google.rs

  1use anyhow::{Context as _, Result, anyhow};
  2use collections::BTreeMap;
  3use credentials_provider::CredentialsProvider;
  4use editor::{Editor, EditorElement, EditorStyle};
  5use futures::{FutureExt, Stream, StreamExt, future::BoxFuture};
  6use google_ai::{
  7    FunctionDeclaration, GenerateContentResponse, GoogleModelMode, Part, SystemInstruction,
  8    ThinkingConfig, UsageMetadata,
  9};
 10use gpui::{
 11    AnyView, App, AsyncApp, Context, Entity, FontStyle, Subscription, Task, TextStyle, WhiteSpace,
 12};
 13use http_client::HttpClient;
 14use language_model::{
 15    AuthenticateError, LanguageModelCompletionError, LanguageModelCompletionEvent,
 16    LanguageModelToolChoice, LanguageModelToolSchemaFormat, LanguageModelToolUse,
 17    LanguageModelToolUseId, MessageContent, StopReason,
 18};
 19use language_model::{
 20    LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
 21    LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
 22    LanguageModelRequest, RateLimiter, Role,
 23};
 24use schemars::JsonSchema;
 25use serde::{Deserialize, Serialize};
 26use settings::{Settings, SettingsStore};
 27use std::pin::Pin;
 28use std::sync::{
 29    Arc,
 30    atomic::{self, AtomicU64},
 31};
 32use strum::IntoEnumIterator;
 33use theme::ThemeSettings;
 34use ui::{Icon, IconName, List, Tooltip, prelude::*};
 35use util::ResultExt;
 36
 37use crate::AllLanguageModelSettings;
 38use crate::ui::InstructionListItem;
 39
 40const PROVIDER_ID: &str = "google";
 41const PROVIDER_NAME: &str = "Google AI";
 42
 43#[derive(Default, Clone, Debug, PartialEq)]
 44pub struct GoogleSettings {
 45    pub api_url: String,
 46    pub available_models: Vec<AvailableModel>,
 47}
 48
 49#[derive(Clone, Copy, Debug, Default, PartialEq, Serialize, Deserialize, JsonSchema)]
 50#[serde(tag = "type", rename_all = "lowercase")]
 51pub enum ModelMode {
 52    #[default]
 53    Default,
 54    Thinking {
 55        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
 56        budget_tokens: Option<u32>,
 57    },
 58}
 59
 60impl From<ModelMode> for GoogleModelMode {
 61    fn from(value: ModelMode) -> Self {
 62        match value {
 63            ModelMode::Default => GoogleModelMode::Default,
 64            ModelMode::Thinking { budget_tokens } => GoogleModelMode::Thinking { budget_tokens },
 65        }
 66    }
 67}
 68
 69impl From<GoogleModelMode> for ModelMode {
 70    fn from(value: GoogleModelMode) -> Self {
 71        match value {
 72            GoogleModelMode::Default => ModelMode::Default,
 73            GoogleModelMode::Thinking { budget_tokens } => ModelMode::Thinking { budget_tokens },
 74        }
 75    }
 76}
 77
 78#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 79pub struct AvailableModel {
 80    name: String,
 81    display_name: Option<String>,
 82    max_tokens: usize,
 83    mode: Option<ModelMode>,
 84}
 85
 86pub struct GoogleLanguageModelProvider {
 87    http_client: Arc<dyn HttpClient>,
 88    state: gpui::Entity<State>,
 89}
 90
 91pub struct State {
 92    api_key: Option<String>,
 93    api_key_from_env: bool,
 94    _subscription: Subscription,
 95}
 96
 97const GOOGLE_AI_API_KEY_VAR: &str = "GOOGLE_AI_API_KEY";
 98
 99impl State {
100    fn is_authenticated(&self) -> bool {
101        self.api_key.is_some()
102    }
103
104    fn reset_api_key(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
105        let credentials_provider = <dyn CredentialsProvider>::global(cx);
106        let api_url = AllLanguageModelSettings::get_global(cx)
107            .google
108            .api_url
109            .clone();
110        cx.spawn(async move |this, cx| {
111            credentials_provider
112                .delete_credentials(&api_url, &cx)
113                .await
114                .log_err();
115            this.update(cx, |this, cx| {
116                this.api_key = None;
117                this.api_key_from_env = false;
118                cx.notify();
119            })
120        })
121    }
122
123    fn set_api_key(&mut self, api_key: String, cx: &mut Context<Self>) -> Task<Result<()>> {
124        let credentials_provider = <dyn CredentialsProvider>::global(cx);
125        let api_url = AllLanguageModelSettings::get_global(cx)
126            .google
127            .api_url
128            .clone();
129        cx.spawn(async move |this, cx| {
130            credentials_provider
131                .write_credentials(&api_url, "Bearer", api_key.as_bytes(), &cx)
132                .await?;
133            this.update(cx, |this, cx| {
134                this.api_key = Some(api_key);
135                cx.notify();
136            })
137        })
138    }
139
140    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
141        if self.is_authenticated() {
142            return Task::ready(Ok(()));
143        }
144
145        let credentials_provider = <dyn CredentialsProvider>::global(cx);
146        let api_url = AllLanguageModelSettings::get_global(cx)
147            .google
148            .api_url
149            .clone();
150
151        cx.spawn(async move |this, cx| {
152            let (api_key, from_env) = if let Ok(api_key) = std::env::var(GOOGLE_AI_API_KEY_VAR) {
153                (api_key, true)
