shaders.wgsl

   1/* Functions useful for debugging:
   2
   3// A heat map color for debugging (blue -> cyan -> green -> yellow -> red).
   4fn heat_map_color(value: f32, minValue: f32, maxValue: f32, position: vec2<f32>) -> vec4<f32> {
   5    // Normalize value to 0-1 range
   6    let t = clamp((value - minValue) / (maxValue - minValue), 0.0, 1.0);
   7
   8    // Heat map color calculation
   9    let r = t * t;
  10    let g = 4.0 * t * (1.0 - t);
  11    let b = (1.0 - t) * (1.0 - t);
  12    let heat_color = vec3<f32>(r, g, b);
  13
  14    // Create a checkerboard pattern (black and white)
  15    let sum = floor(position.x / 3) + floor(position.y / 3);
  16    let is_odd = fract(sum * 0.5); // 0.0 for even, 0.5 for odd
  17    let checker_value = is_odd * 2.0; // 0.0 for even, 1.0 for odd
  18    let checker_color = vec3<f32>(checker_value);
  19
  20    // Determine if value is in range (1.0 if in range, 0.0 if out of range)
  21    let in_range = step(minValue, value) * step(value, maxValue);
  22
  23    // Mix checkerboard and heat map based on whether value is in range
  24    let final_color = mix(checker_color, heat_color, in_range);
  25
  26    return vec4<f32>(final_color, 1.0);
  27}
  28
  29*/
  30
  31struct GlobalParams {
  32    viewport_size: vec2<f32>,
  33    premultiplied_alpha: u32,
  34    pad: u32,
  35}
  36
  37var<uniform> globals: GlobalParams;
  38var t_sprite: texture_2d<f32>;
  39var s_sprite: sampler;
  40
  41const M_PI_F: f32 = 3.1415926;
  42const GRAYSCALE_FACTORS: vec3<f32> = vec3<f32>(0.2126, 0.7152, 0.0722);
  43
  44struct Bounds {
  45    origin: vec2<f32>,
  46    size: vec2<f32>,
  47}
  48
  49struct Corners {
  50    top_left: f32,
  51    top_right: f32,
  52    bottom_right: f32,
  53    bottom_left: f32,
  54}
  55
  56struct Edges {
  57    top: f32,
  58    right: f32,
  59    bottom: f32,
  60    left: f32,
  61}
  62
  63struct Hsla {
  64    h: f32,
  65    s: f32,
  66    l: f32,
  67    a: f32,
  68}
  69
  70struct LinearColorStop {
  71    color: Hsla,
  72    percentage: f32,
  73}
  74
  75struct Background {
  76    // 0u is Solid
  77    // 1u is LinearGradient
  78    // 2u is PatternSlash
  79    tag: u32,
  80    // 0u is sRGB linear color
  81    // 1u is Oklab color
  82    color_space: u32,
  83    solid: Hsla,
  84    gradient_angle_or_pattern_height: f32,
  85    colors: array<LinearColorStop, 2>,
  86    pad: u32,
  87}
  88
  89struct AtlasTextureId {
  90    index: u32,
  91    kind: u32,
  92}
  93
  94struct AtlasBounds {
  95    origin: vec2<i32>,
  96    size: vec2<i32>,
  97}
  98
  99struct AtlasTile {
 100    texture_id: AtlasTextureId,
 101    tile_id: u32,
 102    padding: u32,
 103    bounds: AtlasBounds,
 104}
 105
 106struct TransformationMatrix {
 107    rotation_scale: mat2x2<f32>,
 108    translation: vec2<f32>,
 109}
 110
 111fn to_device_position_impl(position: vec2<f32>) -> vec4<f32> {
 112    let device_position = position / globals.viewport_size * vec2<f32>(2.0, -2.0) + vec2<f32>(-1.0, 1.0);
 113    return vec4<f32>(device_position, 0.0, 1.0);
 114}
 115
 116fn to_device_position(unit_vertex: vec2<f32>, bounds: Bounds) -> vec4<f32> {
 117    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 118    return to_device_position_impl(position);
 119}
 120
 121fn to_device_position_transformed(unit_vertex: vec2<f32>, bounds: Bounds, transform: TransformationMatrix) -> vec4<f32> {
 122    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 123    //Note: Rust side stores it as row-major, so transposing here
 124    let transformed = transpose(transform.rotation_scale) * position + transform.translation;
 125    return to_device_position_impl(transformed);
 126}
 127
 128fn to_tile_position(unit_vertex: vec2<f32>, tile: AtlasTile) -> vec2<f32> {
 129  let atlas_size = vec2<f32>(textureDimensions(t_sprite, 0));
 130  return (vec2<f32>(tile.bounds.origin) + unit_vertex * vec2<f32>(tile.bounds.size)) / atlas_size;
 131}
 132
 133fn distance_from_clip_rect_impl(position: vec2<f32>, clip_bounds: Bounds) -> vec4<f32> {
 134    let tl = position - clip_bounds.origin;
 135    let br = clip_bounds.origin + clip_bounds.size - position;
 136    return vec4<f32>(tl.x, br.x, tl.y, br.y);
 137}
 138
 139fn distance_from_clip_rect(unit_vertex: vec2<f32>, bounds: Bounds, clip_bounds: Bounds) -> vec4<f32> {
 140    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 141    return distance_from_clip_rect_impl(position, clip_bounds);
 142}
 143
 144// https://gamedev.stackexchange.com/questions/92015/optimized-linear-to-srgb-glsl
 145fn srgb_to_linear(srgb: vec3<f32>) -> vec3<f32> {
 146    let cutoff = srgb < vec3<f32>(0.04045);
 147    let higher = pow((srgb + vec3<f32>(0.055)) / vec3<f32>(1.055), vec3<f32>(2.4));
 148    let lower = srgb / vec3<f32>(12.92);
 149    return select(higher, lower, cutoff);
 150}
 151
 152fn linear_to_srgb(linear: vec3<f32>) -> vec3<f32> {
 153    let cutoff = linear < vec3<f32>(0.0031308);
 154    let higher = vec3<f32>(1.055) * pow(linear, vec3<f32>(1.0 / 2.4)) - vec3<f32>(0.055);
 155    let lower = linear * vec3<f32>(12.92);
 156    return select(higher, lower, cutoff);
 157}
 158
 159/// Convert a linear color to sRGBA space.
 160fn linear_to_srgba(color: vec4<f32>) -> vec4<f32> {
 161    return vec4<f32>(linear_to_srgb(color.rgb), color.a);
 162}
 163
 164/// Convert a sRGBA color to linear space.
