cloud.rs

  1use super::open_ai::count_open_ai_tokens;
  2use crate::{
  3    settings::AllLanguageModelSettings, CloudModel, LanguageModel, LanguageModelCacheConfiguration,
  4    LanguageModelId, LanguageModelName, LanguageModelProviderId, LanguageModelProviderName,
  5    LanguageModelProviderState, LanguageModelRequest, RateLimiter, ZedModel,
  6};
  7use anthropic::AnthropicError;
  8use anyhow::{anyhow, Result};
  9use client::{Client, PerformCompletionParams, UserStore, EXPIRED_LLM_TOKEN_HEADER_NAME};
 10use collections::BTreeMap;
 11use feature_flags::{FeatureFlagAppExt, LlmClosedBeta, ZedPro};
 12use futures::{
 13    future::BoxFuture, stream::BoxStream, AsyncBufReadExt, FutureExt, Stream, StreamExt,
 14    TryStreamExt as _,
 15};
 16use gpui::{
 17    AnyElement, AnyView, AppContext, AsyncAppContext, FontWeight, Model, ModelContext,
 18    Subscription, Task,
 19};
 20use http_client::{AsyncBody, HttpClient, Method, Response};
 21use schemars::JsonSchema;
 22use serde::{de::DeserializeOwned, Deserialize, Serialize};
 23use serde_json::value::RawValue;
 24use settings::{Settings, SettingsStore};
 25use smol::{
 26    io::{AsyncReadExt, BufReader},
 27    lock::{RwLock, RwLockUpgradableReadGuard, RwLockWriteGuard},
 28};
 29use std::{
 30    future,
 31    sync::{Arc, LazyLock},
 32};
 33use strum::IntoEnumIterator;
 34use ui::{prelude::*, TintColor};
 35
 36use crate::{
 37    LanguageModelAvailability, LanguageModelCompletionEvent, LanguageModelProvider,
 38    LanguageModelToolUse,
 39};
 40
 41use super::anthropic::count_anthropic_tokens;
 42
 43pub const PROVIDER_ID: &str = "zed.dev";
 44pub const PROVIDER_NAME: &str = "Zed";
 45
 46const ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON: Option<&str> =
 47    option_env!("ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON");
 48
 49fn zed_cloud_provider_additional_models() -> &'static [AvailableModel] {
 50    static ADDITIONAL_MODELS: LazyLock<Vec<AvailableModel>> = LazyLock::new(|| {
 51        ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON
 52            .map(|json| serde_json::from_str(json).unwrap())
 53            .unwrap_or(Vec::new())
 54    });
 55    ADDITIONAL_MODELS.as_slice()
 56}
 57
 58#[derive(Default, Clone, Debug, PartialEq)]
 59pub struct ZedDotDevSettings {
 60    pub available_models: Vec<AvailableModel>,
 61}
 62
 63#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 64#[serde(rename_all = "lowercase")]
 65pub enum AvailableProvider {
 66    Anthropic,
 67    OpenAi,
 68    Google,
 69}
 70
 71#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 72pub struct AvailableModel {
 73    /// The provider of the language model.
 74    pub provider: AvailableProvider,
 75    /// The model's name in the provider's API. e.g. claude-3-5-sonnet-20240620
 76    pub name: String,
 77    /// The name displayed in the UI, such as in the assistant panel model dropdown menu.
 78    pub display_name: Option<String>,
 79    /// The size of the context window, indicating the maximum number of tokens the model can process.
 80    pub max_tokens: usize,
 81    /// The maximum number of output tokens allowed by the model.
 82    pub max_output_tokens: Option<u32>,
 83    /// Override this model with a different Anthropic model for tool calls.
 84    pub tool_override: Option<String>,
 85    /// Indicates whether this custom model supports caching.
