shaders.wgsl

  1struct GlobalParams {
  2    viewport_size: vec2<f32>,
  3    premultiplied_alpha: u32,
  4    pad: u32,
  5}
  6
  7var<uniform> globals: GlobalParams;
  8var t_sprite: texture_2d<f32>;
  9var s_sprite: sampler;
 10
 11const M_PI_F: f32 = 3.1415926;
 12const GRAYSCALE_FACTORS: vec3<f32> = vec3<f32>(0.2126, 0.7152, 0.0722);
 13
 14struct Bounds {
 15    origin: vec2<f32>,
 16    size: vec2<f32>,
 17}
 18
 19struct Corners {
 20    top_left: f32,
 21    top_right: f32,
 22    bottom_right: f32,
 23    bottom_left: f32,
 24}
 25
 26struct Edges {
 27    top: f32,
 28    right: f32,
 29    bottom: f32,
 30    left: f32,
 31}
 32
 33struct Hsla {
 34    h: f32,
 35    s: f32,
 36    l: f32,
 37    a: f32,
 38}
 39
 40struct LinearColorStop {
 41    color: Hsla,
 42    percentage: f32,
 43}
 44
 45struct Background {
 46    // 0u is Solid
 47    // 1u is LinearGradient
 48    tag: u32,
 49    // 0u is sRGB linear color
 50    // 1u is Oklab color
 51    color_space: u32,
 52    solid: Hsla,
 53    angle: f32,
 54    colors: array<LinearColorStop, 2>,
 55    pad: u32,
 56}
 57
 58struct AtlasTextureId {
 59    index: u32,
 60    kind: u32,
 61}
 62
 63struct AtlasBounds {
 64    origin: vec2<i32>,
 65    size: vec2<i32>,
 66}
 67
 68struct AtlasTile {
 69    texture_id: AtlasTextureId,
 70    tile_id: u32,
 71    padding: u32,
 72    bounds: AtlasBounds,
 73}
 74
 75struct TransformationMatrix {
 76    rotation_scale: mat2x2<f32>,
 77    translation: vec2<f32>,
 78}
 79
 80fn to_device_position_impl(position: vec2<f32>) -> vec4<f32> {
 81    let device_position = position / globals.viewport_size * vec2<f32>(2.0, -2.0) + vec2<f32>(-1.0, 1.0);
 82    return vec4<f32>(device_position, 0.0, 1.0);
 83}
 84
 85fn to_device_position(unit_vertex: vec2<f32>, bounds: Bounds) -> vec4<f32> {
 86    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 87    return to_device_position_impl(position);
 88}
 89
 90fn to_device_position_transformed(unit_vertex: vec2<f32>, bounds: Bounds, transform: TransformationMatrix) -> vec4<f32> {
 91    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 92    //Note: Rust side stores it as row-major, so transposing here
 93    let transformed = transpose(transform.rotation_scale) * position + transform.translation;
 94    return to_device_position_impl(transformed);
 95}
 96
 97fn to_tile_position(unit_vertex: vec2<f32>, tile: AtlasTile) -> vec2<f32> {
 98  let atlas_size = vec2<f32>(textureDimensions(t_sprite, 0));
 99  return (vec2<f32>(tile.bounds.origin) + unit_vertex * vec2<f32>(tile.bounds.size)) / atlas_size;
100}
101
102fn distance_from_clip_rect_impl(position: vec2<f32>, clip_bounds: Bounds) -> vec4<f32> {
103    let tl = position - clip_bounds.origin;
104    let br = clip_bounds.origin + clip_bounds.size - position;
105    return vec4<f32>(tl.x, br.x, tl.y, br.y);
106}
107
108fn distance_from_clip_rect(unit_vertex: vec2<f32>, bounds: Bounds, clip_bounds: Bounds) -> vec4<f32> {
109    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
110    return distance_from_clip_rect_impl(position, clip_bounds);
111}
112
113// https://gamedev.stackexchange.com/questions/92015/optimized-linear-to-srgb-glsl
114fn srgb_to_linear(srgb: vec3<f32>) -> vec3<f32> {
115    let cutoff = srgb < vec3<f32>(0.04045);
116    let higher = pow((srgb + vec3<f32>(0.055)) / vec3<f32>(1.055), vec3<f32>(2.4));
117    let lower = srgb / vec3<f32>(12.92);
118    return select(higher, lower, cutoff);
119}
120
121fn linear_to_srgb(linear: vec3<f32>) -> vec3<f32> {
122    let cutoff = linear < vec3<f32>(0.0031308);
123    let higher = vec3<f32>(1.055) * pow(linear, vec3<f32>(1.0 / 2.4)) - vec3<f32>(0.055);
124    let lower = linear * vec3<f32>(12.92);
125    return select(higher, lower, cutoff);
126}
127
128/// Convert a linear color to sRGBA space.
