shaders.wgsl

   1/* Functions useful for debugging:
   2
   3// A heat map color for debugging (blue -> cyan -> green -> yellow -> red).
   4fn heat_map_color(value: f32, minValue: f32, maxValue: f32, position: vec2<f32>) -> vec4<f32> {
   5    // Normalize value to 0-1 range
   6    let t = clamp((value - minValue) / (maxValue - minValue), 0.0, 1.0);
   7
   8    // Heat map color calculation
   9    let r = t * t;
  10    let g = 4.0 * t * (1.0 - t);
  11    let b = (1.0 - t) * (1.0 - t);
  12    let heat_color = vec3<f32>(r, g, b);
  13
  14    // Create a checkerboard pattern (black and white)
  15    let sum = floor(position.x / 3) + floor(position.y / 3);
  16    let is_odd = fract(sum * 0.5); // 0.0 for even, 0.5 for odd
  17    let checker_value = is_odd * 2.0; // 0.0 for even, 1.0 for odd
  18    let checker_color = vec3<f32>(checker_value);
  19
  20    // Determine if value is in range (1.0 if in range, 0.0 if out of range)
  21    let in_range = step(minValue, value) * step(value, maxValue);
  22
  23    // Mix checkerboard and heat map based on whether value is in range
  24    let final_color = mix(checker_color, heat_color, in_range);
  25
  26    return vec4<f32>(final_color, 1.0);
  27}
  28
  29*/
  30
  31fn color_brightness(color: vec3<f32>) -> f32 {
  32    // REC. 601 luminance coefficients for perceived brightness
  33    return dot(color, vec3<f32>(0.30, 0.59, 0.11));
  34}
  35
  36fn light_on_dark_contrast(enhancedContrast: f32, color: vec3<f32>) -> f32 {
  37    let brightness = color_brightness(color);
  38    let multiplier = saturate(4.0 * (0.75 - brightness));
  39    return enhancedContrast * multiplier;
  40}
  41
  42fn enhance_contrast(alpha: f32, k: f32) -> f32 {
  43    return alpha * (k + 1.0) / (alpha * k + 1.0);
  44}
  45
  46fn apply_alpha_correction(a: f32, b: f32, g: vec4<f32>) -> f32 {
  47    let brightness_adjustment = g.x * b + g.y;
  48    let correction = brightness_adjustment * a + (g.z * b + g.w);
  49    return a + a * (1.0 - a) * correction;
  50}
  51
  52fn apply_contrast_and_gamma_correction(sample: f32, color: vec3<f32>, enhanced_contrast_factor: f32, gamma_ratios: vec4<f32>) -> f32 {
  53    let enhanced_contrast = light_on_dark_contrast(enhanced_contrast_factor, color);
  54    let brightness = color_brightness(color);
  55
  56    let contrasted = enhance_contrast(sample, enhanced_contrast);
  57    return apply_alpha_correction(contrasted, brightness, gamma_ratios);
  58}
  59
  60struct GlobalParams {
  61    viewport_size: vec2<f32>,
  62    premultiplied_alpha: u32,
  63    pad: u32,
  64}
  65
  66var<uniform> globals: GlobalParams;
  67var<uniform> gamma_ratios: vec4<f32>;
  68var<uniform> grayscale_enhanced_contrast: f32;
  69var t_sprite: texture_2d<f32>;
  70var s_sprite: sampler;
  71
  72const M_PI_F: f32 = 3.1415926;
  73const GRAYSCALE_FACTORS: vec3<f32> = vec3<f32>(0.2126, 0.7152, 0.0722);
  74
  75struct Bounds {
  76    origin: vec2<f32>,
  77    size: vec2<f32>,
  78}
  79
  80struct Corners {
  81    top_left: f32,
  82    top_right: f32,
  83    bottom_right: f32,
  84    bottom_left: f32,
  85}
  86
  87struct Edges {
  88    top: f32,
  89    right: f32,
  90    bottom: f32,
  91    left: f32,
  92}
  93
  94struct Hsla {
  95    h: f32,
  96    s: f32,
  97    l: f32,
  98    a: f32,
  99}
 100
 101struct LinearColorStop {
 102    color: Hsla,
 103    percentage: f32,
 104}
 105
 106struct Background {
 107    // 0u is Solid
 108    // 1u is LinearGradient
 109    // 2u is PatternSlash
 110    tag: u32,
 111    // 0u is sRGB linear color
 112    // 1u is Oklab color
 113    color_space: u32,
 114    solid: Hsla,
 115    gradient_angle_or_pattern_height: f32,
 116    colors: array<LinearColorStop, 2>,
 117    pad: u32,
 118}
 119
 120struct AtlasTextureId {
 121    index: u32,
 122    kind: u32,
 123}
 124
 125struct AtlasBounds {
 126    origin: vec2<i32>,
 127    size: vec2<i32>,
 128}
 129
 130struct AtlasTile {
 131    texture_id: AtlasTextureId,
 132    tile_id: u32,
 133    padding: u32,
 134    bounds: AtlasBounds,
 135}
 136
 137struct TransformationMatrix {
 138    rotation_scale: mat2x2<f32>,
 139    translation: vec2<f32>,
 140}
 141
 142fn to_device_position_impl(position: vec2<f32>) -> vec4<f32> {
 143    let device_position = position / globals.viewport_size * vec2<f32>(2.0, -2.0) + vec2<f32>(-1.0, 1.0);
 144    return vec4<f32>(device_position, 0.0, 1.0);
 145}
 146
 147fn to_device_position(unit_vertex: vec2<f32>, bounds: Bounds) -> vec4<f32> {
 148    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 149    return to_device_position_impl(position);
 150}
 151
 152fn to_device_position_transformed(unit_vertex: vec2<f32>, bounds: Bounds, transform: TransformationMatrix) -> vec4<f32> {
 153    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 154    //Note: Rust side stores it as row-major, so transposing here
 155    let transformed = transpose(transform.rotation_scale) * position + transform.translation;
 156    return to_device_position_impl(transformed);
 157}
 158
 159fn to_tile_position(unit_vertex: vec2<f32>, tile: AtlasTile) -> vec2<f32> {
 160  let atlas_size = vec2<f32>(textureDimensions(t_sprite, 0));
 161  return (vec2<f32>(tile.bounds.origin) + unit_vertex * vec2<f32>(tile.bounds.size)) / atlas_size;
 162}
 163
 164fn distance_from_clip_rect_impl(position: vec2<f32>, clip_bounds: Bounds) -> vec4<f32> {
 165    let tl = position - clip_bounds.origin;
 166    let br = clip_bounds.origin + clip_bounds.size - position;
 167    return vec4<f32>(tl.x, br.x, tl.y, br.y);
 168}
 169
 170fn distance_from_clip_rect(unit_vertex: vec2<f32>, bounds: Bounds, clip_bounds: Bounds) -> vec4<f32> {
 171    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 172    return distance_from_clip_rect_impl(position, clip_bounds);
 173}
 174
 175fn distance_from_clip_rect_transformed(unit_vertex: vec2<f32>, bounds: Bounds, clip_bounds: Bounds, transform: TransformationMatrix) -> vec4<f32> {
 176    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 177    let transformed = transpose(transform.rotation_scale) * position + transform.translation;
 178    return distance_from_clip_rect_impl(transformed, clip_bounds);
 179}
 180
 181// https://gamedev.stackexchange.com/questions/92015/optimized-linear-to-srgb-glsl
 182fn srgb_to_linear(srgb: vec3<f32>) -> vec3<f32> {
 183    let cutoff = srgb < vec3<f32>(0.04045);
 184    let higher = pow((srgb + vec3<f32>(0.055)) / vec3<f32>(1.055), vec3<f32>(2.4));
 185    let lower = srgb / vec3<f32>(12.92);
 186    return select(higher, lower, cutoff);
 187}
 188
 189fn srgb_to_linear_component(a: f32) -> f32 {
 190    let cutoff = a < 0.04045;
 191    let higher = pow((a + 0.055) / 1.055, 2.4);
 192    let lower = a / 12.92;
 193    return select(higher, lower, cutoff);
 194}
 195
 196fn linear_to_srgb(linear: vec3<f32>) -> vec3<f32> {
 197    let cutoff = linear < vec3<f32>(0.0031308);
 198    let higher = vec3<f32>(1.055) * pow(linear, vec3<f32>(1.0 / 2.4)) - vec3<f32>(0.055);
 199    let lower = linear * vec3<f32>(12.92);
 200    return select(higher, lower, cutoff);
 201}
 202
 203/// Convert a linear color to sRGBA space.