 165fn srgba_to_linear(color: vec4<f32>) -> vec4<f32> {
 166    return vec4<f32>(srgb_to_linear(color.rgb), color.a);
 167}
 168
 169/// Hsla to linear RGBA conversion.
 170fn hsla_to_rgba(hsla: Hsla) -> vec4<f32> {
 171    let h = hsla.h * 6.0; // Now, it's an angle but scaled in [0, 6) range
 172    let s = hsla.s;
 173    let l = hsla.l;
 174    let a = hsla.a;
 175
 176    let c = (1.0 - abs(2.0 * l - 1.0)) * s;
 177    let x = c * (1.0 - abs(h % 2.0 - 1.0));
 178    let m = l - c / 2.0;
 179    var color = vec3<f32>(m);
 180
 181    if (h >= 0.0 && h < 1.0) {
 182        color.r += c;
 183        color.g += x;
 184    } else if (h >= 1.0 && h < 2.0) {
 185        color.r += x;
 186        color.g += c;
 187    } else if (h >= 2.0 && h < 3.0) {
 188        color.g += c;
 189        color.b += x;
 190    } else if (h >= 3.0 && h < 4.0) {
 191        color.g += x;
 192        color.b += c;
 193    } else if (h >= 4.0 && h < 5.0) {
 194        color.r += x;
 195        color.b += c;
 196    } else {
 197        color.r += c;
 198        color.b += x;
 199    }
 200
 201    // Input colors are assumed to be in sRGB space,
 202    // but blending and rendering needs to happen in linear space.
 203    // The output will be converted to sRGB by either the target
 204    // texture format or the swapchain color space.
 205    let linear = srgb_to_linear(color);
 206    return vec4<f32>(linear, a);
 207}
 208
 209/// Convert a linear sRGB to Oklab space.
 210/// Reference: https://bottosson.github.io/posts/oklab/#converting-from-linear-srgb-to-oklab
 211fn linear_srgb_to_oklab(color: vec4<f32>) -> vec4<f32> {
 212	let l = 0.4122214708 * color.r + 0.5363325363 * color.g + 0.0514459929 * color.b;
 213	let m = 0.2119034982 * color.r + 0.6806995451 * color.g + 0.1073969566 * color.b;
 214	let s = 0.0883024619 * color.r + 0.2817188376 * color.g + 0.6299787005 * color.b;
 215
 216	let l_ = pow(l, 1.0 / 3.0);
 217	let m_ = pow(m, 1.0 / 3.0);
 218	let s_ = pow(s, 1.0 / 3.0);
 219
 220	return vec4<f32>(
 221		0.2104542553 * l_ + 0.7936177850 * m_ - 0.0040720468 * s_,
 222		1.9779984951 * l_ - 2.4285922050 * m_ + 0.4505937099 * s_,
 223		0.0259040371 * l_ + 0.7827717662 * m_ - 0.8086757660 * s_,
 224		color.a
 225	);
 226}
 227
 228/// Convert an Oklab color to linear sRGB space.
 229fn oklab_to_linear_srgb(color: vec4<f32>) -> vec4<f32> {
 230	let l_ = color.r + 0.3963377774 * color.g + 0.2158037573 * color.b;
 231	let m_ = color.r - 0.1055613458 * color.g - 0.0638541728 * color.b;
 232	let s_ = color.r - 0.0894841775 * color.g - 1.2914855480 * color.b;
 233
 234	let l = l_ * l_ * l_;
 235	let m = m_ * m_ * m_;
 236	let s = s_ * s_ * s_;
 237
 238	return vec4<f32>(
 239		4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s,
 240		-1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s,
 241		-0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s,
 242		color.a
 243	);
 244}
 245
 246fn over(below: vec4<f32>, above: vec4<f32>) -> vec4<f32> {
 247    let alpha = above.a + below.a * (1.0 - above.a);
 248    let color = (above.rgb * above.a + below.rgb * below.a * (1.0 - above.a)) / alpha;
 249    return vec4<f32>(color, alpha);
 250}
 251
 252// A standard gaussian function, used for weighting samples
 253fn gaussian(x: f32, sigma: f32) -> f32{
 254    return exp(-(x * x) / (2.0 * sigma * sigma)) / (sqrt(2.0 * M_PI_F) * sigma);
 255}
 256
 257// This approximates the error function, needed for the gaussian integral
 258fn erf(v: vec2<f32>) -> vec2<f32> {
 259    let s = sign(v);
 260    let a = abs(v);
 261    let r1 = 1.0 + (0.278393 + (0.230389 + (0.000972 + 0.078108 * a) * a) * a) * a;
 262    let r2 = r1 * r1;
 263    return s - s / (r2 * r2);
 264}
 265
 266fn blur_along_x(x: f32, y: f32, sigma: f32, corner: f32, half_size: vec2<f32>) -> f32 {
 267  let delta = min(half_size.y - corner - abs(y), 0.0);
 268  let curved = half_size.x - corner + sqrt(max(0.0, corner * corner - delta * delta));
 269  let integral = 0.5 + 0.5 * erf((x + vec2<f32>(-curved, curved)) * (sqrt(0.5) / sigma));
 270  return integral.y - integral.x;
 271}
 272
 273// Selects corner radius based on quadrant.
 274fn pick_corner_radius(center_to_point: vec2<f32>, radii: Corners) -> f32 {
 275    if (center_to_point.x < 0.0) {
 276        if (center_to_point.y < 0.0) {
 277            return radii.top_left;
 278        } else {
 279            return radii.bottom_left;
 280        }
 281    } else {
 282        if (center_to_point.y < 0.0) {
 283            return radii.top_right;
 284        } else {
 285            return radii.bottom_right;
 286        }
 287    }
 288}
 289
 290// Signed distance of the point to the quad's border - positive outside the
 291// border, and negative inside.
 292//
 293// See comments on similar code using `quad_sdf_impl` in `fs_quad` for
 294// explanation.
 295fn quad_sdf(point: vec2<f32>, bounds: Bounds, corner_radii: Corners) -> f32 {
 296    let half_size = bounds.size / 2.0;
 297    let center = bounds.origin + half_size;
 298    let center_to_point = point - center;
 299    let corner_radius = pick_corner_radius(center_to_point, corner_radii);
 300    let corner_to_point = abs(center_to_point) - half_size;
 301    let corner_center_to_point = corner_to_point + corner_radius;
 302    return quad_sdf_impl(corner_center_to_point, corner_radius);
 303}
 304
 305fn quad_sdf_impl(corner_center_to_point: vec2<f32>, corner_radius: f32) -> f32 {
 306    if (corner_radius == 0.0) {
 307        // Fast path for unrounded corners.
