Standardize on u64 for token counts (#32869)

Richard Feldman created

Previously we were using a mix of `u32` and `usize`, e.g. `max_tokens:
usize, max_output_tokens: Option<u32>` in the same `struct`.

Although [tiktoken](https://github.com/openai/tiktoken) uses `usize`,
token counts should be consistent across targets (e.g. the same model
doesn't suddenly get a smaller context window if you're compiling for
wasm32), and these token counts could end up getting serialized using a
binary protocol, so `usize` is not the right choice for token counts.

I chose to standardize on `u64` over `u32` because we don't store many
of them (so the extra size should be insignificant) and future models
may exceed `u32::MAX` tokens.

Release Notes:

- N/A

Change summary

crates/agent/src/active_thread.rs                              |  4 
crates/agent/src/message_editor.rs                             |  4 
crates/agent/src/thread.rs                                     | 12 
crates/agent/src/tool_use.rs                                   |  2 
crates/anthropic/src/anthropic.rs                              | 26 ++--
crates/assistant_context_editor/src/context.rs                 |  4 
crates/assistant_context_editor/src/context_editor.rs          | 14 -
crates/assistant_context_editor/src/language_model_selector.rs |  4 
crates/bedrock/src/bedrock.rs                                  |  2 
crates/bedrock/src/models.rs                                   |  8 
crates/copilot/src/copilot_chat.rs                             | 12 
crates/deepseek/src/deepseek.rs                                | 10 
crates/google_ai/src/google_ai.rs                              | 22 +-
crates/language_model/src/fake_provider.rs                     |  4 
crates/language_model/src/language_model.rs                    | 20 +-
crates/language_models/src/provider/anthropic.rs               | 16 +-
crates/language_models/src/provider/bedrock.rs                 | 20 +-
crates/language_models/src/provider/cloud.rs                   | 14 +-
crates/language_models/src/provider/copilot_chat.rs            |  4 
crates/language_models/src/provider/deepseek.rs                | 14 +-
crates/language_models/src/provider/google.rs                  | 16 +-
crates/language_models/src/provider/lmstudio.rs                |  8 
crates/language_models/src/provider/mistral.rs                 | 16 +-
crates/language_models/src/provider/ollama.rs                  |  8 
crates/language_models/src/provider/open_ai.rs                 | 17 +-
crates/language_models/src/provider/open_router.rs             | 18 +-
crates/lmstudio/src/lmstudio.rs                                | 16 +-
crates/mistral/src/mistral.rs                                  | 18 +-
crates/ollama/src/ollama.rs                                    | 18 +-
crates/open_ai/src/open_ai.rs                                  | 12 
crates/open_router/src/open_router.rs                          | 18 +-
crates/rules_library/src/rules_library.rs                      |  2 
32 files changed, 191 insertions(+), 192 deletions(-)

Detailed changes

crates/agent/src/active_thread.rs 🔗

@@ -750,7 +750,7 @@ struct EditingMessageState {
     editor: Entity<Editor>,
     context_strip: Entity<ContextStrip>,
     context_picker_menu_handle: PopoverMenuHandle<ContextPicker>,
-    last_estimated_token_count: Option<usize>,
+    last_estimated_token_count: Option<u64>,
     _subscriptions: [Subscription; 2],
     _update_token_count_task: Option<Task<()>>,
 }
@@ -857,7 +857,7 @@ impl ActiveThread {
     }
 
     /// Returns the editing message id and the estimated token count in the content
-    pub fn editing_message_id(&self) -> Option<(MessageId, usize)> {
+    pub fn editing_message_id(&self) -> Option<(MessageId, u64)> {
         self.editing_message
             .as_ref()
             .map(|(id, state)| (*id, state.last_estimated_token_count.unwrap_or(0)))

crates/agent/src/message_editor.rs 🔗

@@ -76,7 +76,7 @@ pub struct MessageEditor {
     profile_selector: Entity<ProfileSelector>,
     edits_expanded: bool,
     editor_is_expanded: bool,
-    last_estimated_token_count: Option<usize>,
+    last_estimated_token_count: Option<u64>,
     update_token_count_task: Option<Task<()>>,
     _subscriptions: Vec<Subscription>,
 }
@@ -1335,7 +1335,7 @@ impl MessageEditor {
         )
     }
 
-    pub fn last_estimated_token_count(&self) -> Option<usize> {
+    pub fn last_estimated_token_count(&self) -> Option<u64> {
         self.last_estimated_token_count
     }
 

crates/agent/src/thread.rs 🔗

@@ -272,8 +272,8 @@ impl DetailedSummaryState {
 
 #[derive(Default, Debug)]
 pub struct TotalTokenUsage {
-    pub total: usize,
-    pub max: usize,
+    pub total: u64,
+    pub max: u64,
 }
 
 impl TotalTokenUsage {
@@ -299,7 +299,7 @@ impl TotalTokenUsage {
         }
     }
 
-    pub fn add(&self, tokens: usize) -> TotalTokenUsage {
+    pub fn add(&self, tokens: u64) -> TotalTokenUsage {
         TotalTokenUsage {
             total: self.total + tokens,
             max: self.max,
@@ -396,7 +396,7 @@ pub struct ExceededWindowError {
     /// Model used when last message exceeded context window
     model_id: LanguageModelId,
     /// Token count including last message
-    token_count: usize,
+    token_count: u64,
 }
 
 impl Thread {
@@ -2769,7 +2769,7 @@ impl Thread {
             .unwrap_or_default();
 
         TotalTokenUsage {
-            total: token_usage.total_tokens() as usize,
+            total: token_usage.total_tokens(),
             max,
         }
     }
@@ -2791,7 +2791,7 @@ impl Thread {
         let total = self
             .token_usage_at_last_message()
             .unwrap_or_default()
-            .total_tokens() as usize;
+            .total_tokens();
 
         Some(TotalTokenUsage { total, max })
     }

crates/agent/src/tool_use.rs 🔗

@@ -427,7 +427,7 @@ impl ToolUseState {
 
                 // Protect from overly large output
                 let tool_output_limit = configured_model
-                    .map(|model| model.model.max_token_count() * BYTES_PER_TOKEN_ESTIMATE)
+                    .map(|model| model.model.max_token_count() as usize * BYTES_PER_TOKEN_ESTIMATE)
                     .unwrap_or(usize::MAX);
 
                 let content = match tool_result {

crates/anthropic/src/anthropic.rs 🔗

@@ -15,7 +15,7 @@ pub const ANTHROPIC_API_URL: &str = "https://api.anthropic.com";
 #[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
 #[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq)]
 pub struct AnthropicModelCacheConfiguration {
-    pub min_total_token: usize,
+    pub min_total_token: u64,
     pub should_speculate: bool,
     pub max_cache_anchors: usize,
 }
@@ -68,14 +68,14 @@ pub enum Model {
     #[serde(rename = "custom")]
     Custom {
         name: String,
-        max_tokens: usize,
+        max_tokens: u64,
         /// The name displayed in the UI, such as in the assistant panel model dropdown menu.
         display_name: Option<String>,
         /// Override this model with a different Anthropic model for tool calls.
         tool_override: Option<String>,
         /// Indicates whether this custom model supports caching.
         cache_configuration: Option<AnthropicModelCacheConfiguration>,
-        max_output_tokens: Option<u32>,
+        max_output_tokens: Option<u64>,
         default_temperature: Option<f32>,
         #[serde(default)]
         extra_beta_headers: Vec<String>,
@@ -211,7 +211,7 @@ impl Model {
         }
     }
 