 204fn linear_to_srgba(color: vec4<f32>) -> vec4<f32> {
 205    return vec4<f32>(linear_to_srgb(color.rgb), color.a);
 206}
 207
 208/// Convert a sRGBA color to linear space.
 209fn srgba_to_linear(color: vec4<f32>) -> vec4<f32> {
 210    return vec4<f32>(srgb_to_linear(color.rgb), color.a);
 211}
 212
 213/// Hsla to linear RGBA conversion.
 214fn hsla_to_rgba(hsla: Hsla) -> vec4<f32> {
 215    let h = hsla.h * 6.0; // Now, it's an angle but scaled in [0, 6) range
 216    let s = hsla.s;
 217    let l = hsla.l;
 218    let a = hsla.a;
 219
 220    let c = (1.0 - abs(2.0 * l - 1.0)) * s;
 221    let x = c * (1.0 - abs(h % 2.0 - 1.0));
 222    let m = l - c / 2.0;
 223    var color = vec3<f32>(m);
 224
 225    if (h >= 0.0 && h < 1.0) {
 226        color.r += c;
 227        color.g += x;
 228    } else if (h >= 1.0 && h < 2.0) {
 229        color.r += x;
 230        color.g += c;
 231    } else if (h >= 2.0 && h < 3.0) {
 232        color.g += c;
 233        color.b += x;
 234    } else if (h >= 3.0 && h < 4.0) {
 235        color.g += x;
 236        color.b += c;
 237    } else if (h >= 4.0 && h < 5.0) {
 238        color.r += x;
 239        color.b += c;
 240    } else {
 241        color.r += c;
 242        color.b += x;
 243    }
 244
 245    return vec4<f32>(color, a);
 246}
 247
 248/// Convert a linear sRGB to Oklab space.
 249/// Reference: https://bottosson.github.io/posts/oklab/#converting-from-linear-srgb-to-oklab
 250fn linear_srgb_to_oklab(color: vec4<f32>) -> vec4<f32> {
 251	let l = 0.4122214708 * color.r + 0.5363325363 * color.g + 0.0514459929 * color.b;
 252	let m = 0.2119034982 * color.r + 0.6806995451 * color.g + 0.1073969566 * color.b;
 253	let s = 0.0883024619 * color.r + 0.2817188376 * color.g + 0.6299787005 * color.b;
 254
 255	let l_ = pow(l, 1.0 / 3.0);
 256	let m_ = pow(m, 1.0 / 3.0);
 257	let s_ = pow(s, 1.0 / 3.0);
 258
 259	return vec4<f32>(
 260		0.2104542553 * l_ + 0.7936177850 * m_ - 0.0040720468 * s_,
 261		1.9779984951 * l_ - 2.4285922050 * m_ + 0.4505937099 * s_,
 262		0.0259040371 * l_ + 0.7827717662 * m_ - 0.8086757660 * s_,
 263		color.a
 264	);
 265}
 266
 267/// Convert an Oklab color to linear sRGB space.
 268fn oklab_to_linear_srgb(color: vec4<f32>) -> vec4<f32> {
 269	let l_ = color.r + 0.3963377774 * color.g + 0.2158037573 * color.b;
 270	let m_ = color.r - 0.1055613458 * color.g - 0.0638541728 * color.b;
 271	let s_ = color.r - 0.0894841775 * color.g - 1.2914855480 * color.b;
 272
 273	let l = l_ * l_ * l_;
 274	let m = m_ * m_ * m_;
 275	let s = s_ * s_ * s_;
 276
 277	return vec4<f32>(
 278		4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s,
 279		-1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s,
 280		-0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s,
 281		color.a
 282	);
 283}
 284
 285fn over(below: vec4<f32>, above: vec4<f32>) -> vec4<f32> {
 286    let alpha = above.a + below.a * (1.0 - above.a);
 287    let color = (above.rgb * above.a + below.rgb * below.a * (1.0 - above.a)) / alpha;
 288    return vec4<f32>(color, alpha);
 289}
 290
 291// A standard gaussian function, used for weighting samples
 292fn gaussian(x: f32, sigma: f32) -> f32{
 293    return exp(-(x * x) / (2.0 * sigma * sigma)) / (sqrt(2.0 * M_PI_F) * sigma);
 294}
 295
 296// This approximates the error function, needed for the gaussian integral
 297fn erf(v: vec2<f32>) -> vec2<f32> {
 298    let s = sign(v);
 299    let a = abs(v);
 300    let r1 = 1.0 + (0.278393 + (0.230389 + (0.000972 + 0.078108 * a) * a) * a) * a;
 301    let r2 = r1 * r1;
 302    return s - s / (r2 * r2);
 303}
 304
 305fn blur_along_x(x: f32, y: f32, sigma: f32, corner: f32, half_size: vec2<f32>) -> f32 {
 306  let delta = min(half_size.y - corner - abs(y), 0.0);
 307  let curved = half_size.x - corner + sqrt(max(0.0, corner * corner - delta * delta));
 308  let integral = 0.5 + 0.5 * erf((x + vec2<f32>(-curved, curved)) * (sqrt(0.5) / sigma));
 309  return integral.y - integral.x;
 310}
 311
 312// Selects corner radius based on quadrant.
