sum_tree.rs

   1mod cursor;
   2mod tree_map;
   3
   4use arrayvec::ArrayVec;
   5pub use cursor::{Cursor, FilterCursor, Iter};
   6use rayon::prelude::*;
   7use std::marker::PhantomData;
   8use std::mem;
   9use std::{cmp::Ordering, fmt, iter::FromIterator, sync::Arc};
  10pub use tree_map::{MapSeekTarget, TreeMap, TreeSet};
  11
  12#[cfg(test)]
  13pub const TREE_BASE: usize = 2;
  14#[cfg(not(test))]
  15pub const TREE_BASE: usize = 6;
  16
  17/// An item that can be stored in a [`SumTree`]
  18///
  19/// Must be summarized by a type that implements [`Summary`]
  20pub trait Item: Clone {
  21    type Summary: Summary;
  22
  23    fn summary(&self) -> Self::Summary;
  24}
  25
  26/// An [`Item`] whose summary has a specific key that can be used to identify it
  27pub trait KeyedItem: Item {
  28    type Key: for<'a> Dimension<'a, Self::Summary> + Ord;
  29
  30    fn key(&self) -> Self::Key;
  31}
  32
  33/// A type that describes the Sum of all [`Item`]s in a subtree of the [`SumTree`]
  34///
  35/// Each Summary type can have multiple [`Dimensions`] that it measures,
  36/// which can be used to navigate the tree
  37pub trait Summary: Default + Clone + fmt::Debug {
  38    type Context;
  39
  40    fn add_summary(&mut self, summary: &Self, cx: &Self::Context);
  41}
  42
  43/// Each [`Summary`] type can have more than one [`Dimension`] type that it measures.
  44///
  45/// You can use dimensions to seek to a specific location in the [`SumTree`]
  46///
  47/// # Example:
  48/// Zed's rope has a `TextSummary` type that summarizes lines, characters, and bytes.
  49/// Each of these are different dimensions we may want to seek to
  50pub trait Dimension<'a, S: Summary>: Clone + fmt::Debug + Default {
  51    fn add_summary(&mut self, _summary: &'a S, _: &S::Context);
  52
  53    fn from_summary(summary: &'a S, cx: &S::Context) -> Self {
  54        let mut dimension = Self::default();
  55        dimension.add_summary(summary, cx);
  56        dimension
  57    }
  58}
  59
  60impl<'a, T: Summary> Dimension<'a, T> for T {
  61    fn add_summary(&mut self, summary: &'a T, cx: &T::Context) {
  62        Summary::add_summary(self, summary, cx);
  63    }
  64}
  65
  66pub trait SeekTarget<'a, S: Summary, D: Dimension<'a, S>>: fmt::Debug {
  67    fn cmp(&self, cursor_location: &D, cx: &S::Context) -> Ordering;
  68}
  69
  70impl<'a, S: Summary, D: Dimension<'a, S> + Ord> SeekTarget<'a, S, D> for D {
  71    fn cmp(&self, cursor_location: &Self, _: &S::Context) -> Ordering {
  72        Ord::cmp(self, cursor_location)
  73    }
  74}
  75
  76impl<'a, T: Summary> Dimension<'a, T> for () {
  77    fn add_summary(&mut self, _: &'a T, _: &T::Context) {}
  78}
  79
  80impl<'a, T: Summary, D1: Dimension<'a, T>, D2: Dimension<'a, T>> Dimension<'a, T> for (D1, D2) {
  81    fn add_summary(&mut self, summary: &'a T, cx: &T::Context) {
  82        self.0.add_summary(summary, cx);
  83        self.1.add_summary(summary, cx);
  84    }
  85}
  86
  87impl<'a, S: Summary, D1: SeekTarget<'a, S, D1> + Dimension<'a, S>, D2: Dimension<'a, S>>
  88    SeekTarget<'a, S, (D1, D2)> for D1
  89{
  90    fn cmp(&self, cursor_location: &(D1, D2), cx: &S::Context) -> Ordering {
  91        self.cmp(&cursor_location.0, cx)
  92    }
  93}
  94
  95struct End<D>(PhantomData<D>);
  96
  97impl<D> End<D> {
  98    fn new() -> Self {
  99        Self(PhantomData)
 100    }
 101}
 102
 103impl<'a, S: Summary, D: Dimension<'a, S>> SeekTarget<'a, S, D> for End<D> {
 104    fn cmp(&self, _: &D, _: &S::Context) -> Ordering {
 105        Ordering::Greater
 106    }
 107}
 108
 109impl<D> fmt::Debug for End<D> {
 110    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 111        f.debug_tuple("End").finish()
 112    }
 113}
 114
 115/// Bias is used to settle ambiguities when determining positions in an ordered sequence.
 116///
 117/// The primary use case is for text, where Bias influences
 118/// which character an offset or anchor is associated with.
 119///
 120/// # Examples
 121/// Given the buffer `AˇBCD`:
 122/// - The offset of the cursor is 1
 123/// - [Bias::Left] would attach the cursor to the character `A`
 124/// - [Bias::Right] would attach the cursor to the character `B`
 125///
 126/// Given the buffer `A«BCˇ»D`:
 127/// - The offset of the cursor is 3, and the selection is from 1 to 3
 128/// - The left anchor of the selection has [Bias::Right], attaching it to the character `B`
 129/// - The right anchor of the selection has [Bias::Left], attaching it to the character `C`
 130///
 131/// Given the buffer `{ˇ<...>`, where `<...>` is a folded region:
 132/// - The display offset of the cursor is 1, but the offset in the buffer is determined by the bias
 133/// - [Bias::Left] would attach the cursor to the character `{`, with a buffer offset of 1
 134/// - [Bias::Right] would attach the cursor to the first character of the folded region,
 135///   and the buffer offset would be the offset of the first character of the folded region
 136#[derive(Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Debug, Hash, Default)]
 137pub enum Bias {
 138    /// Attach to the character on the left
 139    #[default]
 140    Left,
 141    /// Attach to the character on the right
 142    Right,
 143}
 144
 145impl Bias {
 146    pub fn invert(self) -> Self {
 147        match self {
 148            Self::Left => Self::Right,
 149            Self::Right => Self::Left,
 150        }
 151    }
 152}
 153
 154/// A B+ tree in which each leaf node contains `Item`s of type `T` and a `Summary`s for each `Item`.