-    pub fn max_token_count(&self) -> usize {
+    pub fn max_token_count(&self) -> u64 {
         match self {
             Self::ClaudeOpus4
             | Self::ClaudeOpus4Thinking
@@ -228,7 +228,7 @@ impl Model {
         }
     }
 
-    pub fn max_output_tokens(&self) -> u32 {
+    pub fn max_output_tokens(&self) -> u64 {
         match self {
             Self::ClaudeOpus4
             | Self::ClaudeOpus4Thinking
@@ -693,7 +693,7 @@ pub enum StringOrContents {
 #[derive(Debug, Serialize, Deserialize)]
 pub struct Request {
     pub model: String,
-    pub max_tokens: u32,
+    pub max_tokens: u64,
     pub messages: Vec<Message>,
     #[serde(default, skip_serializing_if = "Vec::is_empty")]
     pub tools: Vec<Tool>,
@@ -730,13 +730,13 @@ pub struct Metadata {
 #[derive(Debug, Serialize, Deserialize, Default)]
 pub struct Usage {
     #[serde(default, skip_serializing_if = "Option::is_none")]
-    pub input_tokens: Option<u32>,
+    pub input_tokens: Option<u64>,
     #[serde(default, skip_serializing_if = "Option::is_none")]
-    pub output_tokens: Option<u32>,
+    pub output_tokens: Option<u64>,
     #[serde(default, skip_serializing_if = "Option::is_none")]
-    pub cache_creation_input_tokens: Option<u32>,
+    pub cache_creation_input_tokens: Option<u64>,
     #[serde(default, skip_serializing_if = "Option::is_none")]
-    pub cache_read_input_tokens: Option<u32>,
+    pub cache_read_input_tokens: Option<u64>,
 }
 
 #[derive(Debug, Serialize, Deserialize)]
@@ -846,7 +846,7 @@ impl ApiError {
         matches!(self.error_type.as_str(), "rate_limit_error")
     }
 
-    pub fn match_window_exceeded(&self) -> Option<usize> {
+    pub fn match_window_exceeded(&self) -> Option<u64> {
         let Some(ApiErrorCode::InvalidRequestError) = self.code() else {
             return None;
         };
@@ -855,12 +855,12 @@ impl ApiError {
     }
 }
 
-pub fn parse_prompt_too_long(message: &str) -> Option<usize> {
+pub fn parse_prompt_too_long(message: &str) -> Option<u64> {
     message
         .strip_prefix("prompt is too long: ")?
         .split_once(" tokens")?
         .0
-        .parse::<usize>()
+        .parse()
         .ok()
 }
 

crates/assistant_context_editor/src/context.rs 🔗

@@ -678,7 +678,7 @@ pub struct AssistantContext {
     summary_task: Task<Option<()>>,
     completion_count: usize,
     pending_completions: Vec<PendingCompletion>,
-    token_count: Option<usize>,
+    token_count: Option<u64>,
     pending_token_count: Task<Option<()>>,
     pending_save: Task<Result<()>>,
     pending_cache_warming_task: Task<Option<()>>,
@@ -1250,7 +1250,7 @@ impl AssistantContext {
         }
     }
 
-    pub fn token_count(&self) -> Option<usize> {
+    pub fn token_count(&self) -> Option<u64> {
         self.token_count
     }
 

crates/assistant_context_editor/src/context_editor.rs 🔗

@@ -3121,12 +3121,12 @@ fn invoked_slash_command_fold_placeholder(
 
 enum TokenState {
     NoTokensLeft {
-        max_token_count: usize,
-        token_count: usize,
+        max_token_count: u64,
+        token_count: u64,
     },
     HasMoreTokens {
-        max_token_count: usize,
-        token_count: usize,
+        max_token_count: u64,
+        token_count: u64,
         over_warn_threshold: bool,
     },
 }
@@ -3139,9 +3139,7 @@ fn token_state(context: &Entity<AssistantContext>, cx: &App) -> Option<TokenStat
         .model;
     let token_count = context.read(cx).token_count()?;
     let max_token_count = model.max_token_count();
-
-    let remaining_tokens = max_token_count as isize - token_count as isize;
-    let token_state = if remaining_tokens <= 0 {
+    let token_state = if max_token_count.saturating_sub(token_count) == 0 {
         TokenState::NoTokensLeft {
             max_token_count,
             token_count,
@@ -3182,7 +3180,7 @@ fn size_for_image(data: &RenderImage, max_size: Size<Pixels>) -> Size<Pixels> {
     }
 }
 
-pub fn humanize_token_count(count: usize) -> String {
+pub fn humanize_token_count(count: u64) -> String {
     match count {
         0..=999 => count.to_string(),
         1000..=9999 => {

crates/assistant_context_editor/src/language_model_selector.rs 🔗

@@ -664,7 +664,7 @@ mod tests {
             format!("{}/{}", self.provider_id.0, self.name.0)
         }
 
-        fn max_token_count(&self) -> usize {
+        fn max_token_count(&self) -> u64 {
             1000
         }
 
@@ -672,7 +672,7 @@ mod tests {
             &self,
             _: LanguageModelRequest,
             _: &App,
-        ) -> BoxFuture<'static, http_client::Result<usize>> {
+        ) -> BoxFuture<'static, http_client::Result<u64>> {
             unimplemented!()
         }
 

crates/bedrock/src/bedrock.rs 🔗

@@ -152,7 +152,7 @@ pub enum Thinking {
 #[derive(Debug)]
 pub struct Request {
     pub model: String,
-    pub max_tokens: u32,
+    pub max_tokens: u64,
     pub messages: Vec<BedrockMessage>,
     pub tools: Option<BedrockToolConfig>,
     pub thinking: Option<Thinking>,

crates/bedrock/src/models.rs 🔗

@@ -99,10 +99,10 @@ pub enum Model {
     #[serde(rename = "custom")]
     Custom {
         name: String,
-        max_tokens: usize,
+        max_tokens: u64,
         /// The name displayed in the UI, such as in the assistant panel model dropdown menu.
         display_name: Option<String>,
-        max_output_tokens: Option<u32>,
+        max_output_tokens: Option<u64>,
         default_temperature: Option<f32>,
     },
 }
@@ -309,7 +309,7 @@ impl Model {
         }
     }
 
-    pub fn max_token_count(&self) -> usize {
+    pub fn max_token_count(&self) -> u64 {
         match self {
             Self::Claude3_5SonnetV2
             | Self::Claude3Opus
@@ -328,7 +328,7 @@ impl Model {
         }
     }
 