 313fn pick_corner_radius(center_to_point: vec2<f32>, radii: Corners) -> f32 {
 314    if (center_to_point.x < 0.0) {
 315        if (center_to_point.y < 0.0) {
 316            return radii.top_left;
 317        } else {
 318            return radii.bottom_left;
 319        }
 320    } else {
 321        if (center_to_point.y < 0.0) {
 322            return radii.top_right;
 323        } else {
 324            return radii.bottom_right;
 325        }
 326    }
 327}
 328
 329// Signed distance of the point to the quad's border - positive outside the
 330// border, and negative inside.
 331//
 332// See comments on similar code using `quad_sdf_impl` in `fs_quad` for
 333// explanation.
 334fn quad_sdf(point: vec2<f32>, bounds: Bounds, corner_radii: Corners) -> f32 {
 335    let half_size = bounds.size / 2.0;
 336    let center = bounds.origin + half_size;
 337    let center_to_point = point - center;
 338    let corner_radius = pick_corner_radius(center_to_point, corner_radii);
 339    let corner_to_point = abs(center_to_point) - half_size;
 340    let corner_center_to_point = corner_to_point + corner_radius;
 341    return quad_sdf_impl(corner_center_to_point, corner_radius);
 342}
 343
 344fn quad_sdf_impl(corner_center_to_point: vec2<f32>, corner_radius: f32) -> f32 {
 345    if (corner_radius == 0.0) {
 346        // Fast path for unrounded corners.
 347        return max(corner_center_to_point.x, corner_center_to_point.y);
 348    } else {
 349        // Signed distance of the point from a quad that is inset by corner_radius.
 350        // It is negative inside this quad, and positive outside.
 351        let signed_distance_to_inset_quad =
 352            // 0 inside the inset quad, and positive outside.
 353            length(max(vec2<f32>(0.0), corner_center_to_point)) +
 354            // 0 outside the inset quad, and negative inside.
 355            min(0.0, max(corner_center_to_point.x, corner_center_to_point.y));
 356
 357        return signed_distance_to_inset_quad - corner_radius;
 358    }
 359}
 360
 361// Abstract away the final color transformation based on the
 362// target alpha compositing mode.
 363fn blend_color(color: vec4<f32>, alpha_factor: f32) -> vec4<f32> {
 364    let alpha = color.a * alpha_factor;
 365    let multiplier = select(1.0, alpha, globals.premultiplied_alpha != 0u);
 366    return vec4<f32>(color.rgb * multiplier, alpha);
 367}
 368
 369
 370struct GradientColor {
 371    solid: vec4<f32>,
 372    color0: vec4<f32>,
 373    color1: vec4<f32>,
 374}
 375
 376fn prepare_gradient_color(tag: u32, color_space: u32,
 377    solid: Hsla, colors: array<LinearColorStop, 2>) -> GradientColor {
 378    var result = GradientColor();
 379
 380    if (tag == 0u || tag == 2u) {
 381        result.solid = hsla_to_rgba(solid);
 382    } else if (tag == 1u) {
 383        // The hsla_to_rgba is returns a linear sRGB color
 384        result.color0 = hsla_to_rgba(colors[0].color);
 385        result.color1 = hsla_to_rgba(colors[1].color);
 386
 387        // Prepare color space in vertex for avoid conversion
 388        // in fragment shader for performance reasons
 389        if (color_space == 0u) {
 390            // sRGB
 391            result.color0 = linear_to_srgba(result.color0);
 392            result.color1 = linear_to_srgba(result.color1);
 393        } else if (color_space == 1u) {
 394            // Oklab
 395            result.color0 = linear_srgb_to_oklab(result.color0);
 396            result.color1 = linear_srgb_to_oklab(result.color1);
 397        }
 398    }
 399
 400    return result;
 401}
 402
 403fn gradient_color(background: Background, position: vec2<f32>, bounds: Bounds,
 404    solid_color: vec4<f32>, color0: vec4<f32>, color1: vec4<f32>) -> vec4<f32> {
 405    var background_color = vec4<f32>(0.0);
 406
 407    switch (background.tag) {
 408        default: {
 409            return solid_color;
 410        }
 411        case 1u: {
 412            // Linear gradient background.
 413            // -90 degrees to match the CSS gradient angle.
 414            let angle = background.gradient_angle_or_pattern_height;
 415            let radians = (angle % 360.0 - 90.0) * M_PI_F / 180.0;
 416            var direction = vec2<f32>(cos(radians), sin(radians));
 417            let stop0_percentage = background.colors[0].percentage;
 418            let stop1_percentage = background.colors[1].percentage;
 419
 420            // Expand the short side to be the same as the long side
 421            if (bounds.size.x > bounds.size.y) {
 422                direction.y *= bounds.size.y / bounds.size.x;
 423            } else {
 424                direction.x *= bounds.size.x / bounds.size.y;
 425            }
 426
 427            // Get the t value for the linear gradient with the color stop percentages.
 428            let half_size = bounds.size / 2.0;
 429            let center = bounds.origin + half_size;
 430            let center_to_point = position - center;
 431            var t = dot(center_to_point, direction) / length(direction);
 432            // Check the direct to determine the use x or y
 433            if (abs(direction.x) > abs(direction.y)) {
 434                t = (t + half_size.x) / bounds.size.x;
 435            } else {
 436                t = (t + half_size.y) / bounds.size.y;
 437            }
 438
 439            // Adjust t based on the stop percentages
 440            t = (t - stop0_percentage) / (stop1_percentage - stop0_percentage);
 441            t = clamp(t, 0.0, 1.0);
 442
 443            switch (background.color_space) {
 444                default: {
 445                    background_color = srgba_to_linear(mix(color0, color1, t));
 446                }
 447                case 1u: {
 448                    let oklab_color = mix(color0, color1, t);
 449                    background_color = oklab_to_linear_srgb(oklab_color);
 450                }
 451            }
 452        }
 453        case 2u: {
 454            let gradient_angle_or_pattern_height = background.gradient_angle_or_pattern_height;
 455            let pattern_width = (gradient_angle_or_pattern_height / 65535.0f) / 255.0f;
 456            let pattern_interval = (gradient_angle_or_pattern_height % 65535.0f) / 255.0f;
 457            let pattern_height = pattern_width + pattern_interval;
 458            let stripe_angle = M_PI_F / 4.0;
 459            let pattern_period = pattern_height * sin(stripe_angle);
 460            let rotation = mat2x2<f32>(
 461                cos(stripe_angle), -sin(stripe_angle),
 462                sin(stripe_angle), cos(stripe_angle)
 463            );
 464            let relative_position = position - bounds.origin;
 465            let rotated_point = rotation * relative_position;
 466            let pattern = rotated_point.x % pattern_period;
 467            let distance = min(pattern, pattern_period - pattern) - pattern_period * (pattern_width / pattern_height) /  2.0f;
 468            background_color = solid_color;
 469            background_color.a *= saturate(0.5 - distance);
 470        }
 471    }
 472
 473    return background_color;
 474}
 475
 476// --- quads --- //
 477
 478struct Quad {
 479    order: u32,
 480    border_style: u32,
 481    bounds: Bounds,
 482    content_mask: Bounds,
 483    background: Background,
 484    border_color: Hsla,
 485    corner_radii: Corners,
 486    border_widths: Edges,
 487}
 488var<storage, read> b_quads: array<Quad>;
 489
 490struct QuadVarying {
 491    @builtin(position) position: vec4<f32>,
 492    @location(0) @interpolate(flat) border_color: vec4<f32>,
 493    @location(1) @interpolate(flat) quad_id: u32,
 494    // TODO: use `clip_distance` once Naga supports it
 495    @location(2) clip_distances: vec4<f32>,
 496    @location(3) @interpolate(flat) background_solid: vec4<f32>,
 497    @location(4) @interpolate(flat) background_color0: vec4<f32>,
 498    @location(5) @interpolate(flat) background_color1: vec4<f32>,
 499}
 500
 501@vertex
 502fn vs_quad(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> QuadVarying {
 503    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
 504    let quad = b_quads[instance_id];
 505
 506    var out = QuadVarying();
 507    out.position = to_device_position(unit_vertex, quad.bounds);
 508
 509    let gradient = prepare_gradient_color(
 510        quad.background.tag,
 511        quad.background.color_space,
 512        quad.background.solid,
 513        quad.background.colors
 514    );
 515    out.background_solid = gradient.solid;
 516    out.background_color0 = gradient.color0;
 517    out.background_color1 = gradient.color1;
 518    out.border_color = hsla_to_rgba(quad.border_color);
 519    out.quad_id = instance_id;
 520    out.clip_distances = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask);
 521    return out;
 522}
 523
 524@fragment
 525fn fs_quad(input: QuadVarying) -> @location(0) vec4<f32> {
 526    // Alpha clip first, since we don't have `clip_distance`.