 155/// Each internal node contains a `Summary` of the items in its subtree.
 156///
 157/// The maximum number of items per node is `TREE_BASE * 2`.
 158///
 159/// Any [`Dimension`] supported by the [`Summary`] type can be used to seek to a specific location in the tree.
 160#[derive(Debug, Clone)]
 161pub struct SumTree<T: Item>(Arc<Node<T>>);
 162
 163impl<T: Item> SumTree<T> {
 164    pub fn new() -> Self {
 165        SumTree(Arc::new(Node::Leaf {
 166            summary: T::Summary::default(),
 167            items: ArrayVec::new(),
 168            item_summaries: ArrayVec::new(),
 169        }))
 170    }
 171
 172    pub fn from_item(item: T, cx: &<T::Summary as Summary>::Context) -> Self {
 173        let mut tree = Self::new();
 174        tree.push(item, cx);
 175        tree
 176    }
 177
 178    pub fn from_iter<I: IntoIterator<Item = T>>(
 179        iter: I,
 180        cx: &<T::Summary as Summary>::Context,
 181    ) -> Self {
 182        let mut nodes = Vec::new();
 183
 184        let mut iter = iter.into_iter().fuse().peekable();
 185        while iter.peek().is_some() {
 186            let items: ArrayVec<T, { 2 * TREE_BASE }> = iter.by_ref().take(2 * TREE_BASE).collect();
 187            let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
 188                items.iter().map(|item| item.summary()).collect();
 189
 190            let mut summary = item_summaries[0].clone();
 191            for item_summary in &item_summaries[1..] {
 192                <T::Summary as Summary>::add_summary(&mut summary, item_summary, cx);
 193            }
 194
 195            nodes.push(Node::Leaf {
 196                summary,
 197                items,
 198                item_summaries,
 199            });
 200        }
 201
 202        let mut parent_nodes = Vec::new();
 203        let mut height = 0;
 204        while nodes.len() > 1 {
 205            height += 1;
 206            let mut current_parent_node = None;
 207            for child_node in nodes.drain(..) {
 208                let parent_node = current_parent_node.get_or_insert_with(|| Node::Internal {
 209                    summary: T::Summary::default(),
 210                    height,
 211                    child_summaries: ArrayVec::new(),
 212                    child_trees: ArrayVec::new(),
 213                });
 214                let Node::Internal {
 215                    summary,
 216                    child_summaries,
 217                    child_trees,
 218                    ..
 219                } = parent_node
 220                else {
 221                    unreachable!()
 222                };
 223                let child_summary = child_node.summary();
 224                <T::Summary as Summary>::add_summary(summary, child_summary, cx);
 225                child_summaries.push(child_summary.clone());
 226                child_trees.push(Self(Arc::new(child_node)));
 227
 228                if child_trees.len() == 2 * TREE_BASE {
 229                    parent_nodes.extend(current_parent_node.take());
 230                }
 231            }
 232            parent_nodes.extend(current_parent_node.take());
 233            mem::swap(&mut nodes, &mut parent_nodes);
 234        }
 235
 236        if nodes.is_empty() {
 237            Self::new()
 238        } else {
 239            debug_assert_eq!(nodes.len(), 1);
 240            Self(Arc::new(nodes.pop().unwrap()))
 241        }
 242    }
 243
 244    pub fn from_par_iter<I, Iter>(iter: I, cx: &<T::Summary as Summary>::Context) -> Self
 245    where
 246        I: IntoParallelIterator<Iter = Iter>,
 247        Iter: IndexedParallelIterator<Item = T>,
 248        T: Send + Sync,
 249        T::Summary: Send + Sync,
 250        <T::Summary as Summary>::Context: Sync,
 251    {
 252        let mut nodes = iter
 253            .into_par_iter()
 254            .chunks(2 * TREE_BASE)
 255            .map(|items| {
 256                let items: ArrayVec<T, { 2 * TREE_BASE }> = items.into_iter().collect();
 257                let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
 258                    items.iter().map(|item| item.summary()).collect();
 259                let mut summary = item_summaries[0].clone();
 260                for item_summary in &item_summaries[1..] {
 261                    <T::Summary as Summary>::add_summary(&mut summary, item_summary, cx);
 262                }
 263                SumTree(Arc::new(Node::Leaf {
 264                    summary,
 265                    items,
 266                    item_summaries,
 267                }))
 268            })
 269            .collect::<Vec<_>>();
 270
 271        let mut height = 0;
 272        while nodes.len() > 1 {
 273            height += 1;
 274            nodes = nodes
 275                .into_par_iter()
 276                .chunks(2 * TREE_BASE)
 277                .map(|child_nodes| {
 278                    let child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }> =
 279                        child_nodes.into_iter().collect();
 280                    let child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> = child_trees
 281                        .iter()
 282                        .map(|child_tree| child_tree.summary().clone())
 283                        .collect();
 284                    let mut summary = child_summaries[0].clone();
 285                    for child_summary in &child_summaries[1..] {
 286                        <T::Summary as Summary>::add_summary(&mut summary, child_summary, cx);
 287                    }
 288                    SumTree(Arc::new(Node::Internal {
 289                        height,
 290                        summary,
 291                        child_summaries,
 292                        child_trees,
 293                    }))
 294                })
 295                .collect::<Vec<_>>();
 296        }
 297
 298        if nodes.is_empty() {
 299            Self::new()
 300        } else {
 301            debug_assert_eq!(nodes.len(), 1);
 302            nodes.pop().unwrap()
 303        }
 304    }
 305
 306    #[allow(unused)]
 307    pub fn items(&self, cx: &<T::Summary as Summary>::Context) -> Vec<T> {
 308        let mut items = Vec::new();
 309        let mut cursor = self.cursor::<()>();
 310        cursor.next(cx);
 311        while let Some(item) = cursor.item() {
 312            items.push(item.clone());
 313            cursor.next(cx);
 314        }
 315        items
 316    }
 317
 318    pub fn iter(&self) -> Iter<T> {
 319        Iter::new(self)
 320    }
 321
 322    pub fn cursor<'a, S>(&'a self) -> Cursor<T, S>
 323    where
 324        S: Dimension<'a, T::Summary>,
 325    {
 326        Cursor::new(self)
 327    }
 328
 329    /// Note: If the summary type requires a non `()` context, then the filter cursor
 330    /// that is returned cannot be used with Rust's iterators.