 308        return max(corner_center_to_point.x, corner_center_to_point.y);
 309    } else {
 310        // Signed distance of the point from a quad that is inset by corner_radius.
 311        // It is negative inside this quad, and positive outside.
 312        let signed_distance_to_inset_quad =
 313            // 0 inside the inset quad, and positive outside.
 314            length(max(vec2<f32>(0.0), corner_center_to_point)) +
 315            // 0 outside the inset quad, and negative inside.
 316            min(0.0, max(corner_center_to_point.x, corner_center_to_point.y));
 317
 318        return signed_distance_to_inset_quad - corner_radius;
 319    }
 320}
 321
 322// Abstract away the final color transformation based on the
 323// target alpha compositing mode.
 324fn blend_color(color: vec4<f32>, alpha_factor: f32) -> vec4<f32> {
 325    let alpha = color.a * alpha_factor;
 326    let multiplier = select(1.0, alpha, globals.premultiplied_alpha != 0u);
 327    return vec4<f32>(color.rgb * multiplier, alpha);
 328}
 329
 330
 331struct GradientColor {
 332    solid: vec4<f32>,
 333    color0: vec4<f32>,
 334    color1: vec4<f32>,
 335}
 336
 337fn prepare_gradient_color(tag: u32, color_space: u32,
 338    solid: Hsla, colors: array<LinearColorStop, 2>) -> GradientColor {
 339    var result = GradientColor();
 340
 341    if (tag == 0u || tag == 2u) {
 342        result.solid = hsla_to_rgba(solid);
 343    } else if (tag == 1u) {
 344        // The hsla_to_rgba is returns a linear sRGB color
 345        result.color0 = hsla_to_rgba(colors[0].color);
 346        result.color1 = hsla_to_rgba(colors[1].color);
 347
 348        // Prepare color space in vertex for avoid conversion
 349        // in fragment shader for performance reasons
 350        if (color_space == 0u) {
 351            // sRGB
 352            result.color0 = linear_to_srgba(result.color0);
 353            result.color1 = linear_to_srgba(result.color1);
 354        } else if (color_space == 1u) {
 355            // Oklab
 356            result.color0 = linear_srgb_to_oklab(result.color0);
 357            result.color1 = linear_srgb_to_oklab(result.color1);
 358        }
 359    }
 360
 361    return result;
 362}
 363
 364fn gradient_color(background: Background, position: vec2<f32>, bounds: Bounds,
 365    solid_color: vec4<f32>, color0: vec4<f32>, color1: vec4<f32>) -> vec4<f32> {
 366    var background_color = vec4<f32>(0.0);
 367
 368    switch (background.tag) {
 369        default: {
 370            return solid_color;
 371        }
 372        case 1u: {
 373            // Linear gradient background.
 374            // -90 degrees to match the CSS gradient angle.
 375            let angle = background.gradient_angle_or_pattern_height;
 376            let radians = (angle % 360.0 - 90.0) * M_PI_F / 180.0;
 377            var direction = vec2<f32>(cos(radians), sin(radians));
 378            let stop0_percentage = background.colors[0].percentage;
 379            let stop1_percentage = background.colors[1].percentage;
 380
 381            // Expand the short side to be the same as the long side
 382            if (bounds.size.x > bounds.size.y) {
 383                direction.y *= bounds.size.y / bounds.size.x;
 384            } else {
 385                direction.x *= bounds.size.x / bounds.size.y;
 386            }
 387
 388            // Get the t value for the linear gradient with the color stop percentages.
 389            let half_size = bounds.size / 2.0;
 390            let center = bounds.origin + half_size;
 391            let center_to_point = position - center;
 392            var t = dot(center_to_point, direction) / length(direction);
 393            // Check the direct to determine the use x or y
 394            if (abs(direction.x) > abs(direction.y)) {
 395                t = (t + half_size.x) / bounds.size.x;
 396            } else {
 397                t = (t + half_size.y) / bounds.size.y;
 398            }
 399
 400            // Adjust t based on the stop percentages
 401            t = (t - stop0_percentage) / (stop1_percentage - stop0_percentage);
 402            t = clamp(t, 0.0, 1.0);
 403
 404            switch (background.color_space) {
 405                default: {
 406                    background_color = srgba_to_linear(mix(color0, color1, t));
 407                }
 408                case 1u: {
 409                    let oklab_color = mix(color0, color1, t);
 410                    background_color = oklab_to_linear_srgb(oklab_color);
 411                }
 412            }
 413        }
 414        case 2u: {
 415            let gradient_angle_or_pattern_height = background.gradient_angle_or_pattern_height;
 416            let pattern_width = (gradient_angle_or_pattern_height / 65535.0f) / 255.0f;
 417            let pattern_interval = (gradient_angle_or_pattern_height % 65535.0f) / 255.0f;
 418            let pattern_height = pattern_width + pattern_interval;
 419            let stripe_angle = M_PI_F / 4.0;
 420            let pattern_period = pattern_height * sin(stripe_angle);
 421            let rotation = mat2x2<f32>(
 422                cos(stripe_angle), -sin(stripe_angle),
 423                sin(stripe_angle), cos(stripe_angle)
 424            );
 425            let relative_position = position - bounds.origin;
 426            let rotated_point = rotation * relative_position;
 427            let pattern = rotated_point.x % pattern_period;
 428            let distance = min(pattern, pattern_period - pattern) - pattern_period * (pattern_width / pattern_height) /  2.0f;
 429            background_color = solid_color;
 430            background_color.a *= saturate(0.5 - distance);
 431        }
 432    }
 433
 434    return background_color;
 435}
 436
 437// --- quads --- //
 438
 439struct Quad {
 440    order: u32,
 441    border_style: u32,
 442    bounds: Bounds,
 443    content_mask: Bounds,
 444    background: Background,
 445    border_color: Hsla,
 446    corner_radii: Corners,
 447    border_widths: Edges,
 448}
 449var<storage, read> b_quads: array<Quad>;
 450
 451struct QuadVarying {
 452    @builtin(position) position: vec4<f32>,
 453    @location(0) @interpolate(flat) border_color: vec4<f32>,
 454    @location(1) @interpolate(flat) quad_id: u32,
 455    // TODO: use `clip_distance` once Naga supports it
 456    @location(2) clip_distances: vec4<f32>,
 457    @location(3) @interpolate(flat) background_solid: vec4<f32>,
 458    @location(4) @interpolate(flat) background_color0: vec4<f32>,
 459    @location(5) @interpolate(flat) background_color1: vec4<f32>,
 460}
 461
 462@vertex
 463fn vs_quad(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> QuadVarying {
 464    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
 465    let quad = b_quads[instance_id];
 466
 467    var out = QuadVarying();
 468    out.position = to_device_position(unit_vertex, quad.bounds);
 469
 470    let gradient = prepare_gradient_color(
 471        quad.background.tag,
 472        quad.background.color_space,
 473        quad.background.solid,
 474        quad.background.colors
 475    );
 476    out.background_solid = gradient.solid;
 477    out.background_color0 = gradient.color0;
 478    out.background_color1 = gradient.color1;
 479    out.border_color = hsla_to_rgba(quad.border_color);
 480    out.quad_id = instance_id;
 481    out.clip_distances = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask);
 482    return out;
 483}
 484
 485@fragment
 486fn fs_quad(input: QuadVarying) -> @location(0) vec4<f32> {
 487    // Alpha clip first, since we don't have `clip_distance`.