 527    if (any(input.clip_distances < vec4<f32>(0.0))) {
 528        return vec4<f32>(0.0);
 529    }
 530
 531    let quad = b_quads[input.quad_id];
 532
 533    let background_color = gradient_color(quad.background, input.position.xy, quad.bounds,
 534        input.background_solid, input.background_color0, input.background_color1);
 535
 536    let unrounded = quad.corner_radii.top_left == 0.0 &&
 537        quad.corner_radii.bottom_left == 0.0 &&
 538        quad.corner_radii.top_right == 0.0 &&
 539        quad.corner_radii.bottom_right == 0.0;
 540
 541    // Fast path when the quad is not rounded and doesn't have any border
 542    if (quad.border_widths.top == 0.0 &&
 543            quad.border_widths.left == 0.0 &&
 544            quad.border_widths.right == 0.0 &&
 545            quad.border_widths.bottom == 0.0 &&
 546            unrounded) {
 547        return blend_color(background_color, 1.0);
 548    }
 549
 550    let size = quad.bounds.size;
 551    let half_size = size / 2.0;
 552    let point = input.position.xy - quad.bounds.origin;
 553    let center_to_point = point - half_size;
 554
 555    // Signed distance field threshold for inclusion of pixels. 0.5 is the
 556    // minimum distance between the center of the pixel and the edge.
 557    let antialias_threshold = 0.5;
 558
 559    // Radius of the nearest corner
 560    let corner_radius = pick_corner_radius(center_to_point, quad.corner_radii);
 561
 562    // Width of the nearest borders
 563    let border = vec2<f32>(
 564        select(
 565            quad.border_widths.right,
 566            quad.border_widths.left,
 567            center_to_point.x < 0.0),
 568        select(
 569            quad.border_widths.bottom,
 570            quad.border_widths.top,
 571            center_to_point.y < 0.0));
 572
 573    // 0-width borders are reduced so that `inner_sdf >= antialias_threshold`.
 574    // The purpose of this is to not draw antialiasing pixels in this case.
 575    let reduced_border =
 576        vec2<f32>(select(border.x, -antialias_threshold, border.x == 0.0),
 577                  select(border.y, -antialias_threshold, border.y == 0.0));
 578
 579    // Vector from the corner of the quad bounds to the point, after mirroring
 580    // the point into the bottom right quadrant. Both components are <= 0.
 581    let corner_to_point = abs(center_to_point) - half_size;
 582
 583    // Vector from the point to the center of the rounded corner's circle, also
 584    // mirrored into bottom right quadrant.
 585    let corner_center_to_point = corner_to_point + corner_radius;
 586
 587    // Whether the nearest point on the border is rounded
 588    let is_near_rounded_corner =
 589            corner_center_to_point.x >= 0 &&
 590            corner_center_to_point.y >= 0;
 591
 592    // Vector from straight border inner corner to point.
 593    let straight_border_inner_corner_to_point = corner_to_point + reduced_border;
 594
 595    // Whether the point is beyond the inner edge of the straight border.
 596    let is_beyond_inner_straight_border =
 597            straight_border_inner_corner_to_point.x > 0 ||
 598            straight_border_inner_corner_to_point.y > 0;
 599
 600    // Whether the point is far enough inside the quad, such that the pixels are
 601    // not affected by the straight border.
 602    let is_within_inner_straight_border =
 603        straight_border_inner_corner_to_point.x < -antialias_threshold &&
 604        straight_border_inner_corner_to_point.y < -antialias_threshold;
 605
 606    // Fast path for points that must be part of the background.
 607    //
 608    // This could be optimized further for large rounded corners by including
 609    // points in an inscribed rectangle, or some other quick linear check.
 610    // However, that might negatively impact performance in the case of
 611    // reasonable sizes for rounded corners.
 612    if (is_within_inner_straight_border && !is_near_rounded_corner) {
 613        return blend_color(background_color, 1.0);
 614    }
 615
 616    // Signed distance of the point to the outside edge of the quad's border. It
 617    // is positive outside this edge, and negative inside.
 618    let outer_sdf = quad_sdf_impl(corner_center_to_point, corner_radius);
 619
 620    // Approximate signed distance of the point to the inside edge of the quad's
 621    // border. It is negative outside this edge (within the border), and
 622    // positive inside.
 623    //
 624    // This is not always an accurate signed distance:
 625    // * The rounded portions with varying border width use an approximation of
 626    //   nearest-point-on-ellipse.
 627    // * When it is quickly known to be outside the edge, -1.0 is used.
 628    var inner_sdf = 0.0;
 629    if (corner_center_to_point.x <= 0 || corner_center_to_point.y <= 0) {
 630        // Fast paths for straight borders.
 631        inner_sdf = -max(straight_border_inner_corner_to_point.x,
 632                         straight_border_inner_corner_to_point.y);
 633    } else if (is_beyond_inner_straight_border) {
 634        // Fast path for points that must be outside the inner edge.
 635        inner_sdf = -1.0;
 636    } else if (reduced_border.x == reduced_border.y) {
 637        // Fast path for circular inner edge.