 86    pub cache_configuration: Option<LanguageModelCacheConfiguration>,
 87}
 88
 89pub struct CloudLanguageModelProvider {
 90    client: Arc<Client>,
 91    llm_api_token: LlmApiToken,
 92    state: gpui::Model<State>,
 93    _maintain_client_status: Task<()>,
 94}
 95
 96pub struct State {
 97    client: Arc<Client>,
 98    user_store: Model<UserStore>,
 99    status: client::Status,
100    accept_terms: Option<Task<Result<()>>>,
101    _subscription: Subscription,
102}
103
104impl State {
105    fn is_signed_out(&self) -> bool {
106        self.status.is_signed_out()
107    }
108
109    fn authenticate(&self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
110        let client = self.client.clone();
111        cx.spawn(move |this, mut cx| async move {
112            client.authenticate_and_connect(true, &cx).await?;
113            this.update(&mut cx, |_, cx| cx.notify())
114        })
115    }
116
117    fn has_accepted_terms_of_service(&self, cx: &AppContext) -> bool {
118        self.user_store
119            .read(cx)
120            .current_user_has_accepted_terms()
121            .unwrap_or(false)
122    }
123
124    fn accept_terms_of_service(&mut self, cx: &mut ModelContext<Self>) {
125        let user_store = self.user_store.clone();
126        self.accept_terms = Some(cx.spawn(move |this, mut cx| async move {
127            let _ = user_store
128                .update(&mut cx, |store, cx| store.accept_terms_of_service(cx))?
129                .await;
130            this.update(&mut cx, |this, cx| {
131                this.accept_terms = None;
132                cx.notify()
133            })
134        }));
135    }
136}
137
138impl CloudLanguageModelProvider {
139    pub fn new(user_store: Model<UserStore>, client: Arc<Client>, cx: &mut AppContext) -> Self {
140        let mut status_rx = client.status();
141        let status = *status_rx.borrow();
142
143        let state = cx.new_model(|cx| State {
144            client: client.clone(),
145            user_store,
146            status,
147            accept_terms: None,
148            _subscription: cx.observe_global::<SettingsStore>(|_, cx| {
149                cx.notify();
150            }),
151        });
152
153        let state_ref = state.downgrade();
154        let maintain_client_status = cx.spawn(|mut cx| async move {
155            while let Some(status) = status_rx.next().await {
156                if let Some(this) = state_ref.upgrade() {
157                    _ = this.update(&mut cx, |this, cx| {
158                        if this.status != status {
159                            this.status = status;
160                            cx.notify();
161                        }
162                    });
163                } else {
164                    break;
165                }
166            }
167        });
168
169        Self {
170            client,
171            state,
172            llm_api_token: LlmApiToken::default(),
173            _maintain_client_status: maintain_client_status,
174        }
175    }
176}
177
178impl LanguageModelProviderState for CloudLanguageModelProvider {
179    type ObservableEntity = State;
180
181    fn observable_entity(&self) -> Option<gpui::Model<Self::ObservableEntity>> {
182        Some(self.state.clone())
183    }
184}
185
186impl LanguageModelProvider for CloudLanguageModelProvider {
187    fn id(&self) -> LanguageModelProviderId {
188        LanguageModelProviderId(PROVIDER_ID.into())
189    }
190
191    fn name(&self) -> LanguageModelProviderName {
192        LanguageModelProviderName(PROVIDER_NAME.into())
193    }
194
195    fn icon(&self) -> IconName {
196        IconName::AiZed
197    }
198
199    fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
200        let mut models = BTreeMap::default();
201
202        if cx.is_staff() {
203            for model in anthropic::Model::iter() {
204                if !matches!(model, anthropic::Model::Custom { .. }) {
205                    models.insert(model.id().to_string(), CloudModel::Anthropic(model));
206                }
207            }
208            for model in open_ai::Model::iter() {
209                if !matches!(model, open_ai::Model::Custom { .. }) {
210                    models.insert(model.id().to_string(), CloudModel::OpenAi(model));
211                }
212            }
213            for model in google_ai::Model::iter() {
214                if !matches!(model, google_ai::Model::Custom { .. }) {
215                    models.insert(model.id().to_string(), CloudModel::Google(model));
216                }
217            }
218            for model in ZedModel::iter() {
219                models.insert(model.id().to_string(), CloudModel::Zed(model));
220            }
221        } else {
222            models.insert(
223                anthropic::Model::Claude3_5Sonnet.id().to_string(),
224                CloudModel::Anthropic(anthropic::Model::Claude3_5Sonnet),
225            );
226        }
227
228        let llm_closed_beta_models = if cx.has_flag::<LlmClosedBeta>() {
229            zed_cloud_provider_additional_models()
230        } else {