154            } else {
155                let (_, api_key) = credentials_provider
156                    .read_credentials(&api_url, &cx)
157                    .await?
158                    .ok_or(AuthenticateError::CredentialsNotFound)?;
159                (
160                    String::from_utf8(api_key).context("invalid {PROVIDER_NAME} API key")?,
161                    false,
162                )
163            };
164
165            this.update(cx, |this, cx| {
166                this.api_key = Some(api_key);
167                this.api_key_from_env = from_env;
168                cx.notify();
169            })?;
170
171            Ok(())
172        })
173    }
174}
175
176impl GoogleLanguageModelProvider {
177    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
178        let state = cx.new(|cx| State {
179            api_key: None,
180            api_key_from_env: false,
181            _subscription: cx.observe_global::<SettingsStore>(|_, cx| {
182                cx.notify();
183            }),
184        });
185
186        Self { http_client, state }
187    }
188
189    fn create_language_model(&self, model: google_ai::Model) -> Arc<dyn LanguageModel> {
190        Arc::new(GoogleLanguageModel {
191            id: LanguageModelId::from(model.id().to_string()),
192            model,
193            state: self.state.clone(),
194            http_client: self.http_client.clone(),
195            request_limiter: RateLimiter::new(4),
196        })
197    }
198}
199
200impl LanguageModelProviderState for GoogleLanguageModelProvider {
201    type ObservableEntity = State;
202
203    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
204        Some(self.state.clone())
205    }
206}
207
208impl LanguageModelProvider for GoogleLanguageModelProvider {
209    fn id(&self) -> LanguageModelProviderId {
210        LanguageModelProviderId(PROVIDER_ID.into())
211    }
212
213    fn name(&self) -> LanguageModelProviderName {
214        LanguageModelProviderName(PROVIDER_NAME.into())
215    }
216
217    fn icon(&self) -> IconName {
218        IconName::AiGoogle
219    }
220
221    fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
222        Some(self.create_language_model(google_ai::Model::default()))
223    }
224
225    fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
226        Some(self.create_language_model(google_ai::Model::default_fast()))
227    }
228
229    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
230        let mut models = BTreeMap::default();
231
232        // Add base models from google_ai::Model::iter()
233        for model in google_ai::Model::iter() {
234            if !matches!(model, google_ai::Model::Custom { .. }) {
235                models.insert(model.id().to_string(), model);
236            }
237        }
238
239        // Override with available models from settings
240        for model in &AllLanguageModelSettings::get_global(cx)
241            .google
242            .available_models
243        {
244            models.insert(
245                model.name.clone(),
246                google_ai::Model::Custom {
247                    name: model.name.clone(),
248                    display_name: model.display_name.clone(),
249                    max_tokens: model.max_tokens,
250                    mode: model.mode.unwrap_or_default().into(),
251                },
252            );
253        }
254
255        models
256            .into_values()
257            .map(|model| {
258                Arc::new(GoogleLanguageModel {
259                    id: LanguageModelId::from(model.id().to_string()),
260                    model,
261                    state: self.state.clone(),
262                    http_client: self.http_client.clone(),
263                    request_limiter: RateLimiter::new(4),
264                }) as Arc<dyn LanguageModel>
265            })
266            .collect()
267    }
268
269    fn is_authenticated(&self, cx: &App) -> bool {
270        self.state.read(cx).is_authenticated()
271    }
272
273    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
274        self.state.update(cx, |state, cx| state.authenticate(cx))
275    }
276
277    fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView {
278        cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
279            .into()
280    }
281
282    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
283        self.state.update(cx, |state, cx| state.reset_api_key(cx))
284    }
285}
286
287pub struct GoogleLanguageModel {
288    id: LanguageModelId,
289    model: google_ai::Model,
290    state: gpui::Entity<State>,
291    http_client: Arc<dyn HttpClient>,
292    request_limiter: RateLimiter,
293}
294
295impl GoogleLanguageModel {
296    fn stream_completion(
297        &self,
298        request: google_ai::GenerateContentRequest,
299        cx: &AsyncApp,
300    ) -> BoxFuture<
301        'static,
302        Result<futures::stream::BoxStream<'static, Result<GenerateContentResponse>>>,
303    > {
304        let http_client = self.http_client.clone();
305
306        let Ok((api_key, api_url)) = cx.read_entity(&self.state, |state, cx| {
307            let settings = &AllLanguageModelSettings::get_global(cx).google;