-    pub fn max_output_tokens(&self) -> u32 {
+    pub fn max_output_tokens(&self) -> u64 {
         match self {
             Self::Claude3Opus | Self::Claude3Sonnet | Self::Claude3_5Haiku => 4_096,
             Self::Claude3_7Sonnet

crates/copilot/src/copilot_chat.rs 🔗

@@ -126,7 +126,7 @@ struct ModelLimits {
     #[serde(default)]
     max_output_tokens: usize,
     #[serde(default)]
-    max_prompt_tokens: usize,
+    max_prompt_tokens: u64,
 }
 
 #[derive(Clone, Serialize, Deserialize, Debug, Eq, PartialEq)]
@@ -182,7 +182,7 @@ impl Model {
         self.name.as_str()
     }
 
-    pub fn max_token_count(&self) -> usize {
+    pub fn max_token_count(&self) -> u64 {
         self.capabilities.limits.max_prompt_tokens
     }
 
@@ -316,15 +316,15 @@ pub struct ResponseEvent {
 
 #[derive(Deserialize, Debug)]
 pub struct Usage {
-    pub completion_tokens: u32,
-    pub prompt_tokens: u32,
+    pub completion_tokens: u64,
+    pub prompt_tokens: u64,
     pub prompt_tokens_details: PromptTokensDetails,
-    pub total_tokens: u32,
+    pub total_tokens: u64,
 }
 
 #[derive(Deserialize, Debug)]
 pub struct PromptTokensDetails {
-    pub cached_tokens: u32,
+    pub cached_tokens: u64,
 }
 
 #[derive(Debug, Deserialize)]

crates/deepseek/src/deepseek.rs 🔗

@@ -58,8 +58,8 @@ pub enum Model {
         name: String,
         /// The name displayed in the UI, such as in the assistant panel model dropdown menu.
         display_name: Option<String>,
-        max_tokens: usize,
-        max_output_tokens: Option<u32>,
+        max_tokens: u64,
+        max_output_tokens: Option<u64>,
     },
 }
 
@@ -94,14 +94,14 @@ impl Model {
         }
     }
 
-    pub fn max_token_count(&self) -> usize {
+    pub fn max_token_count(&self) -> u64 {
         match self {
             Self::Chat | Self::Reasoner => 64_000,
             Self::Custom { max_tokens, .. } => *max_tokens,
         }
     }
 
-    pub fn max_output_tokens(&self) -> Option<u32> {
+    pub fn max_output_tokens(&self) -> Option<u64> {
         match self {
             Self::Chat => Some(8_192),
             Self::Reasoner => Some(8_192),
@@ -118,7 +118,7 @@ pub struct Request {
     pub messages: Vec<RequestMessage>,
     pub stream: bool,
     #[serde(default, skip_serializing_if = "Option::is_none")]
-    pub max_tokens: Option<u32>,
+    pub max_tokens: Option<u64>,
     #[serde(default, skip_serializing_if = "Option::is_none")]
     pub temperature: Option<f32>,
     #[serde(default, skip_serializing_if = "Option::is_none")]

crates/google_ai/src/google_ai.rs 🔗

@@ -276,17 +276,17 @@ pub struct PromptFeedback {
 #[serde(rename_all = "camelCase")]
 pub struct UsageMetadata {
     #[serde(skip_serializing_if = "Option::is_none")]
-    pub prompt_token_count: Option<usize>,
+    pub prompt_token_count: Option<u64>,
     #[serde(skip_serializing_if = "Option::is_none")]
-    pub cached_content_token_count: Option<usize>,
+    pub cached_content_token_count: Option<u64>,
     #[serde(skip_serializing_if = "Option::is_none")]
-    pub candidates_token_count: Option<usize>,
+    pub candidates_token_count: Option<u64>,
     #[serde(skip_serializing_if = "Option::is_none")]
-    pub tool_use_prompt_token_count: Option<usize>,
+    pub tool_use_prompt_token_count: Option<u64>,
     #[serde(skip_serializing_if = "Option::is_none")]
-    pub thoughts_token_count: Option<usize>,
+    pub thoughts_token_count: Option<u64>,
     #[serde(skip_serializing_if = "Option::is_none")]
-    pub total_token_count: Option<usize>,
+    pub total_token_count: Option<u64>,
 }
 
 #[derive(Debug, Serialize, Deserialize)]
@@ -395,7 +395,7 @@ pub struct CountTokensRequest {
 #[derive(Debug, Serialize, Deserialize)]
 #[serde(rename_all = "camelCase")]
 pub struct CountTokensResponse {
-    pub total_tokens: usize,
+    pub total_tokens: u64,
 }
 
 #[derive(Debug, Serialize, Deserialize)]
@@ -523,7 +523,7 @@ pub enum Model {
         name: String,
         /// The name displayed in the UI, such as in the assistant panel model dropdown menu.
         display_name: Option<String>,
-        max_tokens: usize,
+        max_tokens: u64,
         #[serde(default)]
         mode: GoogleModelMode,
     },
@@ -586,9 +586,9 @@ impl Model {
         }
     }
 
-    pub fn max_token_count(&self) -> usize {
-        const ONE_MILLION: usize = 1_048_576;
-        const TWO_MILLION: usize = 2_097_152;
+    pub fn max_token_count(&self) -> u64 {
+        const ONE_MILLION: u64 = 1_048_576;
+        const TWO_MILLION: u64 = 2_097_152;
         match self {
             Model::Gemini15Pro => TWO_MILLION,
             Model::Gemini15Flash => ONE_MILLION,

crates/language_model/src/fake_provider.rs 🔗

@@ -169,11 +169,11 @@ impl LanguageModel for FakeLanguageModel {
         "fake".to_string()
     }
 
-    fn max_token_count(&self) -> usize {
+    fn max_token_count(&self) -> u64 {
         1000000
     }
 
-    fn count_tokens(&self, _: LanguageModelRequest, _: &App) -> BoxFuture<'static, Result<usize>> {
+    fn count_tokens(&self, _: LanguageModelRequest, _: &App) -> BoxFuture<'static, Result<u64>> {
         futures::future::ready(Ok(0)).boxed()
     }
 

crates/language_model/src/language_model.rs 🔗

@@ -53,7 +53,7 @@ pub fn init_settings(cx: &mut App) {
 pub struct LanguageModelCacheConfiguration {
     pub max_cache_anchors: usize,
     pub should_speculate: bool,
-    pub min_total_token: usize,
+    pub min_total_token: u64,
 }
 
 /// A completion event from a language model.
@@ -135,17 +135,17 @@ impl RequestUsage {
 #[derive(Debug, PartialEq, Clone, Copy, Serialize, Deserialize, Default)]
 pub struct TokenUsage {
     #[serde(default, skip_serializing_if = "is_default")]
-    pub input_tokens: u32,
+    pub input_tokens: u64,
     #[serde(default, skip_serializing_if = "is_default")]
-    pub output_tokens: u32,
+    pub output_tokens: u64,
     #[serde(default, skip_serializing_if = "is_default")]
-    pub cache_creation_input_tokens: u32,
+    pub cache_creation_input_tokens: u64,
     #[serde(default, skip_serializing_if = "is_default")]
-    pub cache_read_input_tokens: u32,
+    pub cache_read_input_tokens: u64,
 }
 
 impl TokenUsage {
-    pub fn total_tokens(&self) -> u32 {
+    pub fn total_tokens(&self) -> u64 {
         self.input_tokens
             + self.output_tokens
             + self.cache_read_input_tokens
@@ -254,8 +254,8 @@ pub trait LanguageModel: Send + Sync {
         LanguageModelToolSchemaFormat::JsonSchema
     }
 