 331    pub fn filter<'a, F, U>(&'a self, filter_node: F) -> FilterCursor<F, T, U>
 332    where
 333        F: FnMut(&T::Summary) -> bool,
 334        U: Dimension<'a, T::Summary>,
 335    {
 336        FilterCursor::new(self, filter_node)
 337    }
 338
 339    #[allow(dead_code)]
 340    pub fn first(&self) -> Option<&T> {
 341        self.leftmost_leaf().0.items().first()
 342    }
 343
 344    pub fn last(&self) -> Option<&T> {
 345        self.rightmost_leaf().0.items().last()
 346    }
 347
 348    pub fn update_last(&mut self, f: impl FnOnce(&mut T), cx: &<T::Summary as Summary>::Context) {
 349        self.update_last_recursive(f, cx);
 350    }
 351
 352    fn update_last_recursive(
 353        &mut self,
 354        f: impl FnOnce(&mut T),
 355        cx: &<T::Summary as Summary>::Context,
 356    ) -> Option<T::Summary> {
 357        match Arc::make_mut(&mut self.0) {
 358            Node::Internal {
 359                summary,
 360                child_summaries,
 361                child_trees,
 362                ..
 363            } => {
 364                let last_summary = child_summaries.last_mut().unwrap();
 365                let last_child = child_trees.last_mut().unwrap();
 366                *last_summary = last_child.update_last_recursive(f, cx).unwrap();
 367                *summary = sum(child_summaries.iter(), cx);
 368                Some(summary.clone())
 369            }
 370            Node::Leaf {
 371                summary,
 372                items,
 373                item_summaries,
 374            } => {
 375                if let Some((item, item_summary)) = items.last_mut().zip(item_summaries.last_mut())
 376                {
 377                    (f)(item);
 378                    *item_summary = item.summary();
 379                    *summary = sum(item_summaries.iter(), cx);
 380                    Some(summary.clone())
 381                } else {
 382                    None
 383                }
 384            }
 385        }
 386    }
 387
 388    pub fn extent<'a, D: Dimension<'a, T::Summary>>(
 389        &'a self,
 390        cx: &<T::Summary as Summary>::Context,
 391    ) -> D {
 392        let mut extent = D::default();
 393        match self.0.as_ref() {
 394            Node::Internal { summary, .. } | Node::Leaf { summary, .. } => {
 395                extent.add_summary(summary, cx);
 396            }
 397        }
 398        extent
 399    }
 400
 401    pub fn summary(&self) -> &T::Summary {
 402        match self.0.as_ref() {
 403            Node::Internal { summary, .. } => summary,
 404            Node::Leaf { summary, .. } => summary,
 405        }
 406    }
 407
 408    pub fn is_empty(&self) -> bool {
 409        match self.0.as_ref() {
 410            Node::Internal { .. } => false,
 411            Node::Leaf { items, .. } => items.is_empty(),
 412        }
 413    }
 414
 415    pub fn extend<I>(&mut self, iter: I, cx: &<T::Summary as Summary>::Context)
 416    where
 417        I: IntoIterator<Item = T>,
 418    {
 419        self.append(Self::from_iter(iter, cx), cx);
 420    }
 421
 422    pub fn par_extend<I, Iter>(&mut self, iter: I, cx: &<T::Summary as Summary>::Context)
 423    where
 424        I: IntoParallelIterator<Iter = Iter>,
 425        Iter: IndexedParallelIterator<Item = T>,
 426        T: Send + Sync,
 427        T::Summary: Send + Sync,
 428        <T::Summary as Summary>::Context: Sync,
 429    {
 430        self.append(Self::from_par_iter(iter, cx), cx);
 431    }
 432
 433    pub fn push(&mut self, item: T, cx: &<T::Summary as Summary>::Context) {
 434        let summary = item.summary();
 435        self.append(
 436            SumTree(Arc::new(Node::Leaf {
 437                summary: summary.clone(),
 438                items: ArrayVec::from_iter(Some(item)),
 439                item_summaries: ArrayVec::from_iter(Some(summary)),
 440            })),
 441            cx,
 442        );
 443    }
 444
 445    pub fn append(&mut self, other: Self, cx: &<T::Summary as Summary>::Context) {
 446        if self.is_empty() {
 447            *self = other;
 448        } else if !other.0.is_leaf() || !other.0.items().is_empty() {
 449            if self.0.height() < other.0.height() {
 450                for tree in other.0.child_trees() {
 451                    self.append(tree.clone(), cx);
 452                }
 453            } else if let Some(split_tree) = self.push_tree_recursive(other, cx) {
 454                *self = Self::from_child_trees(self.clone(), split_tree, cx);
 455            }
 456        }
 457    }
 458
 459    fn push_tree_recursive(
 460        &mut self,
 461        other: SumTree<T>,
 462        cx: &<T::Summary as Summary>::Context,
 463    ) -> Option<SumTree<T>> {
 464        match Arc::make_mut(&mut self.0) {
 465            Node::Internal {
 466                height,
 467                summary,
 468                child_summaries,
 469                child_trees,
 470                ..