308            (state.api_key.clone(), settings.api_url.clone())
309        }) else {
310            return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
311        };
312
313        async move {
314            let api_key = api_key.context("Missing Google API key")?;
315            let request = google_ai::stream_generate_content(
316                http_client.as_ref(),
317                &api_url,
318                &api_key,
319                request,
320            );
321            request.await.context("failed to stream completion")
322        }
323        .boxed()
324    }
325}
326
327impl LanguageModel for GoogleLanguageModel {
328    fn id(&self) -> LanguageModelId {
329        self.id.clone()
330    }
331
332    fn name(&self) -> LanguageModelName {
333        LanguageModelName::from(self.model.display_name().to_string())
334    }
335
336    fn provider_id(&self) -> LanguageModelProviderId {
337        LanguageModelProviderId(PROVIDER_ID.into())
338    }
339
340    fn provider_name(&self) -> LanguageModelProviderName {
341        LanguageModelProviderName(PROVIDER_NAME.into())
342    }
343
344    fn supports_tools(&self) -> bool {
345        self.model.supports_tools()
346    }
347
348    fn supports_images(&self) -> bool {
349        self.model.supports_images()
350    }
351
352    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
353        match choice {
354            LanguageModelToolChoice::Auto
355            | LanguageModelToolChoice::Any
356            | LanguageModelToolChoice::None => true,
357        }
358    }
359
360    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
361        LanguageModelToolSchemaFormat::JsonSchemaSubset
362    }
363
364    fn telemetry_id(&self) -> String {
365        format!("google/{}", self.model.request_id())
366    }
367
368    fn max_token_count(&self) -> usize {
369        self.model.max_token_count()
370    }
371
372    fn max_output_tokens(&self) -> Option<u32> {
373        self.model.max_output_tokens()
374    }
375
376    fn count_tokens(
377        &self,
378        request: LanguageModelRequest,
379        cx: &App,
380    ) -> BoxFuture<'static, Result<usize>> {
381        let model_id = self.model.request_id().to_string();
382        let request = into_google(request, model_id.clone(), self.model.mode());
383        let http_client = self.http_client.clone();
384        let api_key = self.state.read(cx).api_key.clone();
385
386        let settings = &AllLanguageModelSettings::get_global(cx).google;
387        let api_url = settings.api_url.clone();
388
389        async move {
390            let api_key = api_key.context("Missing Google API key")?;
391            let response = google_ai::count_tokens(
392                http_client.as_ref(),
393                &api_url,
394                &api_key,
395                google_ai::CountTokensRequest {
396                    generate_content_request: request,
397                },
398            )
399            .await?;
400            Ok(response.total_tokens)
401        }
402        .boxed()
403    }
404
405    fn stream_completion(
406        &self,
407        request: LanguageModelRequest,
408        cx: &AsyncApp,
409    ) -> BoxFuture<
410        'static,
411        Result<
412            futures::stream::BoxStream<
413                'static,
414                Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
415            >,
416            LanguageModelCompletionError,
417        >,
418    > {
419        let request = into_google(
420            request,
421            self.model.request_id().to_string(),
422            self.model.mode(),
423        );
424        let request = self.stream_completion(request, cx);
425        let future = self.request_limiter.stream(async move {
426            let response = request
427                .await
428                .map_err(|err| LanguageModelCompletionError::Other(anyhow!(err)))?;
429            Ok(GoogleEventMapper::new().map_stream(response))
430        });
431        async move { Ok(future.await?.boxed()) }.boxed()
432    }
433}
434
435pub fn into_google(
436    mut request: LanguageModelRequest,
437    model_id: String,
438    mode: GoogleModelMode,
439) -> google_ai::GenerateContentRequest {
440    fn map_content(content: Vec<MessageContent>) -> Vec<Part> {
441        content
442            .into_iter()
443            .flat_map(|content| match content {
444                language_model::MessageContent::Text(text)
445                | language_model::MessageContent::Thinking { text, .. } => {
446                    if !text.is_empty() {
447                        vec![Part::TextPart(google_ai::TextPart { text })]
448                    } else {
449                        vec![]
450                    }
451                }
452                language_model::MessageContent::RedactedThinking(_) => vec![],
453                language_model::MessageContent::Image(image) => {
454                    vec![Part::InlineDataPart(google_ai::InlineDataPart {
455                        inline_data: google_ai::GenerativeContentBlob {
456                            mime_type: "image/png".to_string(),
457                            data: image.source.to_string(),