 488    if (any(input.clip_distances < vec4<f32>(0.0))) {
 489        return vec4<f32>(0.0);
 490    }
 491
 492    let quad = b_quads[input.quad_id];
 493
 494    let background_color = gradient_color(quad.background, input.position.xy, quad.bounds,
 495        input.background_solid, input.background_color0, input.background_color1);
 496
 497    let unrounded = quad.corner_radii.top_left == 0.0 &&
 498        quad.corner_radii.bottom_left == 0.0 &&
 499        quad.corner_radii.top_right == 0.0 &&
 500        quad.corner_radii.bottom_right == 0.0;
 501
 502    // Fast path when the quad is not rounded and doesn't have any border
 503    if (quad.border_widths.top == 0.0 &&
 504            quad.border_widths.left == 0.0 &&
 505            quad.border_widths.right == 0.0 &&
 506            quad.border_widths.bottom == 0.0 &&
 507            unrounded) {
 508        return blend_color(background_color, 1.0);
 509    }
 510
 511    let size = quad.bounds.size;
 512    let half_size = size / 2.0;
 513    let point = input.position.xy - quad.bounds.origin;
 514    let center_to_point = point - half_size;
 515
 516    // Signed distance field threshold for inclusion of pixels. 0.5 is the
 517    // minimum distance between the center of the pixel and the edge.
 518    let antialias_threshold = 0.5;
 519
 520    // Radius of the nearest corner
 521    let corner_radius = pick_corner_radius(center_to_point, quad.corner_radii);
 522
 523    // Width of the nearest borders
 524    let border = vec2<f32>(
 525        select(
 526            quad.border_widths.right,
 527            quad.border_widths.left,
 528            center_to_point.x < 0.0),
 529        select(
 530            quad.border_widths.bottom,
 531            quad.border_widths.top,
 532            center_to_point.y < 0.0));
 533
 534    // 0-width borders are reduced so that `inner_sdf >= antialias_threshold`.
 535    // The purpose of this is to not draw antialiasing pixels in this case.
 536    let reduced_border =
 537        vec2<f32>(select(border.x, -antialias_threshold, border.x == 0.0),
 538                  select(border.y, -antialias_threshold, border.y == 0.0));
 539
 540    // Vector from the corner of the quad bounds to the point, after mirroring
 541    // the point into the bottom right quadrant. Both components are <= 0.
 542    let corner_to_point = abs(center_to_point) - half_size;
 543
 544    // Vector from the point to the center of the rounded corner's circle, also
 545    // mirrored into bottom right quadrant.
 546    let corner_center_to_point = corner_to_point + corner_radius;
 547
 548    // Whether the nearest point on the border is rounded
 549    let is_near_rounded_corner =
 550            corner_center_to_point.x >= 0 &&
 551            corner_center_to_point.y >= 0;
 552
 553    // Vector from straight border inner corner to point.
 554    let straight_border_inner_corner_to_point = corner_to_point + reduced_border;
 555
 556    // Whether the point is beyond the inner edge of the straight border.
 557    let is_beyond_inner_straight_border =
 558            straight_border_inner_corner_to_point.x > 0 ||
 559            straight_border_inner_corner_to_point.y > 0;
 560
 561    // Whether the point is far enough inside the quad, such that the pixels are
 562    // not affected by the straight border.
 563    let is_within_inner_straight_border =
 564        straight_border_inner_corner_to_point.x < -antialias_threshold &&
 565        straight_border_inner_corner_to_point.y < -antialias_threshold;
 566
 567    // Fast path for points that must be part of the background.
 568    //
 569    // This could be optimized further for large rounded corners by including
 570    // points in an inscribed rectangle, or some other quick linear check.
 571    // However, that might negatively impact performance in the case of
 572    // reasonable sizes for rounded corners.
 573    if (is_within_inner_straight_border && !is_near_rounded_corner) {
 574        return blend_color(background_color, 1.0);
 575    }
 576
 577    // Signed distance of the point to the outside edge of the quad's border. It
 578    // is positive outside this edge, and negative inside.
 579    let outer_sdf = quad_sdf_impl(corner_center_to_point, corner_radius);
 580
 581    // Approximate signed distance of the point to the inside edge of the quad's
 582    // border. It is negative outside this edge (within the border), and
 583    // positive inside.
 584    //
 585    // This is not always an accurate signed distance:
 586    // * The rounded portions with varying border width use an approximation of
 587    //   nearest-point-on-ellipse.
 588    // * When it is quickly known to be outside the edge, -1.0 is used.
 589    var inner_sdf = 0.0;
 590    if (corner_center_to_point.x <= 0 || corner_center_to_point.y <= 0) {
 591        // Fast paths for straight borders.
 592        inner_sdf = -max(straight_border_inner_corner_to_point.x,
 593                         straight_border_inner_corner_to_point.y);
 594    } else if (is_beyond_inner_straight_border) {
 595        // Fast path for points that must be outside the inner edge.
 596        inner_sdf = -1.0;
 597    } else if (reduced_border.x == reduced_border.y) {
 598        // Fast path for circular inner edge.
 599        inner_sdf = -(outer_sdf + reduced_border.x);
 600    } else {
 601        let ellipse_radii = max(vec2<f32>(0.0), corner_radius - reduced_border);
 602        inner_sdf = quarter_ellipse_sdf(corner_center_to_point, ellipse_radii);
 603    }
 604
 605    // Negative when inside the border
 606    let border_sdf = max(inner_sdf, outer_sdf);
 607
 608    var color = background_color;
 609    if (border_sdf < antialias_threshold) {
 610        var border_color = input.border_color;
 611
 612        // Dashed border logic when border_style == 1
 613        if (quad.border_style == 1) {
 614            // Position along the perimeter in "dash space", where each dash
 615            // period has length 1
 616            var t = 0.0;
 617
 618            // Total number of dash periods, so that the dash spacing can be
 619            // adjusted to evenly divide it
 620            var max_t = 0.0;
 621
 622            // Border width is proportional to dash size. This is the behavior
 623            // used by browsers, but also avoids dashes from different segments
 624            // overlapping when dash size is smaller than the border width.
