Add LM Studio support to the Assistant (#23097)

Yagil Burowski and Marshall Bowers created

#### Release Notes:

- Added support for [LM Studio](https://lmstudio.ai/) to the Assistant.

#### Quick demo:


https://github.com/user-attachments/assets/af58fc13-1abc-4898-9747-3511016da86a

#### Future enhancements:
- wire up tool calling (new in [LM Studio
0.3.6](https://lmstudio.ai/blog/lmstudio-v0.3.6))

---------

Co-authored-by: Marshall Bowers <elliott.codes@gmail.com>

Change summary

Cargo.lock                                      |  16 
Cargo.toml                                      |   3 
assets/icons/ai_lm_studio.svg                   |  33 +
assets/settings/default.json                    |   3 
crates/assistant/Cargo.toml                     |   1 
crates/assistant/src/assistant_settings.rs      |  26 
crates/assistant2/Cargo.toml                    |   1 
crates/assistant2/src/assistant_settings.rs     |  25 
crates/language_model/Cargo.toml                |   1 
crates/language_model/src/model/mod.rs          |   1 
crates/language_model/src/role.rs               |  10 
crates/language_models/Cargo.toml               |   1 
crates/language_models/src/language_models.rs   |   5 
crates/language_models/src/provider.rs          |   1 
crates/language_models/src/provider/lmstudio.rs | 518 +++++++++++++++++++
crates/language_models/src/settings.rs          |  21 
crates/lmstudio/Cargo.toml                      |  24 
crates/lmstudio/LICENSE-GPL                     |   1 
crates/lmstudio/src/lmstudio.rs                 | 369 +++++++++++++
crates/semantic_index/src/embedding.rs          |   2 
crates/semantic_index/src/embedding/lmstudio.rs |  70 ++
crates/ui/src/components/icon.rs                |   1 
docs/src/assistant/assistant.md                 |   2 
docs/src/assistant/configuration.md             |  20 
24 files changed, 1,153 insertions(+), 2 deletions(-)

Detailed changes

Cargo.lock 🔗

@@ -406,6 +406,7 @@ dependencies = [
  "language_model_selector",
  "language_models",
  "languages",
+ "lmstudio",
  "log",
  "lsp",
  "markdown",
@@ -483,6 +484,7 @@ dependencies = [
  "language_model",
  "language_model_selector",
  "language_models",
+ "lmstudio",
  "log",
  "lsp",
  "markdown",
@@ -6682,6 +6684,7 @@ dependencies = [
  "gpui",
  "http_client",
  "image",
+ "lmstudio",
  "log",
  "ollama",
  "open_ai",
@@ -6727,6 +6730,7 @@ dependencies = [
  "gpui",
  "http_client",
  "language_model",
+ "lmstudio",
  "menu",
  "ollama",
  "open_ai",
@@ -7195,6 +7199,18 @@ dependencies = [
  "libc",
 ]
 
+[[package]]
+name = "lmstudio"
+version = "0.1.0"
+dependencies = [
+ "anyhow",
+ "futures 0.3.31",
+ "http_client",
+ "schemars",
+ "serde",
+ "serde_json",
+]
+
 [[package]]
 name = "lock_api"
 version = "0.4.12"

Cargo.toml 🔗

@@ -69,6 +69,7 @@ members = [
     "crates/livekit_client",
     "crates/livekit_client_macos",
     "crates/livekit_server",
+    "crates/lmstudio",
     "crates/lsp",
     "crates/markdown",
     "crates/markdown_preview",
@@ -255,6 +256,7 @@ languages = { path = "crates/languages" }
 livekit_client = { path = "crates/livekit_client" }
 livekit_client_macos = { path = "crates/livekit_client_macos" }
 livekit_server = { path = "crates/livekit_server" }
+lmstudio = { path = "crates/lmstudio" }
 lsp = { path = "crates/lsp" }
 markdown = { path = "crates/markdown" }
 markdown_preview = { path = "crates/markdown_preview" }
@@ -614,6 +616,7 @@ image_viewer = { codegen-units = 1 }
 inline_completion_button = { codegen-units = 1 }
 install_cli = { codegen-units = 1 }
 journal = { codegen-units = 1 }
+lmstudio = { codegen-units = 1 }
 menu = { codegen-units = 1 }
 notifications = { codegen-units = 1 }
 ollama = { codegen-units = 1 }