231            &[]
232        };
233
234        // Override with available models from settings
235        for model in AllLanguageModelSettings::get_global(cx)
236            .zed_dot_dev
237            .available_models
238            .iter()
239            .chain(llm_closed_beta_models)
240            .cloned()
241        {
242            let model = match model.provider {
243                AvailableProvider::Anthropic => CloudModel::Anthropic(anthropic::Model::Custom {
244                    name: model.name.clone(),
245                    display_name: model.display_name.clone(),
246                    max_tokens: model.max_tokens,
247                    tool_override: model.tool_override.clone(),
248                    cache_configuration: model.cache_configuration.as_ref().map(|config| {
249                        anthropic::AnthropicModelCacheConfiguration {
250                            max_cache_anchors: config.max_cache_anchors,
251                            should_speculate: config.should_speculate,
252                            min_total_token: config.min_total_token,
253                        }
254                    }),
255                    max_output_tokens: model.max_output_tokens,
256                }),
257                AvailableProvider::OpenAi => CloudModel::OpenAi(open_ai::Model::Custom {
258                    name: model.name.clone(),
259                    max_tokens: model.max_tokens,
260                    max_output_tokens: model.max_output_tokens,
261                }),
262                AvailableProvider::Google => CloudModel::Google(google_ai::Model::Custom {
263                    name: model.name.clone(),
264                    max_tokens: model.max_tokens,
265                }),
266            };
267            models.insert(model.id().to_string(), model.clone());
268        }
269
270        models
271            .into_values()
272            .map(|model| {
273                Arc::new(CloudLanguageModel {
274                    id: LanguageModelId::from(model.id().to_string()),
275                    model,
276                    llm_api_token: self.llm_api_token.clone(),
277                    client: self.client.clone(),
278                    request_limiter: RateLimiter::new(4),
279                }) as Arc<dyn LanguageModel>
280            })
281            .collect()
282    }
283
284    fn is_authenticated(&self, cx: &AppContext) -> bool {
285        !self.state.read(cx).is_signed_out()
286    }
287
288    fn authenticate(&self, _cx: &mut AppContext) -> Task<Result<()>> {
289        Task::ready(Ok(()))
290    }
291
292    fn configuration_view(&self, cx: &mut WindowContext) -> AnyView {
293        cx.new_view(|_cx| ConfigurationView {
294            state: self.state.clone(),
295        })
296        .into()
297    }
298
299    fn must_accept_terms(&self, cx: &AppContext) -> bool {
300        !self.state.read(cx).has_accepted_terms_of_service(cx)
301    }
302
303    fn render_accept_terms(&self, cx: &mut WindowContext) -> Option<AnyElement> {
304        let state = self.state.read(cx);
305
306        let terms = [(
307            "terms_of_service",
308            "Terms of Service",
309            "https://zed.dev/terms-of-service",
310        )]
311        .map(|(id, label, url)| {
312            Button::new(id, label)
313                .style(ButtonStyle::Subtle)
314                .icon(IconName::ExternalLink)
315                .icon_size(IconSize::XSmall)
316                .icon_color(Color::Muted)
317                .on_click(move |_, cx| cx.open_url(url))
318        });
319
320        if state.has_accepted_terms_of_service(cx) {
321            None
322        } else {
323            let disabled = state.accept_terms.is_some();
324            Some(
325                v_flex()
326                    .gap_2()
327                    .child(
328                        v_flex()
329                            .child(Label::new("Terms and Conditions").weight(FontWeight::MEDIUM))
330                            .child(
331                                Label::new(
332                                    "Please read and accept our terms and conditions to continue.",
333                                )
334                                .size(LabelSize::Small),
335                            ),
336                    )
337                    .child(v_flex().gap_1().children(terms))
338                    .child(
339                        h_flex().justify_end().child(
340                            Button::new("accept_terms", "I've read it and accept it")
341                                .disabled(disabled)
342                                .on_click({
343                                    let state = self.state.downgrade();
344                                    move |_, cx| {
345                                        state
346                                            .update(cx, |state, cx| {
347                                                state.accept_terms_of_service(cx)
348                                            })
349                                            .ok();
