google.rs

  1use anyhow::{Context as _, Result, anyhow};
  2use collections::BTreeMap;
  3use credentials_provider::CredentialsProvider;
  4use editor::{Editor, EditorElement, EditorStyle};
  5use futures::{FutureExt, Stream, StreamExt, future, future::BoxFuture};
  6use google_ai::{
  7    FunctionDeclaration, GenerateContentResponse, GoogleModelMode, Part, SystemInstruction,
  8    ThinkingConfig, UsageMetadata,
  9};
 10use gpui::{
 11    AnyView, App, AsyncApp, Context, Entity, FontStyle, SharedString, Task, TextStyle, WhiteSpace,
 12    Window,
 13};
 14use http_client::HttpClient;
 15use language_model::{
 16    AuthenticateError, ConfigurationViewTargetAgent, LanguageModelCompletionError,
 17    LanguageModelCompletionEvent, LanguageModelToolChoice, LanguageModelToolSchemaFormat,
 18    LanguageModelToolUse, LanguageModelToolUseId, MessageContent, StopReason,
 19};
 20use language_model::{
 21    LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
 22    LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
 23    LanguageModelRequest, RateLimiter, Role,
 24};
 25use schemars::JsonSchema;
 26use serde::{Deserialize, Serialize};
 27pub use settings::GoogleAvailableModel as AvailableModel;
 28use settings::{Settings, SettingsStore};
 29use std::pin::Pin;
 30use std::sync::{
 31    Arc, LazyLock,
 32    atomic::{self, AtomicU64},
 33};
 34use strum::IntoEnumIterator;
 35use theme::ThemeSettings;
 36use ui::{Icon, IconName, List, Tooltip, prelude::*};
 37use util::{ResultExt, truncate_and_trailoff};
 38use zed_env_vars::EnvVar;
 39
 40use crate::api_key::ApiKey;
 41use crate::api_key::ApiKeyState;
 42use crate::ui::InstructionListItem;
 43
 44const PROVIDER_ID: LanguageModelProviderId = language_model::GOOGLE_PROVIDER_ID;
 45const PROVIDER_NAME: LanguageModelProviderName = language_model::GOOGLE_PROVIDER_NAME;
 46
 47#[derive(Default, Clone, Debug, PartialEq)]
 48pub struct GoogleSettings {
 49    pub api_url: String,
 50    pub available_models: Vec<AvailableModel>,
 51}
 52
 53#[derive(Clone, Copy, Debug, Default, PartialEq, Serialize, Deserialize, JsonSchema)]
 54#[serde(tag = "type", rename_all = "lowercase")]
 55pub enum ModelMode {
 56    #[default]
 57    Default,
 58    Thinking {
 59        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
 60        budget_tokens: Option<u32>,
 61    },
 62}
 63
 64pub struct GoogleLanguageModelProvider {
 65    http_client: Arc<dyn HttpClient>,
 66    state: gpui::Entity<State>,
 67}
 68
 69pub struct State {
 70    api_key_state: ApiKeyState,
 71}
 72
 73const GEMINI_API_KEY_VAR_NAME: &str = "GEMINI_API_KEY";
 74const GOOGLE_AI_API_KEY_VAR_NAME: &str = "GOOGLE_AI_API_KEY";
 75
 76static API_KEY_ENV_VAR: LazyLock<EnvVar> = LazyLock::new(|| {
 77    // Try GEMINI_API_KEY first as primary, fallback to GOOGLE_AI_API_KEY
 78    EnvVar::new(GEMINI_API_KEY_VAR_NAME.into()).or(EnvVar::new(GOOGLE_AI_API_KEY_VAR_NAME.into()))
 79});
 80
 81impl State {
 82    fn is_authenticated(&self) -> bool {
 83        self.api_key_state.has_key()
 84    }
 85
 86    fn set_api_key(&mut self, api_key: Option<String>, cx: &mut Context<Self>) -> Task<Result<()>> {
 87        let api_url = GoogleLanguageModelProvider::api_url(cx);
 88        self.api_key_state
 89            .store(api_url, api_key, |this| &mut this.api_key_state, cx)
 90    }
 91
 92    fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
 93        let api_url = GoogleLanguageModelProvider::api_url(cx);
 94        self.api_key_state.load_if_needed(
 95            api_url,
 96            &API_KEY_ENV_VAR,
 97            |this| &mut this.api_key_state,
 98            cx,
 99        )
100    }
101}
102
103impl GoogleLanguageModelProvider {
104    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
105        let state = cx.new(|cx| {
106            cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
107                let api_url = Self::api_url(cx);
108                this.api_key_state.handle_url_change(
109                    api_url,
110                    &API_KEY_ENV_VAR,
111                    |this| &mut this.api_key_state,
112                    cx,
113                );
114                cx.notify();
115            })
116            .detach();
117            State {
118                api_key_state: ApiKeyState::new(Self::api_url(cx)),
119            }
120        });
121
122        Self { http_client, state }
123    }
124
125    fn create_language_model(&self, model: google_ai::Model) -> Arc<dyn LanguageModel> {
126        Arc::new(GoogleLanguageModel {
127            id: LanguageModelId::from(model.id().to_string()),
128            model,