 638        inner_sdf = -(outer_sdf + reduced_border.x);
 639    } else {
 640        let ellipse_radii = max(vec2<f32>(0.0), corner_radius - reduced_border);
 641        inner_sdf = quarter_ellipse_sdf(corner_center_to_point, ellipse_radii);
 642    }
 643
 644    // Negative when inside the border
 645    let border_sdf = max(inner_sdf, outer_sdf);
 646
 647    var color = background_color;
 648    if (border_sdf < antialias_threshold) {
 649        var border_color = input.border_color;
 650
 651        // Dashed border logic when border_style == 1
 652        if (quad.border_style == 1) {
 653            // Position along the perimeter in "dash space", where each dash
 654            // period has length 1
 655            var t = 0.0;
 656
 657            // Total number of dash periods, so that the dash spacing can be
 658            // adjusted to evenly divide it
 659            var max_t = 0.0;
 660
 661            // Border width is proportional to dash size. This is the behavior
 662            // used by browsers, but also avoids dashes from different segments
 663            // overlapping when dash size is smaller than the border width.
 664            //
 665            // Dash pattern: (2 * border width) dash, (1 * border width) gap
 666            let dash_length_per_width = 2.0;
 667            let dash_gap_per_width = 1.0;
 668            let dash_period_per_width = dash_length_per_width + dash_gap_per_width;
 669
 670            // Since the dash size is determined by border width, the density of
 671            // dashes varies. Multiplying a pixel distance by this returns a
 672            // position in dash space - it has units (dash period / pixels). So
 673            // a dash velocity of (1 / 10) is 1 dash every 10 pixels.
 674            var dash_velocity = 0.0;
 675
 676            // Dividing this by the border width gives the dash velocity
 677            let dv_numerator = 1.0 / dash_period_per_width;
 678
 679            if (unrounded) {
 680                // When corners aren't rounded, the dashes are separately laid
 681                // out on each straight line, rather than around the whole
 682                // perimeter. This way each line starts and ends with a dash.
 683                let is_horizontal =
 684                        corner_center_to_point.x <
 685                        corner_center_to_point.y;
 686
 687                // When applying dashed borders to just some, not all, the sides.
 688                // The way we chose border widths above sometimes comes with a 0 width value.
 689                // So we choose again to avoid division by zero.
 690                // TODO: A better solution exists taking a look at the whole file.
 691                // this does not fix single dashed borders at the corners
 692                let dashed_border = vec2<f32>(
 693                        max(
 694                            quad.border_widths.bottom,
 695                            quad.border_widths.top,
 696                        ),
 697                        max(
 698                            quad.border_widths.right,
 699                            quad.border_widths.left,
 700                        )
 701                   );
 702
 703                let border_width = select(dashed_border.y, dashed_border.x, is_horizontal);
 704                dash_velocity = dv_numerator / border_width;
 705                t = select(point.y, point.x, is_horizontal) * dash_velocity;
 706                max_t = select(size.y, size.x, is_horizontal) * dash_velocity;
 707            } else {
 708                // When corners are rounded, the dashes are laid out clockwise
 709                // around the whole perimeter.
 710
 711                let r_tr = quad.corner_radii.top_right;
 712                let r_br = quad.corner_radii.bottom_right;
 713                let r_bl = quad.corner_radii.bottom_left;
 714                let r_tl = quad.corner_radii.top_left;
 715
 716                let w_t = quad.border_widths.top;
 717                let w_r = quad.border_widths.right;
 718                let w_b = quad.border_widths.bottom;
 719                let w_l = quad.border_widths.left;
 720
 721                // Straight side dash velocities
 722                let dv_t = select(dv_numerator / w_t, 0.0, w_t <= 0.0);
 723                let dv_r = select(dv_numerator / w_r, 0.0, w_r <= 0.0);
 724                let dv_b = select(dv_numerator / w_b, 0.0, w_b <= 0.0);
 725                let dv_l = select(dv_numerator / w_l, 0.0, w_l <= 0.0);
 726
 727                // Straight side lengths in dash space
 728                let s_t = (size.x - r_tl - r_tr) * dv_t;
 729                let s_r = (size.y - r_tr - r_br) * dv_r;
 730                let s_b = (size.x - r_br - r_bl) * dv_b;
 731                let s_l = (size.y - r_bl - r_tl) * dv_l;
 732
 733                let corner_dash_velocity_tr = corner_dash_velocity(dv_t, dv_r);
 734                let corner_dash_velocity_br = corner_dash_velocity(dv_b, dv_r);
 735                let corner_dash_velocity_bl = corner_dash_velocity(dv_b, dv_l);
 736                let corner_dash_velocity_tl = corner_dash_velocity(dv_t, dv_l);
 737
 738                // Corner lengths in dash space
 739                let c_tr = r_tr * (M_PI_F / 2.0) * corner_dash_velocity_tr;
 740                let c_br = r_br * (M_PI_F / 2.0) * corner_dash_velocity_br;
 741                let c_bl = r_bl * (M_PI_F / 2.0) * corner_dash_velocity_bl;
 742                let c_tl = r_tl * (M_PI_F / 2.0) * corner_dash_velocity_tl;
 743
 744                // Cumulative dash space upto each segment
 745                let upto_tr = s_t;
 746                let upto_r = upto_tr + c_tr;
 747                let upto_br = upto_r + s_r;
 748                let upto_b = upto_br + c_br;
 749                let upto_bl = upto_b + s_b;
 750                let upto_l = upto_bl + c_bl;
 751                let upto_tl = upto_l + s_l;
 752                max_t = upto_tl + c_tl;
 753
 754                if (is_near_rounded_corner) {
 755                    let radians = atan2(corner_center_to_point.y,
 756                                        corner_center_to_point.x);
 757                    let corner_t = radians * corner_radius;
 758
 759                    if (center_to_point.x >= 0.0) {
 760                        if (center_to_point.y < 0.0) {
 761                            dash_velocity = corner_dash_velocity_tr;
 762                            // Subtracted because radians is pi/2 to 0 when
 763                            // going clockwise around the top right corner,
 764                            // since the y axis has been flipped
 765                            t = upto_r - corner_t * dash_velocity;
 766                        } else {
 767                            dash_velocity = corner_dash_velocity_br;
 768                            // Added because radians is 0 to pi/2 when going
 769                            // clockwise around the bottom-right corner
 770                            t = upto_br + corner_t * dash_velocity;
 771                        }
 772                    } else {
 773                        if (center_to_point.y >= 0.0) {
 774                            dash_velocity = corner_dash_velocity_bl;
 775                            // Subtracted because radians is pi/2 to 0 when
 776                            // going clockwise around the bottom-left corner,
 777                            // since the x axis has been flipped
 778                            t = upto_l - corner_t * dash_velocity;
 779                        } else {
 780                            dash_velocity = corner_dash_velocity_tl;
 781                            // Added because radians is 0 to pi/2 when going
 782                            // clockwise around the top-left corner, since both
 783                            // axis were flipped
 784                            t = upto_tl + corner_t * dash_velocity;
 785                        }
 786                    }
 787                } else {
 788                    // Straight borders
 789                    let is_horizontal =
 790                            corner_center_to_point.x <
 791                            corner_center_to_point.y;
 792                    if (is_horizontal) {
 793                        if (center_to_point.y < 0.0) {
 794                            dash_velocity = dv_t;
 795                            t = (point.x - r_tl) * dash_velocity;
 796                        } else {
 797                            dash_velocity = dv_b;
 798                            t = upto_bl - (point.x - r_bl) * dash_velocity;
 799                        }
 800                    } else {
 801                        if (center_to_point.x < 0.0) {
 802                            dash_velocity = dv_l;
 803                            t = upto_tl - (point.y - r_tl) * dash_velocity;
 804                        } else {
 805                            dash_velocity = dv_r;
 806                            t = upto_r + (point.y - r_tr) * dash_velocity;
 807                        }
 808                    }
 809                }
 810            }
 811
 812            let dash_length = dash_length_per_width / dash_period_per_width;
 813            let desired_dash_gap = dash_gap_per_width / dash_period_per_width;
 814
 815            // Straight borders should start and end with a dash, so max_t is
 816            // reduced to cause this.