assets/icons/ai_lm_studio.svg 🔗

@@ -0,0 +1,33 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<svg width="16px" height="16px" viewBox="0 0 16 16" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
+    <title>Artboard</title>
+    <g id="Artboard" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
+        <rect id="Rectangle" stroke="black" stroke-width="1.26" x="1.22" y="1.22" width="13.56" height="13.56" rx="2.66"></rect>
+        <g id="Group-7" transform="translate(2.44, 3.03)" fill="black">
+            <g id="Group" transform="translate(0.37, 0)">
+                <rect id="Rectangle" opacity="0.487118676" x="1.9" y="0" width="6.28" height="1.43" rx="0.71"></rect>
+                <rect id="Rectangle" opacity="0.845098586" x="0" y="0" width="6.28" height="1.43" rx="0.71"></rect>
+            </g>
+            <g id="Group-2" transform="translate(2.88, 1.7)">
+                <rect id="Rectangle" opacity="0.487118676" x="1.9" y="0" width="6.28" height="1.43" rx="0.71"></rect>
+                <rect id="Rectangle" opacity="0.845098586" x="0" y="0" width="6.28" height="1.43" rx="0.71"></rect>
+            </g>
+            <g id="Group-3" transform="translate(1.53, 3.38)">
+                <rect id="Rectangle" opacity="0.487118676" x="1.92" y="0" width="6.28" height="1.43" rx="0.71"></rect>
+                <rect id="Rectangle" opacity="0.845098586" x="0" y="0" width="6.28" height="1.43" rx="0.71"></rect>
+            </g>
+            <g id="Group-4" transform="translate(0, 5.09)">
+                <rect id="Rectangle" opacity="0.487118676" x="1.9" y="0" width="6.28" height="1.43" rx="0.71"></rect>
+                <rect id="Rectangle" opacity="0.845098586" x="0" y="0" width="6.28" height="1.43" rx="0.71"></rect>
+            </g>
+            <g id="Group-5" transform="translate(1.64, 6.77)">
+                <rect id="Rectangle" opacity="0.487118676" x="1.94" y="0" width="5.46" height="1.43" rx="0.71"></rect>
+                <rect id="Rectangle" opacity="0.845098586" x="0" y="0" width="5.46" height="1.43" rx="0.71"></rect>
+            </g>
+            <g id="Group-6" transform="translate(4.24, 8.47)">
+                <rect id="Rectangle" opacity="0.487118676" x="2.11" y="0" width="4.56" height="1.43" rx="0.71"></rect>
+                <rect id="Rectangle" opacity="0.845098586" x="0" y="0" width="4.56" height="1.43" rx="0.71"></rect>
+            </g>
+        </g>
+    </g>
+</svg>

assets/settings/default.json 🔗

@@ -1146,6 +1146,9 @@
     "openai": {
       "version": "1",
       "api_url": "https://api.openai.com/v1"
+    },
+    "lmstudio": {
+      "api_url": "http://localhost:1234/api/v0"
     }
   },
   // Zed's Prettier integration settings.

crates/assistant/Cargo.toml 🔗

@@ -52,6 +52,7 @@ language.workspace = true
 language_model.workspace = true
 language_model_selector.workspace = true
 language_models.workspace = true
+lmstudio = { workspace = true, features = ["schemars"] }
 log.workspace = true
 lsp.workspace = true
 markdown.workspace = true

crates/assistant/src/assistant_settings.rs 🔗

@@ -5,6 +5,7 @@ use anthropic::Model as AnthropicModel;
 use feature_flags::FeatureFlagAppExt;
 use gpui::{AppContext, Pixels};
 use language_model::{CloudModel, LanguageModel};
+use lmstudio::Model as LmStudioModel;
 use ollama::Model as OllamaModel;
 use schemars::{schema::Schema, JsonSchema};
 use serde::{Deserialize, Serialize};
@@ -40,6 +41,10 @@ pub enum AssistantProviderContentV1 {
         default_model: Option<OllamaModel>,
         api_url: Option<String>,
     },
+    LmStudio {
+        default_model: Option<LmStudioModel>,
+        api_url: Option<String>,
+    },
 }
 
 #[derive(Debug, Default)]
@@ -137,6 +142,12 @@ impl AssistantSettingsContent {
                                     model: model.id().to_string(),
                                 })
                             }
+                            AssistantProviderContentV1::LmStudio { default_model, .. } => {
+                                default_model.map(|model| LanguageModelSelection {
+                                    provider: "lmstudio".to_string(),
+                                    model: model.id().to_string(),
+                                })
+                            }
                         }),
                     inline_alternatives: None,
                     enable_experimental_live_diffs: None,
@@ -214,6 +225,18 @@ impl AssistantSettingsContent {
                             api_url,
                         });
                     }
+                    "lmstudio" => {
+                        let api_url = match &settings.provider {
+                            Some(AssistantProviderContentV1::LmStudio { api_url, .. }) => {
+                                api_url.clone()
+                            }
+                            _ => None,
+                        };
+                        settings.provider = Some(AssistantProviderContentV1::LmStudio {
+                            default_model: Some(lmstudio::Model::new(&model, None, None)),
+                            api_url,
+                        });
+                    }
                     "openai" => {
                         let (api_url, available_models) = match &settings.provider {
                             Some(AssistantProviderContentV1::OpenAi {
@@ -313,6 +336,7 @@ fn providers_schema(_: &mut schemars::gen::SchemaGenerator) -> schemars::schema:
             "anthropic".into(),
             "google".into(),
             "ollama".into(),
+            "lmstudio".into(),
             "openai".into(),
             "zed.dev".into(),
             "copilot_chat".into(),
@@ -355,7 +379,7 @@ pub struct AssistantSettingsContentV1 {
     default_height: Option<f32>,
     /// The provider of the assistant service.
     ///
-    /// This can be "openai", "anthropic", "ollama", "zed.dev"
+    /// This can be "openai", "anthropic", "ollama", "lmstudio", "zed.dev"
     /// each with their respective default models and configurations.
     provider: Option<AssistantProviderContentV1>,
 }

crates/assistant2/Cargo.toml 🔗

@@ -46,6 +46,7 @@ markdown.workspace = true
 menu.workspace = true
 multi_buffer.workspace = true
 ollama = { workspace = true, features = ["schemars"] }
+lmstudio = { workspace = true, features = ["schemars"] }
 open_ai = { workspace = true, features = ["schemars"] }
 ordered-float.workspace = true
 parking_lot.workspace = true

crates/assistant2/src/assistant_settings.rs 🔗

@@ -4,6 +4,7 @@ use ::open_ai::Model as OpenAiModel;
 use anthropic::Model as AnthropicModel;
 use gpui::Pixels;
 use language_model::{CloudModel, LanguageModel};
+use lmstudio::Model as LmStudioModel;
 use ollama::Model as OllamaModel;
 use schemars::{schema::Schema, JsonSchema};
 use serde::{Deserialize, Serialize};
@@ -39,6 +40,11 @@ pub enum AssistantProviderContentV1 {
         default_model: Option<OllamaModel>,
         api_url: Option<String>,
     },
+    #[serde(rename = "lmstudio")]
+    LmStudio {
+        default_model: Option<LmStudioModel>,
+        api_url: Option<String>,
+    },
 }
 