458                        },
459                    })]
460                }
461                language_model::MessageContent::ToolUse(tool_use) => {
462                    vec![Part::FunctionCallPart(google_ai::FunctionCallPart {
463                        function_call: google_ai::FunctionCall {
464                            name: tool_use.name.to_string(),
465                            args: tool_use.input,
466                        },
467                    })]
468                }
469                language_model::MessageContent::ToolResult(tool_result) => {
470                    match tool_result.content {
471                        language_model::LanguageModelToolResultContent::Text(text) => {
472                            vec![Part::FunctionResponsePart(
473                                google_ai::FunctionResponsePart {
474                                    function_response: google_ai::FunctionResponse {
475                                        name: tool_result.tool_name.to_string(),
476                                        // The API expects a valid JSON object
477                                        response: serde_json::json!({
478                                            "output": text
479                                        }),
480                                    },
481                                },
482                            )]
483                        }
484                        language_model::LanguageModelToolResultContent::Image(image) => {
485                            vec![
486                                Part::FunctionResponsePart(google_ai::FunctionResponsePart {
487                                    function_response: google_ai::FunctionResponse {
488                                        name: tool_result.tool_name.to_string(),
489                                        // The API expects a valid JSON object
490                                        response: serde_json::json!({
491                                            "output": "Tool responded with an image"
492                                        }),
493                                    },
494                                }),
495                                Part::InlineDataPart(google_ai::InlineDataPart {
496                                    inline_data: google_ai::GenerativeContentBlob {
497                                        mime_type: "image/png".to_string(),
498                                        data: image.source.to_string(),
499                                    },
500                                }),
501                            ]
502                        }
503                    }
504                }
505            })
506            .collect()
507    }
508
509    let system_instructions = if request
510        .messages
511        .first()
512        .map_or(false, |msg| matches!(msg.role, Role::System))
513    {
514        let message = request.messages.remove(0);
515        Some(SystemInstruction {
516            parts: map_content(message.content),
517        })
518    } else {
519        None
520    };
521
522    google_ai::GenerateContentRequest {
523        model: google_ai::ModelName { model_id },
524        system_instruction: system_instructions,
525        contents: request
526            .messages
527            .into_iter()
528            .filter_map(|message| {
529                let parts = map_content(message.content);
530                if parts.is_empty() {
531                    None
532                } else {
533                    Some(google_ai::Content {
534                        parts,
535                        role: match message.role {
536                            Role::User => google_ai::Role::User,
537                            Role::Assistant => google_ai::Role::Model,
538                            Role::System => google_ai::Role::User, // Google AI doesn't have a system role
539                        },
540                    })
541                }
542            })
543            .collect(),
544        generation_config: Some(google_ai::GenerationConfig {
545            candidate_count: Some(1),
546            stop_sequences: Some(request.stop),
547            max_output_tokens: None,
548            temperature: request.temperature.map(|t| t as f64).or(Some(1.0)),
549            thinking_config: match mode {
550                GoogleModelMode::Thinking { budget_tokens } => {
551                    budget_tokens.map(|thinking_budget| ThinkingConfig { thinking_budget })
552                }
553                GoogleModelMode::Default => None,
554            },
555            top_p: None,
556            top_k: None,
557        }),
558        safety_settings: None,
559        tools: (request.tools.len() > 0).then(|| {
560            vec![google_ai::Tool {
561                function_declarations: request
562                    .tools
563                    .into_iter()
564                    .map(|tool| FunctionDeclaration {
565                        name: tool.name,
566                        description: tool.description,
567                        parameters: tool.input_schema,
568                    })
569                    .collect(),