350                                    }
351                                }),
352                        ),
353                    )
354                    .into_any(),
355            )
356        }
357    }
358
359    fn reset_credentials(&self, _cx: &mut AppContext) -> Task<Result<()>> {
360        Task::ready(Ok(()))
361    }
362}
363
364pub struct CloudLanguageModel {
365    id: LanguageModelId,
366    model: CloudModel,
367    llm_api_token: LlmApiToken,
368    client: Arc<Client>,
369    request_limiter: RateLimiter,
370}
371
372#[derive(Clone, Default)]
373struct LlmApiToken(Arc<RwLock<Option<String>>>);
374
375impl CloudLanguageModel {
376    async fn perform_llm_completion(
377        client: Arc<Client>,
378        llm_api_token: LlmApiToken,
379        body: PerformCompletionParams,
380    ) -> Result<Response<AsyncBody>> {
381        let http_client = &client.http_client();
382
383        let mut token = llm_api_token.acquire(&client).await?;
384        let mut did_retry = false;
385
386        let response = loop {
387            let request = http_client::Request::builder()
388                .method(Method::POST)
389                .uri(http_client.build_zed_llm_url("/completion", &[])?.as_ref())
390                .header("Content-Type", "application/json")
391                .header("Authorization", format!("Bearer {token}"))
392                .body(serde_json::to_string(&body)?.into())?;
393            let mut response = http_client.send(request).await?;
394            if response.status().is_success() {
395                break response;
396            } else if !did_retry
397                && response
398                    .headers()
399                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
400                    .is_some()
401            {
402                did_retry = true;
403                token = llm_api_token.refresh(&client).await?;
404            } else {
405                let mut body = String::new();
406                response.body_mut().read_to_string(&mut body).await?;
407                break Err(anyhow!(
408                    "cloud language model completion failed with status {}: {body}",
409                    response.status()
410                ))?;
411            }
412        };
413
414        Ok(response)
415    }
416}
417
418impl LanguageModel for CloudLanguageModel {
419    fn id(&self) -> LanguageModelId {
420        self.id.clone()
421    }
422
423    fn name(&self) -> LanguageModelName {
424        LanguageModelName::from(self.model.display_name().to_string())
425    }
426
427    fn icon(&self) -> Option<IconName> {
428        self.model.icon()
429    }
430
431    fn provider_id(&self) -> LanguageModelProviderId {
432        LanguageModelProviderId(PROVIDER_ID.into())
433    }
434
435    fn provider_name(&self) -> LanguageModelProviderName {
436        LanguageModelProviderName(PROVIDER_NAME.into())
437    }
438
439    fn telemetry_id(&self) -> String {
440        format!("zed.dev/{}", self.model.id())
441    }
442
443    fn availability(&self) -> LanguageModelAvailability {
444        self.model.availability()
445    }
446
447    fn max_token_count(&self) -> usize {
448        self.model.max_token_count()
449    }
450
451    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
452        match &self.model {
453            CloudModel::Anthropic(model) => {
454                model
455                    .cache_configuration()
456                    .map(|cache| LanguageModelCacheConfiguration {
457                        max_cache_anchors: cache.max_cache_anchors,
458                        should_speculate: cache.should_speculate,
459                        min_total_token: cache.min_total_token,
460                    })
461            }
462            CloudModel::OpenAi(_) | CloudModel::Google(_) | CloudModel::Zed(_) => None,
463        }
464    }
465
466    fn count_tokens(
467        &self,
468        request: LanguageModelRequest,
469        cx: &AppContext,
470    ) -> BoxFuture<'static, Result<usize>> {
471        match self.model.clone() {
472            CloudModel::Anthropic(_) => count_anthropic_tokens(request, cx),
473            CloudModel::OpenAi(model) => count_open_ai_tokens(request, model, cx),
474            CloudModel::Google(model) => {
475                let client = self.client.clone();
476                let request = request.into_google(model.id().into());
477                let request = google_ai::CountTokensRequest {
478                    contents: request.contents,
479                };
480                async move {
481                    let request = serde_json::to_string(&request)?;
482                    let response = client
483                        .request(proto::CountLanguageModelTokens {
484                            provider: proto::LanguageModelProvider::Google as i32,
485                            request,
486                        })
487                        .await?;
488                    Ok(response.token_count as usize)
489                }
490                .boxed()
491            }
492            CloudModel::Zed(_) => {
