cloud.rs

  1use super::open_ai::count_open_ai_tokens;
  2use crate::{
  3    settings::AllLanguageModelSettings, CloudModel, LanguageModel, LanguageModelCacheConfiguration,
  4    LanguageModelId, LanguageModelName, LanguageModelProviderId, LanguageModelProviderName,
  5    LanguageModelProviderState, LanguageModelRequest, RateLimiter, ZedModel,
  6};
  7use anthropic::AnthropicError;
  8use anyhow::{anyhow, Result};
  9use client::{Client, PerformCompletionParams, UserStore, EXPIRED_LLM_TOKEN_HEADER_NAME};
 10use collections::BTreeMap;
 11use feature_flags::{FeatureFlagAppExt, LlmClosedBeta, ZedPro};
 12use futures::{
 13    future::BoxFuture, stream::BoxStream, AsyncBufReadExt, FutureExt, Stream, StreamExt,
 14    TryStreamExt as _,
 15};
 16use gpui::{
 17    AnyElement, AnyView, AppContext, AsyncAppContext, FontWeight, Model, ModelContext,
 18    Subscription, Task,
 19};
 20use http_client::{AsyncBody, HttpClient, Method, Response};
 21use schemars::JsonSchema;
 22use serde::{de::DeserializeOwned, Deserialize, Serialize};
 23use serde_json::value::RawValue;
 24use settings::{Settings, SettingsStore};
 25use smol::{
 26    io::{AsyncReadExt, BufReader},
 27    lock::{RwLock, RwLockUpgradableReadGuard, RwLockWriteGuard},
 28};
 29use std::{
 30    future,
 31    sync::{Arc, LazyLock},
 32};
 33use strum::IntoEnumIterator;
 34use ui::prelude::*;
 35
 36use crate::{LanguageModelAvailability, LanguageModelProvider};
 37
 38use super::anthropic::count_anthropic_tokens;
 39
 40pub const PROVIDER_ID: &str = "zed.dev";
 41pub const PROVIDER_NAME: &str = "Zed";
 42
 43const ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON: Option<&str> =
 44    option_env!("ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON");
 45
 46fn zed_cloud_provider_additional_models() -> &'static [AvailableModel] {
 47    static ADDITIONAL_MODELS: LazyLock<Vec<AvailableModel>> = LazyLock::new(|| {
 48        ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON
 49            .map(|json| serde_json::from_str(json).unwrap())
 50            .unwrap_or(Vec::new())
 51    });
 52    ADDITIONAL_MODELS.as_slice()
 53}
 54
 55#[derive(Default, Clone, Debug, PartialEq)]
 56pub struct ZedDotDevSettings {
 57    pub available_models: Vec<AvailableModel>,
 58}
 59
 60#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 61#[serde(rename_all = "lowercase")]
 62pub enum AvailableProvider {
 63    Anthropic,
 64    OpenAi,
 65    Google,
 66}
 67
 68#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 69pub struct AvailableModel {
 70    /// The provider of the language model.
 71    pub provider: AvailableProvider,
 72    /// The model's name in the provider's API. e.g. claude-3-5-sonnet-20240620
 73    pub name: String,
 74    /// The name displayed in the UI, such as in the assistant panel model dropdown menu.
 75    pub display_name: Option<String>,
 76    /// The size of the context window, indicating the maximum number of tokens the model can process.
 77    pub max_tokens: usize,
 78    /// The maximum number of output tokens allowed by the model.
 79    pub max_output_tokens: Option<u32>,
 80    /// Override this model with a different Anthropic model for tool calls.
 81    pub tool_override: Option<String>,
 82    /// Indicates whether this custom model supports caching.
