cloud.rs

   1use ai_onboarding::YoungAccountBanner;
   2use anthropic::AnthropicModelMode;
   3use anyhow::{Context as _, Result, anyhow};
   4use chrono::{DateTime, Utc};
   5use client::{Client, ModelRequestUsage, UserStore, zed_urls};
   6use cloud_llm_client::{
   7    CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CURRENT_PLAN_HEADER_NAME, CompletionBody,
   8    CompletionEvent, CompletionRequestStatus, CountTokensBody, CountTokensResponse,
   9    EXPIRED_LLM_TOKEN_HEADER_NAME, ListModelsResponse, MODEL_REQUESTS_RESOURCE_HEADER_VALUE, Plan,
  10    PlanV1, PlanV2, SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME,
  11    SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME, TOOL_USE_LIMIT_REACHED_HEADER_NAME,
  12    ZED_VERSION_HEADER_NAME,
  13};
  14use feature_flags::{BillingV2FeatureFlag, FeatureFlagAppExt};
  15use futures::{
  16    AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream,
  17};
  18use google_ai::GoogleModelMode;
  19use gpui::{
  20    AnyElement, AnyView, App, AsyncApp, Context, Entity, SemanticVersion, Subscription, Task,
  21};
  22use http_client::http::{HeaderMap, HeaderValue};
  23use http_client::{AsyncBody, HttpClient, HttpRequestExt, Method, Response, StatusCode};
  24use language_model::{
  25    AuthenticateError, LanguageModel, LanguageModelCacheConfiguration,
  26    LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
  27    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  28    LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
  29    LanguageModelToolSchemaFormat, LlmApiToken, ModelRequestLimitReachedError,
  30    PaymentRequiredError, RateLimiter, RefreshLlmTokenListener,
  31};
  32use release_channel::AppVersion;
  33use schemars::JsonSchema;
  34use serde::{Deserialize, Serialize, de::DeserializeOwned};
  35use settings::SettingsStore;
  36pub use settings::ZedDotDevAvailableModel as AvailableModel;
  37pub use settings::ZedDotDevAvailableProvider as AvailableProvider;
  38use smol::io::{AsyncReadExt, BufReader};
  39use std::pin::Pin;
  40use std::str::FromStr as _;
  41use std::sync::Arc;
  42use std::time::Duration;
  43use thiserror::Error;
  44use ui::{TintColor, prelude::*};
  45use util::{ResultExt as _, maybe};
  46
  47use crate::provider::anthropic::{AnthropicEventMapper, count_anthropic_tokens, into_anthropic};
  48use crate::provider::google::{GoogleEventMapper, into_google};
  49use crate::provider::open_ai::{OpenAiEventMapper, count_open_ai_tokens, into_open_ai};
  50
  51const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID;
  52const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME;
  53
  54#[derive(Default, Clone, Debug, PartialEq)]
  55pub struct ZedDotDevSettings {
  56    pub available_models: Vec<AvailableModel>,
  57}
  58#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  59#[serde(tag = "type", rename_all = "lowercase")]
  60pub enum ModelMode {
  61    #[default]
  62    Default,
  63    Thinking {
  64        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  65        budget_tokens: Option<u32>,
  66    },
  67}
  68
  69impl From<ModelMode> for AnthropicModelMode {
  70    fn from(value: ModelMode) -> Self {
  71        match value {
  72            ModelMode::Default => AnthropicModelMode::Default,
  73            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
  74        }
  75    }
  76}
  77
  78pub struct CloudLanguageModelProvider {
  79    client: Arc<Client>,
  80    state: gpui::Entity<State>,
  81    _maintain_client_status: Task<()>,
  82}
  83
  84pub struct State {
  85    client: Arc<Client>,
  86    llm_api_token: LlmApiToken,
  87    user_store: Entity<UserStore>,
  88    status: client::Status,
  89    models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  90    default_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  91    default_fast_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  92    recommended_models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  93    _fetch_models_task: Task<()>,
  94    _settings_subscription: Subscription,
  95    _llm_token_subscription: Subscription,
  96}
  97
  98impl State {
  99    fn new(
 100        client: Arc<Client>,
 101        user_store: Entity<UserStore>,
 102        status: client::Status,
 103        cx: &mut Context<Self>,
 104    ) -> Self {
 105        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
 106        let mut current_user = user_store.read(cx).watch_current_user();
 107        Self {
 108            client: client.clone(),
 109            llm_api_token: LlmApiToken::default(),
 110            user_store,
 111            status,
 112            models: Vec::new(),
 113            default_model: None,
 114            default_fast_model: None,
 115            recommended_models: Vec::new(),
 116            _fetch_models_task: cx.spawn(async move |this, cx| {
 117                maybe!(async move {
 118                    let (client, llm_api_token) = this
 119                        .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?;
 120
 121                    while current_user.borrow().is_none() {
 122                        current_user.next().await;
 123                    }
 124
 125                    let response =
 126                        Self::fetch_models(client.clone(), llm_api_token.clone()).await?;
 127                    this.update(cx, |this, cx| this.update_models(response, cx))?;
 128                    anyhow::Ok(())
 129                })
 130                .await
 131                .context("failed to fetch Zed models")
 132                .log_err();
 133            }),
 134            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 135                cx.notify();
 136            }),
 137            _llm_token_subscription: cx.subscribe(
 138                &refresh_llm_token_listener,
 139                move |this, _listener, _event, cx| {
 140                    let client = this.client.clone();
 141                    let llm_api_token = this.llm_api_token.clone();
 142                    cx.spawn(async move |this, cx| {
 143                        llm_api_token.refresh(&client).await?;
 144                        let response = Self::fetch_models(client, llm_api_token).await?;
 145                        this.update(cx, |this, cx| {
 146                            this.update_models(response, cx);
 147                        })
 148                    })
 149                    .detach_and_log_err(cx);
 150                },
 151            ),
 152        }
 153    }
 154
 155    fn is_signed_out(&self, cx: &App) -> bool {
 156        self.user_store.read(cx).current_user().is_none()
 157    }
 158
 159    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 160        let client = self.client.clone();
 161        cx.spawn(async move |state, cx| {
 162            client.sign_in_with_optional_connect(true, cx).await?;
 163            state.update(cx, |_, cx| cx.notify())
 164        })
 165    }
 166    fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context<Self>) {
 167        let mut models = Vec::new();
 168
 169        for model in response.models {
 170            models.push(Arc::new(model.clone()));
 171
 172            // Right now we represent thinking variants of models as separate models on the client,
 173            // so we need to insert variants for any model that supports thinking.