-    fn max_token_count(&self) -> usize;
-    fn max_output_tokens(&self) -> Option<u32> {
+    fn max_token_count(&self) -> u64;
+    fn max_output_tokens(&self) -> Option<u64> {
         None
     }
 
@@ -263,7 +263,7 @@ pub trait LanguageModel: Send + Sync {
         &self,
         request: LanguageModelRequest,
         cx: &App,
-    ) -> BoxFuture<'static, Result<usize>>;
+    ) -> BoxFuture<'static, Result<u64>>;
 
     fn stream_completion(
         &self,
@@ -349,7 +349,7 @@ pub trait LanguageModel: Send + Sync {
 #[derive(Debug, Error)]
 pub enum LanguageModelKnownError {
     #[error("Context window limit exceeded ({tokens})")]
-    ContextWindowLimitExceeded { tokens: usize },
+    ContextWindowLimitExceeded { tokens: u64 },
 }
 
 pub trait LanguageModelTool: 'static + DeserializeOwned + JsonSchema {

crates/language_models/src/provider/anthropic.rs 🔗

@@ -51,12 +51,12 @@ pub struct AvailableModel {
     /// The model's name in Zed's UI, such as in the model selector dropdown menu in the assistant panel.
     pub display_name: Option<String>,
     /// The model's context window size.
-    pub max_tokens: usize,
+    pub max_tokens: u64,
     /// A model `name` to substitute when calling tools, in case the primary model doesn't support tool calling.
     pub tool_override: Option<String>,
     /// Configuration of Anthropic's caching API.
     pub cache_configuration: Option<LanguageModelCacheConfiguration>,
-    pub max_output_tokens: Option<u32>,
+    pub max_output_tokens: Option<u64>,
     pub default_temperature: Option<f32>,
     #[serde(default)]
     pub extra_beta_headers: Vec<String>,
@@ -321,7 +321,7 @@ pub struct AnthropicModel {
 pub fn count_anthropic_tokens(
     request: LanguageModelRequest,
     cx: &App,
-) -> BoxFuture<'static, Result<usize>> {
+) -> BoxFuture<'static, Result<u64>> {
     cx.background_spawn(async move {
         let messages = request.messages;
         let mut tokens_from_images = 0;
@@ -377,7 +377,7 @@ pub fn count_anthropic_tokens(
         // Tiktoken doesn't yet support these models, so we manually use the
         // same tokenizer as GPT-4.
         tiktoken_rs::num_tokens_from_messages("gpt-4", &string_messages)
-            .map(|tokens| tokens + tokens_from_images)
+            .map(|tokens| (tokens + tokens_from_images) as u64)
     })
     .boxed()
 }
@@ -461,11 +461,11 @@ impl LanguageModel for AnthropicModel {
         self.state.read(cx).api_key.clone()
     }
 
-    fn max_token_count(&self) -> usize {
+    fn max_token_count(&self) -> u64 {
         self.model.max_token_count()
     }
 
-    fn max_output_tokens(&self) -> Option<u32> {
+    fn max_output_tokens(&self) -> Option<u64> {
         Some(self.model.max_output_tokens())
     }
 
@@ -473,7 +473,7 @@ impl LanguageModel for AnthropicModel {
         &self,
         request: LanguageModelRequest,
         cx: &App,
-    ) -> BoxFuture<'static, Result<usize>> {
+    ) -> BoxFuture<'static, Result<u64>> {
         count_anthropic_tokens(request, cx)
     }
 
@@ -518,7 +518,7 @@ pub fn into_anthropic(
     request: LanguageModelRequest,
     model: String,
     default_temperature: f32,
-    max_output_tokens: u32,
+    max_output_tokens: u64,
     mode: AnthropicModelMode,
 ) -> anthropic::Request {
     let mut new_messages: Vec<anthropic::Message> = Vec::new();

crates/language_models/src/provider/bedrock.rs 🔗

@@ -88,9 +88,9 @@ pub enum BedrockAuthMethod {
 pub struct AvailableModel {
     pub name: String,
     pub display_name: Option<String>,
-    pub max_tokens: usize,
+    pub max_tokens: u64,
     pub cache_configuration: Option<LanguageModelCacheConfiguration>,
-    pub max_output_tokens: Option<u32>,
+    pub max_output_tokens: Option<u64>,
     pub default_temperature: Option<f32>,
     pub mode: Option<ModelMode>,
 }
@@ -503,11 +503,11 @@ impl LanguageModel for BedrockModel {
         format!("bedrock/{}", self.model.id())
     }
 
-    fn max_token_count(&self) -> usize {
+    fn max_token_count(&self) -> u64 {
         self.model.max_token_count()
     }
 
-    fn max_output_tokens(&self) -> Option<u32> {
+    fn max_output_tokens(&self) -> Option<u64> {
         Some(self.model.max_output_tokens())
     }
 
@@ -515,7 +515,7 @@ impl LanguageModel for BedrockModel {
         &self,
         request: LanguageModelRequest,
         cx: &App,
-    ) -> BoxFuture<'static, Result<usize>> {
+    ) -> BoxFuture<'static, Result<u64>> {
         get_bedrock_tokens(request, cx)
     }
 
@@ -583,7 +583,7 @@ pub fn into_bedrock(
     request: LanguageModelRequest,
     model: String,
     default_temperature: f32,
-    max_output_tokens: u32,
+    max_output_tokens: u64,
     mode: BedrockModelMode,
 ) -> Result<bedrock::Request> {
     let mut new_messages: Vec<BedrockMessage> = Vec::new();
@@ -747,7 +747,7 @@ pub fn into_bedrock(
 pub fn get_bedrock_tokens(
     request: LanguageModelRequest,
     cx: &App,
-) -> BoxFuture<'static, Result<usize>> {
+) -> BoxFuture<'static, Result<u64>> {
     cx.background_executor()
         .spawn(async move {
             let messages = request.messages;
@@ -799,7 +799,7 @@ pub fn get_bedrock_tokens(
             // Tiktoken doesn't yet support these models, so we manually use the
             // same tokenizer as GPT-4.
             tiktoken_rs::num_tokens_from_messages("gpt-4", &string_messages)
-                .map(|tokens| tokens + tokens_from_images)
+                .map(|tokens| (tokens + tokens_from_images) as u64)
         })
         .boxed()
 }
@@ -947,9 +947,9 @@ pub fn map_to_language_model_completion_events(
                                             let completion_event =
                                                 LanguageModelCompletionEvent::UsageUpdate(
                                                     TokenUsage {
-                                                        input_tokens: metadata.input_tokens as u32,
+                                                        input_tokens: metadata.input_tokens as u64,
                                                         output_tokens: metadata.output_tokens
-                                                            as u32,
+                                                            as u64,
                                                         cache_creation_input_tokens: default(),
                                                         cache_read_input_tokens: default(),
                                                     },

crates/language_models/src/provider/cloud.rs 🔗

@@ -73,9 +73,9 @@ pub struct AvailableModel {
     /// The size of the context window, indicating the maximum number of tokens the model can process.
     pub max_tokens: usize,
     /// The maximum number of output tokens allowed by the model.
-    pub max_output_tokens: Option<u32>,
+    pub max_output_tokens: Option<u64>,
     /// The maximum number of completion tokens allowed by the model (o1-* only)
-    pub max_completion_tokens: Option<u32>,
+    pub max_completion_tokens: Option<u64>,
     /// Override this model with a different Anthropic model for tool calls.
     pub tool_override: Option<String>,
     /// Indicates whether this custom model supports caching.
@@ -715,8 +715,8 @@ impl LanguageModel for CloudLanguageModel {
         }
     }
 
