language_model.rs

  1mod model;
  2mod rate_limiter;
  3mod registry;
  4mod request;
  5mod role;
  6mod telemetry;
  7
  8#[cfg(any(test, feature = "test-support"))]
  9pub mod fake_provider;
 10
 11use anyhow::{Context as _, Result};
 12use client::Client;
 13use futures::FutureExt;
 14use futures::{StreamExt, future::BoxFuture, stream::BoxStream};
 15use gpui::{AnyElement, AnyView, App, AsyncApp, SharedString, Task, Window};
 16use http_client::http::{HeaderMap, HeaderValue};
 17use icons::IconName;
 18use parking_lot::Mutex;
 19use schemars::JsonSchema;
 20use serde::{Deserialize, Serialize, de::DeserializeOwned};
 21use std::fmt;
 22use std::ops::{Add, Sub};
 23use std::str::FromStr as _;
 24use std::sync::Arc;
 25use std::time::Duration;
 26use thiserror::Error;
 27use util::serde::is_default;
 28use zed_llm_client::{
 29    CompletionRequestStatus, MODEL_REQUESTS_USAGE_AMOUNT_HEADER_NAME,
 30    MODEL_REQUESTS_USAGE_LIMIT_HEADER_NAME, UsageLimit,
 31};
 32
 33pub use crate::model::*;
 34pub use crate::rate_limiter::*;
 35pub use crate::registry::*;
 36pub use crate::request::*;
 37pub use crate::role::*;
 38pub use crate::telemetry::*;
 39
 40pub const ZED_CLOUD_PROVIDER_ID: &str = "zed.dev";
 41
 42pub fn init(client: Arc<Client>, cx: &mut App) {
 43    init_settings(cx);
 44    RefreshLlmTokenListener::register(client.clone(), cx);
 45}
 46
 47pub fn init_settings(cx: &mut App) {
 48    registry::init(cx);
 49}
 50
 51/// Configuration for caching language model messages.
 52#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 53pub struct LanguageModelCacheConfiguration {
 54    pub max_cache_anchors: usize,
 55    pub should_speculate: bool,
 56    pub min_total_token: u64,
 57}
 58
 59/// A completion event from a language model.
 60#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)]
 61pub enum LanguageModelCompletionEvent {
 62    StatusUpdate(CompletionRequestStatus),
 63    Stop(StopReason),
 64    Text(String),
 65    Thinking {
 66        text: String,
 67        signature: Option<String>,
 68    },
 69    RedactedThinking {
 70        data: String,
 71    },
 72    ToolUse(LanguageModelToolUse),
 73    StartMessage {
 74        message_id: String,
 75    },
 76    UsageUpdate(TokenUsage),
 77}
 78
 79#[derive(Error, Debug)]
 80pub enum LanguageModelCompletionError {
 81    #[error("rate limit exceeded, retry after {0:?}")]
 82    RateLimit(Duration),
 83    #[error("received bad input JSON")]
 84    BadInputJson {
 85        id: LanguageModelToolUseId,
 86        tool_name: Arc<str>,
 87        raw_input: Arc<str>,
 88        json_parse_error: String,
 89    },
 90    #[error(transparent)]
 91    Other(#[from] anyhow::Error),
 92}
 93
 94/// Indicates the format used to define the input schema for a language model tool.