 471            } => {
 472                let other_node = other.0.clone();
 473                <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
 474
 475                let height_delta = *height - other_node.height();
 476                let mut summaries_to_append = ArrayVec::<T::Summary, { 2 * TREE_BASE }>::new();
 477                let mut trees_to_append = ArrayVec::<SumTree<T>, { 2 * TREE_BASE }>::new();
 478                if height_delta == 0 {
 479                    summaries_to_append.extend(other_node.child_summaries().iter().cloned());
 480                    trees_to_append.extend(other_node.child_trees().iter().cloned());
 481                } else if height_delta == 1 && !other_node.is_underflowing() {
 482                    summaries_to_append.push(other_node.summary().clone());
 483                    trees_to_append.push(other)
 484                } else {
 485                    let tree_to_append = child_trees
 486                        .last_mut()
 487                        .unwrap()
 488                        .push_tree_recursive(other, cx);
 489                    *child_summaries.last_mut().unwrap() =
 490                        child_trees.last().unwrap().0.summary().clone();
 491
 492                    if let Some(split_tree) = tree_to_append {
 493                        summaries_to_append.push(split_tree.0.summary().clone());
 494                        trees_to_append.push(split_tree);
 495                    }
 496                }
 497
 498                let child_count = child_trees.len() + trees_to_append.len();
 499                if child_count > 2 * TREE_BASE {
 500                    let left_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
 501                    let right_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
 502                    let left_trees;
 503                    let right_trees;
 504
 505                    let midpoint = (child_count + child_count % 2) / 2;
 506                    {
 507                        let mut all_summaries = child_summaries
 508                            .iter()
 509                            .chain(summaries_to_append.iter())
 510                            .cloned();
 511                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
 512                        right_summaries = all_summaries.collect();
 513                        let mut all_trees =
 514                            child_trees.iter().chain(trees_to_append.iter()).cloned();
 515                        left_trees = all_trees.by_ref().take(midpoint).collect();
 516                        right_trees = all_trees.collect();
 517                    }
 518                    *summary = sum(left_summaries.iter(), cx);
 519                    *child_summaries = left_summaries;
 520                    *child_trees = left_trees;
 521
 522                    Some(SumTree(Arc::new(Node::Internal {
 523                        height: *height,
 524                        summary: sum(right_summaries.iter(), cx),
 525                        child_summaries: right_summaries,
 526                        child_trees: right_trees,
 527                    })))
 528                } else {
 529                    child_summaries.extend(summaries_to_append);
 530                    child_trees.extend(trees_to_append);
 531                    None
 532                }
 533            }
 534            Node::Leaf {
 535                summary,
 536                items,
 537                item_summaries,
 538            } => {
 539                let other_node = other.0;
 540
 541                let child_count = items.len() + other_node.items().len();
 542                if child_count > 2 * TREE_BASE {
 543                    let left_items;
 544                    let right_items;
 545                    let left_summaries;
 546                    let right_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>;
 547
 548                    let midpoint = (child_count + child_count % 2) / 2;
 549                    {
 550                        let mut all_items = items.iter().chain(other_node.items().iter()).cloned();
 551                        left_items = all_items.by_ref().take(midpoint).collect();
 552                        right_items = all_items.collect();
 553
 554                        let mut all_summaries = item_summaries
 555                            .iter()
 556                            .chain(other_node.child_summaries())
 557                            .cloned();
 558                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
 559                        right_summaries = all_summaries.collect();
 560                    }
 561                    *items = left_items;
 562                    *item_summaries = left_summaries;
 563                    *summary = sum(item_summaries.iter(), cx);
 564                    Some(SumTree(Arc::new(Node::Leaf {
 565                        items: right_items,
 566                        summary: sum(right_summaries.iter(), cx),
 567                        item_summaries: right_summaries,
 568                    })))
 569                } else {
 570                    <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
 571                    items.extend(other_node.items().iter().cloned());
 572                    item_summaries.extend(other_node.child_summaries().iter().cloned());
 573                    None
 574                }
 575            }
 576        }
 577    }
 578
 579    fn from_child_trees(
 580        left: SumTree<T>,
 581        right: SumTree<T>,
 582        cx: &<T::Summary as Summary>::Context,
 583    ) -> Self {
 584        let height = left.0.height() + 1;
 585        let mut child_summaries = ArrayVec::new();
 586        child_summaries.push(left.0.summary().clone());
 587        child_summaries.push(right.0.summary().clone());
 588        let mut child_trees = ArrayVec::new();
 589        child_trees.push(left);
 590        child_trees.push(right);
 591        SumTree(Arc::new(Node::Internal {
 592            height,
 593            summary: sum(child_summaries.iter(), cx),
 594            child_summaries,
 595            child_trees,
 596        }))
 597    }
 598
 599    fn leftmost_leaf(&self) -> &Self {
 600        match *self.0 {
 601            Node::Leaf { .. } => self,
 602            Node::Internal {
 603                ref child_trees, ..
 604            } => child_trees.first().unwrap().leftmost_leaf(),
 605        }
 606    }
 607
 608    fn rightmost_leaf(&self) -> &Self {
 609        match *self.0 {
 610            Node::Leaf { .. } => self,
 611            Node::Internal {
 612                ref child_trees, ..
 613            } => child_trees.last().unwrap().rightmost_leaf(),
 614        }
 615    }
 616
 617    #[cfg(debug_assertions)]
 618    pub fn _debug_entries(&self) -> Vec<&T> {
 619        self.iter().collect::<Vec<_>>()
 620    }
 621}
 622
 623impl<T: Item + PartialEq> PartialEq for SumTree<T> {
 624    fn eq(&self, other: &Self) -> bool {
 625        self.iter().eq(other.iter())
 626    }
 627}
 628
 629impl<T: Item + Eq> Eq for SumTree<T> {}
 630
 631impl<T: KeyedItem> SumTree<T> {
 632    pub fn insert_or_replace(
 633        &mut self,
 634        item: T,
 635        cx: &<T::Summary as Summary>::Context,
 636    ) -> Option<T> {