-    fn max_token_count(&self) -> usize {
-        self.model.max_token_count
+    fn max_token_count(&self) -> u64 {
+        self.model.max_token_count as u64
     }
 
     fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
@@ -737,7 +737,7 @@ impl LanguageModel for CloudLanguageModel {
         &self,
         request: LanguageModelRequest,
         cx: &App,
-    ) -> BoxFuture<'static, Result<usize>> {
+    ) -> BoxFuture<'static, Result<u64>> {
         match self.model.provider {
             zed_llm_client::LanguageModelProvider::Anthropic => count_anthropic_tokens(request, cx),
             zed_llm_client::LanguageModelProvider::OpenAi => {
@@ -786,7 +786,7 @@ impl LanguageModel for CloudLanguageModel {
                         let response_body: CountTokensResponse =
                             serde_json::from_str(&response_body)?;
 
-                        Ok(response_body.tokens)
+                        Ok(response_body.tokens as u64)
                     } else {
                         Err(anyhow!(ApiError {
                             status,
@@ -821,7 +821,7 @@ impl LanguageModel for CloudLanguageModel {
                     request,
                     self.model.id.to_string(),
                     1.0,
-                    self.model.max_output_tokens as u32,
+                    self.model.max_output_tokens as u64,
                     if self.model.id.0.ends_with("-thinking") {
                         AnthropicModelMode::Thinking {
                             budget_tokens: Some(4_096),

crates/language_models/src/provider/copilot_chat.rs 🔗

@@ -237,7 +237,7 @@ impl LanguageModel for CopilotChatLanguageModel {
         format!("copilot_chat/{}", self.model.id())
     }
 
-    fn max_token_count(&self) -> usize {
+    fn max_token_count(&self) -> u64 {
         self.model.max_token_count()
     }
 
@@ -245,7 +245,7 @@ impl LanguageModel for CopilotChatLanguageModel {
         &self,
         request: LanguageModelRequest,
         cx: &App,
-    ) -> BoxFuture<'static, Result<usize>> {
+    ) -> BoxFuture<'static, Result<u64>> {
         match self.model.vendor() {
             ModelVendor::Anthropic => count_anthropic_tokens(request, cx),
             ModelVendor::Google => count_google_tokens(request, cx),

crates/language_models/src/provider/deepseek.rs 🔗

@@ -49,8 +49,8 @@ pub struct DeepSeekSettings {
 pub struct AvailableModel {
     pub name: String,
     pub display_name: Option<String>,
-    pub max_tokens: usize,
-    pub max_output_tokens: Option<u32>,
+    pub max_tokens: u64,
+    pub max_output_tokens: Option<u64>,
 }
 
 pub struct DeepSeekLanguageModelProvider {
@@ -306,11 +306,11 @@ impl LanguageModel for DeepSeekLanguageModel {
         format!("deepseek/{}", self.model.id())
     }
 
-    fn max_token_count(&self) -> usize {
+    fn max_token_count(&self) -> u64 {
         self.model.max_token_count()
     }
 
-    fn max_output_tokens(&self) -> Option<u32> {
+    fn max_output_tokens(&self) -> Option<u64> {
         self.model.max_output_tokens()
     }
 
@@ -318,7 +318,7 @@ impl LanguageModel for DeepSeekLanguageModel {
         &self,
         request: LanguageModelRequest,
         cx: &App,
-    ) -> BoxFuture<'static, Result<usize>> {
+    ) -> BoxFuture<'static, Result<u64>> {
         cx.background_spawn(async move {
             let messages = request
                 .messages
@@ -335,7 +335,7 @@ impl LanguageModel for DeepSeekLanguageModel {
                 })
                 .collect::<Vec<_>>();
 
-            tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
+            tiktoken_rs::num_tokens_from_messages("gpt-4", &messages).map(|tokens| tokens as u64)
         })
         .boxed()
     }
@@ -365,7 +365,7 @@ impl LanguageModel for DeepSeekLanguageModel {
 pub fn into_deepseek(
     request: LanguageModelRequest,
     model: &deepseek::Model,
-    max_output_tokens: Option<u32>,
+    max_output_tokens: Option<u64>,
 ) -> deepseek::Request {
     let is_reasoner = *model == deepseek::Model::Reasoner;
 

crates/language_models/src/provider/google.rs 🔗

@@ -79,7 +79,7 @@ impl From<GoogleModelMode> for ModelMode {
 pub struct AvailableModel {
     name: String,
     display_name: Option<String>,
-    max_tokens: usize,
+    max_tokens: u64,
     mode: Option<ModelMode>,
 }
 
@@ -365,7 +365,7 @@ impl LanguageModel for GoogleLanguageModel {
         format!("google/{}", self.model.request_id())
     }
 
-    fn max_token_count(&self) -> usize {
+    fn max_token_count(&self) -> u64 {
         self.model.max_token_count()
     }
 
@@ -373,7 +373,7 @@ impl LanguageModel for GoogleLanguageModel {
         &self,
         request: LanguageModelRequest,
         cx: &App,
-    ) -> BoxFuture<'static, Result<usize>> {
+    ) -> BoxFuture<'static, Result<u64>> {
         let model_id = self.model.request_id().to_string();
         let request = into_google(request, model_id.clone(), self.model.mode());
         let http_client = self.http_client.clone();
@@ -702,7 +702,7 @@ impl GoogleEventMapper {
 pub fn count_google_tokens(
     request: LanguageModelRequest,
     cx: &App,
-) -> BoxFuture<'static, Result<usize>> {
+) -> BoxFuture<'static, Result<u64>> {
     // We couldn't use the GoogleLanguageModelProvider to count tokens because the github copilot doesn't have the access to google_ai directly.
     // So we have to use tokenizer from tiktoken_rs to count tokens.
     cx.background_spawn(async move {
@@ -723,7 +723,7 @@ pub fn count_google_tokens(
 