 174            if model.supports_thinking {
 175                models.push(Arc::new(cloud_llm_client::LanguageModel {
 176                    id: cloud_llm_client::LanguageModelId(format!("{}-thinking", model.id).into()),
 177                    display_name: format!("{} Thinking", model.display_name),
 178                    ..model
 179                }));
 180            }
 181        }
 182
 183        self.default_model = models
 184            .iter()
 185            .find(|model| {
 186                response
 187                    .default_model
 188                    .as_ref()
 189                    .is_some_and(|default_model_id| &model.id == default_model_id)
 190            })
 191            .cloned();
 192        self.default_fast_model = models
 193            .iter()
 194            .find(|model| {
 195                response
 196                    .default_fast_model
 197                    .as_ref()
 198                    .is_some_and(|default_fast_model_id| &model.id == default_fast_model_id)
 199            })
 200            .cloned();
 201        self.recommended_models = response
 202            .recommended_models
 203            .iter()
 204            .filter_map(|id| models.iter().find(|model| &model.id == id))
 205            .cloned()
 206            .collect();
 207        self.models = models;
 208        cx.notify();
 209    }
 210
 211    async fn fetch_models(
 212        client: Arc<Client>,
 213        llm_api_token: LlmApiToken,
 214    ) -> Result<ListModelsResponse> {
 215        let http_client = &client.http_client();
 216        let token = llm_api_token.acquire(&client).await?;
 217
 218        let request = http_client::Request::builder()
 219            .method(Method::GET)
 220            .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref())
 221            .header("Authorization", format!("Bearer {token}"))
 222            .body(AsyncBody::empty())?;
 223        let mut response = http_client
 224            .send(request)
 225            .await
 226            .context("failed to send list models request")?;
 227
 228        if response.status().is_success() {
 229            let mut body = String::new();
 230            response.body_mut().read_to_string(&mut body).await?;
 231            Ok(serde_json::from_str(&body)?)
 232        } else {
 233            let mut body = String::new();
 234            response.body_mut().read_to_string(&mut body).await?;
 235            anyhow::bail!(
 236                "error listing models.\nStatus: {:?}\nBody: {body}",
 237                response.status(),
 238            );
 239        }
 240    }
 241}
 242
 243impl CloudLanguageModelProvider {
 244    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
 245        let mut status_rx = client.status();
 246        let status = *status_rx.borrow();
 247
 248        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
 249
 250        let state_ref = state.downgrade();
 251        let maintain_client_status = cx.spawn(async move |cx| {
 252            while let Some(status) = status_rx.next().await {
 253                if let Some(this) = state_ref.upgrade() {
 254                    _ = this.update(cx, |this, cx| {
 255                        if this.status != status {
 256                            this.status = status;
 257                            cx.notify();
 258                        }
 259                    });
 260                } else {
 261                    break;
 262                }
 263            }
 264        });
 265
 266        Self {
 267            client,
 268            state,
 269            _maintain_client_status: maintain_client_status,
 270        }
 271    }
 272
 273    fn create_language_model(
 274        &self,
 275        model: Arc<cloud_llm_client::LanguageModel>,
 276        llm_api_token: LlmApiToken,
 277    ) -> Arc<dyn LanguageModel> {
 278        Arc::new(CloudLanguageModel {
 279            id: LanguageModelId(SharedString::from(model.id.0.clone())),
 280            model,
 281            llm_api_token,
 282            client: self.client.clone(),
 283            request_limiter: RateLimiter::new(4),
 284        })
 285    }
 286}
 287
 288impl LanguageModelProviderState for CloudLanguageModelProvider {
 289    type ObservableEntity = State;
 290
 291    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
 292        Some(self.state.clone())
 293    }
 294}
 295
 296impl LanguageModelProvider for CloudLanguageModelProvider {
 297    fn id(&self) -> LanguageModelProviderId {
 298        PROVIDER_ID
 299    }
 300
 301    fn name(&self) -> LanguageModelProviderName {
 302        PROVIDER_NAME
 303    }
 304
 305    fn icon(&self) -> IconName {
 306        IconName::AiZed
 307    }
 308
 309    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 310        let default_model = self.state.read(cx).default_model.clone()?;
 311        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 312        Some(self.create_language_model(default_model, llm_api_token))
 313    }
 314
 315    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 316        let default_fast_model = self.state.read(cx).default_fast_model.clone()?;
 317        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 318        Some(self.create_language_model(default_fast_model, llm_api_token))
 319    }
 320
 321    fn recommended_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 322        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 323        self.state
 324            .read(cx)
 325            .recommended_models
 326            .iter()
 327            .cloned()
 328            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 329            .collect()
 330    }
 331