 637        let mut replaced = None;
 638        *self = {
 639            let mut cursor = self.cursor::<T::Key>();
 640            let mut new_tree = cursor.slice(&item.key(), Bias::Left, cx);
 641            if let Some(cursor_item) = cursor.item() {
 642                if cursor_item.key() == item.key() {
 643                    replaced = Some(cursor_item.clone());
 644                    cursor.next(cx);
 645                }
 646            }
 647            new_tree.push(item, cx);
 648            new_tree.append(cursor.suffix(cx), cx);
 649            new_tree
 650        };
 651        replaced
 652    }
 653
 654    pub fn remove(&mut self, key: &T::Key, cx: &<T::Summary as Summary>::Context) -> Option<T> {
 655        let mut removed = None;
 656        *self = {
 657            let mut cursor = self.cursor::<T::Key>();
 658            let mut new_tree = cursor.slice(key, Bias::Left, cx);
 659            if let Some(item) = cursor.item() {
 660                if item.key() == *key {
 661                    removed = Some(item.clone());
 662                    cursor.next(cx);
 663                }
 664            }
 665            new_tree.append(cursor.suffix(cx), cx);
 666            new_tree
 667        };
 668        removed
 669    }
 670
 671    pub fn edit(
 672        &mut self,
 673        mut edits: Vec<Edit<T>>,
 674        cx: &<T::Summary as Summary>::Context,
 675    ) -> Vec<T> {
 676        if edits.is_empty() {
 677            return Vec::new();
 678        }
 679
 680        let mut removed = Vec::new();
 681        edits.sort_unstable_by_key(|item| item.key());
 682
 683        *self = {
 684            let mut cursor = self.cursor::<T::Key>();
 685            let mut new_tree = SumTree::new();
 686            let mut buffered_items = Vec::new();
 687
 688            cursor.seek(&T::Key::default(), Bias::Left, cx);
 689            for edit in edits {
 690                let new_key = edit.key();
 691                let mut old_item = cursor.item();
 692
 693                if old_item
 694                    .as_ref()
 695                    .map_or(false, |old_item| old_item.key() < new_key)
 696                {
 697                    new_tree.extend(buffered_items.drain(..), cx);
 698                    let slice = cursor.slice(&new_key, Bias::Left, cx);
 699                    new_tree.append(slice, cx);
 700                    old_item = cursor.item();
 701                }
 702
 703                if let Some(old_item) = old_item {
 704                    if old_item.key() == new_key {
 705                        removed.push(old_item.clone());
 706                        cursor.next(cx);
 707                    }
 708                }
 709
 710                match edit {
 711                    Edit::Insert(item) => {
 712                        buffered_items.push(item);
 713                    }
 714                    Edit::Remove(_) => {}
 715                }
 716            }
 717
 718            new_tree.extend(buffered_items, cx);
 719            new_tree.append(cursor.suffix(cx), cx);
 720            new_tree
 721        };
 722
 723        removed
 724    }
 725
 726    pub fn get(&self, key: &T::Key, cx: &<T::Summary as Summary>::Context) -> Option<&T> {
 727        let mut cursor = self.cursor::<T::Key>();
 728        if cursor.seek(key, Bias::Left, cx) {
 729            cursor.item()
 730        } else {
 731            None
 732        }
 733    }
 734}
 735
 736impl<T: Item> Default for SumTree<T> {
 737    fn default() -> Self {
 738        Self::new()
 739    }
 740}
 741
 742#[derive(Clone, Debug)]
 743pub enum Node<T: Item> {
 744    Internal {
 745        height: u8,
 746        summary: T::Summary,
 747        child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
 748        child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }>,
 749    },
 750    Leaf {
 751        summary: T::Summary,
 752        items: ArrayVec<T, { 2 * TREE_BASE }>,
 753        item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
 754    },
 755}
 756
 757impl<T: Item> Node<T> {
 758    fn is_leaf(&self) -> bool {
 759        matches!(self, Node::Leaf { .. })
 760    }
 761
 762    fn height(&self) -> u8 {
 763        match self {
 764            Node::Internal { height, .. } => *height,
 765            Node::Leaf { .. } => 0,
 766        }
 767    }
 768
 769    fn summary(&self) -> &T::Summary {
 770        match self {
 771            Node::Internal { summary, .. } => summary,
 772            Node::Leaf { summary, .. } => summary,
 773        }
 774    }
 775
 776    fn child_summaries(&self) -> &[T::Summary] {
 777        match self {
 778            Node::Internal {
 779                child_summaries, ..
 780            } => child_summaries.as_slice(),
 781            Node::Leaf { item_summaries, .. } => item_summaries.as_slice(),
 782        }
 783    }
 784
 785    fn child_trees(&self) -> &ArrayVec<SumTree<T>, { 2 * TREE_BASE }> {
 786        match self {
 787            Node::Internal { child_trees, .. } => child_trees,
 788            Node::Leaf { .. } => panic!("Leaf nodes have no child trees"),
 789        }
 790    }
 791
 792    fn items(&self) -> &ArrayVec<T, { 2 * TREE_BASE }> {
 793        match self {
 794            Node::Leaf { items, .. } => items,
 795            Node::Internal { .. } => panic!("Internal nodes have no items"),
 796        }
 797    }
 798
 799    fn is_underflowing(&self) -> bool {
 800        match self {
 801            Node::Internal { child_trees, .. } => child_trees.len() < TREE_BASE,
 802            Node::Leaf { items, .. } => items.len() < TREE_BASE,
 803        }
 804    }
 805}
 806
 807#[derive(Debug)]
 808pub enum Edit<T: KeyedItem> {
 809    Insert(T),
 810    Remove(T::Key),
 811}
 812
 813impl<T: KeyedItem> Edit<T> {
 814    fn key(&self) -> T::Key {
 815        match self {
 816            Edit::Insert(item) => item.key(),
 817            Edit::Remove(key) => key.clone(),
 818        }
 819    }
 820}
 821
 822fn sum<'a, T, I>(iter: I, cx: &T::Context) -> T
 823where
 824    T: 'a + Summary,
 825    I: Iterator<Item = &'a T>,
 826{
 827    let mut sum = T::default();
 828    for value in iter {
 829        sum.add_summary(value, cx);
 830    }
 831    sum
 832}
 833
 834#[cfg(test)]
 835mod tests {
 836    use super::*;
 837    use rand::{distributions, prelude::*};
 838    use std::cmp;
 839
 840    #[ctor::ctor]
 841    fn init_logger() {
 842        if std::env::var("RUST_LOG").is_ok() {
 843            env_logger::init();
 844        }
 845    }
 846
 847    #[test]
 848    fn test_extend_and_push_tree() {
 849        let mut tree1 = SumTree::new();
 850        tree1.extend(0..20, &());
 851
 852        let mut tree2 = SumTree::new();
 853        tree2.extend(50..100, &());
 854
 855        tree1.append(tree2, &());
 856        assert_eq!(
 857            tree1.items(&()),
 858            (0..20).chain(50..100).collect::<Vec<u8>>()
 859        );
 860    }
 861
 862    #[test]
 863    fn test_random() {
 864        let mut starting_seed = 0;
 865        if let Ok(value) = std::env::var("SEED") {
 866            starting_seed = value.parse().expect("invalid SEED variable");
 867        }
 868        let mut num_iterations = 100;
 869        if let Ok(value) = std::env::var("ITERATIONS") {
 870            num_iterations = value.parse().expect("invalid ITERATIONS variable");