129            state: self.state.clone(),
130            http_client: self.http_client.clone(),
131            request_limiter: RateLimiter::new(4),
132        })
133    }
134
135    pub fn api_key_for_gemini_cli(cx: &mut App) -> Task<Result<String>> {
136        if let Some(key) = API_KEY_ENV_VAR.value.clone() {
137            return Task::ready(Ok(key));
138        }
139        let credentials_provider = <dyn CredentialsProvider>::global(cx);
140        let api_url = Self::api_url(cx).to_string();
141        cx.spawn(async move |cx| {
142            Ok(
143                ApiKey::load_from_system_keychain(&api_url, credentials_provider.as_ref(), cx)
144                    .await?
145                    .key()
146                    .to_string(),
147            )
148        })
149    }
150
151    fn settings(cx: &App) -> &GoogleSettings {
152        &crate::AllLanguageModelSettings::get_global(cx).google
153    }
154
155    fn api_url(cx: &App) -> SharedString {
156        let api_url = &Self::settings(cx).api_url;
157        if api_url.is_empty() {
158            google_ai::API_URL.into()
159        } else {
160            SharedString::new(api_url.as_str())
161        }
162    }
163}
164
165impl LanguageModelProviderState for GoogleLanguageModelProvider {
166    type ObservableEntity = State;
167
168    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
169        Some(self.state.clone())
170    }
171}
172
173impl LanguageModelProvider for GoogleLanguageModelProvider {
174    fn id(&self) -> LanguageModelProviderId {
175        PROVIDER_ID
176    }
177
178    fn name(&self) -> LanguageModelProviderName {
179        PROVIDER_NAME
180    }
181
182    fn icon(&self) -> IconName {
183        IconName::AiGoogle
184    }
185
186    fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
187        Some(self.create_language_model(google_ai::Model::default()))
188    }
189
190    fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
191        Some(self.create_language_model(google_ai::Model::default_fast()))
192    }
193
194    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
195        let mut models = BTreeMap::default();
196
197        // Add base models from google_ai::Model::iter()
198        for model in google_ai::Model::iter() {
199            if !matches!(model, google_ai::Model::Custom { .. }) {
200                models.insert(model.id().to_string(), model);
201            }
202        }
203
204        // Override with available models from settings
205        for model in &GoogleLanguageModelProvider::settings(cx).available_models {
206            models.insert(
207                model.name.clone(),
208                google_ai::Model::Custom {
209                    name: model.name.clone(),
210                    display_name: model.display_name.clone(),
211                    max_tokens: model.max_tokens,
212                    mode: model.mode.unwrap_or_default(),
213                },
214            );
215        }
216
217        models
218            .into_values()
219            .map(|model| {
220                Arc::new(GoogleLanguageModel {
221                    id: LanguageModelId::from(model.id().to_string()),
222                    model,
223                    state: self.state.clone(),
224                    http_client: self.http_client.clone(),
225                    request_limiter: RateLimiter::new(4),
226                }) as Arc<dyn LanguageModel>
227            })
228            .collect()
229    }
230
231    fn is_authenticated(&self, cx: &App) -> bool {
232        self.state.read(cx).is_authenticated()
233    }
234
235    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
236        self.state.update(cx, |state, cx| state.authenticate(cx))
237    }
238
239    fn configuration_view(
240        &self,
241        target_agent: language_model::ConfigurationViewTargetAgent,
242        window: &mut Window,
243        cx: &mut App,
244    ) -> AnyView {
245        cx.new(|cx| ConfigurationView::new(self.state.clone(), target_agent, window, cx))
246            .into()
247    }
248
249    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
250        self.state
251            .update(cx, |state, cx| state.set_api_key(None, cx))
252    }
253}
254
255pub struct GoogleLanguageModel {
256    id: LanguageModelId,
257    model: google_ai::Model,
258    state: gpui::Entity<State>,
259    http_client: Arc<dyn HttpClient>,
260    request_limiter: RateLimiter,
261}
262
263impl GoogleLanguageModel {
264    fn stream_completion(
265        &self,
266        request: google_ai::GenerateContentRequest,
267        cx: &AsyncApp,