 625            //
 626            // Dash pattern: (2 * border width) dash, (1 * border width) gap
 627            let dash_length_per_width = 2.0;
 628            let dash_gap_per_width = 1.0;
 629            let dash_period_per_width = dash_length_per_width + dash_gap_per_width;
 630
 631            // Since the dash size is determined by border width, the density of
 632            // dashes varies. Multiplying a pixel distance by this returns a
 633            // position in dash space - it has units (dash period / pixels). So
 634            // a dash velocity of (1 / 10) is 1 dash every 10 pixels.
 635            var dash_velocity = 0.0;
 636
 637            // Dividing this by the border width gives the dash velocity
 638            let dv_numerator = 1.0 / dash_period_per_width;
 639
 640            if (unrounded) {
 641                // When corners aren't rounded, the dashes are separately laid
 642                // out on each straight line, rather than around the whole
 643                // perimeter. This way each line starts and ends with a dash.
 644                let is_horizontal =
 645                        corner_center_to_point.x <
 646                        corner_center_to_point.y;
 647                let border_width = select(border.y, border.x, is_horizontal);
 648                dash_velocity = dv_numerator / border_width;
 649                t = select(point.y, point.x, is_horizontal) * dash_velocity;
 650                max_t = select(size.y, size.x, is_horizontal) * dash_velocity;
 651            } else {
 652                // When corners are rounded, the dashes are laid out clockwise
 653                // around the whole perimeter.
 654
 655                let r_tr = quad.corner_radii.top_right;
 656                let r_br = quad.corner_radii.bottom_right;
 657                let r_bl = quad.corner_radii.bottom_left;
 658                let r_tl = quad.corner_radii.top_left;
 659
 660                let w_t = quad.border_widths.top;
 661                let w_r = quad.border_widths.right;
 662                let w_b = quad.border_widths.bottom;
 663                let w_l = quad.border_widths.left;
 664
 665                // Straight side dash velocities
 666                let dv_t = select(dv_numerator / w_t, 0.0, w_t <= 0.0);
 667                let dv_r = select(dv_numerator / w_r, 0.0, w_r <= 0.0);
 668                let dv_b = select(dv_numerator / w_b, 0.0, w_b <= 0.0);
 669                let dv_l = select(dv_numerator / w_l, 0.0, w_l <= 0.0);
 670
 671                // Straight side lengths in dash space
 672                let s_t = (size.x - r_tl - r_tr) * dv_t;
 673                let s_r = (size.y - r_tr - r_br) * dv_r;
 674                let s_b = (size.x - r_br - r_bl) * dv_b;
 675                let s_l = (size.y - r_bl - r_tl) * dv_l;
 676
 677                let corner_dash_velocity_tr = corner_dash_velocity(dv_t, dv_r);
 678                let corner_dash_velocity_br = corner_dash_velocity(dv_b, dv_r);
 679                let corner_dash_velocity_bl = corner_dash_velocity(dv_b, dv_l);
 680                let corner_dash_velocity_tl = corner_dash_velocity(dv_t, dv_l);
 681
 682                // Corner lengths in dash space
 683                let c_tr = r_tr * (M_PI_F / 2.0) * corner_dash_velocity_tr;
 684                let c_br = r_br * (M_PI_F / 2.0) * corner_dash_velocity_br;
 685                let c_bl = r_bl * (M_PI_F / 2.0) * corner_dash_velocity_bl;
 686                let c_tl = r_tl * (M_PI_F / 2.0) * corner_dash_velocity_tl;
 687
 688                // Cumulative dash space upto each segment
 689                let upto_tr = s_t;
 690                let upto_r = upto_tr + c_tr;
 691                let upto_br = upto_r + s_r;
 692                let upto_b = upto_br + c_br;
 693                let upto_bl = upto_b + s_b;
 694                let upto_l = upto_bl + c_bl;
 695                let upto_tl = upto_l + s_l;
 696                max_t = upto_tl + c_tl;
 697
 698                if (is_near_rounded_corner) {
 699                    let radians = atan2(corner_center_to_point.y,
 700                                        corner_center_to_point.x);
 701                    let corner_t = radians * corner_radius;
 702
 703                    if (center_to_point.x >= 0.0) {
 704                        if (center_to_point.y < 0.0) {
 705                            dash_velocity = corner_dash_velocity_tr;
 706                            // Subtracted because radians is pi/2 to 0 when
 707                            // going clockwise around the top right corner,
 708                            // since the y axis has been flipped
 709                            t = upto_r - corner_t * dash_velocity;
 710                        } else {
 711                            dash_velocity = corner_dash_velocity_br;
 712                            // Added because radians is 0 to pi/2 when going
 713                            // clockwise around the bottom-right corner
 714                            t = upto_br + corner_t * dash_velocity;
 715                        }
 716                    } else {
 717                        if (center_to_point.y >= 0.0) {
 718                            dash_velocity = corner_dash_velocity_bl;
 719                            // Subtracted because radians is pi/2 to 0 when
 720                            // going clockwise around the bottom-left corner,
 721                            // since the x axis has been flipped
 722                            t = upto_l - corner_t * dash_velocity;
 723                        } else {
 724                            dash_velocity = corner_dash_velocity_tl;
 725                            // Added because radians is 0 to pi/2 when going
 726                            // clockwise around the top-left corner, since both
 727                            // axis were flipped
 728                            t = upto_tl + corner_t * dash_velocity;
 729                        }
 730                    }
 731                } else {
 732                    // Straight borders
 733                    let is_horizontal =
 734                            corner_center_to_point.x <
 735                            corner_center_to_point.y;
 736                    if (is_horizontal) {
 737                        if (center_to_point.y < 0.0) {
 738                            dash_velocity = dv_t;
 739                            t = (point.x - r_tl) * dash_velocity;
 740                        } else {
 741                            dash_velocity = dv_b;
 742                            t = upto_bl - (point.x - r_bl) * dash_velocity;
 743                        }
 744                    } else {
 745                        if (center_to_point.x < 0.0) {
 746                            dash_velocity = dv_l;
 747                            t = upto_tl - (point.y - r_tl) * dash_velocity;
 748                        } else {
 749                            dash_velocity = dv_r;
 750                            t = upto_r + (point.y - r_tr) * dash_velocity;
 751                        }
 752                    }
 753                }
 754            }
 755
 756            let dash_length = dash_length_per_width / dash_period_per_width;
 757            let desired_dash_gap = dash_gap_per_width / dash_period_per_width;
 758
 759            // Straight borders should start and end with a dash, so max_t is
 760            // reduced to cause this.