         // Tiktoken doesn't yet support these models, so we manually use the
         // same tokenizer as GPT-4.
-        tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
+        tiktoken_rs::num_tokens_from_messages("gpt-4", &messages).map(|tokens| tokens as u64)
     })
     .boxed()
 }
@@ -750,10 +750,10 @@ fn update_usage(usage: &mut UsageMetadata, new: &UsageMetadata) {
 }
 
 fn convert_usage(usage: &UsageMetadata) -> language_model::TokenUsage {
-    let prompt_tokens = usage.prompt_token_count.unwrap_or(0) as u32;
-    let cached_tokens = usage.cached_content_token_count.unwrap_or(0) as u32;
+    let prompt_tokens = usage.prompt_token_count.unwrap_or(0);
+    let cached_tokens = usage.cached_content_token_count.unwrap_or(0);
     let input_tokens = prompt_tokens - cached_tokens;
-    let output_tokens = usage.candidates_token_count.unwrap_or(0) as u32;
+    let output_tokens = usage.candidates_token_count.unwrap_or(0);
 
     language_model::TokenUsage {
         input_tokens,

crates/language_models/src/provider/lmstudio.rs 🔗

@@ -44,7 +44,7 @@ pub struct LmStudioSettings {
 pub struct AvailableModel {
     pub name: String,
     pub display_name: Option<String>,
-    pub max_tokens: usize,
+    pub max_tokens: u64,
     pub supports_tool_calls: bool,
     pub supports_images: bool,
 }
@@ -414,7 +414,7 @@ impl LanguageModel for LmStudioLanguageModel {
         format!("lmstudio/{}", self.model.id())
     }
 
-    fn max_token_count(&self) -> usize {
+    fn max_token_count(&self) -> u64 {
         self.model.max_token_count()
     }
 
@@ -422,7 +422,7 @@ impl LanguageModel for LmStudioLanguageModel {
         &self,
         request: LanguageModelRequest,
         _cx: &App,
-    ) -> BoxFuture<'static, Result<usize>> {
+    ) -> BoxFuture<'static, Result<u64>> {
         // Endpoint for this is coming soon. In the meantime, hacky estimation
         let token_count = request
             .messages
@@ -430,7 +430,7 @@ impl LanguageModel for LmStudioLanguageModel {
             .map(|msg| msg.string_contents().split_whitespace().count())
             .sum::<usize>();
 
-        let estimated_tokens = (token_count as f64 * 0.75) as usize;
+        let estimated_tokens = (token_count as f64 * 0.75) as u64;
         async move { Ok(estimated_tokens) }.boxed()
     }
 

crates/language_models/src/provider/mistral.rs 🔗

@@ -43,9 +43,9 @@ pub struct MistralSettings {
 pub struct AvailableModel {
     pub name: String,
     pub display_name: Option<String>,
-    pub max_tokens: usize,
-    pub max_output_tokens: Option<u32>,
-    pub max_completion_tokens: Option<u32>,
+    pub max_tokens: u64,
+    pub max_output_tokens: Option<u64>,
+    pub max_completion_tokens: Option<u64>,
     pub supports_tools: Option<bool>,
     pub supports_images: Option<bool>,
 }
@@ -322,11 +322,11 @@ impl LanguageModel for MistralLanguageModel {
         format!("mistral/{}", self.model.id())
     }
 
-    fn max_token_count(&self) -> usize {
+    fn max_token_count(&self) -> u64 {
         self.model.max_token_count()
     }
 
-    fn max_output_tokens(&self) -> Option<u32> {
+    fn max_output_tokens(&self) -> Option<u64> {
         self.model.max_output_tokens()
     }
 
@@ -334,7 +334,7 @@ impl LanguageModel for MistralLanguageModel {
         &self,
         request: LanguageModelRequest,
         cx: &App,
-    ) -> BoxFuture<'static, Result<usize>> {
+    ) -> BoxFuture<'static, Result<u64>> {
         cx.background_spawn(async move {
             let messages = request
                 .messages
@@ -351,7 +351,7 @@ impl LanguageModel for MistralLanguageModel {
                 })
                 .collect::<Vec<_>>();
 
-            tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
+            tiktoken_rs::num_tokens_from_messages("gpt-4", &messages).map(|tokens| tokens as u64)
         })
         .boxed()
     }
@@ -386,7 +386,7 @@ impl LanguageModel for MistralLanguageModel {
 pub fn into_mistral(
     request: LanguageModelRequest,
     model: String,
-    max_output_tokens: Option<u32>,
+    max_output_tokens: Option<u64>,
 ) -> mistral::Request {
     let stream = true;
 

crates/language_models/src/provider/ollama.rs 🔗

@@ -46,7 +46,7 @@ pub struct AvailableModel {
     /// The model's name in Zed's UI, such as in the model selector dropdown menu in the assistant panel.
     pub display_name: Option<String>,
     /// The Context Length parameter to the model (aka num_ctx or n_ctx)
-    pub max_tokens: usize,
+    pub max_tokens: u64,
     /// The number of seconds to keep the connection open after the last request
     pub keep_alive: Option<KeepAlive>,
     /// Whether the model supports tools
@@ -377,7 +377,7 @@ impl LanguageModel for OllamaLanguageModel {
         format!("ollama/{}", self.model.id())
     }
 
-    fn max_token_count(&self) -> usize {
+    fn max_token_count(&self) -> u64 {
         self.model.max_token_count()
     }
 
@@ -385,7 +385,7 @@ impl LanguageModel for OllamaLanguageModel {
         &self,
         request: LanguageModelRequest,
         _cx: &App,
-    ) -> BoxFuture<'static, Result<usize>> {
+    ) -> BoxFuture<'static, Result<u64>> {
         // There is no endpoint for this _yet_ in Ollama
         // see: https://github.com/ollama/ollama/issues/1716 and https://github.com/ollama/ollama/issues/3582
         let token_count = request
@@ -395,7 +395,7 @@ impl LanguageModel for OllamaLanguageModel {
             .sum::<usize>()
             / 4;
 
-        async move { Ok(token_count) }.boxed()
+        async move { Ok(token_count as u64) }.boxed()
     }
 
     fn stream_completion(

crates/language_models/src/provider/open_ai.rs 🔗

@@ -43,9 +43,9 @@ pub struct OpenAiSettings {
 pub struct AvailableModel {
     pub name: String,
     pub display_name: Option<String>,
-    pub max_tokens: usize,
-    pub max_output_tokens: Option<u32>,
-    pub max_completion_tokens: Option<u32>,
+    pub max_tokens: u64,
+    pub max_output_tokens: Option<u64>,
+    pub max_completion_tokens: Option<u64>,
 }
 
 pub struct OpenAiLanguageModelProvider {
@@ -312,11 +312,11 @@ impl LanguageModel for OpenAiLanguageModel {
         format!("openai/{}", self.model.id())
     }
 
-    fn max_token_count(&self) -> usize {
+    fn max_token_count(&self) -> u64 {
         self.model.max_token_count()
     }
 
-    fn max_output_tokens(&self) -> Option<u32> {
+    fn max_output_tokens(&self) -> Option<u64> {
         self.model.max_output_tokens()
     }
 
@@ -324,7 +324,7 @@ impl LanguageModel for OpenAiLanguageModel {
         &self,
         request: LanguageModelRequest,
         cx: &App,
-    ) -> BoxFuture<'static, Result<usize>> {
+    ) -> BoxFuture<'static, Result<u64>> {
         count_open_ai_tokens(request, self.model.clone(), cx)
     }
 