268    ) -> BoxFuture<
269        'static,
270        Result<futures::stream::BoxStream<'static, Result<GenerateContentResponse>>>,
271    > {
272        let http_client = self.http_client.clone();
273
274        let Ok((api_key, api_url)) = self.state.read_with(cx, |state, cx| {
275            let api_url = GoogleLanguageModelProvider::api_url(cx);
276            (state.api_key_state.key(&api_url), api_url)
277        }) else {
278            return future::ready(Err(anyhow!("App state dropped"))).boxed();
279        };
280
281        async move {
282            let api_key = api_key.context("Missing Google API key")?;
283            let request = google_ai::stream_generate_content(
284                http_client.as_ref(),
285                &api_url,
286                &api_key,
287                request,
288            );
289            request.await.context("failed to stream completion")
290        }
291        .boxed()
292    }
293}
294
295impl LanguageModel for GoogleLanguageModel {
296    fn id(&self) -> LanguageModelId {
297        self.id.clone()
298    }
299
300    fn name(&self) -> LanguageModelName {
301        LanguageModelName::from(self.model.display_name().to_string())
302    }
303
304    fn provider_id(&self) -> LanguageModelProviderId {
305        PROVIDER_ID
306    }
307
308    fn provider_name(&self) -> LanguageModelProviderName {
309        PROVIDER_NAME
310    }
311
312    fn supports_tools(&self) -> bool {
313        self.model.supports_tools()
314    }
315
316    fn supports_images(&self) -> bool {
317        self.model.supports_images()
318    }
319
320    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
321        match choice {
322            LanguageModelToolChoice::Auto
323            | LanguageModelToolChoice::Any
324            | LanguageModelToolChoice::None => true,
325        }
326    }
327
328    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
329        LanguageModelToolSchemaFormat::JsonSchemaSubset
330    }
331
332    fn telemetry_id(&self) -> String {
333        format!("google/{}", self.model.request_id())
334    }
335
336    fn max_token_count(&self) -> u64 {
337        self.model.max_token_count()
338    }
339
340    fn max_output_tokens(&self) -> Option<u64> {
341        self.model.max_output_tokens()
342    }
343
344    fn count_tokens(
345        &self,
346        request: LanguageModelRequest,
347        cx: &App,
348    ) -> BoxFuture<'static, Result<u64>> {
349        let model_id = self.model.request_id().to_string();
350        let request = into_google(request, model_id, self.model.mode());
351        let http_client = self.http_client.clone();
352        let api_url = GoogleLanguageModelProvider::api_url(cx);
353        let api_key = self.state.read(cx).api_key_state.key(&api_url);
354
355        async move {
356            let Some(api_key) = api_key else {
357                return Err(LanguageModelCompletionError::NoApiKey {
358                    provider: PROVIDER_NAME,
359                }
360                .into());
361            };
362            let response = google_ai::count_tokens(
363                http_client.as_ref(),
364                &api_url,
365                &api_key,
366                google_ai::CountTokensRequest {
367                    generate_content_request: request,
368                },
369            )
370            .await?;
371            Ok(response.total_tokens)
372        }
373        .boxed()
374    }
375
376    fn stream_completion(
377        &self,
378        request: LanguageModelRequest,
379        cx: &AsyncApp,
380    ) -> BoxFuture<
381        'static,
382        Result<
383            futures::stream::BoxStream<
384                'static,
385                Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
386            >,
387            LanguageModelCompletionError,
388        >,
389    > {
390        let request = into_google(
391            request,
392            self.model.request_id().to_string(),
393            self.model.mode(),
394        );
395        let request = self.stream_completion(request, cx);
396        let future = self.request_limiter.stream(async move {
397            let response = request.await.map_err(LanguageModelCompletionError::from)?;
398            Ok(GoogleEventMapper::new().map_stream(response))
399        });
400        async move { Ok(future.await?.boxed()) }.boxed()
401    }
402}
403
404pub fn into_google(
405    mut request: LanguageModelRequest,
406    model_id: String,
407    mode: GoogleModelMode,
408) -> google_ai::GenerateContentRequest {
409    fn map_content(content: Vec<MessageContent>) -> Vec<Part> {