 332    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 333        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 334        self.state
 335            .read(cx)
 336            .models
 337            .iter()
 338            .cloned()
 339            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 340            .collect()
 341    }
 342
 343    fn is_authenticated(&self, cx: &App) -> bool {
 344        let state = self.state.read(cx);
 345        !state.is_signed_out(cx)
 346    }
 347
 348    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 349        Task::ready(Ok(()))
 350    }
 351
 352    fn configuration_view(
 353        &self,
 354        _target_agent: language_model::ConfigurationViewTargetAgent,
 355        _: &mut Window,
 356        cx: &mut App,
 357    ) -> AnyView {
 358        cx.new(|_| ConfigurationView::new(self.state.clone()))
 359            .into()
 360    }
 361
 362    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
 363        Task::ready(Ok(()))
 364    }
 365}
 366
 367pub struct CloudLanguageModel {
 368    id: LanguageModelId,
 369    model: Arc<cloud_llm_client::LanguageModel>,
 370    llm_api_token: LlmApiToken,
 371    client: Arc<Client>,
 372    request_limiter: RateLimiter,
 373}
 374
 375struct PerformLlmCompletionResponse {
 376    response: Response<AsyncBody>,
 377    usage: Option<ModelRequestUsage>,
 378    tool_use_limit_reached: bool,
 379    includes_status_messages: bool,
 380}
 381
 382impl CloudLanguageModel {
 383    async fn perform_llm_completion(
 384        client: Arc<Client>,
 385        llm_api_token: LlmApiToken,
 386        app_version: Option<SemanticVersion>,
 387        body: CompletionBody,
 388    ) -> Result<PerformLlmCompletionResponse> {
 389        let http_client = &client.http_client();
 390
 391        let mut token = llm_api_token.acquire(&client).await?;
 392        let mut refreshed_token = false;
 393
 394        loop {
 395            let request = http_client::Request::builder()
 396                .method(Method::POST)
 397                .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref())
 398                .when_some(app_version, |builder, app_version| {
 399                    builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string())
 400                })
 401                .header("Content-Type", "application/json")
 402                .header("Authorization", format!("Bearer {token}"))
 403                .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true")
 404                .body(serde_json::to_string(&body)?.into())?;
 405
 406            let mut response = http_client.send(request).await?;
 407            let status = response.status();
 408            if status.is_success() {
 409                let includes_status_messages = response
 410                    .headers()
 411                    .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME)
 412                    .is_some();
 413
 414                let tool_use_limit_reached = response
 415                    .headers()
 416                    .get(TOOL_USE_LIMIT_REACHED_HEADER_NAME)
 417                    .is_some();
 418
 419                let usage = if includes_status_messages {
 420                    None
 421                } else {
 422                    ModelRequestUsage::from_headers(response.headers()).ok()
 423                };
 424
 425                return Ok(PerformLlmCompletionResponse {
 426                    response,
 427                    usage,
 428                    includes_status_messages,
 429                    tool_use_limit_reached,
 430                });
 431            }
 432
 433            if !refreshed_token
 434                && response
 435                    .headers()
 436                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
 437                    .is_some()
 438            {
 439                token = llm_api_token.refresh(&client).await?;
 440                refreshed_token = true;
 441                continue;
 442            }
 443
 444            if status == StatusCode::FORBIDDEN
 445                && response
 446                    .headers()
 447                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 448                    .is_some()
 449            {
 450                if let Some(MODEL_REQUESTS_RESOURCE_HEADER_VALUE) = response
 451                    .headers()
 452                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 453                    .and_then(|resource| resource.to_str().ok())
 454                    && let Some(plan) = response
 455                        .headers()
 456                        .get(CURRENT_PLAN_HEADER_NAME)
 457                        .and_then(|plan| plan.to_str().ok())
 458                        .and_then(|plan| cloud_llm_client::PlanV1::from_str(plan).ok())
 459                        .map(Plan::V1)
 460                {
 461                    return Err(anyhow!(ModelRequestLimitReachedError { plan }));
 462                }
 463            } else if status == StatusCode::PAYMENT_REQUIRED {
 464                return Err(anyhow!(PaymentRequiredError));
 465            }
 466
 467            let mut body = String::new();
 468            let headers = response.headers().clone();
 469            response.body_mut().read_to_string(&mut body).await?;
 470            return Err(anyhow!(ApiError {
 471                status,
 472                body,
 473                headers
 474            }));
 475        }
 476    }
 477}
 478
 479#[derive(Debug, Error)]
 480#[error("cloud language model request failed with status {status}: {body}")]
 481struct ApiError {
 482    status: StatusCode,
 483    body: String,
 484    headers: HeaderMap<HeaderValue>,
 485}
 486
 487/// Represents error responses from Zed's cloud API.