129fn linear_to_srgba(color: vec4<f32>) -> vec4<f32> {
130    return vec4<f32>(linear_to_srgb(color.rgb), color.a);
131}
132
133/// Convert a sRGBA color to linear space.
134fn srgba_to_linear(color: vec4<f32>) -> vec4<f32> {
135    return vec4<f32>(srgb_to_linear(color.rgb), color.a);
136}
137
138/// Hsla to linear RGBA conversion.
139fn hsla_to_rgba(hsla: Hsla) -> vec4<f32> {
140    let h = hsla.h * 6.0; // Now, it's an angle but scaled in [0, 6) range
141    let s = hsla.s;
142    let l = hsla.l;
143    let a = hsla.a;
144
145    let c = (1.0 - abs(2.0 * l - 1.0)) * s;
146    let x = c * (1.0 - abs(h % 2.0 - 1.0));
147    let m = l - c / 2.0;
148    var color = vec3<f32>(m);
149
150    if (h >= 0.0 && h < 1.0) {
151        color.r += c;
152        color.g += x;
153    } else if (h >= 1.0 && h < 2.0) {
154        color.r += x;
155        color.g += c;
156    } else if (h >= 2.0 && h < 3.0) {
157        color.g += c;
158        color.b += x;
159    } else if (h >= 3.0 && h < 4.0) {
160        color.g += x;
161        color.b += c;
162    } else if (h >= 4.0 && h < 5.0) {
163        color.r += x;
164        color.b += c;
165    } else {
166        color.r += c;
167        color.b += x;
168    }
169
170    // Input colors are assumed to be in sRGB space,
171    // but blending and rendering needs to happen in linear space.
172    // The output will be converted to sRGB by either the target
173    // texture format or the swapchain color space.
174    let linear = srgb_to_linear(color);
175    return vec4<f32>(linear, a);
176}
177
178/// Convert a linear sRGB to Oklab space.
179/// Reference: https://bottosson.github.io/posts/oklab/#converting-from-linear-srgb-to-oklab
180fn linear_srgb_to_oklab(color: vec4<f32>) -> vec4<f32> {
181	let l = 0.4122214708 * color.r + 0.5363325363 * color.g + 0.0514459929 * color.b;
182	let m = 0.2119034982 * color.r + 0.6806995451 * color.g + 0.1073969566 * color.b;
183	let s = 0.0883024619 * color.r + 0.2817188376 * color.g + 0.6299787005 * color.b;
184
185	let l_ = pow(l, 1.0 / 3.0);
186	let m_ = pow(m, 1.0 / 3.0);
187	let s_ = pow(s, 1.0 / 3.0);
188
189	return vec4<f32>(
190		0.2104542553 * l_ + 0.7936177850 * m_ - 0.0040720468 * s_,
191		1.9779984951 * l_ - 2.4285922050 * m_ + 0.4505937099 * s_,
192		0.0259040371 * l_ + 0.7827717662 * m_ - 0.8086757660 * s_,
193		color.a
194	);
195}
196
197/// Convert an Oklab color to linear sRGB space.