410        content
411            .into_iter()
412            .flat_map(|content| match content {
413                language_model::MessageContent::Text(text) => {
414                    if !text.is_empty() {
415                        vec![Part::TextPart(google_ai::TextPart { text })]
416                    } else {
417                        vec![]
418                    }
419                }
420                language_model::MessageContent::Thinking {
421                    text: _,
422                    signature: Some(signature),
423                } => {
424                    if !signature.is_empty() {
425                        vec![Part::ThoughtPart(google_ai::ThoughtPart {
426                            thought: true,
427                            thought_signature: signature,
428                        })]
429                    } else {
430                        vec![]
431                    }
432                }
433                language_model::MessageContent::Thinking { .. } => {
434                    vec![]
435                }
436                language_model::MessageContent::RedactedThinking(_) => vec![],
437                language_model::MessageContent::Image(image) => {
438                    vec![Part::InlineDataPart(google_ai::InlineDataPart {
439                        inline_data: google_ai::GenerativeContentBlob {
440                            mime_type: "image/png".to_string(),
441                            data: image.source.to_string(),
442                        },
443                    })]
444                }
445                language_model::MessageContent::ToolUse(tool_use) => {
446                    vec![Part::FunctionCallPart(google_ai::FunctionCallPart {
447                        function_call: google_ai::FunctionCall {
448                            name: tool_use.name.to_string(),
449                            args: tool_use.input,
450                        },
451                    })]
452                }
453                language_model::MessageContent::ToolResult(tool_result) => {
454                    match tool_result.content {
455                        language_model::LanguageModelToolResultContent::Text(text) => {
456                            vec![Part::FunctionResponsePart(
457                                google_ai::FunctionResponsePart {
458                                    function_response: google_ai::FunctionResponse {
459                                        name: tool_result.tool_name.to_string(),
460                                        // The API expects a valid JSON object
461                                        response: serde_json::json!({
462                                            "output": text
463                                        }),
464                                    },
465                                },
466                            )]
467                        }
468                        language_model::LanguageModelToolResultContent::Image(image) => {
469                            vec![
470                                Part::FunctionResponsePart(google_ai::FunctionResponsePart {
471                                    function_response: google_ai::FunctionResponse {
472                                        name: tool_result.tool_name.to_string(),
473                                        // The API expects a valid JSON object
474                                        response: serde_json::json!({
475                                            "output": "Tool responded with an image"
476                                        }),
477                                    },
478                                }),
479                                Part::InlineDataPart(google_ai::InlineDataPart {
480                                    inline_data: google_ai::GenerativeContentBlob {
481                                        mime_type: "image/png".to_string(),
482                                        data: image.source.to_string(),
483                                    },
484                                }),
485                            ]
486                        }
487                    }
488                }
489            })
490            .collect()
491    }
492
493    let system_instructions = if request
494        .messages
495        .first()
496        .is_some_and(|msg| matches!(msg.role, Role::System))
497    {
498        let message = request.messages.remove(0);
499        Some(SystemInstruction {
500            parts: map_content(message.content),
501        })
502    } else {