 488///
 489/// Example JSON for an upstream HTTP error:
 490/// ```json
 491/// {
 492///   "code": "upstream_http_error",
 493///   "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout",
 494///   "upstream_status": 503
 495/// }
 496/// ```
 497#[derive(Debug, serde::Deserialize)]
 498struct CloudApiError {
 499    code: String,
 500    message: String,
 501    #[serde(default)]
 502    #[serde(deserialize_with = "deserialize_optional_status_code")]
 503    upstream_status: Option<StatusCode>,
 504    #[serde(default)]
 505    retry_after: Option<f64>,
 506}
 507
 508fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result<Option<StatusCode>, D::Error>
 509where
 510    D: serde::Deserializer<'de>,
 511{
 512    let opt: Option<u16> = Option::deserialize(deserializer)?;
 513    Ok(opt.and_then(|code| StatusCode::from_u16(code).ok()))
 514}
 515
 516impl From<ApiError> for LanguageModelCompletionError {
 517    fn from(error: ApiError) -> Self {
 518        if let Ok(cloud_error) = serde_json::from_str::<CloudApiError>(&error.body) {
 519            if cloud_error.code.starts_with("upstream_http_") {
 520                let status = if let Some(status) = cloud_error.upstream_status {
 521                    status
 522                } else if cloud_error.code.ends_with("_error") {
 523                    error.status
 524                } else {
 525                    // If there's a status code in the code string (e.g. "upstream_http_429")
 526                    // then use that; otherwise, see if the JSON contains a status code.
 527                    cloud_error
 528                        .code
 529                        .strip_prefix("upstream_http_")
 530                        .and_then(|code_str| code_str.parse::<u16>().ok())
 531                        .and_then(|code| StatusCode::from_u16(code).ok())
 532                        .unwrap_or(error.status)
 533                };
 534
 535                return LanguageModelCompletionError::UpstreamProviderError {
 536                    message: cloud_error.message,
 537                    status,
 538                    retry_after: cloud_error.retry_after.map(Duration::from_secs_f64),
 539                };
 540            }
 541
 542            return LanguageModelCompletionError::from_http_status(
 543                PROVIDER_NAME,
 544                error.status,
 545                cloud_error.message,
 546                None,
 547            );
 548        }
 549
 550        let retry_after = None;
 551        LanguageModelCompletionError::from_http_status(
 552            PROVIDER_NAME,
 553            error.status,
 554            error.body,
 555            retry_after,
 556        )
 557    }
 558}
 559
 560impl LanguageModel for CloudLanguageModel {
 561    fn id(&self) -> LanguageModelId {
 562        self.id.clone()
 563    }
 564
 565    fn name(&self) -> LanguageModelName {
 566        LanguageModelName::from(self.model.display_name.clone())
 567    }
 568
 569    fn provider_id(&self) -> LanguageModelProviderId {
 570        PROVIDER_ID
 571    }
 572
 573    fn provider_name(&self) -> LanguageModelProviderName {
 574        PROVIDER_NAME
 575    }
 576
 577    fn upstream_provider_id(&self) -> LanguageModelProviderId {
 578        use cloud_llm_client::LanguageModelProvider::*;
 579        match self.model.provider {
 580            Anthropic => language_model::ANTHROPIC_PROVIDER_ID,
 581            OpenAi => language_model::OPEN_AI_PROVIDER_ID,
 582            Google => language_model::GOOGLE_PROVIDER_ID,
 583        }
 584    }
 585
 586    fn upstream_provider_name(&self) -> LanguageModelProviderName {
 587        use cloud_llm_client::LanguageModelProvider::*;
 588        match self.model.provider {
 589            Anthropic => language_model::ANTHROPIC_PROVIDER_NAME,
 590            OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 591            Google => language_model::GOOGLE_PROVIDER_NAME,
 592        }
 593    }
 594
 595    fn supports_tools(&self) -> bool {
 596        self.model.supports_tools
 597    }
 598
 599    fn supports_images(&self) -> bool {
 600        self.model.supports_images
 601    }
 602
 603    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 604        match choice {
 605            LanguageModelToolChoice::Auto
 606            | LanguageModelToolChoice::Any
 607            | LanguageModelToolChoice::None => true,
 608        }
 609    }
 610
 611    fn supports_burn_mode(&self) -> bool {
 612        self.model.supports_max_mode
 613    }
 614
 615    fn telemetry_id(&self) -> String {
 616        format!("zed.dev/{}", self.model.id)
 617    }
 618
 619    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 620        match self.model.provider {
 621            cloud_llm_client::LanguageModelProvider::Anthropic
 622            | cloud_llm_client::LanguageModelProvider::OpenAi => {
 623                LanguageModelToolSchemaFormat::JsonSchema
 624            }
 625            cloud_llm_client::LanguageModelProvider::Google => {
 626                LanguageModelToolSchemaFormat::JsonSchemaSubset
 627            }
 628        }
 629    }
 630
 631    fn max_token_count(&self) -> u64 {
 632        self.model.max_token_count as u64
 633    }
 634
 635    fn max_token_count_in_burn_mode(&self) -> Option<u64> {
 636        self.model
 637            .max_token_count_in_max_mode
 638            .filter(|_| self.model.supports_max_mode)
 639            .map(|max_token_count| max_token_count as u64)
 640    }
 641
 642    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
 643        match &self.model.provider {
 644            cloud_llm_client::LanguageModelProvider::Anthropic => {
 645                Some(LanguageModelCacheConfiguration {
 646                    min_total_token: 2_048,
 647                    should_speculate: true,
 648                    max_cache_anchors: 4,
 649                })
 650            }
 651            cloud_llm_client::LanguageModelProvider::OpenAi
 652            | cloud_llm_client::LanguageModelProvider::Google => None,
 653        }
 654    }
 655
 656    fn count_tokens(
 657        &self,
 658        request: LanguageModelRequest,
 659        cx: &App,
 660    ) -> BoxFuture<'static, Result<u64>> {
 661        match self.model.provider {
 662            cloud_llm_client::LanguageModelProvider::Anthropic => {
 663                count_anthropic_tokens(request, cx)
 664            }
 665            cloud_llm_client::LanguageModelProvider::OpenAi => {
 666                let model = match open_ai::Model::from_id(&self.model.id.0) {
 667                    Ok(model) => model,
 668                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 669                };
 670                count_open_ai_tokens(request, model, cx)
 671            }
 672            cloud_llm_client::LanguageModelProvider::Google => {
 673                let client = self.client.clone();
 674                let llm_api_token = self.llm_api_token.clone();
 675                let model_id = self.model.id.to_string();
 676                let generate_content_request =
 677                    into_google(request, model_id.clone(), GoogleModelMode::Default);
 678                async move {
 679                    let http_client = &client.http_client();
 680                    let token = llm_api_token.acquire(&client).await?;
 681
 682                    let request_body = CountTokensBody {
 683                        provider: cloud_llm_client::LanguageModelProvider::Google,
 684                        model: model_id,
 685                        provider_request: serde_json::to_value(&google_ai::CountTokensRequest {
 686                            generate_content_request,
 687                        })?,
 688                    };
 689                    let request = http_client::Request::builder()
 690                        .method(Method::POST)
 691                        .uri(
 692                            http_client
 693                                .build_zed_llm_url("/count_tokens", &[])?