570            }]
571        }),
572        tool_config: request.tool_choice.map(|choice| google_ai::ToolConfig {
573            function_calling_config: google_ai::FunctionCallingConfig {
574                mode: match choice {
575                    LanguageModelToolChoice::Auto => google_ai::FunctionCallingMode::Auto,
576                    LanguageModelToolChoice::Any => google_ai::FunctionCallingMode::Any,
577                    LanguageModelToolChoice::None => google_ai::FunctionCallingMode::None,
578                },
579                allowed_function_names: None,
580            },
581        }),
582    }
583}
584
585pub struct GoogleEventMapper {
586    usage: UsageMetadata,
587    stop_reason: StopReason,
588}
589
590impl GoogleEventMapper {
591    pub fn new() -> Self {
592        Self {
593            usage: UsageMetadata::default(),
594            stop_reason: StopReason::EndTurn,
595        }
596    }
597
598    pub fn map_stream(
599        mut self,
600        events: Pin<Box<dyn Send + Stream<Item = Result<GenerateContentResponse>>>>,
601    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
602    {
603        events
604            .map(Some)
605            .chain(futures::stream::once(async { None }))
606            .flat_map(move |event| {
607                futures::stream::iter(match event {
608                    Some(Ok(event)) => self.map_event(event),
609                    Some(Err(error)) => {
610                        vec![Err(LanguageModelCompletionError::Other(anyhow!(error)))]
611                    }
612                    None => vec![Ok(LanguageModelCompletionEvent::Stop(self.stop_reason))],
613                })
614            })
615    }
616
617    pub fn map_event(
618        &mut self,
619        event: GenerateContentResponse,
620    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
621        static TOOL_CALL_COUNTER: AtomicU64 = AtomicU64::new(0);
622
623        let mut events: Vec<_> = Vec::new();
624        let mut wants_to_use_tool = false;
625        if let Some(usage_metadata) = event.usage_metadata {
626            update_usage(&mut self.usage, &usage_metadata);
627            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(
628                convert_usage(&self.usage),
629            )))
630        }
631        if let Some(candidates) = event.candidates {
632            for candidate in candidates {
633                if let Some(finish_reason) = candidate.finish_reason.as_deref() {
634                    self.stop_reason = match finish_reason {
635                        "STOP" => StopReason::EndTurn,
636                        "MAX_TOKENS" => StopReason::MaxTokens,
637                        _ => {
638                            log::error!("Unexpected google finish_reason: {finish_reason}");
639                            StopReason::EndTurn
640                        }
641                    };
642                }
643                candidate
644                    .content
645                    .parts
646                    .into_iter()
647                    .for_each(|part| match part {
648                        Part::TextPart(text_part) => {
649                            events.push(Ok(LanguageModelCompletionEvent::Text(text_part.text)))
650                        }
651                        Part::InlineDataPart(_) => {}
652                        Part::FunctionCallPart(function_call_part) => {
653                            wants_to_use_tool = true;
654                            let name: Arc<str> = function_call_part.function_call.name.into();
655                            let next_tool_id =
656                                TOOL_CALL_COUNTER.fetch_add(1, atomic::Ordering::SeqCst);
657                            let id: LanguageModelToolUseId =
658                                format!("{}-{}", name, next_tool_id).into();
659
660                            events.push(Ok(LanguageModelCompletionEvent::ToolUse(
661                                LanguageModelToolUse {
662                                    id,
663                                    name,
664                                    is_input_complete: true,
665                                    raw_input: function_call_part.function_call.args.to_string(),
666                                    input: function_call_part.function_call.args,
667                                },
668                            )));
669                        }
670                        Part::FunctionResponsePart(_) => {}
671                        Part::ThoughtPart(_) => {}
672                    });
673            }
674        }
675
676        // Even when Gemini wants to use a Tool, the API
677        // responds with `finish_reason: STOP`
678        if wants_to_use_tool {
679            self.stop_reason = StopReason::ToolUse;
680            events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
681        }
682        events
683    }
684}
685
686pub fn count_google_tokens(
687    request: LanguageModelRequest,
688    cx: &App,
689) -> BoxFuture<'static, Result<usize>> {
690    // We couldn't use the GoogleLanguageModelProvider to count tokens because the github copilot doesn't have the access to google_ai directly.