503        None
504    };
505
506    google_ai::GenerateContentRequest {
507        model: google_ai::ModelName { model_id },
508        system_instruction: system_instructions,
509        contents: request
510            .messages
511            .into_iter()
512            .filter_map(|message| {
513                let parts = map_content(message.content);
514                if parts.is_empty() {
515                    None
516                } else {
517                    Some(google_ai::Content {
518                        parts,
519                        role: match message.role {
520                            Role::User => google_ai::Role::User,
521                            Role::Assistant => google_ai::Role::Model,
522                            Role::System => google_ai::Role::User, // Google AI doesn't have a system role
523                        },
524                    })
525                }
526            })
527            .collect(),
528        generation_config: Some(google_ai::GenerationConfig {
529            candidate_count: Some(1),
530            stop_sequences: Some(request.stop),
531            max_output_tokens: None,
532            temperature: request.temperature.map(|t| t as f64).or(Some(1.0)),
533            thinking_config: match (request.thinking_allowed, mode) {
534                (true, GoogleModelMode::Thinking { budget_tokens }) => {
535                    budget_tokens.map(|thinking_budget| ThinkingConfig { thinking_budget })
536                }
537                _ => None,
538            },
539            top_p: None,
540            top_k: None,
541        }),
542        safety_settings: None,
543        tools: (!request.tools.is_empty()).then(|| {
544            vec![google_ai::Tool {
545                function_declarations: request
546                    .tools
547                    .into_iter()
548                    .map(|tool| FunctionDeclaration {
549                        name: tool.name,
550                        description: tool.description,
551                        parameters: tool.input_schema,
552                    })
553                    .collect(),
554            }]
555        }),
556        tool_config: request.tool_choice.map(|choice| google_ai::ToolConfig {
557            function_calling_config: google_ai::FunctionCallingConfig {
558                mode: match choice {
559                    LanguageModelToolChoice::Auto => google_ai::FunctionCallingMode::Auto,
560                    LanguageModelToolChoice::Any => google_ai::FunctionCallingMode::Any,
561                    LanguageModelToolChoice::None => google_ai::FunctionCallingMode::None,
562                },
563                allowed_function_names: None,
564            },
565        }),
566    }
567}
568
569pub struct GoogleEventMapper {
570    usage: UsageMetadata,
571    stop_reason: StopReason,
572}
573
574impl GoogleEventMapper {
575    pub fn new() -> Self {
576        Self {
577            usage: UsageMetadata::default(),
578            stop_reason: StopReason::EndTurn,
579        }
580    }
581
582    pub fn map_stream(
583        mut self,
584        events: Pin<Box<dyn Send + Stream<Item = Result<GenerateContentResponse>>>>,
585    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
586    {
587        events
588            .map(Some)
589            .chain(futures::stream::once(async { None }))
590            .flat_map(move |event| {
591                futures::stream::iter(match event {
592                    Some(Ok(event)) => self.map_event(event),
593                    Some(Err(error)) => {
594                        vec![Err(LanguageModelCompletionError::from(error))]
595                    }
596                    None => vec![Ok(LanguageModelCompletionEvent::Stop(self.stop_reason))],
597                })
598            })
599    }
600
601    pub fn map_event(
602        &mut self,
603        event: GenerateContentResponse,
604    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
605        static TOOL_CALL_COUNTER: AtomicU64 = AtomicU64::new(0);
606
607        let mut events: Vec<_> = Vec::new();
608        let mut wants_to_use_tool = false;
609        if let Some(usage_metadata) = event.usage_metadata {
610            update_usage(&mut self.usage, &usage_metadata);
611            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(
612                convert_usage(&self.usage),
613            )))
614        }
615
616        if let Some(prompt_feedback) = event.prompt_feedback
617            && let Some(block_reason) = prompt_feedback.block_reason.as_deref()
618        {
619            self.stop_reason = match block_reason {