198fn oklab_to_linear_srgb(color: vec4<f32>) -> vec4<f32> {
199	let l_ = color.r + 0.3963377774 * color.g + 0.2158037573 * color.b;
200	let m_ = color.r - 0.1055613458 * color.g - 0.0638541728 * color.b;
201	let s_ = color.r - 0.0894841775 * color.g - 1.2914855480 * color.b;
202
203	let l = l_ * l_ * l_;
204	let m = m_ * m_ * m_;
205	let s = s_ * s_ * s_;
206
207	return vec4<f32>(
208		4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s,
209		-1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s,
210		-0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s,
211		color.a
212	);
213}
214
215fn over(below: vec4<f32>, above: vec4<f32>) -> vec4<f32> {
216    let alpha = above.a + below.a * (1.0 - above.a);
217    let color = (above.rgb * above.a + below.rgb * below.a * (1.0 - above.a)) / alpha;
218    return vec4<f32>(color, alpha);
219}
220
221// A standard gaussian function, used for weighting samples
222fn gaussian(x: f32, sigma: f32) -> f32{
223    return exp(-(x * x) / (2.0 * sigma * sigma)) / (sqrt(2.0 * M_PI_F) * sigma);
224}
225
226// This approximates the error function, needed for the gaussian integral
227fn erf(v: vec2<f32>) -> vec2<f32> {
228    let s = sign(v);
229    let a = abs(v);
230    let r1 = 1.0 + (0.278393 + (0.230389 + (0.000972 + 0.078108 * a) * a) * a) * a;
231    let r2 = r1 * r1;
232    return s - s / (r2 * r2);
233}
234
235fn blur_along_x(x: f32, y: f32, sigma: f32, corner: f32, half_size: vec2<f32>) -> f32 {
236  let delta = min(half_size.y - corner - abs(y), 0.0);
237  let curved = half_size.x - corner + sqrt(max(0.0, corner * corner - delta * delta));
238  let integral = 0.5 + 0.5 * erf((x + vec2<f32>(-curved, curved)) * (sqrt(0.5) / sigma));
239  return integral.y - integral.x;
240}
241
242fn pick_corner_radius(point: vec2<f32>, radii: Corners) -> f32 {
243    if (point.x < 0.0) {
244        if (point.y < 0.0) {
245            return radii.top_left;
246        } else {
247            return radii.bottom_left;
248        }
249    } else {
250        if (point.y < 0.0) {
251            return radii.top_right;
252        } else {
253            return radii.bottom_right;
254        }
255    }
256}
257
258fn quad_sdf(point: vec2<f32>, bounds: Bounds, corner_radii: Corners) -> f32 {
259    let half_size = bounds.size / 2.0;
260    let center = bounds.origin + half_size;
261    let center_to_point = point - center;
262    let corner_radius = pick_corner_radius(center_to_point, corner_radii);
263    let rounded_edge_to_point = abs(center_to_point) - half_size + corner_radius;
264    return length(max(vec2<f32>(0.0), rounded_edge_to_point)) +
265        min(0.0, max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
266        corner_radius;
267}
268
269// Abstract away the final color transformation based on the
270// target alpha compositing mode.
271fn blend_color(color: vec4<f32>, alpha_factor: f32) -> vec4<f32> {
272    let alpha = color.a * alpha_factor;
273    let multiplier = select(1.0, alpha, globals.premultiplied_alpha != 0u);
274    return vec4<f32>(color.rgb * multiplier, alpha);
275}
276
277
278struct GradientColor {
279    solid: vec4<f32>,
280    color0: vec4<f32>,
281    color1: vec4<f32>,
282}
283
284fn prepare_gradient_color(tag: u32, color_space: u32,
285    solid: Hsla, colors: array<LinearColorStop, 2>) -> GradientColor {
286    var result = GradientColor();
287
288    if (tag == 0u) {
289        result.solid = hsla_to_rgba(solid);
290    } else if (tag == 1u) {
291        // The hsla_to_rgba is returns a linear sRGB color
292        result.color0 = hsla_to_rgba(colors[0].color);
293        result.color1 = hsla_to_rgba(colors[1].color);
294
295        // Prepare color space in vertex for avoid conversion
296        // in fragment shader for performance reasons
297        if (color_space == 0u) {
298            // sRGB
299            result.color0 = linear_to_srgba(result.color0);
300            result.color1 = linear_to_srgba(result.color1);
301        } else if (color_space == 1u) {
302            // Oklab
303            result.color0 = linear_srgb_to_oklab(result.color0);
304            result.color1 = linear_srgb_to_oklab(result.color1);
305        }
306    }
307
308    return result;
309}
310
311fn gradient_color(background: Background, position: vec2<f32>, bounds: Bounds,
312    sold_color: vec4<f32>, color0: vec4<f32>, color1: vec4<f32>) -> vec4<f32> {
313    var background_color = vec4<f32>(0.0);
314
315    switch (background.tag) {
316        default: {
317            return sold_color;
318        }
319        case 1u: {
320            // Linear gradient background.