 871        }
 872        let num_operations = std::env::var("OPERATIONS")
 873            .map_or(5, |o| o.parse().expect("invalid OPERATIONS variable"));
 874
 875        for seed in starting_seed..(starting_seed + num_iterations) {
 876            eprintln!("seed = {}", seed);
 877            let mut rng = StdRng::seed_from_u64(seed);
 878
 879            let rng = &mut rng;
 880            let mut tree = SumTree::<u8>::new();
 881            let count = rng.gen_range(0..10);
 882            if rng.gen() {
 883                tree.extend(rng.sample_iter(distributions::Standard).take(count), &());
 884            } else {
 885                let items = rng
 886                    .sample_iter(distributions::Standard)
 887                    .take(count)
 888                    .collect::<Vec<_>>();
 889                tree.par_extend(items, &());
 890            }
 891
 892            for _ in 0..num_operations {
 893                let splice_end = rng.gen_range(0..tree.extent::<Count>(&()).0 + 1);
 894                let splice_start = rng.gen_range(0..splice_end + 1);
 895                let count = rng.gen_range(0..10);
 896                let tree_end = tree.extent::<Count>(&());
 897                let new_items = rng
 898                    .sample_iter(distributions::Standard)
 899                    .take(count)
 900                    .collect::<Vec<u8>>();
 901
 902                let mut reference_items = tree.items(&());
 903                reference_items.splice(splice_start..splice_end, new_items.clone());
 904
 905                tree = {
 906                    let mut cursor = tree.cursor::<Count>();
 907                    let mut new_tree = cursor.slice(&Count(splice_start), Bias::Right, &());
 908                    if rng.gen() {
 909                        new_tree.extend(new_items, &());
 910                    } else {
 911                        new_tree.par_extend(new_items, &());
 912                    }
 913                    cursor.seek(&Count(splice_end), Bias::Right, &());
 914                    new_tree.append(cursor.slice(&tree_end, Bias::Right, &()), &());
 915                    new_tree
 916                };
 917
 918                assert_eq!(tree.items(&()), reference_items);
 919                assert_eq!(
 920                    tree.iter().collect::<Vec<_>>(),
 921                    tree.cursor::<()>().collect::<Vec<_>>()
 922                );
 923
 924                log::info!("tree items: {:?}", tree.items(&()));
 925
 926                let mut filter_cursor = tree.filter::<_, Count>(|summary| summary.contains_even);
 927                let expected_filtered_items = tree
 928                    .items(&())
 929                    .into_iter()
 930                    .enumerate()
 931                    .filter(|(_, item)| (item & 1) == 0)
 932                    .collect::<Vec<_>>();
 933
 934                let mut item_ix = if rng.gen() {
 935                    filter_cursor.next(&());
 936                    0
 937                } else {
 938                    filter_cursor.prev(&());
 939                    expected_filtered_items.len().saturating_sub(1)
 940                };
 941                while item_ix < expected_filtered_items.len() {
 942                    log::info!("filter_cursor, item_ix: {}", item_ix);
 943                    let actual_item = filter_cursor.item().unwrap();
 944                    let (reference_index, reference_item) = expected_filtered_items[item_ix];
 945                    assert_eq!(actual_item, &reference_item);
 946                    assert_eq!(filter_cursor.start().0, reference_index);
 947                    log::info!("next");
 948                    filter_cursor.next(&());
 949                    item_ix += 1;
 950
 951                    while item_ix > 0 && rng.gen_bool(0.2) {
 952                        log::info!("prev");
 953                        filter_cursor.prev(&());
 954                        item_ix -= 1;
 955
 956                        if item_ix == 0 && rng.gen_bool(0.2) {
 957                            filter_cursor.prev(&());
 958                            assert_eq!(filter_cursor.item(), None);
 959                            assert_eq!(filter_cursor.start().0, 0);
 960                            filter_cursor.next(&());
 961                        }
 962                    }
 963                }
 964                assert_eq!(filter_cursor.item(), None);
 965
 966                let mut before_start = false;
 967                let mut cursor = tree.cursor::<Count>();
 968                let start_pos = rng.gen_range(0..=reference_items.len());
 969                cursor.seek(&Count(start_pos), Bias::Right, &());
 970                let mut pos = rng.gen_range(start_pos..=reference_items.len());
 971                cursor.seek_forward(&Count(pos), Bias::Right, &());
 972
 973                for i in 0..10 {
 974                    assert_eq!(cursor.start().0, pos);
 975
 976                    if pos > 0 {
 977                        assert_eq!(cursor.prev_item().unwrap(), &reference_items[pos - 1]);
 978                    } else {
 979                        assert_eq!(cursor.prev_item(), None);
 980                    }
 981
 982                    if pos < reference_items.len() && !before_start {
 983                        assert_eq!(cursor.item().unwrap(), &reference_items[pos]);
 984                    } else {
 985                        assert_eq!(cursor.item(), None);
 986                    }
 987
 988                    if before_start {
 989                        assert_eq!(cursor.next_item(), reference_items.first());
 990                    } else if pos + 1 < reference_items.len() {
 991                        assert_eq!(cursor.next_item().unwrap(), &reference_items[pos + 1]);
 992                    } else {
 993                        assert_eq!(cursor.next_item(), None);
 994                    }
 995
 996                    if i < 5 {
 997                        cursor.next(&());
 998                        if pos < reference_items.len() {
 999                            pos += 1;
1000                            before_start = false;
1001                        }
1002                    } else {
1003                        cursor.prev(&());
1004                        if pos == 0 {
1005                            before_start = true;
1006                        }
1007                        pos = pos.saturating_sub(1);
1008                    }
1009                }
1010            }
1011
1012            for _ in 0..10 {
1013                let end = rng.gen_range(0..tree.extent::<Count>(&()).0 + 1);
1014                let start = rng.gen_range(0..end + 1);
1015                let start_bias = if rng.gen() { Bias::Left } else { Bias::Right };
1016                let end_bias = if rng.gen() { Bias::Left } else { Bias::Right };
1017
1018                let mut cursor = tree.cursor::<Count>();
1019                cursor.seek(&Count(start), start_bias, &());
1020                let slice = cursor.slice(&Count(end), end_bias, &());
1021
1022                cursor.seek(&Count(start), start_bias, &());
1023                let summary = cursor.summary::<_, Sum>(&Count(end), end_bias, &());
1024
1025                assert_eq!(summary.0, slice.summary().sum);
1026            }
1027        }