 694                                .as_ref(),
 695                        )
 696                        .header("Content-Type", "application/json")
 697                        .header("Authorization", format!("Bearer {token}"))
 698                        .body(serde_json::to_string(&request_body)?.into())?;
 699                    let mut response = http_client.send(request).await?;
 700                    let status = response.status();
 701                    let headers = response.headers().clone();
 702                    let mut response_body = String::new();
 703                    response
 704                        .body_mut()
 705                        .read_to_string(&mut response_body)
 706                        .await?;
 707
 708                    if status.is_success() {
 709                        let response_body: CountTokensResponse =
 710                            serde_json::from_str(&response_body)?;
 711
 712                        Ok(response_body.tokens as u64)
 713                    } else {
 714                        Err(anyhow!(ApiError {
 715                            status,
 716                            body: response_body,
 717                            headers
 718                        }))
 719                    }
 720                }
 721                .boxed()
 722            }
 723        }
 724    }
 725
 726    fn stream_completion(
 727        &self,
 728        request: LanguageModelRequest,
 729        cx: &AsyncApp,
 730    ) -> BoxFuture<
 731        'static,
 732        Result<
 733            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
 734            LanguageModelCompletionError,
 735        >,
 736    > {
 737        let thread_id = request.thread_id.clone();
 738        let prompt_id = request.prompt_id.clone();
 739        let intent = request.intent;
 740        let mode = request.mode;
 741        let app_version = cx.update(|cx| AppVersion::global(cx)).ok();
 742        let thinking_allowed = request.thinking_allowed;
 743        match self.model.provider {
 744            cloud_llm_client::LanguageModelProvider::Anthropic => {
 745                let request = into_anthropic(
 746                    request,
 747                    self.model.id.to_string(),
 748                    1.0,
 749                    self.model.max_output_tokens as u64,
 750                    if thinking_allowed && self.model.id.0.ends_with("-thinking") {
 751                        AnthropicModelMode::Thinking {
 752                            budget_tokens: Some(4_096),
 753                        }
 754                    } else {
 755                        AnthropicModelMode::Default
 756                    },
 757                );
 758                let client = self.client.clone();
 759                let llm_api_token = self.llm_api_token.clone();
 760                let future = self.request_limiter.stream(async move {
 761                    let PerformLlmCompletionResponse {
 762                        response,
 763                        usage,
 764                        includes_status_messages,
 765                        tool_use_limit_reached,
 766                    } = Self::perform_llm_completion(
 767                        client.clone(),
 768                        llm_api_token,
 769                        app_version,
 770                        CompletionBody {
 771                            thread_id,
 772                            prompt_id,
 773                            intent,
 774                            mode,
 775                            provider: cloud_llm_client::LanguageModelProvider::Anthropic,
 776                            model: request.model.clone(),
 777                            provider_request: serde_json::to_value(&request)
 778                                .map_err(|e| anyhow!(e))?,
 779                        },
 780                    )
 781                    .await
 782                    .map_err(|err| match err.downcast::<ApiError>() {
 783                        Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)),
 784                        Err(err) => anyhow!(err),
 785                    })?;
 786
 787                    let mut mapper = AnthropicEventMapper::new();
 788                    Ok(map_cloud_completion_events(
 789                        Box::pin(
 790                            response_lines(response, includes_status_messages)
 791                                .chain(usage_updated_event(usage))
 792                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 793                        ),
 794                        move |event| mapper.map_event(event),
 795                    ))
 796                });
 797                async move { Ok(future.await?.boxed()) }.boxed()
 798            }
 799            cloud_llm_client::LanguageModelProvider::OpenAi => {
 800                let client = self.client.clone();
 801                let model = match open_ai::Model::from_id(&self.model.id.0) {
 802                    Ok(model) => model,
 803                    Err(err) => return async move { Err(anyhow!(err).into()) }.boxed(),
 804                };
 805                let request = into_open_ai(
 806                    request,
 807                    model.id(),
 808                    model.supports_parallel_tool_calls(),
 809                    model.supports_prompt_cache_key(),
 810                    None,
 811                    None,
 812                );
 813                let llm_api_token = self.llm_api_token.clone();
 814                let future = self.request_limiter.stream(async move {
 815                    let PerformLlmCompletionResponse {
 816                        response,
 817                        usage,
 818                        includes_status_messages,
 819                        tool_use_limit_reached,
 820                    } = Self::perform_llm_completion(
 821                        client.clone(),
 822                        llm_api_token,
 823                        app_version,
 824                        CompletionBody {
 825                            thread_id,
 826                            prompt_id,
 827                            intent,
 828                            mode,
 829                            provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 830                            model: request.model.clone(),
 831                            provider_request: serde_json::to_value(&request)