321            // -90 degrees to match the CSS gradient angle.
322            let radians = (background.angle % 360.0 - 90.0) * M_PI_F / 180.0;
323            var direction = vec2<f32>(cos(radians), sin(radians));
324            let stop0_percentage = background.colors[0].percentage;
325            let stop1_percentage = background.colors[1].percentage;
326
327            // Expand the short side to be the same as the long side
328            if (bounds.size.x > bounds.size.y) {
329                direction.y *= bounds.size.y / bounds.size.x;
330            } else {
331                direction.x *= bounds.size.x / bounds.size.y;
332            }
333
334            // Get the t value for the linear gradient with the color stop percentages.
335            let half_size = bounds.size / 2.0;
336            let center = bounds.origin + half_size;
337            let center_to_point = position - center;
338            var t = dot(center_to_point, direction) / length(direction);
339            // Check the direct to determine the use x or y
340            if (abs(direction.x) > abs(direction.y)) {
341                t = (t + half_size.x) / bounds.size.x;
342            } else {
343                t = (t + half_size.y) / bounds.size.y;
344            }
345
346            // Adjust t based on the stop percentages
347            t = (t - stop0_percentage) / (stop1_percentage - stop0_percentage);
348            t = clamp(t, 0.0, 1.0);
349
350            switch (background.color_space) {
351                default: {
352                    background_color = srgba_to_linear(mix(color0, color1, t));
353                }
354                case 1u: {
355                    let oklab_color = mix(color0, color1, t);
356                    background_color = oklab_to_linear_srgb(oklab_color);
357                }
358            }
359        }
360    }
361
362    return background_color;
363}
364
365// --- quads --- //
366
367struct Quad {
368    order: u32,
369    pad: u32,
370    bounds: Bounds,
371    content_mask: Bounds,
372    background: Background,
373    border_color: Hsla,
374    corner_radii: Corners,
375    border_widths: Edges,
376}
377var<storage, read> b_quads: array<Quad>;
378
379struct QuadVarying {
380    @builtin(position) position: vec4<f32>,
381    @location(0) @interpolate(flat) border_color: vec4<f32>,
382    @location(1) @interpolate(flat) quad_id: u32,
383    // TODO: use `clip_distance` once Naga supports it
384    @location(2) clip_distances: vec4<f32>,
385    @location(3) @interpolate(flat) background_solid: vec4<f32>,
386    @location(4) @interpolate(flat) background_color0: vec4<f32>,
387    @location(5) @interpolate(flat) background_color1: vec4<f32>,
388}
389
390@vertex
391fn vs_quad(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> QuadVarying {
392    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
393    let quad = b_quads[instance_id];
394
395    var out = QuadVarying();
396    out.position = to_device_position(unit_vertex, quad.bounds);
397
398    let gradient = prepare_gradient_color(
399        quad.background.tag,
400        quad.background.color_space,
401        quad.background.solid,
402        quad.background.colors
403    );
404    out.background_solid = gradient.solid;
405    out.background_color0 = gradient.color0;
406    out.background_color1 = gradient.color1;
407    out.border_color = hsla_to_rgba(quad.border_color);
408    out.quad_id = instance_id;
409    out.clip_distances = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask);
410    return out;
411}
412
413@fragment
414fn fs_quad(input: QuadVarying) -> @location(0) vec4<f32> {
415    // Alpha clip first, since we don't have `clip_distance`.