620                "SAFETY" | "OTHER" | "BLOCKLIST" | "PROHIBITED_CONTENT" | "IMAGE_SAFETY" => {
621                    StopReason::Refusal
622                }
623                _ => {
624                    log::error!("Unexpected Google block_reason: {block_reason}");
625                    StopReason::Refusal
626                }
627            };
628            events.push(Ok(LanguageModelCompletionEvent::Stop(self.stop_reason)));
629
630            return events;
631        }
632
633        if let Some(candidates) = event.candidates {
634            for candidate in candidates {
635                if let Some(finish_reason) = candidate.finish_reason.as_deref() {
636                    self.stop_reason = match finish_reason {
637                        "STOP" => StopReason::EndTurn,
638                        "MAX_TOKENS" => StopReason::MaxTokens,
639                        _ => {
640                            log::error!("Unexpected google finish_reason: {finish_reason}");
641                            StopReason::EndTurn
642                        }
643                    };
644                }
645                candidate
646                    .content
647                    .parts
648                    .into_iter()
649                    .for_each(|part| match part {
650                        Part::TextPart(text_part) => {
651                            events.push(Ok(LanguageModelCompletionEvent::Text(text_part.text)))
652                        }
653                        Part::InlineDataPart(_) => {}
654                        Part::FunctionCallPart(function_call_part) => {
655                            wants_to_use_tool = true;
656                            let name: Arc<str> = function_call_part.function_call.name.into();
657                            let next_tool_id =
658                                TOOL_CALL_COUNTER.fetch_add(1, atomic::Ordering::SeqCst);
659                            let id: LanguageModelToolUseId =
660                                format!("{}-{}", name, next_tool_id).into();
661
662                            events.push(Ok(LanguageModelCompletionEvent::ToolUse(
663                                LanguageModelToolUse {
664                                    id,
665                                    name,
666                                    is_input_complete: true,
667                                    raw_input: function_call_part.function_call.args.to_string(),
668                                    input: function_call_part.function_call.args,
669                                },
670                            )));
671                        }
672                        Part::FunctionResponsePart(_) => {}
673                        Part::ThoughtPart(part) => {
674                            events.push(Ok(LanguageModelCompletionEvent::Thinking {
675                                text: "(Encrypted thought)".to_string(), // TODO: Can we populate this from thought summaries?
676                                signature: Some(part.thought_signature),
677                            }));
678                        }
679                    });
680            }
681        }
682
683        // Even when Gemini wants to use a Tool, the API
684        // responds with `finish_reason: STOP`
685        if wants_to_use_tool {
686            self.stop_reason = StopReason::ToolUse;
687            events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
688        }
689        events
690    }
691}
692
693pub fn count_google_tokens(
694    request: LanguageModelRequest,
695    cx: &App,
696) -> BoxFuture<'static, Result<u64>> {
697    // We couldn't use the GoogleLanguageModelProvider to count tokens because the github copilot doesn't have the access to google_ai directly.
698    // So we have to use tokenizer from tiktoken_rs to count tokens.
699    cx.background_spawn(async move {
700        let messages = request
701            .messages
702            .into_iter()
703            .map(|message| tiktoken_rs::ChatCompletionRequestMessage {
704                role: match message.role {
705                    Role::User => "user".into(),
706                    Role::Assistant => "assistant".into(),
707                    Role::System => "system".into(),
708                },
709                content: Some(message.string_contents()),
710                name: None,
711                function_call: None,
712            })
713            .collect::<Vec<_>>();
714
715        // Tiktoken doesn't yet support these models, so we manually use the
716        // same tokenizer as GPT-4.