 83    pub cache_configuration: Option<LanguageModelCacheConfiguration>,
 84}
 85
 86pub struct CloudLanguageModelProvider {
 87    client: Arc<Client>,
 88    llm_api_token: LlmApiToken,
 89    state: gpui::Model<State>,
 90    _maintain_client_status: Task<()>,
 91}
 92
 93pub struct State {
 94    client: Arc<Client>,
 95    user_store: Model<UserStore>,
 96    status: client::Status,
 97    accept_terms: Option<Task<Result<()>>>,
 98    _subscription: Subscription,
 99}
100
101impl State {
102    fn is_signed_out(&self) -> bool {
103        self.status.is_signed_out()
104    }
105
106    fn authenticate(&self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
107        let client = self.client.clone();
108        cx.spawn(move |this, mut cx| async move {
109            client.authenticate_and_connect(true, &cx).await?;
110            this.update(&mut cx, |_, cx| cx.notify())
111        })
112    }
113
114    fn has_accepted_terms_of_service(&self, cx: &AppContext) -> bool {
115        self.user_store
116            .read(cx)
117            .current_user_has_accepted_terms()
118            .unwrap_or(false)
119    }
120
121    fn accept_terms_of_service(&mut self, cx: &mut ModelContext<Self>) {
122        let user_store = self.user_store.clone();
123        self.accept_terms = Some(cx.spawn(move |this, mut cx| async move {
124            let _ = user_store
125                .update(&mut cx, |store, cx| store.accept_terms_of_service(cx))?
126                .await;
127            this.update(&mut cx, |this, cx| {
128                this.accept_terms = None;
129                cx.notify()
130            })
131        }));
132    }
133}
134
135impl CloudLanguageModelProvider {
136    pub fn new(user_store: Model<UserStore>, client: Arc<Client>, cx: &mut AppContext) -> Self {
137        let mut status_rx = client.status();
138        let status = *status_rx.borrow();
139
140        let state = cx.new_model(|cx| State {
141            client: client.clone(),
142            user_store,
143            status,
144            accept_terms: None,
145            _subscription: cx.observe_global::<SettingsStore>(|_, cx| {
146                cx.notify();
147            }),
148        });
149
150        let state_ref = state.downgrade();
151        let maintain_client_status = cx.spawn(|mut cx| async move {
152            while let Some(status) = status_rx.next().await {
153                if let Some(this) = state_ref.upgrade() {
154                    _ = this.update(&mut cx, |this, cx| {
155                        if this.status != status {
156                            this.status = status;
157                            cx.notify();
158                        }
159                    });
160                } else {
161                    break;
162                }
163            }
164        });
165
166        Self {
167            client,
168            state,
169            llm_api_token: LlmApiToken::default(),
170            _maintain_client_status: maintain_client_status,
171        }
172    }
173}
174
175impl LanguageModelProviderState for CloudLanguageModelProvider {
176    type ObservableEntity = State;
177
178    fn observable_entity(&self) -> Option<gpui::Model<Self::ObservableEntity>> {
179        Some(self.state.clone())
180    }
181}
182
183impl LanguageModelProvider for CloudLanguageModelProvider {
184    fn id(&self) -> LanguageModelProviderId {
185        LanguageModelProviderId(PROVIDER_ID.into())
186    }
187
188    fn name(&self) -> LanguageModelProviderName {
189        LanguageModelProviderName(PROVIDER_NAME.into())
190    }
191
192    fn icon(&self) -> IconName {
193        IconName::AiZed
194    }
195
196    fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
197        let mut models = BTreeMap::default();
198
199        if cx.is_staff() {
200            for model in anthropic::Model::iter() {
201                if !matches!(model, anthropic::Model::Custom { .. }) {
202                    models.insert(model.id().to_string(), CloudModel::Anthropic(model));
203                }
204            }
205            for model in open_ai::Model::iter() {
206                if !matches!(model, open_ai::Model::Custom { .. }) {
207                    models.insert(model.id().to_string(), CloudModel::OpenAi(model));
208                }
209            }
210            for model in google_ai::Model::iter() {
211                if !matches!(model, google_ai::Model::Custom { .. }) {
212                    models.insert(model.id().to_string(), CloudModel::Google(model));
213                }
214            }
215            for model in ZedModel::iter() {
216                models.insert(model.id().to_string(), CloudModel::Zed(model));
217            }
218        } else {
219            models.insert(
220                anthropic::Model::Claude3_5Sonnet.id().to_string(),
221                CloudModel::Anthropic(anthropic::Model::Claude3_5Sonnet),
222            );
223        }
224
225        let llm_closed_beta_models = if cx.has_flag::<LlmClosedBeta>() {
226            zed_cloud_provider_additional_models()
227        } else {
228            &[]
229        };
230
231        // Override with available models from settings
232        for model in AllLanguageModelSettings::get_global(cx)
233            .zed_dot_dev
234            .available_models
235            .iter()
236            .chain(llm_closed_beta_models)
237            .cloned()
238        {
239            let model = match model.provider {
240                AvailableProvider::Anthropic => CloudModel::Anthropic(anthropic::Model::Custom {
241                    name: model.name.clone(),