 95#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
 96pub enum LanguageModelToolSchemaFormat {
 97    /// A JSON schema, see https://json-schema.org
 98    JsonSchema,
 99    /// A subset of an OpenAPI 3.0 schema object supported by Google AI, see https://ai.google.dev/api/caching#Schema
100    JsonSchemaSubset,
101}
102
103#[derive(Debug, PartialEq, Clone, Copy, Serialize, Deserialize)]
104#[serde(rename_all = "snake_case")]
105pub enum StopReason {
106    EndTurn,
107    MaxTokens,
108    ToolUse,
109    Refusal,
110}
111
112#[derive(Debug, Clone, Copy)]
113pub struct RequestUsage {
114    pub limit: UsageLimit,
115    pub amount: i32,
116}
117
118impl RequestUsage {
119    pub fn from_headers(headers: &HeaderMap<HeaderValue>) -> Result<Self> {
120        let limit = headers
121            .get(MODEL_REQUESTS_USAGE_LIMIT_HEADER_NAME)
122            .with_context(|| {
123                format!("missing {MODEL_REQUESTS_USAGE_LIMIT_HEADER_NAME:?} header")
124            })?;
125        let limit = UsageLimit::from_str(limit.to_str()?)?;
126
127        let amount = headers
128            .get(MODEL_REQUESTS_USAGE_AMOUNT_HEADER_NAME)
129            .with_context(|| {
130                format!("missing {MODEL_REQUESTS_USAGE_AMOUNT_HEADER_NAME:?} header")
131            })?;
132        let amount = amount.to_str()?.parse::<i32>()?;
133
134        Ok(Self { limit, amount })
135    }
136}
137
138#[derive(Debug, PartialEq, Clone, Copy, Serialize, Deserialize, Default)]
139pub struct TokenUsage {
140    #[serde(default, skip_serializing_if = "is_default")]
141    pub input_tokens: u64,
142    #[serde(default, skip_serializing_if = "is_default")]
143    pub output_tokens: u64,
144    #[serde(default, skip_serializing_if = "is_default")]
145    pub cache_creation_input_tokens: u64,
146    #[serde(default, skip_serializing_if = "is_default")]
147    pub cache_read_input_tokens: u64,
148}
149
150impl TokenUsage {
151    pub fn total_tokens(&self) -> u64 {
152        self.input_tokens
153            + self.output_tokens
154            + self.cache_read_input_tokens
155            + self.cache_creation_input_tokens
156    }
157}
158
159impl Add<TokenUsage> for TokenUsage {
160    type Output = Self;
161
162    fn add(self, other: Self) -> Self {
163        Self {
164            input_tokens: self.input_tokens + other.input_tokens,
165            output_tokens: self.output_tokens + other.output_tokens,
166            cache_creation_input_tokens: self.cache_creation_input_tokens
167                + other.cache_creation_input_tokens,
168            cache_read_input_tokens: self.cache_read_input_tokens + other.cache_read_input_tokens,
169        }
170    }
171}
172
173impl Sub<TokenUsage> for TokenUsage {
174    type Output = Self;
175
176    fn sub(self, other: Self) -> Self {
177        Self {
178            input_tokens: self.input_tokens - other.input_tokens,
179            output_tokens: self.output_tokens - other.output_tokens,
180            cache_creation_input_tokens: self.cache_creation_input_tokens
181                - other.cache_creation_input_tokens,
182            cache_read_input_tokens: self.cache_read_input_tokens - other.cache_read_input_tokens,
183        }
184    }
185}
186
187#[derive(Debug, PartialEq, Eq, Hash, Clone, Serialize, Deserialize)]
188pub struct LanguageModelToolUseId(Arc<str>);
189
190impl fmt::Display for LanguageModelToolUseId {
191    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
192        write!(f, "{}", self.0)
193    }
194}
195
196impl<T> From<T> for LanguageModelToolUseId
197where
198    T: Into<Arc<str>>,
199{
200    fn from(value: T) -> Self {
201        Self(value.into())
202    }
203}
204
205#[derive(Debug, PartialEq, Eq, Hash, Clone, Serialize, Deserialize)]
206pub struct LanguageModelToolUse {
207    pub id: LanguageModelToolUseId,
208    pub name: Arc<str>,
209    pub raw_input: String,
210    pub input: serde_json::Value,
211    pub is_input_complete: bool,
212}
213
214pub struct LanguageModelTextStream {
215    pub message_id: Option<String>,
216    pub stream: BoxStream<'static, Result<String, LanguageModelCompletionError>>,
217    // Has complete token usage after the stream has finished
218    pub last_token_usage: Arc<Mutex<TokenUsage>>,
219}
220
221impl Default for LanguageModelTextStream {
222    fn default() -> Self {
223        Self {
224            message_id: None,
225            stream: Box::pin(futures::stream::empty()),
226            last_token_usage: Arc::new(Mutex::new(TokenUsage::default())),
227        }
228    }
229}
230
231pub trait LanguageModel: Send + Sync {
232    fn id(&self) -> LanguageModelId;
233    fn name(&self) -> LanguageModelName;
234    fn provider_id(&self) -> LanguageModelProviderId;
235    fn provider_name(&self) -> LanguageModelProviderName;
236    fn telemetry_id(&self) -> String;
237
238    fn api_key(&self, _cx: &App) -> Option<String> {
239        None
240    }
241
242    /// Whether this model supports images
243    fn supports_images(&self) -> bool;
244
245    /// Whether this model supports tools.