493                count_open_ai_tokens(request, open_ai::Model::ThreePointFiveTurbo, cx)
494            }
495        }
496    }
497
498    fn stream_completion(
499        &self,
500        request: LanguageModelRequest,
501        _cx: &AsyncAppContext,
502    ) -> BoxFuture<'static, Result<BoxStream<'static, Result<LanguageModelCompletionEvent>>>> {
503        match &self.model {
504            CloudModel::Anthropic(model) => {
505                let request = request.into_anthropic(model.id().into(), model.max_output_tokens());
506                let client = self.client.clone();
507                let llm_api_token = self.llm_api_token.clone();
508                let future = self.request_limiter.stream(async move {
509                    let response = Self::perform_llm_completion(
510                        client.clone(),
511                        llm_api_token,
512                        PerformCompletionParams {
513                            provider: client::LanguageModelProvider::Anthropic,
514                            model: request.model.clone(),
515                            provider_request: RawValue::from_string(serde_json::to_string(
516                                &request,
517                            )?)?,
518                        },
519                    )
520                    .await?;
521                    Ok(anthropic::extract_content_from_events(Box::pin(
522                        response_lines(response).map_err(AnthropicError::Other),
523                    )))
524                });
525                async move {
526                    Ok(future
527                        .await?
528                        .map(|result| {
529                            result
530                                .map(|content| match content {
531                                    anthropic::ResponseContent::Text { text } => {
532                                        LanguageModelCompletionEvent::Text(text)
533                                    }
534                                    anthropic::ResponseContent::ToolUse { id, name, input } => {
535                                        LanguageModelCompletionEvent::ToolUse(
536                                            LanguageModelToolUse { id, name, input },
537                                        )
538                                    }
539                                })
540                                .map_err(|err| anyhow!(err))
541                        })
542                        .boxed())
543                }
544                .boxed()
545            }
546            CloudModel::OpenAi(model) => {
547                let client = self.client.clone();
548                let request = request.into_open_ai(model.id().into(), model.max_output_tokens());
549                let llm_api_token = self.llm_api_token.clone();
550                let future = self.request_limiter.stream(async move {
551                    let response = Self::perform_llm_completion(
552                        client.clone(),
553                        llm_api_token,
554                        PerformCompletionParams {
555                            provider: client::LanguageModelProvider::OpenAi,
556                            model: request.model.clone(),
557                            provider_request: RawValue::from_string(serde_json::to_string(
558                                &request,
559                            )?)?,
560                        },
561                    )
562                    .await?;
563                    Ok(open_ai::extract_text_from_events(response_lines(response)))
564                });
565                async move {
566                    Ok(future
567                        .await?
568                        .map(|result| result.map(LanguageModelCompletionEvent::Text))
569                        .boxed())
570                }
571                .boxed()
572            }
573            CloudModel::Google(model) => {
574                let client = self.client.clone();
575                let request = request.into_google(model.id().into());
576                let llm_api_token = self.llm_api_token.clone();
577                let future = self.request_limiter.stream(async move {
578                    let response = Self::perform_llm_completion(
579                        client.clone(),
580                        llm_api_token,
581                        PerformCompletionParams {
582                            provider: client::LanguageModelProvider::Google,
583                            model: request.model.clone(),
584                            provider_request: RawValue::from_string(serde_json::to_string(
585                                &request,
586                            )?)?,
587                        },
588                    )
589                    .await?;
590                    Ok(google_ai::extract_text_from_events(response_lines(
591                        response,
592                    )))
593                });
594                async move {
595                    Ok(future
596                        .await?