242                    display_name: model.display_name.clone(),
243                    max_tokens: model.max_tokens,
244                    tool_override: model.tool_override.clone(),
245                    cache_configuration: model.cache_configuration.as_ref().map(|config| {
246                        anthropic::AnthropicModelCacheConfiguration {
247                            max_cache_anchors: config.max_cache_anchors,
248                            should_speculate: config.should_speculate,
249                            min_total_token: config.min_total_token,
250                        }
251                    }),
252                    max_output_tokens: model.max_output_tokens,
253                }),
254                AvailableProvider::OpenAi => CloudModel::OpenAi(open_ai::Model::Custom {
255                    name: model.name.clone(),
256                    max_tokens: model.max_tokens,
257                }),
258                AvailableProvider::Google => CloudModel::Google(google_ai::Model::Custom {
259                    name: model.name.clone(),
260                    max_tokens: model.max_tokens,
261                }),
262            };
263            models.insert(model.id().to_string(), model.clone());
264        }
265
266        models
267            .into_values()
268            .map(|model| {
269                Arc::new(CloudLanguageModel {
270                    id: LanguageModelId::from(model.id().to_string()),
271                    model,
272                    llm_api_token: self.llm_api_token.clone(),
273                    client: self.client.clone(),
274                    request_limiter: RateLimiter::new(4),
275                }) as Arc<dyn LanguageModel>
276            })
277            .collect()
278    }
279
280    fn is_authenticated(&self, cx: &AppContext) -> bool {
281        !self.state.read(cx).is_signed_out()
282    }
283
284    fn authenticate(&self, _cx: &mut AppContext) -> Task<Result<()>> {
285        Task::ready(Ok(()))
286    }
287
288    fn configuration_view(&self, cx: &mut WindowContext) -> AnyView {
289        cx.new_view(|_cx| ConfigurationView {
290            state: self.state.clone(),
291        })
292        .into()
293    }
294
295    fn must_accept_terms(&self, cx: &AppContext) -> bool {
296        !self.state.read(cx).has_accepted_terms_of_service(cx)
297    }
298
299    fn render_accept_terms(&self, cx: &mut WindowContext) -> Option<AnyElement> {
300        let state = self.state.read(cx);
301
302        let terms = [(
303            "terms_of_service",
304            "Terms of Service",
305            "https://zed.dev/terms-of-service",
306        )]
307        .map(|(id, label, url)| {
308            Button::new(id, label)
309                .style(ButtonStyle::Subtle)
310                .icon(IconName::ExternalLink)
311                .icon_size(IconSize::XSmall)
312                .icon_color(Color::Muted)
313                .on_click(move |_, cx| cx.open_url(url))
314        });
315
316        if state.has_accepted_terms_of_service(cx) {
317            None
318        } else {
319            let disabled = state.accept_terms.is_some();
320            Some(
321                v_flex()
322                    .gap_2()
323                    .child(
324                        v_flex()
325                            .child(Label::new("Terms and Conditions").weight(FontWeight::MEDIUM))
326                            .child(
327                                Label::new(
328                                    "Please read and accept our terms and conditions to continue.",
329                                )
330                                .size(LabelSize::Small),
331                            ),
332                    )
333                    .child(v_flex().gap_1().children(terms))
334                    .child(
335                        h_flex().justify_end().child(
336                            Button::new("accept_terms", "I've read it and accept it")
337                                .disabled(disabled)
338                                .on_click({
339                                    let state = self.state.downgrade();
340                                    move |_, cx| {
341                                        state
342                                            .update(cx, |state, cx| {
343                                                state.accept_terms_of_service(cx)
344                                            })
345                                            .ok();
346                                    }
347                                }),
348                        ),
349                    )
350                    .into_any(),
351            )
352        }
353    }
354
355    fn reset_credentials(&self, _cx: &mut AppContext) -> Task<Result<()>> {
356        Task::ready(Ok(()))
357    }
358}
359
360pub struct CloudLanguageModel {
361    id: LanguageModelId,
362    model: CloudModel,
363    llm_api_token: LlmApiToken,
364    client: Arc<Client>,
365    request_limiter: RateLimiter,
366}
367
368#[derive(Clone, Default)]
369struct LlmApiToken(Arc<RwLock<Option<String>>>);
370
371impl CloudLanguageModel {
372    async fn perform_llm_completion(
373        client: Arc<Client>,
374        llm_api_token: LlmApiToken,
375        body: PerformCompletionParams,
376    ) -> Result<Response<AsyncBody>> {
377        let http_client = &client.http_client();
378
379        let mut token = llm_api_token.acquire(&client).await?;
380        let mut did_retry = false;
381
382        let response = loop {
383            let request = http_client::Request::builder()