691    // So we have to use tokenizer from tiktoken_rs to count tokens.
692    cx.background_spawn(async move {
693        let messages = request
694            .messages
695            .into_iter()
696            .map(|message| tiktoken_rs::ChatCompletionRequestMessage {
697                role: match message.role {
698                    Role::User => "user".into(),
699                    Role::Assistant => "assistant".into(),
700                    Role::System => "system".into(),
701                },
702                content: Some(message.string_contents()),
703                name: None,
704                function_call: None,
705            })
706            .collect::<Vec<_>>();
707
708        // Tiktoken doesn't yet support these models, so we manually use the
709        // same tokenizer as GPT-4.
710        tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
711    })
712    .boxed()
713}
714
715fn update_usage(usage: &mut UsageMetadata, new: &UsageMetadata) {
716    if let Some(prompt_token_count) = new.prompt_token_count {
717        usage.prompt_token_count = Some(prompt_token_count);
718    }
719    if let Some(cached_content_token_count) = new.cached_content_token_count {
720        usage.cached_content_token_count = Some(cached_content_token_count);
721    }
722    if let Some(candidates_token_count) = new.candidates_token_count {
723        usage.candidates_token_count = Some(candidates_token_count);
724    }
725    if let Some(tool_use_prompt_token_count) = new.tool_use_prompt_token_count {
726        usage.tool_use_prompt_token_count = Some(tool_use_prompt_token_count);
727    }
728    if let Some(thoughts_token_count) = new.thoughts_token_count {
729        usage.thoughts_token_count = Some(thoughts_token_count);
730    }
731    if let Some(total_token_count) = new.total_token_count {
732        usage.total_token_count = Some(total_token_count);
733    }
734}
735
736fn convert_usage(usage: &UsageMetadata) -> language_model::TokenUsage {
737    let prompt_tokens = usage.prompt_token_count.unwrap_or(0) as u32;
738    let cached_tokens = usage.cached_content_token_count.unwrap_or(0) as u32;
739    let input_tokens = prompt_tokens - cached_tokens;
740    let output_tokens = usage.candidates_token_count.unwrap_or(0) as u32;
741
742    language_model::TokenUsage {
743        input_tokens,
744        output_tokens,
745        cache_read_input_tokens: cached_tokens,
746        cache_creation_input_tokens: 0,
747    }
748}
749
750struct ConfigurationView {
751    api_key_editor: Entity<Editor>,
752    state: gpui::Entity<State>,
753    load_credentials_task: Option<Task<()>>,
754}
755
756impl ConfigurationView {
757    fn new(state: gpui::Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
758        cx.observe(&state, |_, _, cx| {
759            cx.notify();
760        })
761        .detach();
762
763        let load_credentials_task = Some(cx.spawn_in(window, {
764            let state = state.clone();
765            async move |this, cx| {
766                if let Some(task) = state
767                    .update(cx, |state, cx| state.authenticate(cx))
768                    .log_err()
769                {
770                    // We don't log an error, because "not signed in" is also an error.
771                    let _ = task.await;
772                }
773                this.update(cx, |this, cx| {
774                    this.load_credentials_task = None;
775                    cx.notify();
776                })
777                .log_err();
778            }
779        }));
780
781        Self {
782            api_key_editor: cx.new(|cx| {
783                let mut editor = Editor::single_line(window, cx);
784                editor.set_placeholder_text("AIzaSy...", cx);
785                editor
786            }),
787            state,
788            load_credentials_task,
789        }
790    }
791
792    fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
793        let api_key = self.api_key_editor.read(cx).text(cx);
794        if api_key.is_empty() {
795            return;
796        }
797
798        let state = self.state.clone();
799        cx.spawn_in(window, async move |_, cx| {
800            state
801                .update(cx, |state, cx| state.set_api_key(api_key, cx))?