 #[derive(Debug, Default)]
@@ -130,6 +136,12 @@ impl AssistantSettingsContent {
                                     model: model.id().to_string(),
                                 })
                             }
+                            AssistantProviderContentV1::LmStudio { default_model, .. } => {
+                                default_model.map(|model| LanguageModelSelection {
+                                    provider: "lmstudio".to_string(),
+                                    model: model.id().to_string(),
+                                })
+                            }
                         }),
                     inline_alternatives: None,
                     enable_experimental_live_diffs: None,
@@ -207,6 +219,18 @@ impl AssistantSettingsContent {
                             api_url,
                         });
                     }
+                    "lmstudio" => {
+                        let api_url = match &settings.provider {
+                            Some(AssistantProviderContentV1::LmStudio { api_url, .. }) => {
+                                api_url.clone()
+                            }
+                            _ => None,
+                        };
+                        settings.provider = Some(AssistantProviderContentV1::LmStudio {
+                            default_model: Some(lmstudio::Model::new(&model, None, None)),
+                            api_url,
+                        });
+                    }
                     "openai" => {
                         let (api_url, available_models) = match &settings.provider {
                             Some(AssistantProviderContentV1::OpenAi {
@@ -305,6 +329,7 @@ fn providers_schema(_: &mut schemars::gen::SchemaGenerator) -> schemars::schema:
         enum_values: Some(vec![
             "anthropic".into(),
             "google".into(),
+            "lmstudio".into(),
             "ollama".into(),
             "openai".into(),
             "zed.dev".into(),

crates/language_model/Cargo.toml 🔗

@@ -28,6 +28,7 @@ image.workspace = true
 log.workspace = true
 ollama = { workspace = true, features = ["schemars"] }
 open_ai = { workspace = true, features = ["schemars"] }
+lmstudio = { workspace = true, features = ["schemars"] }
 parking_lot.workspace = true
 proto.workspace = true
 schemars.workspace = true

crates/language_model/src/model/mod.rs 🔗

@@ -2,5 +2,6 @@ pub mod cloud_model;
 
 pub use anthropic::Model as AnthropicModel;
 pub use cloud_model::*;
+pub use lmstudio::Model as LmStudioModel;
 pub use ollama::Model as OllamaModel;
 pub use open_ai::Model as OpenAiModel;

crates/language_model/src/role.rs 🔗

@@ -65,3 +65,13 @@ impl From<Role> for open_ai::Role {
         }
     }
 }
+
+impl From<Role> for lmstudio::Role {
+    fn from(val: Role) -> Self {
+        match val {
+            Role::User => lmstudio::Role::User,
+            Role::Assistant => lmstudio::Role::Assistant,
+            Role::System => lmstudio::Role::System,
+        }
+    }
+}

crates/language_models/Cargo.toml 🔗

@@ -27,6 +27,7 @@ http_client.workspace = true
 language_model.workspace = true
 menu.workspace = true
 ollama = { workspace = true, features = ["schemars"] }
+lmstudio = { workspace = true, features = ["schemars"] }
 open_ai = { workspace = true, features = ["schemars"] }
 project.workspace = true
 proto.workspace = true

crates/language_models/src/language_models.rs 🔗

@@ -15,6 +15,7 @@ pub use crate::provider::cloud::LlmApiToken;
 pub use crate::provider::cloud::RefreshLlmTokenListener;
 use crate::provider::copilot_chat::CopilotChatLanguageModelProvider;
 use crate::provider::google::GoogleLanguageModelProvider;
+use crate::provider::lmstudio::LmStudioLanguageModelProvider;
 use crate::provider::ollama::OllamaLanguageModelProvider;
 use crate::provider::open_ai::OpenAiLanguageModelProvider;
 pub use crate::settings::*;
@@ -55,6 +56,10 @@ fn register_language_model_providers(
         OllamaLanguageModelProvider::new(client.http_client(), cx),
         cx,
     );
+    registry.register_provider(
+        LmStudioLanguageModelProvider::new(client.http_client(), cx),
+        cx,
+    );
     registry.register_provider(
         GoogleLanguageModelProvider::new(client.http_client(), cx),
         cx,