 817            max_t -= select(0.0, dash_length, unrounded);
 818            if (max_t >= 1.0) {
 819                // Adjust dash gap to evenly divide max_t.
 820                let dash_count = floor(max_t);
 821                let dash_period = max_t / dash_count;
 822                border_color.a *= dash_alpha(
 823                    t,
 824                    dash_period,
 825                    dash_length,
 826                    dash_velocity,
 827                    antialias_threshold);
 828            } else if (unrounded) {
 829                // When there isn't enough space for the full gap between the
 830                // two start / end dashes of a straight border, reduce gap to
 831                // make them fit.
 832                let dash_gap = max_t - dash_length;
 833                if (dash_gap > 0.0) {
 834                    let dash_period = dash_length + dash_gap;
 835                    border_color.a *= dash_alpha(
 836                        t,
 837                        dash_period,
 838                        dash_length,
 839                        dash_velocity,
 840                        antialias_threshold);
 841                }
 842            }
 843        }
 844
 845        // Blend the border on top of the background and then linearly interpolate
 846        // between the two as we slide inside the background.
 847        let blended_border = over(background_color, border_color);
 848        color = mix(background_color, blended_border,
 849                    saturate(antialias_threshold - inner_sdf));
 850    }
 851
 852    return blend_color(color, saturate(antialias_threshold - outer_sdf));
 853}
 854
 855// Returns the dash velocity of a corner given the dash velocity of the two
 856// sides, by returning the slower velocity (larger dashes).
 857//
 858// Since 0 is used for dash velocity when the border width is 0 (instead of
 859// +inf), this returns the other dash velocity in that case.
 860//
 861// An alternative to this might be to appropriately interpolate the dash
 862// velocity around the corner, but that seems overcomplicated.
 863fn corner_dash_velocity(dv1: f32, dv2: f32) -> f32 {
 864    if (dv1 == 0.0) {
 865        return dv2;
 866    } else if (dv2 == 0.0) {
 867        return dv1;
 868    } else {
 869        return min(dv1, dv2);
 870    }
 871}
 872
 873// Returns alpha used to render antialiased dashes.
 874// `t` is within the dash when `fmod(t, period) < length`.
 875fn dash_alpha(t: f32, period: f32, length: f32, dash_velocity: f32, antialias_threshold: f32) -> f32 {
 876    let half_period = period / 2;
 877    let half_length = length / 2;
 878    // Value in [-half_period, half_period].
 879    // The dash is in [-half_length, half_length].
 880    let centered = fmod(t + half_period - half_length, period) - half_period;
 881    // Signed distance for the dash, negative values are inside the dash.
 882    let signed_distance = abs(centered) - half_length;
 883    // Antialiased alpha based on the signed distance.
 884    return saturate(antialias_threshold - signed_distance / dash_velocity);
 885}
 886
 887// This approximates distance to the nearest point to a quarter ellipse in a way
 888// that is sufficient for anti-aliasing when the ellipse is not very eccentric.
 889// The components of `point` are expected to be positive.
 890//
 891// Negative on the outside and positive on the inside.
 892fn quarter_ellipse_sdf(point: vec2<f32>, radii: vec2<f32>) -> f32 {
 893    // Scale the space to treat the ellipse like a unit circle.
 894    let circle_vec = point / radii;
 895    let unit_circle_sdf = length(circle_vec) - 1.0;
 896    // Approximate up-scaling of the length by using the average of the radii.
 897    //
 898    // TODO: A better solution would be to use the gradient of the implicit
 899    // function for an ellipse to approximate a scaling factor.
 900    return unit_circle_sdf * (radii.x + radii.y) * -0.5;
 901}
 902
 903// Modulus that has the same sign as `a`.
 904fn fmod(a: f32, b: f32) -> f32 {
 905    return a - b * trunc(a / b);
 906}
 907
 908// --- shadows --- //
 909
 910struct Shadow {
 911    order: u32,
 912    blur_radius: f32,
 913    bounds: Bounds,
 914    corner_radii: Corners,
 915    content_mask: Bounds,
 916    color: Hsla,
 917}
 918var<storage, read> b_shadows: array<Shadow>;
 919
 920struct ShadowVarying {
 921    @builtin(position) position: vec4<f32>,
 922    @location(0) @interpolate(flat) color: vec4<f32>,
 923    @location(1) @interpolate(flat) shadow_id: u32,
 924    //TODO: use `clip_distance` once Naga supports it
 925    @location(3) clip_distances: vec4<f32>,
 926}
 927
 928@vertex
 929fn vs_shadow(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> ShadowVarying {
 930    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
 931    var shadow = b_shadows[instance_id];
 932
 933    let margin = 3.0 * shadow.blur_radius;
 934    // Set the bounds of the shadow and adjust its size based on the shadow's
 935    // spread radius to achieve the spreading effect
 936    shadow.bounds.origin -= vec2<f32>(margin);
 937    shadow.bounds.size += 2.0 * vec2<f32>(margin);
 938
 939    var out = ShadowVarying();
 940    out.position = to_device_position(unit_vertex, shadow.bounds);
 941    out.color = hsla_to_rgba(shadow.color);
 942    out.shadow_id = instance_id;
 943    out.clip_distances = distance_from_clip_rect(unit_vertex, shadow.bounds, shadow.content_mask);
 944    return out;
 945}
 946
 947@fragment
 948fn fs_shadow(input: ShadowVarying) -> @location(0) vec4<f32> {
 949    // Alpha clip first, since we don't have `clip_distance`.
