Detailed changes
@@ -5,6 +5,8 @@ use rusqlite::types::{FromSql, FromSqlResult, ToSqlOutput, ValueRef};
use rusqlite::ToSql;
use std::time::Instant;
+use crate::models::LanguageModel;
+
#[derive(Debug, PartialEq, Clone)]
pub struct Embedding(pub Vec<f32>);
@@ -66,6 +68,7 @@ impl Embedding {
#[async_trait]
pub trait EmbeddingProvider: Sync + Send {
+ fn base_model(&self) -> Box<dyn LanguageModel>;
fn is_authenticated(&self) -> bool;
async fn embed_batch(&self, spans: Vec<String>) -> Result<Vec<Embedding>>;
fn max_tokens_per_batch(&self) -> usize;
@@ -3,10 +3,42 @@ use std::time::Instant;
use crate::{
completion::CompletionRequest,
embedding::{Embedding, EmbeddingProvider},
+ models::{LanguageModel, TruncationDirection},
};
use async_trait::async_trait;
use serde::Serialize;
+pub struct DummyLanguageModel {}
+
+impl LanguageModel for DummyLanguageModel {
+ fn name(&self) -> String {
+ "dummy".to_string()
+ }
+ fn capacity(&self) -> anyhow::Result<usize> {
+ anyhow::Ok(1000)
+ }
+ fn truncate(
+ &self,
+ content: &str,
+ length: usize,
+ direction: crate::models::TruncationDirection,
+ ) -> anyhow::Result<String> {
+ let truncated = match direction {
+ TruncationDirection::End => content.chars().collect::<Vec<char>>()[..length]
+ .iter()
+ .collect::<String>(),
+ TruncationDirection::Start => content.chars().collect::<Vec<char>>()[..length]
+ .iter()
+ .collect::<String>(),
+ };
+
+ anyhow::Ok(truncated)
+ }
+ fn count_tokens(&self, content: &str) -> anyhow::Result<usize> {
+ anyhow::Ok(content.chars().collect::<Vec<char>>().len())
+ }
+}
+
#[derive(Serialize)]
pub struct DummyCompletionRequest {
pub name: String,
@@ -22,6 +54,9 @@ pub struct DummyEmbeddingProvider {}
#[async_trait]
impl EmbeddingProvider for DummyEmbeddingProvider {
+ fn base_model(&self) -> Box<dyn LanguageModel> {
+ Box::new(DummyLanguageModel {})
+ }
fn is_authenticated(&self) -> bool {
true
}
@@ -19,6 +19,8 @@ use tiktoken_rs::{cl100k_base, CoreBPE};
use util::http::{HttpClient, Request};
use crate::embedding::{Embedding, EmbeddingProvider};
+use crate::models::LanguageModel;
+use crate::providers::open_ai::OpenAILanguageModel;
lazy_static! {
static ref OPENAI_API_KEY: Option<String> = env::var("OPENAI_API_KEY").ok();
@@ -27,6 +29,7 @@ lazy_static! {
#[derive(Clone)]
pub struct OpenAIEmbeddingProvider {
+ model: OpenAILanguageModel,
pub client: Arc<dyn HttpClient>,
pub executor: Arc<Background>,
rate_limit_count_rx: watch::Receiver<Option<Instant>>,
@@ -65,7 +68,10 @@ impl OpenAIEmbeddingProvider {
let (rate_limit_count_tx, rate_limit_count_rx) = watch::channel_with(None);
let rate_limit_count_tx = Arc::new(Mutex::new(rate_limit_count_tx));
+ let model = OpenAILanguageModel::load("text-embedding-ada-002");
+
OpenAIEmbeddingProvider {
+ model,
client,
executor,
rate_limit_count_rx,
@@ -131,6 +137,10 @@ impl OpenAIEmbeddingProvider {
#[async_trait]
impl EmbeddingProvider for OpenAIEmbeddingProvider {
+ fn base_model(&self) -> Box<dyn LanguageModel> {
+ let model: Box<dyn LanguageModel> = Box::new(self.model.clone());
+ model
+ }
fn is_authenticated(&self) -> bool {
OPENAI_API_KEY.as_ref().is_some()
}
@@ -4,6 +4,7 @@ use util::ResultExt;
use crate::models::{LanguageModel, TruncationDirection};
+#[derive(Clone)]
pub struct OpenAILanguageModel {
name: String,
bpe: Option<CoreBPE>,
@@ -4,8 +4,11 @@ use crate::{
semantic_index_settings::SemanticIndexSettings,
FileToEmbed, JobHandle, SearchResult, SemanticIndex, EMBEDDING_QUEUE_FLUSH_TIMEOUT,
};
-use ai::embedding::{Embedding, EmbeddingProvider};
-use ai::providers::dummy::DummyEmbeddingProvider;
+use ai::providers::dummy::{DummyEmbeddingProvider, DummyLanguageModel};
+use ai::{
+ embedding::{Embedding, EmbeddingProvider},
+ models::LanguageModel,
+};
use anyhow::Result;
use async_trait::async_trait;
use gpui::{executor::Deterministic, Task, TestAppContext};
@@ -1282,6 +1285,9 @@ impl FakeEmbeddingProvider {
#[async_trait]
impl EmbeddingProvider for FakeEmbeddingProvider {
+ fn base_model(&self) -> Box<dyn LanguageModel> {
+ Box::new(DummyLanguageModel {})
+ }
fn is_authenticated(&self) -> bool {
true
}