986        Self(-self.0)
2987    }
2988}
2989
2990impl Negate for ScaledPixels {
2991    fn negate(self) -> Self {
2992        Self(-self.0)
2993    }
2994}
2995
2996impl Negate for Pixels {
2997    fn negate(self) -> Self {
2998        Self(-self.0)
2999    }
3000}
3001
3002impl Negate for Rems {
3003    fn negate(self) -> Self {
3004        Self(-self.0)
3005    }
3006}
3007
3008/// A trait for checking if a value is zero.
3009///
3010/// This trait provides a method to determine if a value is considered to be zero.
3011/// It is implemented for various numeric and length-related types where the concept
3012/// of zero is applicable. This can be useful for comparisons, optimizations, or
3013/// determining if an operation has a neutral effect.
3014pub trait IsZero {
3015    /// Determines if the value is zero.
3016    ///
3017    /// # Returns
3018    ///
3019    /// Returns `true` if the value is zero, `false` otherwise.
3020    fn is_zero(&self) -> bool;
3021}
3022
3023impl IsZero for DevicePixels {
3024    fn is_zero(&self) -> bool {
3025        self.0 == 0
3026    }
3027}
3028
3029impl IsZero for ScaledPixels {
3030    fn is_zero(&self) -> bool {
3031        self.0 == 0.
3032    }
3033}
3034
3035impl IsZero for Pixels {
3036    fn is_zero(&self) -> bool {
3037        self.0 == 0.
3038    }
3039}
3040
3041impl IsZero for Rems {
3042    fn is_zero(&self) -> bool {
3043        self.0 == 0.
3044    }
3045}
3046
3047impl IsZero for AbsoluteLength {
3048    fn is_zero(&self) -> bool {
3049        match self {
3050            AbsoluteLength::Pixels(pixels) => pixels.is_zero(),
3051            AbsoluteLength::Rems(rems) => rems.is_zero(),
3052        }
3053    }
3054}
3055
3056impl IsZero for DefiniteLength {
3057    fn is_zero(&self) -> bool {
3058        match self {
3059            DefiniteLength::Absolute(length) => length.is_zero(),
3060            DefiniteLength::Fraction(fraction) => *fraction == 0.,
3061        }
3062    }
3063}
3064
3065impl IsZero for Length {
3066    fn is_zero(&self) -> bool {
3067        match self {
3068            Length::Definite(length) => length.is_zero(),
3069            Length::Auto => false,
3070        }
3071    }
3072}
3073
3074impl<T: IsZero + Debug + Clone + Default> IsZero for Point<T> {
3075    fn is_zero(&self) -> bool {
3076        self.x.is_zero() && self.y.is_zero()
3077    }
3078}
3079
3080impl<T> IsZero for Size<T>
3081where
3082    T: IsZero + Default + Debug + Clone,
3083{
3084    fn is_zero(&self) -> bool {
3085        self.width.is_zero() || self.height.is_zero()
3086    }
3087}
3088
3089impl<T: IsZero + Debug + Clone + Default> IsZero for Bounds<T> {
3090    fn is_zero(&self) -> bool {
3091        self.size.is_zero()
3092    }
3093}
3094
3095impl<T> IsZero for Corners<T>
3096where
3097    T: IsZero + Clone + Default + Debug,
3098{
3099    fn is_zero(&self) -> bool {
3100        self.top_left.is_zero()
3101            && self.top_right.is_zero()
3102            && self.bottom_right.is_zero()
3103            && self.bottom_left.is_zero()
3104    }
3105}
3106
3107#[cfg(test)]
3108mod tests {
3109    use super::*;
3110
3111    #[test]
3112    fn test_bounds_intersects() {
3113        let bounds1 = Bounds {
3114            origin: Point { x: 0.0, y: 0.0 },
3115            size: Size {
3116                width: 5.0,
3117                height: 5.0,
3118            },
3119        };
3120        let bounds2 = Bounds {
3121            origin: Point { x: 4.0, y: 4.0 },
3122            size: Size {
3123                width: 5.0,
3124                height: 5.0,
3125            },
3126        };
3127        let bounds3 = Bounds {
3128            origin: Point { x: 10.0, y: 10.0 },
3129            size: Size {
3130                width: 5.0,
3131                height: 5.0,
3132            },
3133        };
3134
3135        // Test Case 1: Intersecting bounds
3136        assert_eq!(bounds1.intersects(&bounds2), true);
3137
3138        // Test Case 2: Non-Intersecting bounds
3139        assert_eq!(bounds1.intersects(&bounds3), false);
3140
3141        // Test Case 3: Bounds intersecting with themselves
3142        assert_eq!(bounds1.intersects(&bounds1), true);
3143    }
3144}