crates/language_models/src/provider/lmstudio.rs 🔗

@@ -0,0 +1,518 @@
+use anyhow::{anyhow, Result};
+use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
+use gpui::{AnyView, AppContext, AsyncAppContext, ModelContext, Subscription, Task};
+use http_client::HttpClient;
+use language_model::LanguageModelCompletionEvent;
+use language_model::{
+    LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
+    LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
+    LanguageModelRequest, RateLimiter, Role,
+};
+use lmstudio::{
+    get_models, preload_model, stream_chat_completion, ChatCompletionRequest, ChatMessage,
+    ModelType,
+};
+use schemars::JsonSchema;
+use serde::{Deserialize, Serialize};
+use settings::{Settings, SettingsStore};
+use std::{collections::BTreeMap, sync::Arc};
+use ui::{prelude::*, ButtonLike, Indicator};
+use util::ResultExt;
+
+use crate::AllLanguageModelSettings;
+
+const LMSTUDIO_DOWNLOAD_URL: &str = "https://lmstudio.ai/download";
+const LMSTUDIO_CATALOG_URL: &str = "https://lmstudio.ai/models";
+const LMSTUDIO_SITE: &str = "https://lmstudio.ai/";
+
+const PROVIDER_ID: &str = "lmstudio";
+const PROVIDER_NAME: &str = "LM Studio";
+
+#[derive(Default, Debug, Clone, PartialEq)]
+pub struct LmStudioSettings {
+    pub api_url: String,
+    pub available_models: Vec<AvailableModel>,
+}
+
+#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
+pub struct AvailableModel {
+    /// The model name in the LM Studio API. e.g. qwen2.5-coder-7b, phi-4, etc
+    pub name: String,
+    /// The model's name in Zed's UI, such as in the model selector dropdown menu in the assistant panel.
+    pub display_name: Option<String>,
+    /// The model's context window size.
+    pub max_tokens: usize,
+}
+
+pub struct LmStudioLanguageModelProvider {
+    http_client: Arc<dyn HttpClient>,
+    state: gpui::Model<State>,
+}
+
+pub struct State {
+    http_client: Arc<dyn HttpClient>,
+    available_models: Vec<lmstudio::Model>,
+    fetch_model_task: Option<Task<Result<()>>>,
+    _subscription: Subscription,
+}
+
+impl State {
+    fn is_authenticated(&self) -> bool {
+        !self.available_models.is_empty()
+    }
+
+    fn fetch_models(&mut self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
+        let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
+        let http_client = self.http_client.clone();
+        let api_url = settings.api_url.clone();
+
+        // As a proxy for the server being "authenticated", we'll check if its up by fetching the models
+        cx.spawn(|this, mut cx| async move {
+            let models = get_models(http_client.as_ref(), &api_url, None).await?;
+
+            let mut models: Vec<lmstudio::Model> = models
+                .into_iter()
+                .filter(|model| model.r#type != ModelType::Embeddings)
+                .map(|model| lmstudio::Model::new(&model.id, None, None))
+                .collect();
+
+            models.sort_by(|a, b| a.name.cmp(&b.name));
+
+            this.update(&mut cx, |this, cx| {
+                this.available_models = models;
+                cx.notify();
+            })
+        })
+    }
+
+    fn restart_fetch_models_task(&mut self, cx: &mut ModelContext<Self>) {
+        let task = self.fetch_models(cx);
+        self.fetch_model_task.replace(task);
+    }
+
+    fn authenticate(&mut self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
+        if self.is_authenticated() {
+            Task::ready(Ok(()))
+        } else {
+            self.fetch_models(cx)
+        }
+    }
+}
+
+impl LmStudioLanguageModelProvider {
+    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut AppContext) -> Self {
+        let this = Self {
+            http_client: http_client.clone(),
+            state: cx.new_model(|cx| {
+                let subscription = cx.observe_global::<SettingsStore>({
+                    let mut settings = AllLanguageModelSettings::get_global(cx).lmstudio.clone();
+                    move |this: &mut State, cx| {
+                        let new_settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
+                        if &settings != new_settings {
+                            settings = new_settings.clone();
+                            this.restart_fetch_models_task(cx);
+                            cx.notify();
+                        }
+                    }
+                });
+
+                State {
+                    http_client,
+                    available_models: Default::default(),
+                    fetch_model_task: None,
+                    _subscription: subscription,
+                }
+            }),
+        };
+        this.state
+            .update(cx, |state, cx| state.restart_fetch_models_task(cx));
+        this
+    }
+}
+
+impl LanguageModelProviderState for LmStudioLanguageModelProvider {
+    type ObservableEntity = State;
+
+    fn observable_entity(&self) -> Option<gpui::Model<Self::ObservableEntity>> {
+        Some(self.state.clone())
+    }
+}
+
+impl LanguageModelProvider for LmStudioLanguageModelProvider {
+    fn id(&self) -> LanguageModelProviderId {
+        LanguageModelProviderId(PROVIDER_ID.into())
+    }
+
+    fn name(&self) -> LanguageModelProviderName {
+        LanguageModelProviderName(PROVIDER_NAME.into())
+    }
+
+    fn icon(&self) -> IconName {
+        IconName::AiLmStudio
+    }
+
+    fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
+        let mut models: BTreeMap<String, lmstudio::Model> = BTreeMap::default();
+
+        // Add models from the LM Studio API
+        for model in self.state.read(cx).available_models.iter() {
+            models.insert(model.name.clone(), model.clone());
+        }
+
+        // Override with available models from settings
+        for model in AllLanguageModelSettings::get_global(cx)
+            .lmstudio
+            .available_models
+            .iter()
+        {
+            models.insert(
+                model.name.clone(),
+                lmstudio::Model {
+                    name: model.name.clone(),
+                    display_name: model.display_name.clone(),
+                    max_tokens: model.max_tokens,
+                },
+            );
+        }
+
+        models
+            .into_values()
+            .map(|model| {
+                Arc::new(LmStudioLanguageModel {
+                    id: LanguageModelId::from(model.name.clone()),
+                    model: model.clone(),
+                    http_client: self.http_client.clone(),
+                    request_limiter: RateLimiter::new(4),
+                }) as Arc<dyn LanguageModel>
+            })
+            .collect()
+    }
+