384                .method(Method::POST)
385                .uri(http_client.build_zed_llm_url("/completion", &[])?.as_ref())
386                .header("Content-Type", "application/json")
387                .header("Authorization", format!("Bearer {token}"))
388                .body(serde_json::to_string(&body)?.into())?;
389            let mut response = http_client.send(request).await?;
390            if response.status().is_success() {
391                break response;
392            } else if !did_retry
393                && response
394                    .headers()
395                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
396                    .is_some()
397            {
398                did_retry = true;
399                token = llm_api_token.refresh(&client).await?;
400            } else {
401                let mut body = String::new();
402                response.body_mut().read_to_string(&mut body).await?;
403                break Err(anyhow!(
404                    "cloud language model completion failed with status {}: {body}",
405                    response.status()
406                ))?;
407            }
408        };
409
410        Ok(response)
411    }
412}
413
414impl LanguageModel for CloudLanguageModel {
415    fn id(&self) -> LanguageModelId {
416        self.id.clone()
417    }
418
419    fn name(&self) -> LanguageModelName {
420        LanguageModelName::from(self.model.display_name().to_string())
421    }
422
423    fn icon(&self) -> Option<IconName> {
424        self.model.icon()
425    }
426
427    fn provider_id(&self) -> LanguageModelProviderId {
428        LanguageModelProviderId(PROVIDER_ID.into())
429    }
430
431    fn provider_name(&self) -> LanguageModelProviderName {
432        LanguageModelProviderName(PROVIDER_NAME.into())
433    }
434
435    fn telemetry_id(&self) -> String {
436        format!("zed.dev/{}", self.model.id())
437    }
438
439    fn availability(&self) -> LanguageModelAvailability {
440        self.model.availability()
441    }
442
443    fn max_token_count(&self) -> usize {
444        self.model.max_token_count()
445    }
446
447    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
448        match &self.model {
449            CloudModel::Anthropic(model) => {
450                model
451                    .cache_configuration()
452                    .map(|cache| LanguageModelCacheConfiguration {
453                        max_cache_anchors: cache.max_cache_anchors,
454                        should_speculate: cache.should_speculate,
455                        min_total_token: cache.min_total_token,
456                    })
457            }
458            CloudModel::OpenAi(_) | CloudModel::Google(_) | CloudModel::Zed(_) => None,
459        }
460    }
461
462    fn count_tokens(
463        &self,
464        request: LanguageModelRequest,
465        cx: &AppContext,
466    ) -> BoxFuture<'static, Result<usize>> {
467        match self.model.clone() {
468            CloudModel::Anthropic(_) => count_anthropic_tokens(request, cx),
469            CloudModel::OpenAi(model) => count_open_ai_tokens(request, model, cx),
470            CloudModel::Google(model) => {
471                let client = self.client.clone();
472                let request = request.into_google(model.id().into());
473                let request = google_ai::CountTokensRequest {
474                    contents: request.contents,
475                };
476                async move {
477                    let request = serde_json::to_string(&request)?;
478                    let response = client
479                        .request(proto::CountLanguageModelTokens {
480                            provider: proto::LanguageModelProvider::Google as i32,
481                            request,
482                        })
483                        .await?;
484                    Ok(response.token_count as usize)
485                }
486                .boxed()
487            }
488            CloudModel::Zed(_) => {
489                count_open_ai_tokens(request, open_ai::Model::ThreePointFiveTurbo, cx)
490            }
491        }
492    }
493
494    fn stream_completion(
495        &self,
496        request: LanguageModelRequest,
497        _cx: &AsyncAppContext,
498    ) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
499        match &self.model {
500            CloudModel::Anthropic(model) => {
501                let request = request.into_anthropic(model.id().into(), model.max_output_tokens());
502                let client = self.client.clone();
503                let llm_api_token = self.llm_api_token.clone();
504                let future = self.request_limiter.stream(async move {
505                    let response = Self::perform_llm_completion(
506                        client.clone(),
507                        llm_api_token,
508                        PerformCompletionParams {
509                            provider: client::LanguageModelProvider::Anthropic,
510                            model: request.model.clone(),
511                            provider_request: RawValue::from_string(serde_json::to_string(
512                                &request,
513                            )?)?,
514                        },
515                    )
516                    .await?;
517                    Ok(anthropic::extract_text_from_events(
518                        response_lines(response).map_err(AnthropicError::Other),
519                    ))
520                });
521                async move {
522                    Ok(future
523                        .await?