246    fn supports_tools(&self) -> bool;
247
248    /// Whether this model supports choosing which tool to use.
249    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool;
250
251    /// Returns whether this model supports "burn mode";
252    fn supports_max_mode(&self) -> bool {
253        false
254    }
255
256    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
257        LanguageModelToolSchemaFormat::JsonSchema
258    }
259
260    fn max_token_count(&self) -> u64;
261    fn max_output_tokens(&self) -> Option<u64> {
262        None
263    }
264
265    fn count_tokens(
266        &self,
267        request: LanguageModelRequest,
268        cx: &App,
269    ) -> BoxFuture<'static, Result<u64>>;
270
271    fn stream_completion(
272        &self,
273        request: LanguageModelRequest,
274        cx: &AsyncApp,
275    ) -> BoxFuture<
276        'static,
277        Result<
278            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
279            LanguageModelCompletionError,
280        >,
281    >;
282
283    fn stream_completion_text(
284        &self,
285        request: LanguageModelRequest,
286        cx: &AsyncApp,
287    ) -> BoxFuture<'static, Result<LanguageModelTextStream, LanguageModelCompletionError>> {
288        let future = self.stream_completion(request, cx);
289
290        async move {
291            let events = future.await?;
292            let mut events = events.fuse();
293            let mut message_id = None;
294            let mut first_item_text = None;
295            let last_token_usage = Arc::new(Mutex::new(TokenUsage::default()));
296
297            if let Some(first_event) = events.next().await {
298                match first_event {
299                    Ok(LanguageModelCompletionEvent::StartMessage { message_id: id }) => {
300                        message_id = Some(id.clone());
301                    }
302                    Ok(LanguageModelCompletionEvent::Text(text)) => {
303                        first_item_text = Some(text);
304                    }
305                    _ => (),
306                }
307            }
308
309            let stream = futures::stream::iter(first_item_text.map(Ok))
310                .chain(events.filter_map({
311                    let last_token_usage = last_token_usage.clone();
312                    move |result| {
313                        let last_token_usage = last_token_usage.clone();
314                        async move {
315                            match result {
316                                Ok(LanguageModelCompletionEvent::StatusUpdate { .. }) => None,
317                                Ok(LanguageModelCompletionEvent::StartMessage { .. }) => None,
318                                Ok(LanguageModelCompletionEvent::Text(text)) => Some(Ok(text)),
319                                Ok(LanguageModelCompletionEvent::Thinking { .. }) => None,
320                                Ok(LanguageModelCompletionEvent::RedactedThinking { .. }) => None,
321                                Ok(LanguageModelCompletionEvent::Stop(_)) => None,
322                                Ok(LanguageModelCompletionEvent::ToolUse(_)) => None,
323                                Ok(LanguageModelCompletionEvent::UsageUpdate(token_usage)) => {
324                                    *last_token_usage.lock() = token_usage;
325                                    None
326                                }
327                                Err(err) => Some(Err(err)),
328                            }
329                        }
330                    }
331                }))
332                .boxed();
333
334            Ok(LanguageModelTextStream {
335                message_id,
336                stream,
337                last_token_usage,
338            })
339        }
340        .boxed()
341    }
342
343    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
344        None
345    }
346
347    #[cfg(any(test, feature = "test-support"))]
348    fn as_fake(&self) -> &fake_provider::FakeLanguageModel {
349        unimplemented!()
350    }
351}
352
353#[derive(Debug, Error)]
354pub enum LanguageModelKnownError {
355    #[error("Context window limit exceeded ({tokens})")]
356    ContextWindowLimitExceeded { tokens: u64 },
357}
358
359pub trait LanguageModelTool: 'static + DeserializeOwned + JsonSchema {
360    fn name() -> String;
361    fn description() -> String;
362}
363
364/// An error that occurred when trying to authenticate the language model provider.