+    fn load_model(&self, model: Arc<dyn LanguageModel>, cx: &AppContext) {
+        let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
+        let http_client = self.http_client.clone();
+        let api_url = settings.api_url.clone();
+        let id = model.id().0.to_string();
+        cx.spawn(|_| async move { preload_model(http_client, &api_url, &id).await })
+            .detach_and_log_err(cx);
+    }
+
+    fn is_authenticated(&self, cx: &AppContext) -> bool {
+        self.state.read(cx).is_authenticated()
+    }
+
+    fn authenticate(&self, cx: &mut AppContext) -> Task<Result<()>> {
+        self.state.update(cx, |state, cx| state.authenticate(cx))
+    }
+
+    fn configuration_view(&self, cx: &mut WindowContext) -> AnyView {
+        let state = self.state.clone();
+        cx.new_view(|cx| ConfigurationView::new(state, cx)).into()
+    }
+
+    fn reset_credentials(&self, cx: &mut AppContext) -> Task<Result<()>> {
+        self.state.update(cx, |state, cx| state.fetch_models(cx))
+    }
+}
+
+pub struct LmStudioLanguageModel {
+    id: LanguageModelId,
+    model: lmstudio::Model,
+    http_client: Arc<dyn HttpClient>,
+    request_limiter: RateLimiter,
+}
+
+impl LmStudioLanguageModel {
+    fn to_lmstudio_request(&self, request: LanguageModelRequest) -> ChatCompletionRequest {
+        ChatCompletionRequest {
+            model: self.model.name.clone(),
+            messages: request
+                .messages
+                .into_iter()
+                .map(|msg| match msg.role {
+                    Role::User => ChatMessage::User {
+                        content: msg.string_contents(),
+                    },
+                    Role::Assistant => ChatMessage::Assistant {
+                        content: Some(msg.string_contents()),
+                        tool_calls: None,
+                    },
+                    Role::System => ChatMessage::System {
+                        content: msg.string_contents(),
+                    },
+                })
+                .collect(),
+            stream: true,
+            max_tokens: Some(-1),
+            stop: Some(request.stop),
+            temperature: request.temperature.or(Some(0.0)),
+            tools: vec![],
+        }
+    }
+}
+
+impl LanguageModel for LmStudioLanguageModel {
+    fn id(&self) -> LanguageModelId {
+        self.id.clone()
+    }
+
+    fn name(&self) -> LanguageModelName {
+        LanguageModelName::from(self.model.display_name().to_string())
+    }
+
+    fn provider_id(&self) -> LanguageModelProviderId {
+        LanguageModelProviderId(PROVIDER_ID.into())
+    }
+
+    fn provider_name(&self) -> LanguageModelProviderName {
+        LanguageModelProviderName(PROVIDER_NAME.into())
+    }
+
+    fn telemetry_id(&self) -> String {
+        format!("lmstudio/{}", self.model.id())
+    }
+
+    fn max_token_count(&self) -> usize {
+        self.model.max_token_count()
+    }
+
+    fn count_tokens(
+        &self,
+        request: LanguageModelRequest,
+        _cx: &AppContext,
+    ) -> BoxFuture<'static, Result<usize>> {
+        // Endpoint for this is coming soon. In the meantime, hacky estimation
+        let token_count = request
+            .messages
+            .iter()
+            .map(|msg| msg.string_contents().split_whitespace().count())
+            .sum::<usize>();
+
+        let estimated_tokens = (token_count as f64 * 0.75) as usize;
+        async move { Ok(estimated_tokens) }.boxed()
+    }
+
+    fn stream_completion(
+        &self,
+        request: LanguageModelRequest,
+        cx: &AsyncAppContext,
+    ) -> BoxFuture<'static, Result<BoxStream<'static, Result<LanguageModelCompletionEvent>>>> {
+        let request = self.to_lmstudio_request(request);
+
+        let http_client = self.http_client.clone();
+        let Ok(api_url) = cx.update(|cx| {
+            let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
+            settings.api_url.clone()
+        }) else {
+            return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
+        };
+
+        let future = self.request_limiter.stream(async move {
+            let response = stream_chat_completion(http_client.as_ref(), &api_url, request).await?;
+            let stream = response
+                .filter_map(|response| async move {
+                    match response {
+                        Ok(fragment) => {
+                            // Skip empty deltas
+                            if fragment.choices[0].delta.is_object()
+                                && fragment.choices[0].delta.as_object().unwrap().is_empty()
+                            {
+                                return None;
+                            }
+
+                            // Try to parse the delta as ChatMessage
+                            if let Ok(chat_message) = serde_json::from_value::<ChatMessage>(
+                                fragment.choices[0].delta.clone(),
+                            ) {
+                                let content = match chat_message {
+                                    ChatMessage::User { content } => content,
+                                    ChatMessage::Assistant { content, .. } => {
+                                        content.unwrap_or_default()
+                                    }
+                                    ChatMessage::System { content } => content,
+                                };
+                                if !content.is_empty() {
+                                    Some(Ok(content))
+                                } else {
+                                    None
+                                }
+                            } else {
+                                None
+                            }
+                        }
+                        Err(error) => Some(Err(error)),
+                    }
+                })
+                .boxed();
+            Ok(stream)
+        });
+
+        async move {
+            Ok(future
+                .await?
+                .map(|result| result.map(LanguageModelCompletionEvent::Text))
+                .boxed())
+        }
+        .boxed()
+    }
+
+    fn use_any_tool(
+        &self,
+        _request: LanguageModelRequest,
+        _tool_name: String,
+        _tool_description: String,
+        _schema: serde_json::Value,
+        _cx: &AsyncAppContext,
+    ) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
+        async move { Ok(futures::stream::empty().boxed()) }.boxed()
+    }
+}
+
+struct ConfigurationView {
+    state: gpui::Model<State>,
+    loading_models_task: Option<Task<()>>,
+}
+
+impl ConfigurationView {