416    if (any(input.clip_distances < vec4<f32>(0.0))) {
417        return vec4<f32>(0.0);
418    }
419
420    let quad = b_quads[input.quad_id];
421    let half_size = quad.bounds.size / 2.0;
422    let center = quad.bounds.origin + half_size;
423    let center_to_point = input.position.xy - center;
424
425    let background_color = gradient_color(quad.background, input.position.xy, quad.bounds,
426        input.background_solid, input.background_color0, input.background_color1);
427
428    // Fast path when the quad is not rounded and doesn't have any border.
429    if (quad.corner_radii.top_left == 0.0 && quad.corner_radii.bottom_left == 0.0 &&
430        quad.corner_radii.top_right == 0.0 &&
431        quad.corner_radii.bottom_right == 0.0 && quad.border_widths.top == 0.0 &&
432        quad.border_widths.left == 0.0 && quad.border_widths.right == 0.0 &&
433        quad.border_widths.bottom == 0.0) {
434        return blend_color(background_color, 1.0);
435    }
436
437    let corner_radius = pick_corner_radius(center_to_point, quad.corner_radii);
438    let rounded_edge_to_point = abs(center_to_point) - half_size + corner_radius;
439    let distance =
440      length(max(vec2<f32>(0.0), rounded_edge_to_point)) +
441      min(0.0, max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
442      corner_radius;
443
444    let vertical_border = select(quad.border_widths.left, quad.border_widths.right, center_to_point.x > 0.0);
445    let horizontal_border = select(quad.border_widths.top, quad.border_widths.bottom, center_to_point.y > 0.0);
446    let inset_size = half_size - corner_radius - vec2<f32>(vertical_border, horizontal_border);
447    let point_to_inset_corner = abs(center_to_point) - inset_size;
448
449    var border_width = 0.0;
450    if (point_to_inset_corner.x < 0.0 && point_to_inset_corner.y < 0.0) {
451        border_width = 0.0;
452    } else if (point_to_inset_corner.y > point_to_inset_corner.x) {
453        border_width = horizontal_border;
454    } else {
455        border_width = vertical_border;
456    }
457
458    var color = background_color;
459    if (border_width > 0.0) {
460        let inset_distance = distance + border_width;
461        // Blend the border on top of the background and then linearly interpolate
462        // between the two as we slide inside the background.
463        let blended_border = over(background_color, input.border_color);
464        color = mix(blended_border, background_color,
465                    saturate(0.5 - inset_distance));
466    }
467
468    return blend_color(color, saturate(0.5 - distance));
469}
470
471// --- shadows --- //
472
473struct Shadow {
474    order: u32,
475    blur_radius: f32,
476    bounds: Bounds,
477    corner_radii: Corners,
478    content_mask: Bounds,
479    color: Hsla,
480}
481var<storage, read> b_shadows: array<Shadow>;
482
483struct ShadowVarying {
484    @builtin(position) position: vec4<f32>,
485    @location(0) @interpolate(flat) color: vec4<f32>,
486    @location(1) @interpolate(flat) shadow_id: u32,
487    //TODO: use `clip_distance` once Naga supports it
488    @location(3) clip_distances: vec4<f32>,
489}
490
491@vertex
492fn vs_shadow(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> ShadowVarying {
493    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
494    var shadow = b_shadows[instance_id];
495
496    let margin = 3.0 * shadow.blur_radius;
497    // Set the bounds of the shadow and adjust its size based on the shadow's
498    // spread radius to achieve the spreading effect
499    shadow.bounds.origin -= vec2<f32>(margin);
500    shadow.bounds.size += 2.0 * vec2<f32>(margin);
501
502    var out = ShadowVarying();
503    out.position = to_device_position(unit_vertex, shadow.bounds);
504    out.color = hsla_to_rgba(shadow.color);
505    out.shadow_id = instance_id;
506    out.clip_distances = distance_from_clip_rect(unit_vertex, shadow.bounds, shadow.content_mask);
507    return out;
508}
509
510@fragment
511fn fs_shadow(input: ShadowVarying) -> @location(0) vec4<f32> {
512    // Alpha clip first, since we don't have `clip_distance`.