 761            max_t -= select(0.0, dash_length, unrounded);
 762            if (max_t >= 1.0) {
 763                // Adjust dash gap to evenly divide max_t.
 764                let dash_count = floor(max_t);
 765                let dash_period = max_t / dash_count;
 766                border_color.a *= dash_alpha(
 767                    t,
 768                    dash_period,
 769                    dash_length,
 770                    dash_velocity,
 771                    antialias_threshold);
 772            } else if (unrounded) {
 773                // When there isn't enough space for the full gap between the
 774                // two start / end dashes of a straight border, reduce gap to
 775                // make them fit.
 776                let dash_gap = max_t - dash_length;
 777                if (dash_gap > 0.0) {
 778                    let dash_period = dash_length + dash_gap;
 779                    border_color.a *= dash_alpha(
 780                        t,
 781                        dash_period,
 782                        dash_length,
 783                        dash_velocity,
 784                        antialias_threshold);
 785                }
 786            }
 787        }
 788
 789        // Blend the border on top of the background and then linearly interpolate
 790        // between the two as we slide inside the background.
 791        let blended_border = over(background_color, border_color);
 792        color = mix(background_color, blended_border,
 793                    saturate(antialias_threshold - inner_sdf));
 794    }
 795
 796    return blend_color(color, saturate(antialias_threshold - outer_sdf));
 797}
 798
 799// Returns the dash velocity of a corner given the dash velocity of the two
 800// sides, by returning the slower velocity (larger dashes).
 801//
 802// Since 0 is used for dash velocity when the border width is 0 (instead of
 803// +inf), this returns the other dash velocity in that case.
 804//
 805// An alternative to this might be to appropriately interpolate the dash
 806// velocity around the corner, but that seems overcomplicated.
 807fn corner_dash_velocity(dv1: f32, dv2: f32) -> f32 {
 808    if (dv1 == 0.0) {
 809        return dv2;
 810    } else if (dv2 == 0.0) {
 811        return dv1;
 812    } else {
 813        return min(dv1, dv2);
 814    }
 815}
 816
 817// Returns alpha used to render antialiased dashes.
 818// `t` is within the dash when `fmod(t, period) < length`.
 819fn dash_alpha(t: f32, period: f32, length: f32, dash_velocity: f32, antialias_threshold: f32) -> f32 {
 820    let half_period = period / 2;
 821    let half_length = length / 2;
 822    // Value in [-half_period, half_period].
 823    // The dash is in [-half_length, half_length].
 824    let centered = fmod(t + half_period - half_length, period) - half_period;
 825    // Signed distance for the dash, negative values are inside the dash.
 826    let signed_distance = abs(centered) - half_length;
 827    // Antialiased alpha based on the signed distance.
 828    return saturate(antialias_threshold - signed_distance / dash_velocity);
 829}
 830
 831// This approximates distance to the nearest point to a quarter ellipse in a way
 832// that is sufficient for anti-aliasing when the ellipse is not very eccentric.
 833// The components of `point` are expected to be positive.
 834//
 835// Negative on the outside and positive on the inside.
 836fn quarter_ellipse_sdf(point: vec2<f32>, radii: vec2<f32>) -> f32 {
 837    // Scale the space to treat the ellipse like a unit circle.
 838    let circle_vec = point / radii;
 839    let unit_circle_sdf = length(circle_vec) - 1.0;
 840    // Approximate up-scaling of the length by using the average of the radii.
 841    //
 842    // TODO: A better solution would be to use the gradient of the implicit
 843    // function for an ellipse to approximate a scaling factor.
 844    return unit_circle_sdf * (radii.x + radii.y) * -0.5;
 845}
 846
 847// Modulus that has the same sign as `a`.
 848fn fmod(a: f32, b: f32) -> f32 {
 849    return a - b * trunc(a / b);
 850}
 851
 852// --- shadows --- //
 853
 854struct Shadow {
 855    order: u32,
 856    blur_radius: f32,
 857    bounds: Bounds,
 858    corner_radii: Corners,
 859    content_mask: Bounds,
 860    color: Hsla,
 861}
 862var<storage, read> b_shadows: array<Shadow>;
 863
 864struct ShadowVarying {
 865    @builtin(position) position: vec4<f32>,
 866    @location(0) @interpolate(flat) color: vec4<f32>,
 867    @location(1) @interpolate(flat) shadow_id: u32,
 868    //TODO: use `clip_distance` once Naga supports it
 869    @location(3) clip_distances: vec4<f32>,
 870}
 871
 872@vertex
 873fn vs_shadow(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> ShadowVarying {
 874    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
 875    var shadow = b_shadows[instance_id];
 876
 877    let margin = 3.0 * shadow.blur_radius;
 878    // Set the bounds of the shadow and adjust its size based on the shadow's
 879    // spread radius to achieve the spreading effect
 880    shadow.bounds.origin -= vec2<f32>(margin);
 881    shadow.bounds.size += 2.0 * vec2<f32>(margin);
 882
 883    var out = ShadowVarying();
 884    out.position = to_device_position(unit_vertex, shadow.bounds);
 885    out.color = hsla_to_rgba(shadow.color);
 886    out.shadow_id = instance_id;
 887    out.clip_distances = distance_from_clip_rect(unit_vertex, shadow.bounds, shadow.content_mask);
 888    return out;
 889}
 890
 891@fragment
 892fn fs_shadow(input: ShadowVarying) -> @location(0) vec4<f32> {
 893    // Alpha clip first, since we don't have `clip_distance`.