+    pub fn new(state: gpui::Model<State>, cx: &mut ViewContext<Self>) -> Self {
+        let loading_models_task = Some(cx.spawn({
+            let state = state.clone();
+            |this, mut cx| async move {
+                if let Some(task) = state
+                    .update(&mut cx, |state, cx| state.authenticate(cx))
+                    .log_err()
+                {
+                    task.await.log_err();
+                }
+                this.update(&mut cx, |this, cx| {
+                    this.loading_models_task = None;
+                    cx.notify();
+                })
+                .log_err();
+            }
+        }));
+
+        Self {
+            state,
+            loading_models_task,
+        }
+    }
+
+    fn retry_connection(&self, cx: &mut WindowContext) {
+        self.state
+            .update(cx, |state, cx| state.fetch_models(cx))
+            .detach_and_log_err(cx);
+    }
+}
+
+impl Render for ConfigurationView {
+    fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
+        let is_authenticated = self.state.read(cx).is_authenticated();
+
+        let lmstudio_intro = "Run local LLMs like Llama, Phi, and Qwen.";
+        let lmstudio_reqs =
+            "To use LM Studio as a provider for Zed assistant, it needs to be running with at least one model downloaded.";
+
+        let mut inline_code_bg = cx.theme().colors().editor_background;
+        inline_code_bg.fade_out(0.5);
+
+        if self.loading_models_task.is_some() {
+            div().child(Label::new("Loading models...")).into_any()
+        } else {
+            v_flex()
+                .size_full()
+                .gap_3()
+                .child(
+                    v_flex()
+                        .size_full()
+                        .gap_2()
+                        .p_1()
+                        .child(Label::new(lmstudio_intro))
+                        .child(Label::new(lmstudio_reqs))
+                        .child(
+                            h_flex()
+                                .gap_0p5()
+                                .child(Label::new("To get your first model, try running "))
+                                .child(
+                                    div()
+                                        .bg(inline_code_bg)
+                                        .px_1p5()
+                                        .rounded_md()
+                                        .child(Label::new("lms get qwen2.5-coder-7b")),
+                                ),
+                        ),
+                )
+                .child(
+                    h_flex()
+                        .w_full()
+                        .pt_2()
+                        .justify_between()
+                        .gap_2()
+                        .child(
+                            h_flex()
+                                .w_full()
+                                .gap_2()
+                                .map(|this| {
+                                    if is_authenticated {
+                                        this.child(
+                                            Button::new("lmstudio-site", "LM Studio")
+                                                .style(ButtonStyle::Subtle)
+                                                .icon(IconName::ExternalLink)
+                                                .icon_size(IconSize::XSmall)
+                                                .icon_color(Color::Muted)
+                                                .on_click(move |_, cx| cx.open_url(LMSTUDIO_SITE))
+                                                .into_any_element(),
+                                        )
+                                    } else {
+                                        this.child(
+                                            Button::new(
+                                                "download_lmstudio_button",
+                                                "Download LM Studio",
+                                            )
+                                            .style(ButtonStyle::Subtle)
+                                            .icon(IconName::ExternalLink)
+                                            .icon_size(IconSize::XSmall)
+                                            .icon_color(Color::Muted)
+                                            .on_click(move |_, cx| {
+                                                cx.open_url(LMSTUDIO_DOWNLOAD_URL)
+                                            })
+                                            .into_any_element(),
+                                        )
+                                    }
+                                })
+                                .child(
+                                    Button::new("view-models", "Model Catalog")
+                                        .style(ButtonStyle::Subtle)
+                                        .icon(IconName::ExternalLink)
+                                        .icon_size(IconSize::XSmall)
+                                        .icon_color(Color::Muted)
+                                        .on_click(move |_, cx| cx.open_url(LMSTUDIO_CATALOG_URL)),
+                                ),
+                        )
+                        .child(if is_authenticated {
+                            // This is only a button to ensure the spacing is correct
+                            // it should stay disabled
+                            ButtonLike::new("connected")
+                                .disabled(true)
+                                // Since this won't ever be clickable, we can use the arrow cursor
+                                .cursor_style(gpui::CursorStyle::Arrow)
+                                .child(
+                                    h_flex()
+                                        .gap_2()
+                                        .child(Indicator::dot().color(Color::Success))
+                                        .child(Label::new("Connected"))
+                                        .into_any_element(),
+                                )
+                                .into_any_element()
+                        } else {
+                            Button::new("retry_lmstudio_models", "Connect")
+                                .icon_position(IconPosition::Start)
+                                .icon(IconName::ArrowCircle)
+                                .on_click(cx.listener(move |this, _, cx| this.retry_connection(cx)))
+                                .into_any_element()
+                        }),
+                )
+                .into_any()
+        }
+    }
+}