@@ -355,7 +355,7 @@ impl LanguageModel for OpenAiLanguageModel {
 pub fn into_open_ai(
     request: LanguageModelRequest,
     model: &Model,
-    max_output_tokens: Option<u32>,
+    max_output_tokens: Option<u64>,
 ) -> open_ai::Request {
     let stream = !model.id().starts_with("o1-");
 
@@ -606,7 +606,7 @@ pub fn count_open_ai_tokens(
     request: LanguageModelRequest,
     model: Model,
     cx: &App,
-) -> BoxFuture<'static, Result<usize>> {
+) -> BoxFuture<'static, Result<u64>> {
     cx.background_spawn(async move {
         let messages = request
             .messages
@@ -652,6 +652,7 @@ pub fn count_open_ai_tokens(
             | Model::O3Mini
             | Model::O4Mini => tiktoken_rs::num_tokens_from_messages(model.id(), &messages),
         }
+        .map(|tokens| tokens as u64)
     })
     .boxed()
 }

crates/language_models/src/provider/open_router.rs 🔗

@@ -40,9 +40,9 @@ pub struct OpenRouterSettings {
 pub struct AvailableModel {
     pub name: String,
     pub display_name: Option<String>,
-    pub max_tokens: usize,
-    pub max_output_tokens: Option<u32>,
-    pub max_completion_tokens: Option<u32>,
+    pub max_tokens: u64,
+    pub max_output_tokens: Option<u64>,
+    pub max_completion_tokens: Option<u64>,
     pub supports_tools: Option<bool>,
     pub supports_images: Option<bool>,
 }
@@ -331,11 +331,11 @@ impl LanguageModel for OpenRouterLanguageModel {
         format!("openrouter/{}", self.model.id())
     }
 
-    fn max_token_count(&self) -> usize {
+    fn max_token_count(&self) -> u64 {
         self.model.max_token_count()
     }
 
-    fn max_output_tokens(&self) -> Option<u32> {
+    fn max_output_tokens(&self) -> Option<u64> {
         self.model.max_output_tokens()
     }
 
@@ -355,7 +355,7 @@ impl LanguageModel for OpenRouterLanguageModel {
         &self,
         request: LanguageModelRequest,
         cx: &App,
-    ) -> BoxFuture<'static, Result<usize>> {
+    ) -> BoxFuture<'static, Result<u64>> {
         count_open_router_tokens(request, self.model.clone(), cx)
     }
 
@@ -386,7 +386,7 @@ impl LanguageModel for OpenRouterLanguageModel {
 pub fn into_open_router(
     request: LanguageModelRequest,
     model: &Model,
-    max_output_tokens: Option<u32>,
+    max_output_tokens: Option<u64>,
 ) -> open_router::Request {
     let mut messages = Vec::new();
     for message in request.messages {
@@ -640,7 +640,7 @@ pub fn count_open_router_tokens(
     request: LanguageModelRequest,
     _model: open_router::Model,
     cx: &App,
-) -> BoxFuture<'static, Result<usize>> {
+) -> BoxFuture<'static, Result<u64>> {
     cx.background_spawn(async move {
         let messages = request
             .messages
@@ -657,7 +657,7 @@ pub fn count_open_router_tokens(
             })
             .collect::<Vec<_>>();
 
-        tiktoken_rs::num_tokens_from_messages("gpt-4o", &messages)
+        tiktoken_rs::num_tokens_from_messages("gpt-4o", &messages).map(|tokens| tokens as u64)
     })
     .boxed()
 }

crates/lmstudio/src/lmstudio.rs 🔗

@@ -46,7 +46,7 @@ impl From<Role> for String {
 pub struct Model {
     pub name: String,
     pub display_name: Option<String>,
-    pub max_tokens: usize,
+    pub max_tokens: u64,
     pub supports_tool_calls: bool,
     pub supports_images: bool,
 }
@@ -55,7 +55,7 @@ impl Model {
     pub fn new(
         name: &str,
         display_name: Option<&str>,
-        max_tokens: Option<usize>,
+        max_tokens: Option<u64>,
         supports_tool_calls: bool,
         supports_images: bool,
     ) -> Self {
@@ -76,7 +76,7 @@ impl Model {
         self.display_name.as_ref().unwrap_or(&self.name)
     }
 
-    pub fn max_token_count(&self) -> usize {
+    pub fn max_token_count(&self) -> u64 {
         self.max_tokens
     }
 
@@ -256,9 +256,9 @@ pub struct FunctionChunk {
 
 #[derive(Serialize, Deserialize, Debug)]
 pub struct Usage {
-    pub prompt_tokens: u32,
-    pub completion_tokens: u32,
-    pub total_tokens: u32,
+    pub prompt_tokens: u64,
+    pub completion_tokens: u64,
+    pub total_tokens: u64,
 }
 
 #[derive(Debug, Default, Clone, Deserialize, PartialEq)]
@@ -306,8 +306,8 @@ pub struct ModelEntry {
     pub compatibility_type: CompatibilityType,
     pub quantization: Option<String>,
     pub state: ModelState,
-    pub max_context_length: Option<usize>,
-    pub loaded_context_length: Option<usize>,
+    pub max_context_length: Option<u64>,
+    pub loaded_context_length: Option<u64>,
     #[serde(default)]
     pub capabilities: Capabilities,
 }

crates/mistral/src/mistral.rs 🔗

@@ -70,9 +70,9 @@ pub enum Model {
         name: String,
         /// The name displayed in the UI, such as in the assistant panel model dropdown menu.
         display_name: Option<String>,
-        max_tokens: usize,
-        max_output_tokens: Option<u32>,
-        max_completion_tokens: Option<u32>,
+        max_tokens: u64,
+        max_output_tokens: Option<u64>,
+        max_completion_tokens: Option<u64>,
         supports_tools: Option<bool>,
         supports_images: Option<bool>,
     },
@@ -130,7 +130,7 @@ impl Model {
         }
     }
 
-    pub fn max_token_count(&self) -> usize {
+    pub fn max_token_count(&self) -> u64 {
         match self {
             Self::CodestralLatest => 256000,
             Self::MistralLargeLatest => 131000,
@@ -145,7 +145,7 @@ impl Model {
         }
     }
 
-    pub fn max_output_tokens(&self) -> Option<u32> {
+    pub fn max_output_tokens(&self) -> Option<u64> {
         match self {
             Self::Custom {
                 max_output_tokens, ..
@@ -193,7 +193,7 @@ pub struct Request {
     pub messages: Vec<RequestMessage>,
     pub stream: bool,
     #[serde(default, skip_serializing_if = "Option::is_none")]
-    pub max_tokens: Option<u32>,
+    pub max_tokens: Option<u64>,
     #[serde(default, skip_serializing_if = "Option::is_none")]
     pub temperature: Option<f32>,
     #[serde(default, skip_serializing_if = "Option::is_none")]
@@ -360,9 +360,9 @@ pub struct Response {
 