365#[derive(Debug, Error)]
366pub enum AuthenticateError {
367    #[error("credentials not found")]
368    CredentialsNotFound,
369    #[error(transparent)]
370    Other(#[from] anyhow::Error),
371}
372
373pub trait LanguageModelProvider: 'static {
374    fn id(&self) -> LanguageModelProviderId;
375    fn name(&self) -> LanguageModelProviderName;
376    fn icon(&self) -> IconName {
377        IconName::ZedAssistant
378    }
379    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>>;
380    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>>;
381    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>>;
382    fn recommended_models(&self, _cx: &App) -> Vec<Arc<dyn LanguageModel>> {
383        Vec::new()
384    }
385    fn is_authenticated(&self, cx: &App) -> bool;
386    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>>;
387    fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView;
388    fn must_accept_terms(&self, _cx: &App) -> bool {
389        false
390    }
391    fn render_accept_terms(
392        &self,
393        _view: LanguageModelProviderTosView,
394        _cx: &mut App,
395    ) -> Option<AnyElement> {
396        None
397    }
398    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>>;
399}
400
401#[derive(PartialEq, Eq)]
402pub enum LanguageModelProviderTosView {
403    /// When there are some past interactions in the Agent Panel.
404    ThreadtEmptyState,
405    /// When there are no past interactions in the Agent Panel.
406    ThreadFreshStart,
407    PromptEditorPopup,
408    Configuration,
409}
410
411pub trait LanguageModelProviderState: 'static {
412    type ObservableEntity;
413
414    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>>;
415
416    fn subscribe<T: 'static>(
417        &self,
418        cx: &mut gpui::Context<T>,
419        callback: impl Fn(&mut T, &mut gpui::Context<T>) + 'static,
420    ) -> Option<gpui::Subscription> {
421        let entity = self.observable_entity()?;
422        Some(cx.observe(&entity, move |this, _, cx| {
423            callback(this, cx);
424        }))
425    }
426}
427
428#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd, Serialize, Deserialize)]
429pub struct LanguageModelId(pub SharedString);
430
431#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd)]
432pub struct LanguageModelName(pub SharedString);
433
434#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd)]
435pub struct LanguageModelProviderId(pub SharedString);
436
437#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd)]
438pub struct LanguageModelProviderName(pub SharedString);
439
440impl fmt::Display for LanguageModelProviderId {
441    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
442        write!(f, "{}", self.0)
443    }
444}
445
446impl From<String> for LanguageModelId {
447    fn from(value: String) -> Self {
448        Self(SharedString::from(value))
449    }
450}
451
452impl From<String> for LanguageModelName {
453    fn from(value: String) -> Self {
454        Self(SharedString::from(value))
455    }
456}
457
458impl From<String> for LanguageModelProviderId {
459    fn from(value: String) -> Self {
460        Self(SharedString::from(value))
461    }
462}
463
464impl From<String> for LanguageModelProviderName {
465    fn from(value: String) -> Self {
466        Self(SharedString::from(value))
467    }
468}