513    if (any(input.clip_distances < vec4<f32>(0.0))) {
514        return vec4<f32>(0.0);
515    }
516
517    let shadow = b_shadows[input.shadow_id];
518    let half_size = shadow.bounds.size / 2.0;
519    let center = shadow.bounds.origin + half_size;
520    let center_to_point = input.position.xy - center;
521
522    let corner_radius = pick_corner_radius(center_to_point, shadow.corner_radii);
523
524    // The signal is only non-zero in a limited range, so don't waste samples
525    let low = center_to_point.y - half_size.y;
526    let high = center_to_point.y + half_size.y;
527    let start = clamp(-3.0 * shadow.blur_radius, low, high);
528    let end = clamp(3.0 * shadow.blur_radius, low, high);
529
530    // Accumulate samples (we can get away with surprisingly few samples)
531    let step = (end - start) / 4.0;
532    var y = start + step * 0.5;
533    var alpha = 0.0;
534    for (var i = 0; i < 4; i += 1) {
535        let blur = blur_along_x(center_to_point.x, center_to_point.y - y,
536            shadow.blur_radius, corner_radius, half_size);
537        alpha +=  blur * gaussian(y, shadow.blur_radius) * step;
538        y += step;
539    }
540
541    return blend_color(input.color, alpha);
542}
543
544// --- path rasterization --- //
545
546struct PathVertex {
547    xy_position: vec2<f32>,
548    st_position: vec2<f32>,
549    content_mask: Bounds,
550}
551var<storage, read> b_path_vertices: array<PathVertex>;
552
553struct PathRasterizationVarying {
554    @builtin(position) position: vec4<f32>,
555    @location(0) st_position: vec2<f32>,
556    //TODO: use `clip_distance` once Naga supports it
557    @location(3) clip_distances: vec4<f32>,
558}
559
560@vertex
561fn vs_path_rasterization(@builtin(vertex_index) vertex_id: u32) -> PathRasterizationVarying {
562    let v = b_path_vertices[vertex_id];
563
564    var out = PathRasterizationVarying();
565    out.position = to_device_position_impl(v.xy_position);
566    out.st_position = v.st_position;
567    out.clip_distances = distance_from_clip_rect_impl(v.xy_position, v.content_mask);
568    return out;
569}
570
571@fragment
572fn fs_path_rasterization(input: PathRasterizationVarying) -> @location(0) f32 {
573    let dx = dpdx(input.st_position);
574    let dy = dpdy(input.st_position);
575    if (any(input.clip_distances < vec4<f32>(0.0))) {
576        return 0.0;
577    }
578
579    let gradient = 2.0 * input.st_position.xx * vec2<f32>(dx.x, dy.x) - vec2<f32>(dx.y, dy.y);
580    let f = input.st_position.x * input.st_position.x - input.st_position.y;
581    let distance = f / length(gradient);
582    return saturate(0.5 - distance);
583}
584
585// --- paths --- //
586
587struct PathSprite {
588    bounds: Bounds,
589    color: Background,
590    tile: AtlasTile,
591}
592var<storage, read> b_path_sprites: array<PathSprite>;
593
594struct PathVarying {
595    @builtin(position) position: vec4<f32>,
596    @location(0) tile_position: vec2<f32>,
597    @location(1) @interpolate(flat) instance_id: u32,
598    @location(2) @interpolate(flat) color_solid: vec4<f32>,
599    @location(3) @interpolate(flat) color0: vec4<f32>,
600    @location(4) @interpolate(flat) color1: vec4<f32>,
601}
602
603@vertex
604fn vs_path(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PathVarying {
605    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
606    let sprite = b_path_sprites[instance_id];
607    // Don't apply content mask because it was already accounted for when rasterizing the path.