 #[derive(Serialize, Deserialize, Debug)]
 pub struct Usage {
-    pub prompt_tokens: u32,
-    pub completion_tokens: u32,
-    pub total_tokens: u32,
+    pub prompt_tokens: u64,
+    pub completion_tokens: u64,
+    pub total_tokens: u64,
 }
 
 #[derive(Serialize, Deserialize, Debug)]

crates/ollama/src/ollama.rs 🔗

@@ -35,18 +35,18 @@ impl Default for KeepAlive {
 pub struct Model {
     pub name: String,
     pub display_name: Option<String>,
-    pub max_tokens: usize,
+    pub max_tokens: u64,
     pub keep_alive: Option<KeepAlive>,
     pub supports_tools: Option<bool>,
     pub supports_vision: Option<bool>,
     pub supports_thinking: Option<bool>,
 }
 
-fn get_max_tokens(name: &str) -> usize {
+fn get_max_tokens(name: &str) -> u64 {
     /// Default context length for unknown models.
-    const DEFAULT_TOKENS: usize = 4096;
+    const DEFAULT_TOKENS: u64 = 4096;
     /// Magic number. Lets many Ollama models work with ~16GB of ram.
-    const MAXIMUM_TOKENS: usize = 16384;
+    const MAXIMUM_TOKENS: u64 = 16384;
 
     match name.split(':').next().unwrap() {
         "phi" | "tinyllama" | "granite-code" => 2048,
@@ -67,7 +67,7 @@ impl Model {
     pub fn new(
         name: &str,
         display_name: Option<&str>,
-        max_tokens: Option<usize>,
+        max_tokens: Option<u64>,
         supports_tools: Option<bool>,
         supports_vision: Option<bool>,
         supports_thinking: Option<bool>,
@@ -93,7 +93,7 @@ impl Model {
         self.display_name.as_ref().unwrap_or(&self.name)
     }
 
-    pub fn max_token_count(&self) -> usize {
+    pub fn max_token_count(&self) -> u64 {
         self.max_tokens
     }
 }
@@ -165,7 +165,7 @@ impl ChatRequest {
 // https://github.com/ollama/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values
 #[derive(Serialize, Default, Debug)]
 pub struct ChatOptions {
-    pub num_ctx: Option<usize>,
+    pub num_ctx: Option<u64>,
     pub num_predict: Option<isize>,
     pub stop: Option<Vec<String>>,
     pub temperature: Option<f32>,
@@ -183,8 +183,8 @@ pub struct ChatResponseDelta {
     pub done_reason: Option<String>,
     #[allow(unused)]
     pub done: bool,
-    pub prompt_eval_count: Option<u32>,
-    pub eval_count: Option<u32>,
+    pub prompt_eval_count: Option<u64>,
+    pub eval_count: Option<u64>,
 }
 
 #[derive(Serialize, Deserialize)]

crates/open_ai/src/open_ai.rs 🔗

@@ -80,9 +80,9 @@ pub enum Model {
         name: String,
         /// The name displayed in the UI, such as in the assistant panel model dropdown menu.
         display_name: Option<String>,
-        max_tokens: usize,
-        max_output_tokens: Option<u32>,
-        max_completion_tokens: Option<u32>,
+        max_tokens: u64,
+        max_output_tokens: Option<u64>,
+        max_completion_tokens: Option<u64>,
     },
 }
 
@@ -147,7 +147,7 @@ impl Model {
         }
     }
 
-    pub fn max_token_count(&self) -> usize {
+    pub fn max_token_count(&self) -> u64 {
         match self {
             Self::ThreePointFiveTurbo => 16_385,
             Self::Four => 8_192,
@@ -165,7 +165,7 @@ impl Model {
         }
     }
 
-    pub fn max_output_tokens(&self) -> Option<u32> {
+    pub fn max_output_tokens(&self) -> Option<u64> {
         match self {
             Self::Custom {
                 max_output_tokens, ..
@@ -209,7 +209,7 @@ pub struct Request {
     pub messages: Vec<RequestMessage>,
     pub stream: bool,
     #[serde(default, skip_serializing_if = "Option::is_none")]
-    pub max_completion_tokens: Option<u32>,
+    pub max_completion_tokens: Option<u64>,
     #[serde(default, skip_serializing_if = "Vec::is_empty")]
     pub stop: Vec<String>,
     pub temperature: f32,

crates/open_router/src/open_router.rs 🔗

@@ -50,7 +50,7 @@ impl From<Role> for String {
 pub struct Model {
     pub name: String,
     pub display_name: Option<String>,
-    pub max_tokens: usize,
+    pub max_tokens: u64,
     pub supports_tools: Option<bool>,
     pub supports_images: Option<bool>,
 }
@@ -73,7 +73,7 @@ impl Model {
     pub fn new(
         name: &str,
         display_name: Option<&str>,
-        max_tokens: Option<usize>,
+        max_tokens: Option<u64>,
         supports_tools: Option<bool>,
         supports_images: Option<bool>,
     ) -> Self {
@@ -94,11 +94,11 @@ impl Model {
         self.display_name.as_ref().unwrap_or(&self.name)
     }
 
-    pub fn max_token_count(&self) -> usize {
+    pub fn max_token_count(&self) -> u64 {
         self.max_tokens
     }
 
-    pub fn max_output_tokens(&self) -> Option<u32> {
+    pub fn max_output_tokens(&self) -> Option<u64> {
         None
     }
 
@@ -117,7 +117,7 @@ pub struct Request {
     pub messages: Vec<RequestMessage>,
     pub stream: bool,
     #[serde(default, skip_serializing_if = "Option::is_none")]
-    pub max_tokens: Option<u32>,
+    pub max_tokens: Option<u64>,
     #[serde(default, skip_serializing_if = "Vec::is_empty")]
     pub stop: Vec<String>,
     pub temperature: f32,
@@ -318,9 +318,9 @@ pub struct FunctionChunk {
 
 #[derive(Serialize, Deserialize, Debug)]
 pub struct Usage {
-    pub prompt_tokens: u32,
-    pub completion_tokens: u32,
-    pub total_tokens: u32,
+    pub prompt_tokens: u64,
+    pub completion_tokens: u64,
+    pub total_tokens: u64,
 }
 
 #[derive(Serialize, Deserialize, Debug)]
@@ -369,7 +369,7 @@ pub struct ModelEntry {
     pub created: usize,
     pub description: String,
     #[serde(default, skip_serializing_if = "Option::is_none")]
-    pub context_length: Option<usize>,
+    pub context_length: Option<u64>,
     #[serde(default, skip_serializing_if = "Vec::is_empty")]
     pub supported_parameters: Vec<String>,
     #[serde(default, skip_serializing_if = "Option::is_none")]

crates/rules_library/src/rules_library.rs 🔗

@@ -154,7 +154,7 @@ pub struct RulesLibrary {
 struct RuleEditor {
     title_editor: Entity<Editor>,
     body_editor: Entity<Editor>,
-    token_count: Option<usize>,
+    token_count: Option<u64>,
     pending_token_count: Task<Option<()>>,
     next_title_and_body_to_save: Option<(String, Rope)>,
     pending_save: Option<Task<Option<()>>>,