1028    }
1029
1030    #[test]
1031    fn test_cursor() {
1032        // Empty tree
1033        let tree = SumTree::<u8>::new();
1034        let mut cursor = tree.cursor::<IntegersSummary>();
1035        assert_eq!(
1036            cursor.slice(&Count(0), Bias::Right, &()).items(&()),
1037            Vec::<u8>::new()
1038        );
1039        assert_eq!(cursor.item(), None);
1040        assert_eq!(cursor.prev_item(), None);
1041        assert_eq!(cursor.next_item(), None);
1042        assert_eq!(cursor.start().sum, 0);
1043        cursor.prev(&());
1044        assert_eq!(cursor.item(), None);
1045        assert_eq!(cursor.prev_item(), None);
1046        assert_eq!(cursor.next_item(), None);
1047        assert_eq!(cursor.start().sum, 0);
1048        cursor.next(&());
1049        assert_eq!(cursor.item(), None);
1050        assert_eq!(cursor.prev_item(), None);
1051        assert_eq!(cursor.next_item(), None);
1052        assert_eq!(cursor.start().sum, 0);
1053
1054        // Single-element tree
1055        let mut tree = SumTree::<u8>::new();
1056        tree.extend(vec![1], &());
1057        let mut cursor = tree.cursor::<IntegersSummary>();
1058        assert_eq!(
1059            cursor.slice(&Count(0), Bias::Right, &()).items(&()),
1060            Vec::<u8>::new()
1061        );
1062        assert_eq!(cursor.item(), Some(&1));
1063        assert_eq!(cursor.prev_item(), None);
1064        assert_eq!(cursor.next_item(), None);
1065        assert_eq!(cursor.start().sum, 0);
1066
1067        cursor.next(&());
1068        assert_eq!(cursor.item(), None);
1069        assert_eq!(cursor.prev_item(), Some(&1));
1070        assert_eq!(cursor.next_item(), None);
1071        assert_eq!(cursor.start().sum, 1);
1072
1073        cursor.prev(&());
1074        assert_eq!(cursor.item(), Some(&1));
1075        assert_eq!(cursor.prev_item(), None);
1076        assert_eq!(cursor.next_item(), None);
1077        assert_eq!(cursor.start().sum, 0);
1078
1079        let mut cursor = tree.cursor::<IntegersSummary>();
1080        assert_eq!(cursor.slice(&Count(1), Bias::Right, &()).items(&()), [1]);
1081        assert_eq!(cursor.item(), None);
1082        assert_eq!(cursor.prev_item(), Some(&1));
1083        assert_eq!(cursor.next_item(), None);
1084        assert_eq!(cursor.start().sum, 1);
1085
1086        cursor.seek(&Count(0), Bias::Right, &());
1087        assert_eq!(
1088            cursor
1089                .slice(&tree.extent::<Count>(&()), Bias::Right, &())
1090                .items(&()),
1091            [1]
1092        );
1093        assert_eq!(cursor.item(), None);
1094        assert_eq!(cursor.prev_item(), Some(&1));
1095        assert_eq!(cursor.next_item(), None);
1096        assert_eq!(cursor.start().sum, 1);
1097
1098        // Multiple-element tree
1099        let mut tree = SumTree::new();
1100        tree.extend(vec![1, 2, 3, 4, 5, 6], &());
1101        let mut cursor = tree.cursor::<IntegersSummary>();
1102
1103        assert_eq!(cursor.slice(&Count(2), Bias::Right, &()).items(&()), [1, 2]);
1104        assert_eq!(cursor.item(), Some(&3));
1105        assert_eq!(cursor.prev_item(), Some(&2));
1106        assert_eq!(cursor.next_item(), Some(&4));
1107        assert_eq!(cursor.start().sum, 3);
1108
1109        cursor.next(&());
1110        assert_eq!(cursor.item(), Some(&4));
1111        assert_eq!(cursor.prev_item(), Some(&3));
1112        assert_eq!(cursor.next_item(), Some(&5));
1113        assert_eq!(cursor.start().sum, 6);
1114
1115        cursor.next(&());
1116        assert_eq!(cursor.item(), Some(&5));
1117        assert_eq!(cursor.prev_item(), Some(&4));
1118        assert_eq!(cursor.next_item(), Some(&6));
1119        assert_eq!(cursor.start().sum, 10);
1120
1121        cursor.next(&());
1122        assert_eq!(cursor.item(), Some(&6));
1123        assert_eq!(cursor.prev_item(), Some(&5));
1124        assert_eq!(cursor.next_item(), None);
1125        assert_eq!(cursor.start().sum, 15);
1126
1127        cursor.next(&());
1128        cursor.next(&());
1129        assert_eq!(cursor.item(), None);
1130        assert_eq!(cursor.prev_item(), Some(&6));
1131        assert_eq!(cursor.next_item(), None);
1132        assert_eq!(cursor.start().sum, 21);
1133
1134        cursor.prev(&());
1135        assert_eq!(cursor.item(), Some(&6));
1136        assert_eq!(cursor.prev_item(), Some(&5));
1137        assert_eq!(cursor.next_item(), None);
1138        assert_eq!(cursor.start().sum, 15);
1139
1140        cursor.prev(&());
1141        assert_eq!(cursor.item(), Some(&5));
1142        assert_eq!(cursor.prev_item(), Some(&4));
1143        assert_eq!(cursor.next_item(), Some(&6));
1144        assert_eq!(cursor.start().sum, 10);
1145
1146        cursor.prev(&());
1147        assert_eq!(cursor.item(), Some(&4));
1148        assert_eq!(cursor.prev_item(), Some(&3));
1149        assert_eq!(cursor.next_item(), Some(&5));
1150        assert_eq!(cursor.start().sum, 6);
1151
1152        cursor.prev(&());
1153        assert_eq!(cursor.item(), Some(&3));
1154        assert_eq!(cursor.prev_item(), Some(&2));
1155        assert_eq!(cursor.next_item(), Some(&4));
1156        assert_eq!(cursor.start().sum, 3);
1157
1158        cursor.prev(&());
1159        assert_eq!(cursor.item(), Some(&2));
1160        assert_eq!(cursor.prev_item(), Some(&1));
1161        assert_eq!(cursor.next_item(), Some(&3));
1162        assert_eq!(cursor.start().sum, 1);
1163
1164        cursor.prev(&());
1165        assert_eq!(cursor.item(), Some(&1));
1166        assert_eq!(cursor.prev_item(), None);
1167        assert_eq!(cursor.next_item(), Some(&2));
1168        assert_eq!(cursor.start().sum, 0);
1169
1170        cursor.prev(&());
1171        assert_eq!(cursor.item(), None);
1172        assert_eq!(cursor.prev_item(), None);
1173        assert_eq!(cursor.next_item(), Some(&1));
1174        assert_eq!(cursor.start().sum, 0);
1175
1176        cursor.next(&());
1177        assert_eq!(cursor.item(), Some(&1));
1178        assert_eq!(cursor.prev_item(), None);
1179        assert_eq!(cursor.next_item(), Some(&2));
1180        assert_eq!(cursor.start().sum, 0);
1181
1182        let mut cursor = tree.cursor::<IntegersSummary>();
1183        assert_eq!(
1184            cursor
1185                .slice(&tree.extent::<Count>(&()), Bias::Right, &())
1186                .items(&()),
1187            tree.items(&())
1188        );
1189        assert_eq!(cursor.item(), None);
1190        assert_eq!(cursor.prev_item(), Some(&6));
1191        assert_eq!(cursor.next_item(), None);
1192        assert_eq!(cursor.start().sum, 21);
1193
1194        cursor.seek(&Count(3), Bias::Right, &());
1195        assert_eq!(
1196            cursor
1197                .slice(&tree.extent::<Count>(&()), Bias::Right, &())
1198                .items(&()),
1199            [4, 5, 6]
1200        );
1201        assert_eq!(cursor.item(), None);
1202        assert_eq!(cursor.prev_item(), Some(&6));
1203        assert_eq!(cursor.next_item(), None);
1204        assert_eq!(cursor.start().sum, 21);
1205
1206        // Seeking can bias left or right
1207        cursor.seek(&Count(1), Bias::Left, &());
1208        assert_eq!(cursor.item(), Some(&1));
1209        cursor.seek(&Count(1), Bias::Right, &());
1210        assert_eq!(cursor.item(), Some(&2));
1211
1212        // Slicing without resetting starts from where the cursor is parked at.