608
609    var out = PathVarying();
610    out.position = to_device_position(unit_vertex, sprite.bounds);
611    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
612    out.instance_id = instance_id;
613
614    let gradient = prepare_gradient_color(
615        sprite.color.tag,
616        sprite.color.color_space,
617        sprite.color.solid,
618        sprite.color.colors
619    );
620    out.color_solid = gradient.solid;
621    out.color0 = gradient.color0;
622    out.color1 = gradient.color1;
623    return out;
624}
625
626@fragment
627fn fs_path(input: PathVarying) -> @location(0) vec4<f32> {
628    let sample = textureSample(t_sprite, s_sprite, input.tile_position).r;
629    let mask = 1.0 - abs(1.0 - sample % 2.0);
630    let sprite = b_path_sprites[input.instance_id];
631    let background = sprite.color;
632    let color = gradient_color(background, input.position.xy, sprite.bounds,
633        input.color_solid, input.color0, input.color1);
634    return blend_color(color, mask);
635}
636
637// --- underlines --- //
638
639struct Underline {
640    order: u32,
641    pad: u32,
642    bounds: Bounds,
643    content_mask: Bounds,
644    color: Hsla,
645    thickness: f32,
646    wavy: u32,
647}
648var<storage, read> b_underlines: array<Underline>;
649
650struct UnderlineVarying {
651    @builtin(position) position: vec4<f32>,
652    @location(0) @interpolate(flat) color: vec4<f32>,
653    @location(1) @interpolate(flat) underline_id: u32,
654    //TODO: use `clip_distance` once Naga supports it
655    @location(3) clip_distances: vec4<f32>,
656}
657
658@vertex
659fn vs_underline(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> UnderlineVarying {
660    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
661    let underline = b_underlines[instance_id];
662
663    var out = UnderlineVarying();
664    out.position = to_device_position(unit_vertex, underline.bounds);
665    out.color = hsla_to_rgba(underline.color);
666    out.underline_id = instance_id;
667    out.clip_distances = distance_from_clip_rect(unit_vertex, underline.bounds, underline.content_mask);
668    return out;
669}
670
671@fragment
672fn fs_underline(input: UnderlineVarying) -> @location(0) vec4<f32> {
673    // Alpha clip first, since we don't have `clip_distance`.
674    if (any(input.clip_distances < vec4<f32>(0.0))) {
675        return vec4<f32>(0.0);
676    }
677
678    let underline = b_underlines[input.underline_id];
679    if ((underline.wavy & 0xFFu) == 0u)
680    {
681        return blend_color(input.color, input.color.a);
682    }
683
684    let half_thickness = underline.thickness * 0.5;
685    let st = (input.position.xy - underline.bounds.origin) / underline.bounds.size.y - vec2<f32>(0.0, 0.5);
686    let frequency = M_PI_F * 3.0 * underline.thickness / 3.0;
687    let amplitude = 1.0 / (4.0 * underline.thickness);
688    let sine = sin(st.x * frequency) * amplitude;
689    let dSine = cos(st.x * frequency) * amplitude * frequency;
690    let distance = (st.y - sine) / sqrt(1.0 + dSine * dSine);
691    let distance_in_pixels = distance * underline.bounds.size.y;
692    let distance_from_top_border = distance_in_pixels - half_thickness;
693    let distance_from_bottom_border = distance_in_pixels + half_thickness;
694    let alpha = saturate(0.5 - max(-distance_from_bottom_border, distance_from_top_border));
695    return blend_color(input.color, alpha * input.color.a);
696}
697
698// --- monochrome sprites --- //
699
700struct MonochromeSprite {
701    order: u32,
702    pad: u32,
703    bounds: Bounds,
704    content_mask: Bounds,
705    color: Hsla,
706    tile: AtlasTile,
707    transformation: TransformationMatrix,
708}
709var<storage, read> b_mono_sprites: array<MonochromeSprite>;
710
711struct MonoSpriteVarying {
712    @builtin(position) position: vec4<f32>,
713    @location(0) tile_position: vec2<f32>,
714    @location(1) @interpolate(flat) color: vec4<f32>,
715    @location(3) clip_distances: vec4<f32>,
716}
717
718@vertex
719fn vs_mono_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> MonoSpriteVarying {
720    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
721    let sprite = b_mono_sprites[instance_id];
722
723    var out = MonoSpriteVarying();
724    out.position = to_device_position_transformed(unit_vertex, sprite.bounds, sprite.transformation);
725
726    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
727    out.color = hsla_to_rgba(sprite.color);
728    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
729    return out;
730}
731
732@fragment
733fn fs_mono_sprite(input: MonoSpriteVarying) -> @location(0) vec4<f32> {
734    let sample = textureSample(t_sprite, s_sprite, input.tile_position).r;
735    // Alpha clip after using the derivatives.