802                .await
803        })
804        .detach_and_log_err(cx);
805
806        cx.notify();
807    }
808
809    fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
810        self.api_key_editor
811            .update(cx, |editor, cx| editor.set_text("", window, cx));
812
813        let state = self.state.clone();
814        cx.spawn_in(window, async move |_, cx| {
815            state.update(cx, |state, cx| state.reset_api_key(cx))?.await
816        })
817        .detach_and_log_err(cx);
818
819        cx.notify();
820    }
821
822    fn render_api_key_editor(&self, cx: &mut Context<Self>) -> impl IntoElement {
823        let settings = ThemeSettings::get_global(cx);
824        let text_style = TextStyle {
825            color: cx.theme().colors().text,
826            font_family: settings.ui_font.family.clone(),
827            font_features: settings.ui_font.features.clone(),
828            font_fallbacks: settings.ui_font.fallbacks.clone(),
829            font_size: rems(0.875).into(),
830            font_weight: settings.ui_font.weight,
831            font_style: FontStyle::Normal,
832            line_height: relative(1.3),
833            white_space: WhiteSpace::Normal,
834            ..Default::default()
835        };
836        EditorElement::new(
837            &self.api_key_editor,
838            EditorStyle {
839                background: cx.theme().colors().editor_background,
840                local_player: cx.theme().players().local(),
841                text: text_style,
842                ..Default::default()
843            },
844        )
845    }
846
847    fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
848        !self.state.read(cx).is_authenticated()
849    }
850}
851
852impl Render for ConfigurationView {
853    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
854        let env_var_set = self.state.read(cx).api_key_from_env;
855
856        if self.load_credentials_task.is_some() {
857            div().child(Label::new("Loading credentials...")).into_any()
858        } else if self.should_render_editor(cx) {
859            v_flex()
860                .size_full()
861                .on_action(cx.listener(Self::save_api_key))
862                .child(Label::new("To use Zed's assistant with Google AI, you need to add an API key. Follow these steps:"))
863                .child(
864                    List::new()
865                        .child(InstructionListItem::new(
866                            "Create one by visiting",
867                            Some("Google AI's console"),
868                            Some("https://aistudio.google.com/app/apikey"),
869                        ))
870                        .child(InstructionListItem::text_only(
871                            "Paste your API key below and hit enter to start using the assistant",
872                        )),
873                )
874                .child(
875                    h_flex()
876                        .w_full()
877                        .my_2()
878                        .px_2()
879                        .py_1()
880                        .bg(cx.theme().colors().editor_background)
881                        .border_1()
882                        .border_color(cx.theme().colors().border)
883                        .rounded_sm()
884                        .child(self.render_api_key_editor(cx)),
885                )
886                .child(
887                    Label::new(
888                        format!("You can also assign the {GOOGLE_AI_API_KEY_VAR} environment variable and restart Zed."),
889                    )
890                    .size(LabelSize::Small).color(Color::Muted),
891                )
892                .into_any()
893        } else {
894            h_flex()
895                .mt_1()
896                .p_1()
897                .justify_between()
898                .rounded_md()
899                .border_1()
900                .border_color(cx.theme().colors().border)
901                .bg(cx.theme().colors().background)
902                .child(
903                    h_flex()
904                        .gap_1()
905                        .child(Icon::new(IconName::Check).color(Color::Success))
906                        .child(Label::new(if env_var_set {
907                            format!("API key set in {GOOGLE_AI_API_KEY_VAR} environment variable.")
908                        } else {
909                            "API key configured.".to_string()
910                        })),
911                )
912                .child(
913                    Button::new("reset-key", "Reset Key")
914                        .label_size(LabelSize::Small)
915                        .icon(Some(IconName::Trash))
916                        .icon_size(IconSize::Small)
917                        .icon_position(IconPosition::Start)
918                        .disabled(env_var_set)
919                        .when(env_var_set, |this| {
920                            this.tooltip(Tooltip::text(format!("To reset your API key, unset the {GOOGLE_AI_API_KEY_VAR} environment variable.")))
921                        })
922                        .on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx))),
923                )
924                .into_any()
925        }
926    }
927}