crates/language_models/src/settings.rs 🔗

@@ -14,6 +14,7 @@ use crate::provider::{
     cloud::{self, ZedDotDevSettings},
     copilot_chat::CopilotChatSettings,
     google::GoogleSettings,
+    lmstudio::LmStudioSettings,
     ollama::OllamaSettings,
     open_ai::OpenAiSettings,
 };
@@ -59,12 +60,14 @@ pub struct AllLanguageModelSettings {
     pub zed_dot_dev: ZedDotDevSettings,
     pub google: GoogleSettings,
     pub copilot_chat: CopilotChatSettings,
+    pub lmstudio: LmStudioSettings,
 }
 
 #[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
 pub struct AllLanguageModelSettingsContent {
     pub anthropic: Option<AnthropicSettingsContent>,
     pub ollama: Option<OllamaSettingsContent>,
+    pub lmstudio: Option<LmStudioSettingsContent>,
     pub openai: Option<OpenAiSettingsContent>,
     #[serde(rename = "zed.dev")]
     pub zed_dot_dev: Option<ZedDotDevSettingsContent>,
@@ -153,6 +156,12 @@ pub struct OllamaSettingsContent {
     pub available_models: Option<Vec<provider::ollama::AvailableModel>>,
 }
 
+#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
+pub struct LmStudioSettingsContent {
+    pub api_url: Option<String>,
+    pub available_models: Option<Vec<provider::lmstudio::AvailableModel>>,
+}
+
 #[derive(Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
 #[serde(untagged)]
 pub enum OpenAiSettingsContent {
@@ -278,6 +287,18 @@ impl settings::Settings for AllLanguageModelSettings {
                 ollama.as_ref().and_then(|s| s.available_models.clone()),
             );
 
+            // LM Studio
+            let lmstudio = value.lmstudio.clone();
+
+            merge(
+                &mut settings.lmstudio.api_url,
+                value.lmstudio.as_ref().and_then(|s| s.api_url.clone()),
+            );
+            merge(
+                &mut settings.lmstudio.available_models,
+                lmstudio.as_ref().and_then(|s| s.available_models.clone()),
+            );
+
             // OpenAI
             let (openai, upgraded) = match value.openai.clone().map(|s| s.upgrade()) {
                 Some((content, upgraded)) => (Some(content), upgraded),

crates/lmstudio/Cargo.toml 🔗

@@ -0,0 +1,24 @@
+[package]
+name = "lmstudio"
+version = "0.1.0"
+edition = "2021"
+publish = false
+license = "GPL-3.0-or-later"
+
+[lints]
+workspace = true
+
+[lib]
+path = "src/lmstudio.rs"
+
+[features]
+default = []
+schemars = ["dep:schemars"]
+
+[dependencies]
+anyhow.workspace = true
+futures.workspace = true
+http_client.workspace = true
+schemars = { workspace = true, optional = true }
+serde.workspace = true
+serde_json.workspace = true