 950    if (any(input.clip_distances < vec4<f32>(0.0))) {
 951        return vec4<f32>(0.0);
 952    }
 953
 954    let shadow = b_shadows[input.shadow_id];
 955    let half_size = shadow.bounds.size / 2.0;
 956    let center = shadow.bounds.origin + half_size;
 957    let center_to_point = input.position.xy - center;
 958
 959    let corner_radius = pick_corner_radius(center_to_point, shadow.corner_radii);
 960
 961    // The signal is only non-zero in a limited range, so don't waste samples
 962    let low = center_to_point.y - half_size.y;
 963    let high = center_to_point.y + half_size.y;
 964    let start = clamp(-3.0 * shadow.blur_radius, low, high);
 965    let end = clamp(3.0 * shadow.blur_radius, low, high);
 966
 967    // Accumulate samples (we can get away with surprisingly few samples)
 968    let step = (end - start) / 4.0;
 969    var y = start + step * 0.5;
 970    var alpha = 0.0;
 971    for (var i = 0; i < 4; i += 1) {
 972        let blur = blur_along_x(center_to_point.x, center_to_point.y - y,
 973            shadow.blur_radius, corner_radius, half_size);
 974        alpha +=  blur * gaussian(y, shadow.blur_radius) * step;
 975        y += step;
 976    }
 977
 978    return blend_color(input.color, alpha);
 979}
 980
 981// --- path rasterization --- //
 982
 983struct PathRasterizationVertex {
 984    xy_position: vec2<f32>,
 985    st_position: vec2<f32>,
 986    color: Background,
 987    bounds: Bounds,
 988}
 989
 990var<storage, read> b_path_vertices: array<PathRasterizationVertex>;
 991
 992struct PathRasterizationVarying {
 993    @builtin(position) position: vec4<f32>,
 994    @location(0) st_position: vec2<f32>,
 995    @location(1) vertex_id: u32,
 996    //TODO: use `clip_distance` once Naga supports it
 997    @location(3) clip_distances: vec4<f32>,
 998}
 999
1000@vertex
1001fn vs_path_rasterization(@builtin(vertex_index) vertex_id: u32) -> PathRasterizationVarying {
1002    let v = b_path_vertices[vertex_id];
1003
1004    var out = PathRasterizationVarying();
1005    out.position = to_device_position_impl(v.xy_position);
1006    out.st_position = v.st_position;
1007    out.vertex_id = vertex_id;
1008    out.clip_distances = distance_from_clip_rect_impl(v.xy_position, v.bounds);
1009    return out;
1010}
1011
1012@fragment
1013fn fs_path_rasterization(input: PathRasterizationVarying) -> @location(0) vec4<f32> {
1014    let dx = dpdx(input.st_position);
1015    let dy = dpdy(input.st_position);
1016    if (any(input.clip_distances < vec4<f32>(0.0))) {
1017        return vec4<f32>(0.0);
1018    }
1019
1020    let v = b_path_vertices[input.vertex_id];
1021    let background = v.color;
1022    let bounds = v.bounds;
1023
1024    var alpha: f32;
1025    if (length(vec2<f32>(dx.x, dy.x)) < 0.001) {
1026        // If the gradient is too small, return a solid color.
1027        alpha = 1.0;
1028    } else {
1029        let gradient = 2.0 * input.st_position.xx * vec2<f32>(dx.x, dy.x) - vec2<f32>(dx.y, dy.y);
1030        let f = input.st_position.x * input.st_position.x - input.st_position.y;
1031        let distance = f / length(gradient);
1032        alpha = saturate(0.5 - distance);
1033    }
1034    let gradient_color = prepare_gradient_color(
1035        background.tag,
1036        background.color_space,
1037        background.solid,
1038        background.colors,
1039    );
1040    let color = gradient_color(background, input.position.xy, bounds,
1041        gradient_color.solid, gradient_color.color0, gradient_color.color1);
1042    return vec4<f32>(color.rgb * color.a * alpha, color.a * alpha);
1043}
1044
1045// --- paths --- //
1046
1047struct PathSprite {
1048    bounds: Bounds,
1049}
1050var<storage, read> b_path_sprites: array<PathSprite>;
1051
1052struct PathVarying {
1053    @builtin(position) position: vec4<f32>,
1054    @location(0) texture_coords: vec2<f32>,
1055}
1056
1057@vertex
1058fn vs_path(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PathVarying {
1059    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1060    let sprite = b_path_sprites[instance_id];
1061    // Don't apply content mask because it was already accounted for when rasterizing the path.
1062    let device_position = to_device_position(unit_vertex, sprite.bounds);
1063    // For screen-space intermediate texture, convert screen position to texture coordinates
1064    let screen_position = sprite.bounds.origin + unit_vertex * sprite.bounds.size;
1065    let texture_coords = screen_position / globals.viewport_size;
1066
1067    var out = PathVarying();
1068    out.position = device_position;
1069    out.texture_coords = texture_coords;
1070
1071    return out;
1072}
1073
1074@fragment
1075fn fs_path(input: PathVarying) -> @location(0) vec4<f32> {
1076    let sample = textureSample(t_sprite, s_sprite, input.texture_coords);
1077    return sample;
1078}
1079
1080// --- underlines --- //
1081
1082struct Underline {
1083    order: u32,
1084    pad: u32,
1085    bounds: Bounds,
1086    content_mask: Bounds,
1087    color: Hsla,
1088    thickness: f32,
1089    wavy: u32,
1090}
1091var<storage, read> b_underlines: array<Underline>;
1092
1093struct UnderlineVarying {
1094    @builtin(position) position: vec4<f32>,
1095    @location(0) @interpolate(flat) color: vec4<f32>,
1096    @location(1) @interpolate(flat) underline_id: u32,
1097    //TODO: use `clip_distance` once Naga supports it
1098    @location(3) clip_distances: vec4<f32>,
1099}
1100
1101@vertex
1102fn vs_underline(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> UnderlineVarying {
1103    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1104    let underline = b_underlines[instance_id];
1105
1106    var out = UnderlineVarying();
1107    out.position = to_device_position(unit_vertex, underline.bounds);
1108    out.color = hsla_to_rgba(underline.color);
1109    out.underline_id = instance_id;
1110    out.clip_distances = distance_from_clip_rect(unit_vertex, underline.bounds, underline.content_mask);
1111    return out;
1112}
1113
1114@fragment
1115fn fs_underline(input: UnderlineVarying) -> @location(0) vec4<f32> {
1116    const WAVE_FREQUENCY: f32 = 2.0;
1117    const WAVE_HEIGHT_RATIO: f32 = 0.8;
1118
1119    // Alpha clip first, since we don't have `clip_distance`.