524                        .map(|result| result.map_err(|err| anyhow!(err)))
525                        .boxed())
526                }
527                .boxed()
528            }
529            CloudModel::OpenAi(model) => {
530                let client = self.client.clone();
531                let request = request.into_open_ai(model.id().into());
532                let llm_api_token = self.llm_api_token.clone();
533                let future = self.request_limiter.stream(async move {
534                    let response = Self::perform_llm_completion(
535                        client.clone(),
536                        llm_api_token,
537                        PerformCompletionParams {
538                            provider: client::LanguageModelProvider::OpenAi,
539                            model: request.model.clone(),
540                            provider_request: RawValue::from_string(serde_json::to_string(
541                                &request,
542                            )?)?,
543                        },
544                    )
545                    .await?;
546                    Ok(open_ai::extract_text_from_events(response_lines(response)))
547                });
548                async move { Ok(future.await?.boxed()) }.boxed()
549            }
550            CloudModel::Google(model) => {
551                let client = self.client.clone();
552                let request = request.into_google(model.id().into());
553                let llm_api_token = self.llm_api_token.clone();
554                let future = self.request_limiter.stream(async move {
555                    let response = Self::perform_llm_completion(
556                        client.clone(),
557                        llm_api_token,
558                        PerformCompletionParams {
559                            provider: client::LanguageModelProvider::Google,
560                            model: request.model.clone(),
561                            provider_request: RawValue::from_string(serde_json::to_string(
562                                &request,
563                            )?)?,
564                        },
565                    )
566                    .await?;
567                    Ok(google_ai::extract_text_from_events(response_lines(
568                        response,
569                    )))
570                });
571                async move { Ok(future.await?.boxed()) }.boxed()
572            }
573            CloudModel::Zed(model) => {
574                let client = self.client.clone();
575                let mut request = request.into_open_ai(model.id().into());
576                request.max_tokens = Some(4000);
577                let llm_api_token = self.llm_api_token.clone();
578                let future = self.request_limiter.stream(async move {
579                    let response = Self::perform_llm_completion(
580                        client.clone(),
581                        llm_api_token,
582                        PerformCompletionParams {
583                            provider: client::LanguageModelProvider::Zed,
584                            model: request.model.clone(),
585                            provider_request: RawValue::from_string(serde_json::to_string(
586                                &request,
587                            )?)?,
588                        },
589                    )
590                    .await?;
591                    Ok(open_ai::extract_text_from_events(response_lines(response)))
592                });
593                async move { Ok(future.await?.boxed()) }.boxed()
594            }
595        }
596    }
597
598    fn use_any_tool(
599        &self,
600        request: LanguageModelRequest,
601        tool_name: String,
602        tool_description: String,
603        input_schema: serde_json::Value,
604        _cx: &AsyncAppContext,
605    ) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
606        let client = self.client.clone();
607        let llm_api_token = self.llm_api_token.clone();
608
609        match &self.model {
610            CloudModel::Anthropic(model) => {
611                let mut request =
612                    request.into_anthropic(model.tool_model_id().into(), model.max_output_tokens());
613                request.tool_choice = Some(anthropic::ToolChoice::Tool {
614                    name: tool_name.clone(),
615                });
616                request.tools = vec![anthropic::Tool {
617                    name: tool_name.clone(),
618                    description: tool_description,
619                    input_schema,
620                }];
621
622                self.request_limiter
623                    .run(async move {
624                        let response = Self::perform_llm_completion(
625                            client.clone(),
626                            llm_api_token,
627                            PerformCompletionParams {
628                                provider: client::LanguageModelProvider::Anthropic,
629                                model: request.model.clone(),
630                                provider_request: RawValue::from_string(serde_json::to_string(
631                                    &request,
632                                )?)?,
633                            },
634                        )
635                        .await?;
636
637                        Ok(anthropic::extract_tool_args_from_events(
638                            tool_name,
639                            Box::pin(response_lines(response)),
640                        )
641                        .await?