 894    if (any(input.clip_distances < vec4<f32>(0.0))) {
 895        return vec4<f32>(0.0);
 896    }
 897
 898    let shadow = b_shadows[input.shadow_id];
 899    let half_size = shadow.bounds.size / 2.0;
 900    let center = shadow.bounds.origin + half_size;
 901    let center_to_point = input.position.xy - center;
 902
 903    let corner_radius = pick_corner_radius(center_to_point, shadow.corner_radii);
 904
 905    // The signal is only non-zero in a limited range, so don't waste samples
 906    let low = center_to_point.y - half_size.y;
 907    let high = center_to_point.y + half_size.y;
 908    let start = clamp(-3.0 * shadow.blur_radius, low, high);
 909    let end = clamp(3.0 * shadow.blur_radius, low, high);
 910
 911    // Accumulate samples (we can get away with surprisingly few samples)
 912    let step = (end - start) / 4.0;
 913    var y = start + step * 0.5;
 914    var alpha = 0.0;
 915    for (var i = 0; i < 4; i += 1) {
 916        let blur = blur_along_x(center_to_point.x, center_to_point.y - y,
 917            shadow.blur_radius, corner_radius, half_size);
 918        alpha +=  blur * gaussian(y, shadow.blur_radius) * step;
 919        y += step;
 920    }
 921
 922    return blend_color(input.color, alpha);
 923}
 924
 925// --- path rasterization --- //
 926
 927struct PathRasterizationVertex {
 928    xy_position: vec2<f32>,
 929    st_position: vec2<f32>,
 930    color: Background,
 931    bounds: Bounds,
 932}
 933
 934var<storage, read> b_path_vertices: array<PathRasterizationVertex>;
 935
 936struct PathRasterizationVarying {
 937    @builtin(position) position: vec4<f32>,
 938    @location(0) st_position: vec2<f32>,
 939    @location(1) vertex_id: u32,
 940    //TODO: use `clip_distance` once Naga supports it
 941    @location(3) clip_distances: vec4<f32>,
 942}
 943
 944@vertex
 945fn vs_path_rasterization(@builtin(vertex_index) vertex_id: u32) -> PathRasterizationVarying {
 946    let v = b_path_vertices[vertex_id];
 947
 948    var out = PathRasterizationVarying();
 949    out.position = to_device_position_impl(v.xy_position);
 950    out.st_position = v.st_position;
 951    out.vertex_id = vertex_id;
 952    out.clip_distances = distance_from_clip_rect_impl(v.xy_position, v.bounds);
 953    return out;
 954}
 955
 956@fragment
 957fn fs_path_rasterization(input: PathRasterizationVarying) -> @location(0) vec4<f32> {
 958    let dx = dpdx(input.st_position);
 959    let dy = dpdy(input.st_position);
 960    if (any(input.clip_distances < vec4<f32>(0.0))) {
 961        return vec4<f32>(0.0);
 962    }
 963
 964    let v = b_path_vertices[input.vertex_id];
 965    let background = v.color;
 966    let bounds = v.bounds;
 967
 968    var alpha: f32;
 969    if (length(vec2<f32>(dx.x, dy.x)) < 0.001) {
 970        // If the gradient is too small, return a solid color.
 971        alpha = 1.0;
 972    } else {
 973        let gradient = 2.0 * input.st_position.xx * vec2<f32>(dx.x, dy.x) - vec2<f32>(dx.y, dy.y);
 974        let f = input.st_position.x * input.st_position.x - input.st_position.y;
 975        let distance = f / length(gradient);
 976        alpha = saturate(0.5 - distance);
 977    }
 978    let gradient_color = prepare_gradient_color(
 979        background.tag,
 980        background.color_space,
 981        background.solid,
 982        background.colors,
 983    );
 984    let color = gradient_color(background, input.position.xy, bounds,
 985        gradient_color.solid, gradient_color.color0, gradient_color.color1);
 986    return vec4<f32>(color.rgb * color.a * alpha, color.a * alpha);
 987}
 988
 989// --- paths --- //
 990
 991struct PathSprite {
 992    bounds: Bounds,
 993}
 994var<storage, read> b_path_sprites: array<PathSprite>;
 995
 996struct PathVarying {
 997    @builtin(position) position: vec4<f32>,
 998    @location(0) texture_coords: vec2<f32>,
 999}
1000
1001@vertex
1002fn vs_path(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PathVarying {
1003    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1004    let sprite = b_path_sprites[instance_id];
1005    // Don't apply content mask because it was already accounted for when rasterizing the path.
1006    let device_position = to_device_position(unit_vertex, sprite.bounds);
1007    // For screen-space intermediate texture, convert screen position to texture coordinates
1008    let screen_position = sprite.bounds.origin + unit_vertex * sprite.bounds.size;
1009    let texture_coords = screen_position / globals.viewport_size;
1010
1011    var out = PathVarying();
1012    out.position = device_position;
1013    out.texture_coords = texture_coords;
1014
1015    return out;
1016}
1017
1018@fragment
1019fn fs_path(input: PathVarying) -> @location(0) vec4<f32> {
1020    let sample = textureSample(t_sprite, s_sprite, input.texture_coords);
1021    return sample;
1022}
1023
1024// --- underlines --- //
1025
1026struct Underline {
1027    order: u32,
1028    pad: u32,
1029    bounds: Bounds,
1030    content_mask: Bounds,
1031    color: Hsla,
1032    thickness: f32,
1033    wavy: u32,
1034}
1035var<storage, read> b_underlines: array<Underline>;
1036
1037struct UnderlineVarying {
1038    @builtin(position) position: vec4<f32>,
1039    @location(0) @interpolate(flat) color: vec4<f32>,
1040    @location(1) @interpolate(flat) underline_id: u32,
1041    //TODO: use `clip_distance` once Naga supports it
1042    @location(3) clip_distances: vec4<f32>,
1043}
1044
1045@vertex
1046fn vs_underline(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> UnderlineVarying {
1047    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1048    let underline = b_underlines[instance_id];
1049
1050    var out = UnderlineVarying();
1051    out.position = to_device_position(unit_vertex, underline.bounds);
1052    out.color = hsla_to_rgba(underline.color);
1053    out.underline_id = instance_id;
1054    out.clip_distances = distance_from_clip_rect(unit_vertex, underline.bounds, underline.content_mask);
1055    return out;
1056}
1057
1058@fragment
1059fn fs_underline(input: UnderlineVarying) -> @location(0) vec4<f32> {
1060    const WAVE_FREQUENCY: f32 = 2.0;
1061    const WAVE_HEIGHT_RATIO: f32 = 0.8;
1062
1063    // Alpha clip first, since we don't have `clip_distance`.