 832                                .map_err(|e| anyhow!(e))?,
 833                        },
 834                    )
 835                    .await?;
 836
 837                    let mut mapper = OpenAiEventMapper::new();
 838                    Ok(map_cloud_completion_events(
 839                        Box::pin(
 840                            response_lines(response, includes_status_messages)
 841                                .chain(usage_updated_event(usage))
 842                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 843                        ),
 844                        move |event| mapper.map_event(event),
 845                    ))
 846                });
 847                async move { Ok(future.await?.boxed()) }.boxed()
 848            }
 849            cloud_llm_client::LanguageModelProvider::Google => {
 850                let client = self.client.clone();
 851                let request =
 852                    into_google(request, self.model.id.to_string(), GoogleModelMode::Default);
 853                let llm_api_token = self.llm_api_token.clone();
 854                let future = self.request_limiter.stream(async move {
 855                    let PerformLlmCompletionResponse {
 856                        response,
 857                        usage,
 858                        includes_status_messages,
 859                        tool_use_limit_reached,
 860                    } = Self::perform_llm_completion(
 861                        client.clone(),
 862                        llm_api_token,
 863                        app_version,
 864                        CompletionBody {
 865                            thread_id,
 866                            prompt_id,
 867                            intent,
 868                            mode,
 869                            provider: cloud_llm_client::LanguageModelProvider::Google,
 870                            model: request.model.model_id.clone(),
 871                            provider_request: serde_json::to_value(&request)
 872                                .map_err(|e| anyhow!(e))?,
 873                        },
 874                    )
 875                    .await?;
 876
 877                    let mut mapper = GoogleEventMapper::new();
 878                    Ok(map_cloud_completion_events(
 879                        Box::pin(
 880                            response_lines(response, includes_status_messages)
 881                                .chain(usage_updated_event(usage))
 882                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 883                        ),
 884                        move |event| mapper.map_event(event),
 885                    ))
 886                });
 887                async move { Ok(future.await?.boxed()) }.boxed()
 888            }
 889        }
 890    }
 891}
 892
 893fn map_cloud_completion_events<T, F>(
 894    stream: Pin<Box<dyn Stream<Item = Result<CompletionEvent<T>>> + Send>>,
 895    mut map_callback: F,
 896) -> BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 897where
 898    T: DeserializeOwned + 'static,
 899    F: FnMut(T) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 900        + Send
 901        + 'static,
 902{
 903    stream
 904        .flat_map(move |event| {
 905            futures::stream::iter(match event {
 906                Err(error) => {
 907                    vec![Err(LanguageModelCompletionError::from(error))]
 908                }
 909                Ok(CompletionEvent::Status(event)) => {
 910                    vec![Ok(LanguageModelCompletionEvent::StatusUpdate(event))]
 911                }
 912                Ok(CompletionEvent::Event(event)) => map_callback(event),
 913            })
 914        })
 915        .boxed()
 916}
 917
 918fn usage_updated_event<T>(
 919    usage: Option<ModelRequestUsage>,
 920) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 921    futures::stream::iter(usage.map(|usage| {
 922        Ok(CompletionEvent::Status(
 923            CompletionRequestStatus::UsageUpdated {
 924                amount: usage.amount as usize,
 925                limit: usage.limit,
 926            },
 927        ))
 928    }))
 929}
 930
 931fn tool_use_limit_reached_event<T>(
 932    tool_use_limit_reached: bool,
 933) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 934    futures::stream::iter(tool_use_limit_reached.then(|| {
 935        Ok(CompletionEvent::Status(
 936            CompletionRequestStatus::ToolUseLimitReached,
 937        ))
 938    }))
 939}
 940
 941fn response_lines<T: DeserializeOwned>(
 942    response: Response<AsyncBody>,
 943    includes_status_messages: bool,
 944) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 945    futures::stream::try_unfold(
 946        (String::new(), BufReader::new(response.into_body())),
 947        move |(mut line, mut body)| async move {
 948            match body.read_line(&mut line).await {
 949                Ok(0) => Ok(None),
 950                Ok(_) => {
 951                    let event = if includes_status_messages {
 952                        serde_json::from_str::<CompletionEvent<T>>(&line)?
 953                    } else {
 954                        CompletionEvent::Event(serde_json::from_str::<T>(&line)?)
 955                    };
 956
 957                    line.clear();
 958                    Ok(Some((event, (line, body))))
 959                }
 960                Err(e) => Err(e.into()),
 961            }
 962        },
 963    )
 964}
 965
 966#[derive(IntoElement, RegisterComponent)]
 967struct ZedAiConfiguration {
 968    is_connected: bool,
 969    plan: Option<Plan>,
 970    subscription_period: Option<(DateTime<Utc>, DateTime<Utc>)>,
 971    eligible_for_trial: bool,
 972    account_too_young: bool,
 973    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
 974}
 975
 976impl RenderOnce for ZedAiConfiguration {
 977    fn render(self, _window: &mut Window, cx: &mut App) -> impl IntoElement {
 978        let is_pro = self.plan.is_some_and(|plan| {
 979            matches!(plan, Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro))
 980        });
 981        let is_free_v2 = self
 982            .plan
 983            .is_some_and(|plan| plan == Plan::V2(PlanV2::ZedFree));
 984        let subscription_text = match (self.plan, self.subscription_period) {
 985            (Some(Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro)), Some(_)) => {
 986                "You have access to Zed's hosted models through your Pro subscription."