597                        .map(|result| result.map(LanguageModelCompletionEvent::Text))
598                        .boxed())
599                }
600                .boxed()
601            }
602            CloudModel::Zed(model) => {
603                let client = self.client.clone();
604                let mut request = request.into_open_ai(model.id().into(), None);
605                request.max_tokens = Some(4000);
606                let llm_api_token = self.llm_api_token.clone();
607                let future = self.request_limiter.stream(async move {
608                    let response = Self::perform_llm_completion(
609                        client.clone(),
610                        llm_api_token,
611                        PerformCompletionParams {
612                            provider: client::LanguageModelProvider::Zed,
613                            model: request.model.clone(),
614                            provider_request: RawValue::from_string(serde_json::to_string(
615                                &request,
616                            )?)?,
617                        },
618                    )
619                    .await?;
620                    Ok(open_ai::extract_text_from_events(response_lines(response)))
621                });
622                async move {
623                    Ok(future
624                        .await?
625                        .map(|result| result.map(LanguageModelCompletionEvent::Text))
626                        .boxed())
627                }
628                .boxed()
629            }
630        }
631    }
632
633    fn use_any_tool(
634        &self,
635        request: LanguageModelRequest,
636        tool_name: String,
637        tool_description: String,
638        input_schema: serde_json::Value,
639        _cx: &AsyncAppContext,
640    ) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
641        let client = self.client.clone();
642        let llm_api_token = self.llm_api_token.clone();
643
644        match &self.model {
645            CloudModel::Anthropic(model) => {
646                let mut request =
647                    request.into_anthropic(model.tool_model_id().into(), model.max_output_tokens());
648                request.tool_choice = Some(anthropic::ToolChoice::Tool {
649                    name: tool_name.clone(),
650                });
651                request.tools = vec![anthropic::Tool {
652                    name: tool_name.clone(),
653                    description: tool_description,
654                    input_schema,
655                }];
656
657                self.request_limiter
658                    .run(async move {
659                        let response = Self::perform_llm_completion(
660                            client.clone(),
661                            llm_api_token,
662                            PerformCompletionParams {
663                                provider: client::LanguageModelProvider::Anthropic,
664                                model: request.model.clone(),
665                                provider_request: RawValue::from_string(serde_json::to_string(
666                                    &request,
667                                )?)?,
668                            },
669                        )
670                        .await?;
671
672                        Ok(anthropic::extract_tool_args_from_events(
673                            tool_name,
674                            Box::pin(response_lines(response)),
675                        )
676                        .await?
677                        .boxed())
678                    })
679                    .boxed()
680            }
681            CloudModel::OpenAi(model) => {
682                let mut request =
683                    request.into_open_ai(model.id().into(), model.max_output_tokens());
684                request.tool_choice = Some(open_ai::ToolChoice::Other(
685                    open_ai::ToolDefinition::Function {
686                        function: open_ai::FunctionDefinition {
687                            name: tool_name.clone(),
688                            description: None,
689                            parameters: None,
690                        },
691                    },
692                ));
693                request.tools = vec![open_ai::ToolDefinition::Function {
694                    function: open_ai::FunctionDefinition {
695                        name: tool_name.clone(),
696                        description: Some(tool_description),
697                        parameters: Some(input_schema),
698                    },
699                }];
700
701                self.request_limiter
702                    .run(async move {
703                        let response = Self::perform_llm_completion(
704                            client.clone(),
705                            llm_api_token,
706                            PerformCompletionParams {
707                                provider: client::LanguageModelProvider::OpenAi,
708                                model: request.model.clone(),
709                                provider_request: RawValue::from_string(serde_json::to_string(
710                                    &request,
711                                )?)?,
712                            },
713                        )
714                        .await?;
715
716                        Ok(open_ai::extract_tool_args_from_events(
717                            tool_name,
718                            Box::pin(response_lines(response)),
719                        )
720                        .await?