717        tiktoken_rs::num_tokens_from_messages("gpt-4", &messages).map(|tokens| tokens as u64)
718    })
719    .boxed()
720}
721
722fn update_usage(usage: &mut UsageMetadata, new: &UsageMetadata) {
723    if let Some(prompt_token_count) = new.prompt_token_count {
724        usage.prompt_token_count = Some(prompt_token_count);
725    }
726    if let Some(cached_content_token_count) = new.cached_content_token_count {
727        usage.cached_content_token_count = Some(cached_content_token_count);
728    }
729    if let Some(candidates_token_count) = new.candidates_token_count {
730        usage.candidates_token_count = Some(candidates_token_count);
731    }
732    if let Some(tool_use_prompt_token_count) = new.tool_use_prompt_token_count {
733        usage.tool_use_prompt_token_count = Some(tool_use_prompt_token_count);
734    }
735    if let Some(thoughts_token_count) = new.thoughts_token_count {
736        usage.thoughts_token_count = Some(thoughts_token_count);
737    }
738    if let Some(total_token_count) = new.total_token_count {
739        usage.total_token_count = Some(total_token_count);
740    }
741}
742
743fn convert_usage(usage: &UsageMetadata) -> language_model::TokenUsage {
744    let prompt_tokens = usage.prompt_token_count.unwrap_or(0);
745    let cached_tokens = usage.cached_content_token_count.unwrap_or(0);
746    let input_tokens = prompt_tokens - cached_tokens;
747    let output_tokens = usage.candidates_token_count.unwrap_or(0);
748
749    language_model::TokenUsage {
750        input_tokens,
751        output_tokens,
752        cache_read_input_tokens: cached_tokens,
753        cache_creation_input_tokens: 0,
754    }
755}
756
757struct ConfigurationView {
758    api_key_editor: Entity<Editor>,
759    state: gpui::Entity<State>,
760    target_agent: language_model::ConfigurationViewTargetAgent,
761    load_credentials_task: Option<Task<()>>,
762}
763
764impl ConfigurationView {
765    fn new(
766        state: gpui::Entity<State>,
767        target_agent: language_model::ConfigurationViewTargetAgent,
768        window: &mut Window,
769        cx: &mut Context<Self>,
770    ) -> Self {
771        cx.observe(&state, |_, _, cx| {
772            cx.notify();
773        })
774        .detach();
775
776        let load_credentials_task = Some(cx.spawn_in(window, {
777            let state = state.clone();
778            async move |this, cx| {
779                if let Some(task) = state
780                    .update(cx, |state, cx| state.authenticate(cx))
781                    .log_err()
782                {
783                    // We don't log an error, because "not signed in" is also an error.
784                    let _ = task.await;
785                }
786                this.update(cx, |this, cx| {
787                    this.load_credentials_task = None;
788                    cx.notify();
789                })
790                .log_err();
791            }
792        }));
793
794        Self {
795            api_key_editor: cx.new(|cx| {
796                let mut editor = Editor::single_line(window, cx);
797                editor.set_placeholder_text("AIzaSy...", window, cx);
798                editor
799            }),
800            target_agent,
801            state,
802            load_credentials_task,
803        }
804    }
805
806    fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
807        let api_key = self.api_key_editor.read(cx).text(cx).trim().to_string();
808        if api_key.is_empty() {
809            return;
810        }
811
812        // url changes can cause the editor to be displayed again
813        self.api_key_editor
814            .update(cx, |editor, cx| editor.set_text("", window, cx));
815
816        let state = self.state.clone();
817        cx.spawn_in(window, async move |_, cx| {
818            state
819                .update(cx, |state, cx| state.set_api_key(Some(api_key), cx))?
820                .await
821        })
822        .detach_and_log_err(cx);
823    }
824
825    fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
826        self.api_key_editor
827            .update(cx, |editor, cx| editor.set_text("", window, cx));
828
829        let state = self.state.clone();
830        cx.spawn_in(window, async move |_, cx| {
831            state
832                .update(cx, |state, cx| state.set_api_key(None, cx))?