 987            }
 988            (Some(Plan::V1(PlanV1::ZedProTrial) | Plan::V2(PlanV2::ZedProTrial)), Some(_)) => {
 989                "You have access to Zed's hosted models through your Pro trial."
 990            }
 991            (Some(Plan::V1(PlanV1::ZedFree)), Some(_)) => {
 992                "You have basic access to Zed's hosted models through the Free plan."
 993            }
 994            (Some(Plan::V2(PlanV2::ZedFree)), Some(_)) => {
 995                if self.eligible_for_trial {
 996                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
 997                } else {
 998                    "Subscribe for access to Zed's hosted models."
 999                }
1000            }
1001            _ => {
1002                if self.eligible_for_trial {
1003                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1004                } else {
1005                    "Subscribe for access to Zed's hosted models."
1006                }
1007            }
1008        };
1009
1010        let manage_subscription_buttons = if is_pro {
1011            Button::new("manage_settings", "Manage Subscription")
1012                .full_width()
1013                .style(ButtonStyle::Tinted(TintColor::Accent))
1014                .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx)))
1015                .into_any_element()
1016        } else if self.plan.is_none() || self.eligible_for_trial {
1017            Button::new("start_trial", "Start 14-day Free Pro Trial")
1018                .full_width()
1019                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1020                .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx)))
1021                .into_any_element()
1022        } else {
1023            Button::new("upgrade", "Upgrade to Pro")
1024                .full_width()
1025                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1026                .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx)))
1027                .into_any_element()
1028        };
1029
1030        if !self.is_connected {
1031            return v_flex()
1032                .gap_2()
1033                .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models."))
1034                .child(
1035                    Button::new("sign_in", "Sign In to use Zed AI")
1036                        .icon_color(Color::Muted)
1037                        .icon(IconName::Github)
1038                        .icon_size(IconSize::Small)
1039                        .icon_position(IconPosition::Start)
1040                        .full_width()
1041                        .on_click({
1042                            let callback = self.sign_in_callback.clone();
1043                            move |_, window, cx| (callback)(window, cx)
1044                        }),
1045                );
1046        }
1047
1048        v_flex().gap_2().w_full().map(|this| {
1049            if self.account_too_young {
1050                this.child(YoungAccountBanner::new(
1051                    is_free_v2 || cx.has_flag::<BillingV2FeatureFlag>(),
1052                ))
1053                .child(
1054                    Button::new("upgrade", "Upgrade to Pro")
1055                        .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1056                        .full_width()
1057                        .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))),
1058                )
1059            } else {
1060                this.text_sm()
1061                    .child(subscription_text)
1062                    .child(manage_subscription_buttons)
1063            }
1064        })
1065    }
1066}
1067
1068struct ConfigurationView {
1069    state: Entity<State>,
1070    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1071}
1072
1073impl ConfigurationView {
1074    fn new(state: Entity<State>) -> Self {
1075        let sign_in_callback = Arc::new({
1076            let state = state.clone();
1077            move |_window: &mut Window, cx: &mut App| {
1078                state.update(cx, |state, cx| {
1079                    state.authenticate(cx).detach_and_log_err(cx);
1080                });
1081            }
1082        });
1083
1084        Self {
1085            state,
1086            sign_in_callback,
1087        }
1088    }
1089}
1090
1091impl Render for ConfigurationView {
1092    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1093        let state = self.state.read(cx);
1094        let user_store = state.user_store.read(cx);
1095
1096        ZedAiConfiguration {
1097            is_connected: !state.is_signed_out(cx),
1098            plan: user_store.plan(),
1099            subscription_period: user_store.subscription_period(),
1100            eligible_for_trial: user_store.trial_started_at().is_none(),
1101            account_too_young: user_store.account_too_young(),
1102            sign_in_callback: self.sign_in_callback.clone(),
1103        }
1104    }
1105}
1106
1107impl Component for ZedAiConfiguration {
1108    fn name() -> &'static str {
1109        "AI Configuration Content"
1110    }
1111
1112    fn sort_name() -> &'static str {
1113        "AI Configuration Content"
1114    }
1115
1116    fn scope() -> ComponentScope {
1117        ComponentScope::Onboarding
1118    }
1119
1120    fn preview(_window: &mut Window, _cx: &mut App) -> Option<AnyElement> {
1121        fn configuration(
1122            is_connected: bool,
1123            plan: Option<Plan>,
1124            eligible_for_trial: bool,
1125            account_too_young: bool,
1126        ) -> AnyElement {
1127            ZedAiConfiguration {
1128                is_connected,
1129                plan,
1130                subscription_period: plan
1131                    .is_some()
1132                    .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))),
1133                eligible_for_trial,
1134                account_too_young,
1135                sign_in_callback: Arc::new(|_, _| {}),
1136            }
1137            .into_any_element()
1138        }
1139
1140        Some(
1141            v_flex()
1142                .p_4()
1143                .gap_4()
1144                .children(vec![
1145                    single_example("Not connected", configuration(false, None, false, false)),
1146                    single_example(
1147                        "Accept Terms of Service",
1148                        configuration(true, None, true, false),
1149                    ),
1150                    single_example(
1151                        "No Plan - Not eligible for trial",
1152                        configuration(true, None, false, false),
1153                    ),
1154                    single_example(