642                        .boxed())
643                    })
644                    .boxed()
645            }
646            CloudModel::OpenAi(model) => {
647                let mut request = request.into_open_ai(model.id().into());
648                request.tool_choice = Some(open_ai::ToolChoice::Other(
649                    open_ai::ToolDefinition::Function {
650                        function: open_ai::FunctionDefinition {
651                            name: tool_name.clone(),
652                            description: None,
653                            parameters: None,
654                        },
655                    },
656                ));
657                request.tools = vec![open_ai::ToolDefinition::Function {
658                    function: open_ai::FunctionDefinition {
659                        name: tool_name.clone(),
660                        description: Some(tool_description),
661                        parameters: Some(input_schema),
662                    },
663                }];
664
665                self.request_limiter
666                    .run(async move {
667                        let response = Self::perform_llm_completion(
668                            client.clone(),
669                            llm_api_token,
670                            PerformCompletionParams {
671                                provider: client::LanguageModelProvider::OpenAi,
672                                model: request.model.clone(),
673                                provider_request: RawValue::from_string(serde_json::to_string(
674                                    &request,
675                                )?)?,
676                            },
677                        )
678                        .await?;
679
680                        Ok(open_ai::extract_tool_args_from_events(
681                            tool_name,
682                            Box::pin(response_lines(response)),
683                        )
684                        .await?
685                        .boxed())
686                    })
687                    .boxed()
688            }
689            CloudModel::Google(_) => {
690                future::ready(Err(anyhow!("tool use not implemented for Google AI"))).boxed()
691            }
692            CloudModel::Zed(model) => {
693                // All Zed models are OpenAI-based at the time of writing.
694                let mut request = request.into_open_ai(model.id().into());
695                request.tool_choice = Some(open_ai::ToolChoice::Other(
696                    open_ai::ToolDefinition::Function {
697                        function: open_ai::FunctionDefinition {
698                            name: tool_name.clone(),
699                            description: None,
700                            parameters: None,
701                        },
702                    },
703                ));
704                request.tools = vec![open_ai::ToolDefinition::Function {
705                    function: open_ai::FunctionDefinition {
706                        name: tool_name.clone(),
707                        description: Some(tool_description),
708                        parameters: Some(input_schema),
709                    },
710                }];
711
712                self.request_limiter
713                    .run(async move {
714                        let response = Self::perform_llm_completion(
715                            client.clone(),
716                            llm_api_token,
717                            PerformCompletionParams {
718                                provider: client::LanguageModelProvider::Zed,
719                                model: request.model.clone(),
720                                provider_request: RawValue::from_string(serde_json::to_string(
721                                    &request,
722                                )?)?,
723                            },
724                        )
725                        .await?;
726
727                        Ok(open_ai::extract_tool_args_from_events(
728                            tool_name,
729                            Box::pin(response_lines(response)),
730                        )
731                        .await?