1064    if (any(input.clip_distances < vec4<f32>(0.0))) {
1065        return vec4<f32>(0.0);
1066    }
1067
1068    let underline = b_underlines[input.underline_id];
1069    if ((underline.wavy & 0xFFu) == 0u)
1070    {
1071        return blend_color(input.color, input.color.a);
1072    }
1073
1074    let half_thickness = underline.thickness * 0.5;
1075
1076    let st = (input.position.xy - underline.bounds.origin) / underline.bounds.size.y - vec2<f32>(0.0, 0.5);
1077    let frequency = M_PI_F * WAVE_FREQUENCY * underline.thickness / underline.bounds.size.y;
1078    let amplitude = (underline.thickness * WAVE_HEIGHT_RATIO) / underline.bounds.size.y;
1079
1080    let sine = sin(st.x * frequency) * amplitude;
1081    let dSine = cos(st.x * frequency) * amplitude * frequency;
1082    let distance = (st.y - sine) / sqrt(1.0 + dSine * dSine);
1083    let distance_in_pixels = distance * underline.bounds.size.y;
1084    let distance_from_top_border = distance_in_pixels - half_thickness;
1085    let distance_from_bottom_border = distance_in_pixels + half_thickness;
1086    let alpha = saturate(0.5 - max(-distance_from_bottom_border, distance_from_top_border));
1087    return blend_color(input.color, alpha * input.color.a);
1088}
1089
1090// --- monochrome sprites --- //
1091
1092struct MonochromeSprite {
1093    order: u32,
1094    pad: u32,
1095    bounds: Bounds,
1096    content_mask: Bounds,
1097    color: Hsla,
1098    tile: AtlasTile,
1099    transformation: TransformationMatrix,
1100}
1101var<storage, read> b_mono_sprites: array<MonochromeSprite>;
1102
1103struct MonoSpriteVarying {
1104    @builtin(position) position: vec4<f32>,
1105    @location(0) tile_position: vec2<f32>,
1106    @location(1) @interpolate(flat) color: vec4<f32>,
1107    @location(3) clip_distances: vec4<f32>,
1108}
1109
1110@vertex
1111fn vs_mono_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> MonoSpriteVarying {
1112    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1113    let sprite = b_mono_sprites[instance_id];
1114
1115    var out = MonoSpriteVarying();
1116    out.position = to_device_position_transformed(unit_vertex, sprite.bounds, sprite.transformation);
1117
1118    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
1119    out.color = hsla_to_rgba(sprite.color);
1120    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
1121    return out;
1122}
1123
1124@fragment
1125fn fs_mono_sprite(input: MonoSpriteVarying) -> @location(0) vec4<f32> {
1126    let sample = textureSample(t_sprite, s_sprite, input.tile_position).r;
1127    // Alpha clip after using the derivatives.
1128    if (any(input.clip_distances < vec4<f32>(0.0))) {
1129        return vec4<f32>(0.0);
1130    }
1131    return blend_color(input.color, sample);
1132}
1133
1134// --- polychrome sprites --- //
1135
1136struct PolychromeSprite {
1137    order: u32,
1138    pad: u32,
1139    grayscale: u32,
1140    opacity: f32,
1141    bounds: Bounds,
1142    content_mask: Bounds,
1143    corner_radii: Corners,
1144    tile: AtlasTile,
1145}
1146var<storage, read> b_poly_sprites: array<PolychromeSprite>;
1147
1148struct PolySpriteVarying {
1149    @builtin(position) position: vec4<f32>,
1150    @location(0) tile_position: vec2<f32>,
1151    @location(1) @interpolate(flat) sprite_id: u32,
1152    @location(3) clip_distances: vec4<f32>,
1153}
1154
1155@vertex
1156fn vs_poly_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PolySpriteVarying {
1157    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1158    let sprite = b_poly_sprites[instance_id];
1159
1160    var out = PolySpriteVarying();
1161    out.position = to_device_position(unit_vertex, sprite.bounds);
1162    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
1163    out.sprite_id = instance_id;
1164    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
1165    return out;
1166}
1167
1168@fragment
1169fn fs_poly_sprite(input: PolySpriteVarying) -> @location(0) vec4<f32> {
1170    let sample = textureSample(t_sprite, s_sprite, input.tile_position);
1171    // Alpha clip after using the derivatives.
1172    if (any(input.clip_distances < vec4<f32>(0.0))) {
1173        return vec4<f32>(0.0);
1174    }
1175
1176    let sprite = b_poly_sprites[input.sprite_id];
1177    let distance = quad_sdf(input.position.xy, sprite.bounds, sprite.corner_radii);
1178
1179    var color = sample;
1180    if ((sprite.grayscale & 0xFFu) != 0u) {
1181        let grayscale = dot(color.rgb, GRAYSCALE_FACTORS);
1182        color = vec4<f32>(vec3<f32>(grayscale), sample.a);
1183    }
1184    return blend_color(color, sprite.opacity * saturate(0.5 - distance));
1185}
1186
1187// --- surfaces --- //
1188
1189struct SurfaceParams {
1190    bounds: Bounds,
1191    content_mask: Bounds,
1192}
1193
1194var<uniform> surface_locals: SurfaceParams;
1195var t_y: texture_2d<f32>;
1196var t_cb_cr: texture_2d<f32>;
1197var s_surface: sampler;
1198
1199const ycbcr_to_RGB = mat4x4<f32>(
1200    vec4<f32>( 1.0000f,  1.0000f,  1.0000f, 0.0),
1201    vec4<f32>( 0.0000f, -0.3441f,  1.7720f, 0.0),
1202    vec4<f32>( 1.4020f, -0.7141f,  0.0000f, 0.0),
1203    vec4<f32>(-0.7010f,  0.5291f, -0.8860f, 1.0),
1204);
1205
1206struct SurfaceVarying {
1207    @builtin(position) position: vec4<f32>,
1208    @location(0) texture_position: vec2<f32>,
1209    @location(3) clip_distances: vec4<f32>,
1210}
1211
1212@vertex
1213fn vs_surface(@builtin(vertex_index) vertex_id: u32) -> SurfaceVarying {
1214    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1215
1216    var out = SurfaceVarying();
1217    out.position = to_device_position(unit_vertex, surface_locals.bounds);
1218    out.texture_position = unit_vertex;
1219    out.clip_distances = distance_from_clip_rect(unit_vertex, surface_locals.bounds, surface_locals.content_mask);
1220    return out;
1221}
1222
1223@fragment
1224fn fs_surface(input: SurfaceVarying) -> @location(0) vec4<f32> {
1225    // Alpha clip after using the derivatives.
1226    if (any(input.clip_distances < vec4<f32>(0.0))) {
1227        return vec4<f32>(0.0);
1228    }
1229
1230    let y_cb_cr = vec4<f32>(
1231        textureSampleLevel(t_y, s_surface, input.texture_position, 0.0).r,
1232        textureSampleLevel(t_cb_cr, s_surface, input.texture_position, 0.0).rg,
1233        1.0);
1234
1235    return ycbcr_to_RGB * y_cb_cr;
1236}