721                        .boxed())
722                    })
723                    .boxed()
724            }
725            CloudModel::Google(_) => {
726                future::ready(Err(anyhow!("tool use not implemented for Google AI"))).boxed()
727            }
728            CloudModel::Zed(model) => {
729                // All Zed models are OpenAI-based at the time of writing.
730                let mut request = request.into_open_ai(model.id().into(), None);
731                request.tool_choice = Some(open_ai::ToolChoice::Other(
732                    open_ai::ToolDefinition::Function {
733                        function: open_ai::FunctionDefinition {
734                            name: tool_name.clone(),
735                            description: None,
736                            parameters: None,
737                        },
738                    },
739                ));
740                request.tools = vec![open_ai::ToolDefinition::Function {
741                    function: open_ai::FunctionDefinition {
742                        name: tool_name.clone(),
743                        description: Some(tool_description),
744                        parameters: Some(input_schema),
745                    },
746                }];
747
748                self.request_limiter
749                    .run(async move {
750                        let response = Self::perform_llm_completion(
751                            client.clone(),
752                            llm_api_token,
753                            PerformCompletionParams {
754                                provider: client::LanguageModelProvider::Zed,
755                                model: request.model.clone(),
756                                provider_request: RawValue::from_string(serde_json::to_string(
757                                    &request,
758                                )?)?,
759                            },
760                        )
761                        .await?;
762
763                        Ok(open_ai::extract_tool_args_from_events(
764                            tool_name,
765                            Box::pin(response_lines(response)),
766                        )
767                        .await?
768                        .boxed())
769                    })
770                    .boxed()
771            }
772        }
773    }
774}
775
776fn response_lines<T: DeserializeOwned>(
777    response: Response<AsyncBody>,
778) -> impl Stream<Item = Result<T>> {
779    futures::stream::try_unfold(
780        (String::new(), BufReader::new(response.into_body())),
781        move |(mut line, mut body)| async {
782            match body.read_line(&mut line).await {
783                Ok(0) => Ok(None),
784                Ok(_) => {
785                    let event: T = serde_json::from_str(&line)?;
786                    line.clear();
787                    Ok(Some((event, (line, body))))
788                }
789                Err(e) => Err(e.into()),
790            }
791        },
792    )
793}
794
795impl LlmApiToken {
796    async fn acquire(&self, client: &Arc<Client>) -> Result<String> {
797        let lock = self.0.upgradable_read().await;
798        if let Some(token) = lock.as_ref() {
799            Ok(token.to_string())
800        } else {
801            Self::fetch(RwLockUpgradableReadGuard::upgrade(lock).await, &client).await
802        }
803    }
804
805    async fn refresh(&self, client: &Arc<Client>) -> Result<String> {
806        Self::fetch(self.0.write().await, &client).await
807    }
808
809    async fn fetch<'a>(
810        mut lock: RwLockWriteGuard<'a, Option<String>>,
811        client: &Arc<Client>,
812    ) -> Result<String> {
813        let response = client.request(proto::GetLlmToken {}).await?;
814        *lock = Some(response.token.clone());
815        Ok(response.token.clone())
816    }
817}
818
819struct ConfigurationView {
820    state: gpui::Model<State>,
821}
822
823impl ConfigurationView {
824    fn authenticate(&mut self, cx: &mut ViewContext<Self>) {
825        self.state.update(cx, |state, cx| {
826            state.authenticate(cx).detach_and_log_err(cx);
827        });
828        cx.notify();
829    }
830
831    fn render_accept_terms(&mut self, cx: &mut ViewContext<Self>) -> Option<AnyElement> {
832        if self.state.read(cx).has_accepted_terms_of_service(cx) {
833            return None;
834        }
835
836        let accept_terms_disabled = self.state.read(cx).accept_terms.is_some();
837
838        let terms_button = Button::new("terms_of_service", "Terms of Service")
839            .style(ButtonStyle::Subtle)
840            .icon(IconName::ExternalLink)
841            .icon_color(Color::Muted)
842            .on_click(move |_, cx| cx.open_url("https://zed.dev/terms-of-service"));