833                .await
834        })
835        .detach_and_log_err(cx);
836    }
837
838    fn render_api_key_editor(&self, cx: &mut Context<Self>) -> impl IntoElement {
839        let settings = ThemeSettings::get_global(cx);
840        let text_style = TextStyle {
841            color: cx.theme().colors().text,
842            font_family: settings.ui_font.family.clone(),
843            font_features: settings.ui_font.features.clone(),
844            font_fallbacks: settings.ui_font.fallbacks.clone(),
845            font_size: rems(0.875).into(),
846            font_weight: settings.ui_font.weight,
847            font_style: FontStyle::Normal,
848            line_height: relative(1.3),
849            white_space: WhiteSpace::Normal,
850            ..Default::default()
851        };
852        EditorElement::new(
853            &self.api_key_editor,
854            EditorStyle {
855                background: cx.theme().colors().editor_background,
856                local_player: cx.theme().players().local(),
857                text: text_style,
858                ..Default::default()
859            },
860        )
861    }
862
863    fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
864        !self.state.read(cx).is_authenticated()
865    }
866}
867
868impl Render for ConfigurationView {
869    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
870        let env_var_set = self.state.read(cx).api_key_state.is_from_env_var();
871
872        if self.load_credentials_task.is_some() {
873            div().child(Label::new("Loading credentials...")).into_any()
874        } else if self.should_render_editor(cx) {
875            v_flex()
876                .size_full()
877                .on_action(cx.listener(Self::save_api_key))
878                .child(Label::new(format!("To use {}, you need to add an API key. Follow these steps:", match &self.target_agent {
879                    ConfigurationViewTargetAgent::ZedAgent => "Zed's agent with Google AI".into(),
880                    ConfigurationViewTargetAgent::Other(agent) => agent.clone(),
881                })))
882                .child(
883                    List::new()
884                        .child(InstructionListItem::new(
885                            "Create one by visiting",
886                            Some("Google AI's console"),
887                            Some("https://aistudio.google.com/app/apikey"),
888                        ))
889                        .child(InstructionListItem::text_only(
890                            "Paste your API key below and hit enter to start using the assistant",
891                        )),
892                )
893                .child(
894                    h_flex()
895                        .w_full()
896                        .my_2()
897                        .px_2()
898                        .py_1()
899                        .bg(cx.theme().colors().editor_background)
900                        .border_1()
901                        .border_color(cx.theme().colors().border)
902                        .rounded_sm()
903                        .child(self.render_api_key_editor(cx)),
904                )
905                .child(
906                    Label::new(
907                        format!("You can also assign the {GEMINI_API_KEY_VAR_NAME} environment variable and restart Zed."),
908                    )
909                    .size(LabelSize::Small).color(Color::Muted),
910                )
911                .into_any()
912        } else {
913            h_flex()
914                .mt_1()
915                .p_1()
916                .justify_between()
917                .rounded_md()
918                .border_1()
919                .border_color(cx.theme().colors().border)
920                .bg(cx.theme().colors().background)
921                .child(
922                    h_flex()
923                        .gap_1()
924                        .child(Icon::new(IconName::Check).color(Color::Success))
925                        .child(Label::new(if env_var_set {
926                            format!("API key set in {} environment variable", API_KEY_ENV_VAR.name)
927                        } else {
928                            let api_url = GoogleLanguageModelProvider::api_url(cx);
929                            if api_url == google_ai::API_URL {
930                                "API key configured".to_string()
931                            } else {
932                                format!("API key configured for {}", truncate_and_trailoff(&api_url, 32))
933                            }
934                        })),
935                )
936                .child(
937                    Button::new("reset-key", "Reset Key")
938                        .label_size(LabelSize::Small)
939                        .icon(Some(IconName::Trash))
940                        .icon_size(IconSize::Small)
941                        .icon_position(IconPosition::Start)
942                        .disabled(env_var_set)
943                        .when(env_var_set, |this| {
944                            this.tooltip(Tooltip::text(format!("To reset your API key, make sure {GEMINI_API_KEY_VAR_NAME} and {GOOGLE_AI_API_KEY_VAR_NAME} environment variables are unset.")))
945                        })
946                        .on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx))),
947                )
948                .into_any()
949        }
950    }
951}