1213        cursor.seek(&Count(1), Bias::Right, &());
1214        assert_eq!(
1215            cursor.slice(&Count(3), Bias::Right, &()).items(&()),
1216            vec![2, 3]
1217        );
1218        assert_eq!(
1219            cursor.slice(&Count(6), Bias::Left, &()).items(&()),
1220            vec![4, 5]
1221        );
1222        assert_eq!(
1223            cursor.slice(&Count(6), Bias::Right, &()).items(&()),
1224            vec![6]
1225        );
1226    }
1227
1228    #[test]
1229    fn test_edit() {
1230        let mut tree = SumTree::<u8>::new();
1231
1232        let removed = tree.edit(vec![Edit::Insert(1), Edit::Insert(2), Edit::Insert(0)], &());
1233        assert_eq!(tree.items(&()), vec![0, 1, 2]);
1234        assert_eq!(removed, Vec::<u8>::new());
1235        assert_eq!(tree.get(&0, &()), Some(&0));
1236        assert_eq!(tree.get(&1, &()), Some(&1));
1237        assert_eq!(tree.get(&2, &()), Some(&2));
1238        assert_eq!(tree.get(&4, &()), None);
1239
1240        let removed = tree.edit(vec![Edit::Insert(2), Edit::Insert(4), Edit::Remove(0)], &());
1241        assert_eq!(tree.items(&()), vec![1, 2, 4]);
1242        assert_eq!(removed, vec![0, 2]);
1243        assert_eq!(tree.get(&0, &()), None);
1244        assert_eq!(tree.get(&1, &()), Some(&1));
1245        assert_eq!(tree.get(&2, &()), Some(&2));
1246        assert_eq!(tree.get(&4, &()), Some(&4));
1247    }
1248
1249    #[test]
1250    fn test_from_iter() {
1251        assert_eq!(
1252            SumTree::from_iter(0..100, &()).items(&()),
1253            (0..100).collect::<Vec<_>>()
1254        );
1255
1256        // Ensure `from_iter` works correctly when the given iterator restarts
1257        // after calling `next` if `None` was already returned.
1258        let mut ix = 0;
1259        let iterator = std::iter::from_fn(|| {
1260            ix = (ix + 1) % 2;
1261            if ix == 1 {
1262                Some(1)
1263            } else {
1264                None
1265            }
1266        });
1267        assert_eq!(SumTree::from_iter(iterator, &()).items(&()), vec![1]);
1268    }
1269
1270    #[derive(Clone, Default, Debug)]
1271    pub struct IntegersSummary {
1272        count: usize,
1273        sum: usize,
1274        contains_even: bool,
1275        max: u8,
1276    }
1277
1278    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1279    struct Count(usize);
1280
1281    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1282    struct Sum(usize);
1283
1284    impl Item for u8 {
1285        type Summary = IntegersSummary;
1286
1287        fn summary(&self) -> Self::Summary {
1288            IntegersSummary {
1289                count: 1,
1290                sum: *self as usize,
1291                contains_even: (*self & 1) == 0,
1292                max: *self,
1293            }
1294        }
1295    }
1296
1297    impl KeyedItem for u8 {
1298        type Key = u8;
1299
1300        fn key(&self) -> Self::Key {
1301            *self
1302        }
1303    }
1304
1305    impl Summary for IntegersSummary {
1306        type Context = ();
1307
1308        fn add_summary(&mut self, other: &Self, _: &()) {
1309            self.count += other.count;
1310            self.sum += other.sum;
1311            self.contains_even |= other.contains_even;
1312            self.max = cmp::max(self.max, other.max);
1313        }
1314    }
1315
1316    impl<'a> Dimension<'a, IntegersSummary> for u8 {
1317        fn add_summary(&mut self, summary: &IntegersSummary, _: &()) {
1318            *self = summary.max;
1319        }
1320    }
1321
1322    impl<'a> Dimension<'a, IntegersSummary> for Count {
1323        fn add_summary(&mut self, summary: &IntegersSummary, _: &()) {
1324            self.0 += summary.count;
1325        }
1326    }
1327
1328    impl<'a> SeekTarget<'a, IntegersSummary, IntegersSummary> for Count {
1329        fn cmp(&self, cursor_location: &IntegersSummary, _: &()) -> Ordering {
1330            self.0.cmp(&cursor_location.count)
1331        }
1332    }
1333
1334    impl<'a> Dimension<'a, IntegersSummary> for Sum {
1335        fn add_summary(&mut self, summary: &IntegersSummary, _: &()) {
1336            self.0 += summary.sum;
1337        }
1338    }
1339}