843
844        let text =
845            "In order to use Zed AI, please read and accept our terms and conditions to continue:";
846
847        let form = v_flex()
848            .gap_2()
849            .child(Label::new("Terms and Conditions"))
850            .child(Label::new(text))
851            .child(h_flex().justify_center().child(terms_button))
852            .child(
853                h_flex().justify_center().child(
854                    Button::new("accept_terms", "I've read and accept the terms of service")
855                        .style(ButtonStyle::Tinted(TintColor::Accent))
856                        .disabled(accept_terms_disabled)
857                        .on_click({
858                            let state = self.state.downgrade();
859                            move |_, cx| {
860                                state
861                                    .update(cx, |state, cx| state.accept_terms_of_service(cx))
862                                    .ok();
863                            }
864                        }),
865                ),
866            );
867
868        Some(form.into_any())
869    }
870}
871
872impl Render for ConfigurationView {
873    fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
874        const ZED_AI_URL: &str = "https://zed.dev/ai";
875        const ACCOUNT_SETTINGS_URL: &str = "https://zed.dev/account";
876
877        let is_connected = !self.state.read(cx).is_signed_out();
878        let plan = self.state.read(cx).user_store.read(cx).current_plan();
879        let has_accepted_terms = self.state.read(cx).has_accepted_terms_of_service(cx);
880
881        let is_pro = plan == Some(proto::Plan::ZedPro);
882        let subscription_text = Label::new(if is_pro {
883            "You have full access to Zed's hosted models from Anthropic, OpenAI, Google with faster speeds and higher limits through Zed Pro."
884        } else {
885            "You have basic access to models from Anthropic through the Zed AI Free plan."
886        });
887        let manage_subscription_button = if is_pro {
888            Some(
889                h_flex().child(
890                    Button::new("manage_settings", "Manage Subscription")
891                        .style(ButtonStyle::Tinted(TintColor::Accent))
892                        .on_click(cx.listener(|_, _, cx| cx.open_url(ACCOUNT_SETTINGS_URL))),
893                ),
894            )
895        } else if cx.has_flag::<ZedPro>() {
896            Some(
897                h_flex()
898                    .gap_2()
899                    .child(
900                        Button::new("learn_more", "Learn more")
901                            .style(ButtonStyle::Subtle)
902                            .on_click(cx.listener(|_, _, cx| cx.open_url(ZED_AI_URL))),
903                    )
904                    .child(
905                        Button::new("upgrade", "Upgrade")
906                            .style(ButtonStyle::Subtle)
907                            .color(Color::Accent)
908                            .on_click(cx.listener(|_, _, cx| cx.open_url(ACCOUNT_SETTINGS_URL))),
909                    ),
910            )
911        } else {
912            None
913        };
914
915        if is_connected {
916            v_flex()
917                .gap_3()
918                .max_w_4_5()
919                .children(self.render_accept_terms(cx))
920                .when(has_accepted_terms, |this| {
921                    this.child(subscription_text)
922                        .children(manage_subscription_button)
923                })
924        } else {
925            v_flex()
926                .gap_6()
927                .child(Label::new("Use the zed.dev to access language models."))
928                .child(
929                    v_flex()
930                        .gap_2()
931                        .child(
932                            Button::new("sign_in", "Sign in")
933                                .icon_color(Color::Muted)
934                                .icon(IconName::Github)
935                                .icon_position(IconPosition::Start)
936                                .style(ButtonStyle::Filled)
937                                .full_width()
938                                .on_click(cx.listener(move |this, _, cx| this.authenticate(cx))),
939                        )
940                        .child(
941                            div().flex().w_full().items_center().child(
942                                Label::new("Sign in to enable collaboration.")
943                                    .color(Color::Muted)
944                                    .size(LabelSize::Small),
945                            ),
946                        ),
947                )
948        }
949    }
950}