1120    if (any(input.clip_distances < vec4<f32>(0.0))) {
1121        return vec4<f32>(0.0);
1122    }
1123
1124    let underline = b_underlines[input.underline_id];
1125    if ((underline.wavy & 0xFFu) == 0u)
1126    {
1127        return blend_color(input.color, input.color.a);
1128    }
1129
1130    let half_thickness = underline.thickness * 0.5;
1131
1132    let st = (input.position.xy - underline.bounds.origin) / underline.bounds.size.y - vec2<f32>(0.0, 0.5);
1133    let frequency = M_PI_F * WAVE_FREQUENCY * underline.thickness / underline.bounds.size.y;
1134    let amplitude = (underline.thickness * WAVE_HEIGHT_RATIO) / underline.bounds.size.y;
1135
1136    let sine = sin(st.x * frequency) * amplitude;
1137    let dSine = cos(st.x * frequency) * amplitude * frequency;
1138    let distance = (st.y - sine) / sqrt(1.0 + dSine * dSine);
1139    let distance_in_pixels = distance * underline.bounds.size.y;
1140    let distance_from_top_border = distance_in_pixels - half_thickness;
1141    let distance_from_bottom_border = distance_in_pixels + half_thickness;
1142    let alpha = saturate(0.5 - max(-distance_from_bottom_border, distance_from_top_border));
1143    return blend_color(input.color, alpha * input.color.a);
1144}
1145
1146// --- monochrome sprites --- //
1147
1148struct MonochromeSprite {
1149    order: u32,
1150    pad: u32,
1151    bounds: Bounds,
1152    content_mask: Bounds,
1153    color: Hsla,
1154    tile: AtlasTile,
1155    transformation: TransformationMatrix,
1156}
1157var<storage, read> b_mono_sprites: array<MonochromeSprite>;
1158
1159struct MonoSpriteVarying {
1160    @builtin(position) position: vec4<f32>,
1161    @location(0) tile_position: vec2<f32>,
1162    @location(1) @interpolate(flat) color: vec4<f32>,
1163    @location(3) clip_distances: vec4<f32>,
1164}
1165
1166@vertex
1167fn vs_mono_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> MonoSpriteVarying {
1168    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1169    let sprite = b_mono_sprites[instance_id];
1170
1171    var out = MonoSpriteVarying();
1172    out.position = to_device_position_transformed(unit_vertex, sprite.bounds, sprite.transformation);
1173
1174    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
1175    out.color = hsla_to_rgba(sprite.color);
1176    out.clip_distances = distance_from_clip_rect_transformed(unit_vertex, sprite.bounds, sprite.content_mask, sprite.transformation);
1177    return out;
1178}
1179
1180@fragment
1181fn fs_mono_sprite(input: MonoSpriteVarying) -> @location(0) vec4<f32> {
1182    let sample = textureSample(t_sprite, s_sprite, input.tile_position).r;
1183    let alpha_corrected = apply_contrast_and_gamma_correction(sample, input.color.rgb, grayscale_enhanced_contrast, gamma_ratios);
1184
1185    // Alpha clip after using the derivatives.
1186    if (any(input.clip_distances < vec4<f32>(0.0))) {
1187        return vec4<f32>(0.0);
1188    }
1189
1190    // convert to srgb space as the rest of the code (output swapchain) expects that
1191    return blend_color(input.color, alpha_corrected);
1192}
1193
1194// --- polychrome sprites --- //
1195
1196struct PolychromeSprite {
1197    order: u32,
1198    pad: u32,
1199    grayscale: u32,
1200    opacity: f32,
1201    bounds: Bounds,
1202    content_mask: Bounds,
1203    corner_radii: Corners,
1204    tile: AtlasTile,
1205}
1206var<storage, read> b_poly_sprites: array<PolychromeSprite>;
1207
1208struct PolySpriteVarying {
1209    @builtin(position) position: vec4<f32>,
1210    @location(0) tile_position: vec2<f32>,
1211    @location(1) @interpolate(flat) sprite_id: u32,
1212    @location(3) clip_distances: vec4<f32>,
1213}
1214
1215@vertex
1216fn vs_poly_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PolySpriteVarying {
1217    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1218    let sprite = b_poly_sprites[instance_id];
1219
1220    var out = PolySpriteVarying();
1221    out.position = to_device_position(unit_vertex, sprite.bounds);
1222    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
1223    out.sprite_id = instance_id;
1224    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
1225    return out;
1226}
1227
1228@fragment
1229fn fs_poly_sprite(input: PolySpriteVarying) -> @location(0) vec4<f32> {
1230    let sample = textureSample(t_sprite, s_sprite, input.tile_position);
1231    // Alpha clip after using the derivatives.
1232    if (any(input.clip_distances < vec4<f32>(0.0))) {
1233        return vec4<f32>(0.0);
1234    }
1235
1236    let sprite = b_poly_sprites[input.sprite_id];
1237    let distance = quad_sdf(input.position.xy, sprite.bounds, sprite.corner_radii);
1238
1239    var color = sample;
1240    if ((sprite.grayscale & 0xFFu) != 0u) {
1241        let grayscale = dot(color.rgb, GRAYSCALE_FACTORS);
1242        color = vec4<f32>(vec3<f32>(grayscale), sample.a);
1243    }
1244    return blend_color(color, sprite.opacity * saturate(0.5 - distance));
1245}
1246
1247// --- surfaces --- //
1248
1249struct SurfaceParams {
1250    bounds: Bounds,
1251    content_mask: Bounds,
1252}
1253
1254var<uniform> surface_locals: SurfaceParams;
1255var t_y: texture_2d<f32>;
1256var t_cb_cr: texture_2d<f32>;
1257var s_surface: sampler;
1258
1259const ycbcr_to_RGB = mat4x4<f32>(
1260    vec4<f32>( 1.0000f,  1.0000f,  1.0000f, 0.0),
1261    vec4<f32>( 0.0000f, -0.3441f,  1.7720f, 0.0),
1262    vec4<f32>( 1.4020f, -0.7141f,  0.0000f, 0.0),
1263    vec4<f32>(-0.7010f,  0.5291f, -0.8860f, 1.0),
1264);
1265
1266struct SurfaceVarying {
1267    @builtin(position) position: vec4<f32>,
1268    @location(0) texture_position: vec2<f32>,
1269    @location(3) clip_distances: vec4<f32>,
1270}
1271
1272@vertex
1273fn vs_surface(@builtin(vertex_index) vertex_id: u32) -> SurfaceVarying {
1274    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1275
1276    var out = SurfaceVarying();
1277    out.position = to_device_position(unit_vertex, surface_locals.bounds);
1278    out.texture_position = unit_vertex;
1279    out.clip_distances = distance_from_clip_rect(unit_vertex, surface_locals.bounds, surface_locals.content_mask);
1280    return out;
1281}
1282
1283@fragment
1284fn fs_surface(input: SurfaceVarying) -> @location(0) vec4<f32> {
1285    // Alpha clip after using the derivatives.
1286    if (any(input.clip_distances < vec4<f32>(0.0))) {
1287        return vec4<f32>(0.0);
1288    }
1289
1290    let y_cb_cr = vec4<f32>(
1291        textureSampleLevel(t_y, s_surface, input.texture_position, 0.0).r,
1292        textureSampleLevel(t_cb_cr, s_surface, input.texture_position, 0.0).rg,
1293        1.0);
1294
1295    return ycbcr_to_RGB * y_cb_cr;
1296}