1155                        "No Plan - Eligible for trial",
1156                        configuration(true, None, true, false),
1157                    ),
1158                    single_example(
1159                        "Free Plan",
1160                        configuration(true, Some(Plan::V1(PlanV1::ZedFree)), true, false),
1161                    ),
1162                    single_example(
1163                        "Zed Pro Trial Plan",
1164                        configuration(true, Some(Plan::V1(PlanV1::ZedProTrial)), true, false),
1165                    ),
1166                    single_example(
1167                        "Zed Pro Plan",
1168                        configuration(true, Some(Plan::V1(PlanV1::ZedPro)), true, false),
1169                    ),
1170                ])
1171                .into_any_element(),
1172        )
1173    }
1174}
1175
1176#[cfg(test)]
1177mod tests {
1178    use super::*;
1179    use http_client::http::{HeaderMap, StatusCode};
1180    use language_model::LanguageModelCompletionError;
1181
1182    #[test]
1183    fn test_api_error_conversion_with_upstream_http_error() {
1184        // upstream_http_error with 503 status should become ServerOverloaded
1185        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#;
1186
1187        let api_error = ApiError {
1188            status: StatusCode::INTERNAL_SERVER_ERROR,
1189            body: error_body.to_string(),
1190            headers: HeaderMap::new(),
1191        };
1192
1193        let completion_error: LanguageModelCompletionError = api_error.into();
1194
1195        match completion_error {
1196            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1197                assert_eq!(
1198                    message,
1199                    "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout"
1200                );
1201            }
1202            _ => panic!(
1203                "Expected UpstreamProviderError for upstream 503, got: {:?}",
1204                completion_error
1205            ),
1206        }
1207
1208        // upstream_http_error with 500 status should become ApiInternalServerError
1209        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#;
1210
1211        let api_error = ApiError {
1212            status: StatusCode::INTERNAL_SERVER_ERROR,
1213            body: error_body.to_string(),
1214            headers: HeaderMap::new(),
1215        };
1216
1217        let completion_error: LanguageModelCompletionError = api_error.into();
1218
1219        match completion_error {
1220            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1221                assert_eq!(
1222                    message,
1223                    "Received an error from the OpenAI API: internal server error"
1224                );
1225            }
1226            _ => panic!(
1227                "Expected UpstreamProviderError for upstream 500, got: {:?}",
1228                completion_error
1229            ),
1230        }
1231
1232        // upstream_http_error with 429 status should become RateLimitExceeded
1233        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#;
1234
1235        let api_error = ApiError {
1236            status: StatusCode::INTERNAL_SERVER_ERROR,
1237            body: error_body.to_string(),
1238            headers: HeaderMap::new(),
1239        };
1240
1241        let completion_error: LanguageModelCompletionError = api_error.into();
1242
1243        match completion_error {
1244            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1245                assert_eq!(
1246                    message,
1247                    "Received an error from the Google API: rate limit exceeded"
1248                );
1249            }
1250            _ => panic!(
1251                "Expected UpstreamProviderError for upstream 429, got: {:?}",
1252                completion_error
1253            ),
1254        }
1255
1256        // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed
1257        let error_body = "Regular internal server error";
1258
1259        let api_error = ApiError {
1260            status: StatusCode::INTERNAL_SERVER_ERROR,
1261            body: error_body.to_string(),
1262            headers: HeaderMap::new(),
1263        };
1264
1265        let completion_error: LanguageModelCompletionError = api_error.into();
1266
1267        match completion_error {
1268            LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
1269                assert_eq!(provider, PROVIDER_NAME);
1270                assert_eq!(message, "Regular internal server error");
1271            }
1272            _ => panic!(
1273                "Expected ApiInternalServerError for regular 500, got: {:?}",
1274                completion_error
1275            ),
1276        }
1277
1278        // upstream_http_429 format should be converted to UpstreamProviderError
1279        let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#;
1280
1281        let api_error = ApiError {
1282            status: StatusCode::INTERNAL_SERVER_ERROR,
1283            body: error_body.to_string(),
1284            headers: HeaderMap::new(),
1285        };
1286
1287        let completion_error: LanguageModelCompletionError = api_error.into();
1288
1289        match completion_error {
1290            LanguageModelCompletionError::UpstreamProviderError {
1291                message,
1292                status,
1293                retry_after,
1294            } => {
1295                assert_eq!(message, "Upstream Anthropic rate limit exceeded.");
1296                assert_eq!(status, StatusCode::TOO_MANY_REQUESTS);
1297                assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5)));
1298            }
1299            _ => panic!(
1300                "Expected UpstreamProviderError for upstream_http_429, got: {:?}",
1301                completion_error
1302            ),
1303        }
1304
1305        // Invalid JSON in error body should fall back to regular error handling
1306        let error_body = "Not JSON at all";
1307
1308        let api_error = ApiError {
1309            status: StatusCode::INTERNAL_SERVER_ERROR,
1310            body: error_body.to_string(),
1311            headers: HeaderMap::new(),
1312        };
1313
1314        let completion_error: LanguageModelCompletionError = api_error.into();
1315
1316        match completion_error {
1317            LanguageModelCompletionError::ApiInternalServerError { provider, .. } => {
1318                assert_eq!(provider, PROVIDER_NAME);
1319            }
1320            _ => panic!(
1321                "Expected ApiInternalServerError for invalid JSON, got: {:?}",
1322                completion_error
1323            ),
1324        }
1325    }
1326}