736    if (any(input.clip_distances < vec4<f32>(0.0))) {
737        return vec4<f32>(0.0);
738    }
739    return blend_color(input.color, sample);
740}
741
742// --- polychrome sprites --- //
743
744struct PolychromeSprite {
745    order: u32,
746    pad: u32,
747    grayscale: u32,
748    opacity: f32,
749    bounds: Bounds,
750    content_mask: Bounds,
751    corner_radii: Corners,
752    tile: AtlasTile,
753}
754var<storage, read> b_poly_sprites: array<PolychromeSprite>;
755
756struct PolySpriteVarying {
757    @builtin(position) position: vec4<f32>,
758    @location(0) tile_position: vec2<f32>,
759    @location(1) @interpolate(flat) sprite_id: u32,
760    @location(3) clip_distances: vec4<f32>,
761}
762
763@vertex
764fn vs_poly_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PolySpriteVarying {
765    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
766    let sprite = b_poly_sprites[instance_id];
767
768    var out = PolySpriteVarying();
769    out.position = to_device_position(unit_vertex, sprite.bounds);
770    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
771    out.sprite_id = instance_id;
772    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
773    return out;
774}
775
776@fragment
777fn fs_poly_sprite(input: PolySpriteVarying) -> @location(0) vec4<f32> {
778    let sample = textureSample(t_sprite, s_sprite, input.tile_position);
779    // Alpha clip after using the derivatives.
780    if (any(input.clip_distances < vec4<f32>(0.0))) {
781        return vec4<f32>(0.0);
782    }
783
784    let sprite = b_poly_sprites[input.sprite_id];
785    let distance = quad_sdf(input.position.xy, sprite.bounds, sprite.corner_radii);
786
787    var color = sample;
788    if ((sprite.grayscale & 0xFFu) != 0u) {
789        let grayscale = dot(color.rgb, GRAYSCALE_FACTORS);
790        color = vec4<f32>(vec3<f32>(grayscale), sample.a);
791    }
792    return blend_color(color, sprite.opacity * saturate(0.5 - distance));
793}
794
795// --- surfaces --- //
796
797struct SurfaceParams {
798    bounds: Bounds,
799    content_mask: Bounds,
800}
801
802var<uniform> surface_locals: SurfaceParams;
803var t_y: texture_2d<f32>;
804var t_cb_cr: texture_2d<f32>;
805var s_surface: sampler;
806
807const ycbcr_to_RGB = mat4x4<f32>(
808    vec4<f32>( 1.0000f,  1.0000f,  1.0000f, 0.0),
809    vec4<f32>( 0.0000f, -0.3441f,  1.7720f, 0.0),
810    vec4<f32>( 1.4020f, -0.7141f,  0.0000f, 0.0),
811    vec4<f32>(-0.7010f,  0.5291f, -0.8860f, 1.0),
812);
813
814struct SurfaceVarying {
815    @builtin(position) position: vec4<f32>,
816    @location(0) texture_position: vec2<f32>,
817    @location(3) clip_distances: vec4<f32>,
818}
819
820@vertex
821fn vs_surface(@builtin(vertex_index) vertex_id: u32) -> SurfaceVarying {
822    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
823
824    var out = SurfaceVarying();
825    out.position = to_device_position(unit_vertex, surface_locals.bounds);
826    out.texture_position = unit_vertex;
827    out.clip_distances = distance_from_clip_rect(unit_vertex, surface_locals.bounds, surface_locals.content_mask);
828    return out;
829}
830
831@fragment
832fn fs_surface(input: SurfaceVarying) -> @location(0) vec4<f32> {
833    // Alpha clip after using the derivatives.
834    if (any(input.clip_distances < vec4<f32>(0.0))) {
835        return vec4<f32>(0.0);
836    }
837
838    let y_cb_cr = vec4<f32>(
839        textureSampleLevel(t_y, s_surface, input.texture_position, 0.0).r,
840        textureSampleLevel(t_cb_cr, s_surface, input.texture_position, 0.0).rg,
841        1.0);
842
843    return ycbcr_to_RGB * y_cb_cr;
844}