732                        .boxed())
733                    })
734                    .boxed()
735            }
736        }
737    }
738}
739
740fn response_lines<T: DeserializeOwned>(
741    response: Response<AsyncBody>,
742) -> impl Stream<Item = Result<T>> {
743    futures::stream::try_unfold(
744        (String::new(), BufReader::new(response.into_body())),
745        move |(mut line, mut body)| async {
746            match body.read_line(&mut line).await {
747                Ok(0) => Ok(None),
748                Ok(_) => {
749                    let event: T = serde_json::from_str(&line)?;
750                    line.clear();
751                    Ok(Some((event, (line, body))))
752                }
753                Err(e) => Err(e.into()),
754            }
755        },
756    )
757}
758
759impl LlmApiToken {
760    async fn acquire(&self, client: &Arc<Client>) -> Result<String> {
761        let lock = self.0.upgradable_read().await;
762        if let Some(token) = lock.as_ref() {
763            Ok(token.to_string())
764        } else {
765            Self::fetch(RwLockUpgradableReadGuard::upgrade(lock).await, &client).await
766        }
767    }
768
769    async fn refresh(&self, client: &Arc<Client>) -> Result<String> {
770        Self::fetch(self.0.write().await, &client).await
771    }
772
773    async fn fetch<'a>(
774        mut lock: RwLockWriteGuard<'a, Option<String>>,
775        client: &Arc<Client>,
776    ) -> Result<String> {
777        let response = client.request(proto::GetLlmToken {}).await?;
778        *lock = Some(response.token.clone());
779        Ok(response.token.clone())
780    }
781}
782
783struct ConfigurationView {
784    state: gpui::Model<State>,
785}
786
787impl ConfigurationView {
788    fn authenticate(&mut self, cx: &mut ViewContext<Self>) {
789        self.state.update(cx, |state, cx| {
790            state.authenticate(cx).detach_and_log_err(cx);
791        });
792        cx.notify();
793    }
794}
795
796impl Render for ConfigurationView {
797    fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
798        const ZED_AI_URL: &str = "https://zed.dev/ai";
799        const ACCOUNT_SETTINGS_URL: &str = "https://zed.dev/account";
800
801        let is_connected = !self.state.read(cx).is_signed_out();
802        let plan = self.state.read(cx).user_store.read(cx).current_plan();
803        let must_accept_terms = !self.state.read(cx).has_accepted_terms_of_service(cx);
804
805        let is_pro = plan == Some(proto::Plan::ZedPro);
806
807        if is_connected {
808            v_flex()
809                .gap_3()
810                .max_w_4_5()
811                .when(must_accept_terms, |this| {
812                    this.child(Label::new(
813                        "You must accept the terms of service to use this provider.",
814                    ))
815                })
816                .child(Label::new(
817                    if is_pro {
818                        "You have full access to Zed's hosted models from Anthropic, OpenAI, Google with faster speeds and higher limits through Zed Pro."
819                    } else {
820                        "You have basic access to models from Anthropic through the Zed AI Free plan."
821                    }))
822                .children(if is_pro {
823                    Some(
824                        h_flex().child(
825                            Button::new("manage_settings", "Manage Subscription")
826                                .style(ButtonStyle::Filled)
827                                .on_click(
828                                    cx.listener(|_, _, cx| cx.open_url(ACCOUNT_SETTINGS_URL)),
829                                ),
830                        ),
831                    )
832                } else if cx.has_flag::<ZedPro>() {
833                    Some(
834                        h_flex()
835                            .gap_2()
836                            .child(
837                                Button::new("learn_more", "Learn more")
838                                    .style(ButtonStyle::Subtle)
839                                    .on_click(cx.listener(|_, _, cx| cx.open_url(ZED_AI_URL))),
840                            )
841                            .child(
842                                Button::new("upgrade", "Upgrade")
843                                    .style(ButtonStyle::Subtle)
844                                    .color(Color::Accent)
845                                    .on_click(
846                                        cx.listener(|_, _, cx| cx.open_url(ACCOUNT_SETTINGS_URL)),
847                                    ),
848                            ),
849                    )
850                } else {
851                    None
852                })
853        } else {
854            v_flex()
855                .gap_6()
856                .child(Label::new("Use the zed.dev to access language models."))
857                .child(
858                    v_flex()
859                        .gap_2()
860                        .child(
861                            Button::new("sign_in", "Sign in")
862                                .icon_color(Color::Muted)
863                                .icon(IconName::Github)
864                                .icon_position(IconPosition::Start)
865                                .style(ButtonStyle::Filled)
866                                .full_width()
867                                .on_click(cx.listener(move |this, _, cx| this.authenticate(cx))),
868                        )
869                        .child(
870                            div().flex().w_full().items_center().child(
871                                Label::new("Sign in to enable collaboration.")
872                                    .color(Color::Muted)
873                                    .size(LabelSize::Small),
874                            ),
875                        ),
876                )
877        }
878    }
879}