crates/lmstudio/src/lmstudio.rs 🔗

@@ -0,0 +1,369 @@
+use anyhow::{anyhow, Context, Result};
+use futures::{io::BufReader, stream::BoxStream, AsyncBufReadExt, AsyncReadExt, StreamExt};
+use http_client::{http, AsyncBody, HttpClient, Method, Request as HttpRequest};
+use serde::{Deserialize, Serialize};
+use serde_json::{value::RawValue, Value};
+use std::{convert::TryFrom, sync::Arc, time::Duration};
+
+pub const LMSTUDIO_API_URL: &str = "http://localhost:1234/api/v0";
+
+#[derive(Clone, Copy, Serialize, Deserialize, Debug, Eq, PartialEq)]
+#[serde(rename_all = "lowercase")]
+pub enum Role {
+    User,
+    Assistant,
+    System,
+    Tool,
+}
+
+impl TryFrom<String> for Role {
+    type Error = anyhow::Error;
+
+    fn try_from(value: String) -> Result<Self> {
+        match value.as_str() {
+            "user" => Ok(Self::User),
+            "assistant" => Ok(Self::Assistant),
+            "system" => Ok(Self::System),
+            "tool" => Ok(Self::Tool),
+            _ => Err(anyhow!("invalid role '{value}'")),
+        }
+    }
+}
+
+impl From<Role> for String {
+    fn from(val: Role) -> Self {
+        match val {
+            Role::User => "user".to_owned(),
+            Role::Assistant => "assistant".to_owned(),
+            Role::System => "system".to_owned(),
+            Role::Tool => "tool".to_owned(),
+        }
+    }
+}
+
+#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
+#[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq)]
+pub struct Model {
+    pub name: String,
+    pub display_name: Option<String>,
+    pub max_tokens: usize,
+}
+
+impl Model {
+    pub fn new(name: &str, display_name: Option<&str>, max_tokens: Option<usize>) -> Self {
+        Self {
+            name: name.to_owned(),
+            display_name: display_name.map(|s| s.to_owned()),
+            max_tokens: max_tokens.unwrap_or(2048),
+        }
+    }
+
+    pub fn id(&self) -> &str {
+        &self.name
+    }
+
+    pub fn display_name(&self) -> &str {
+        self.display_name.as_ref().unwrap_or(&self.name)
+    }
+
+    pub fn max_token_count(&self) -> usize {
+        self.max_tokens
+    }
+}
+#[derive(Serialize, Deserialize, Debug)]
+#[serde(tag = "role", rename_all = "lowercase")]
+pub enum ChatMessage {
+    Assistant {
+        #[serde(default)]
+        content: Option<String>,
+        #[serde(default)]
+        tool_calls: Option<Vec<LmStudioToolCall>>,
+    },
+    User {
+        content: String,
+    },
+    System {
+        content: String,
+    },
+}
+
+#[derive(Serialize, Deserialize, Debug)]
+#[serde(rename_all = "lowercase")]
+pub enum LmStudioToolCall {
+    Function(LmStudioFunctionCall),
+}
+
+#[derive(Serialize, Deserialize, Debug)]
+pub struct LmStudioFunctionCall {
+    pub name: String,
+    pub arguments: Box<RawValue>,
+}
+
+#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
+pub struct LmStudioFunctionTool {
+    pub name: String,
+    pub description: Option<String>,
+    pub parameters: Option<Value>,
+}
+
+#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
+#[serde(tag = "type", rename_all = "lowercase")]
+pub enum LmStudioTool {
+    Function { function: LmStudioFunctionTool },
+}
+
+#[derive(Serialize, Debug)]
+pub struct ChatCompletionRequest {
+    pub model: String,
+    pub messages: Vec<ChatMessage>,
+    pub stream: bool,
+    pub max_tokens: Option<i32>,
+    pub stop: Option<Vec<String>>,
+    pub temperature: Option<f32>,
+    pub tools: Vec<LmStudioTool>,
+}
+
+#[derive(Serialize, Deserialize, Debug)]
+pub struct ChatResponse {
+    pub id: String,
+    pub object: String,
+    pub created: u64,
+    pub model: String,
+    pub choices: Vec<ChoiceDelta>,
+}
+
+#[derive(Serialize, Deserialize, Debug)]
+pub struct ChoiceDelta {
+    pub index: u32,
+    #[serde(default)]
+    pub delta: serde_json::Value,
+    pub finish_reason: Option<String>,
+}
+
+#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
+pub struct ToolCallChunk {
+    pub index: usize,
+    pub id: Option<String>,
+
+    // There is also an optional `type` field that would determine if a
+    // function is there. Sometimes this streams in with the `function` before
+    // it streams in the `type`
+    pub function: Option<FunctionChunk>,
+}
+
+#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
+pub struct FunctionChunk {
+    pub name: Option<String>,
+    pub arguments: Option<String>,
+}
+
+#[derive(Serialize, Deserialize, Debug)]
+pub struct Usage {
+    pub prompt_tokens: u32,
+    pub completion_tokens: u32,
+    pub total_tokens: u32,
+}
+
+#[derive(Serialize, Deserialize, Debug)]
+#[serde(untagged)]
+pub enum ResponseStreamResult {
+    Ok(ResponseStreamEvent),
+    Err { error: String },
+}
+
+#[derive(Serialize, Deserialize, Debug)]
+pub struct ResponseStreamEvent {
+    pub created: u32,
+    pub model: String,
+    pub choices: Vec<ChoiceDelta>,
+    pub usage: Option<Usage>,
+}
+
+#[derive(Serialize, Deserialize)]
+pub struct ListModelsResponse {
+    pub data: Vec<ModelEntry>,
+}
+
+#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
+pub struct ModelEntry {
+    pub id: String,
+    pub object: String,
+    pub r#type: ModelType,
+    pub publisher: String,
+    pub arch: Option<String>,
+    pub compatibility_type: CompatibilityType,
+    pub quantization: String,
+    pub state: ModelState,
+    pub max_context_length: Option<u32>,
+    pub loaded_context_length: Option<u32>,
+}
+
+#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
+#[serde(rename_all = "lowercase")]
+pub enum ModelType {
+    Llm,
+    Embeddings,
+    Vlm,
+}
+
+#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
+#[serde(rename_all = "kebab-case")]
+pub enum ModelState {
+    Loaded,
+    Loading,
+    NotLoaded,
+}
+
+#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
+#[serde(rename_all = "lowercase")]
+pub enum CompatibilityType {
+    Gguf,
+    Mlx,
+}
+
+pub async fn complete(
+    client: &dyn HttpClient,
+    api_url: &str,
+    request: ChatCompletionRequest,
+) -> Result<ChatResponse> {
+    let uri = format!("{api_url}/chat/completions");
+    let request_builder = HttpRequest::builder()
+        .method(Method::POST)
+        .uri(uri)
+        .header("Content-Type", "application/json");
+
+    let serialized_request = serde_json::to_string(&request)?;
+    let request = request_builder.body(AsyncBody::from(serialized_request))?;
+
+    let mut response = client.send(request).await?;
+    if response.status().is_success() {
+        let mut body = Vec::new();
+        response.body_mut().read_to_end(&mut body).await?;
+        let response_message: ChatResponse = serde_json::from_slice(&body)?;
+        Ok(response_message)
+    } else {
+        let mut body = Vec::new();
+        response.body_mut().read_to_end(&mut body).await?;
+        let body_str = std::str::from_utf8(&body)?;
+        Err(anyhow!(
+            "Failed to connect to API: {} {}",
+            response.status(),
+            body_str
+        ))
+    }
+}
+
+pub async fn stream_chat_completion(
+    client: &dyn HttpClient,
+    api_url: &str,
+    request: ChatCompletionRequest,
+) -> Result<BoxStream<'static, Result<ChatResponse>>> {
+    let uri = format!("{api_url}/chat/completions");
+    let request_builder = http::Request::builder()
+        .method(Method::POST)
+        .uri(uri)
+        .header("Content-Type", "application/json");
+
+    let request = request_builder.body(AsyncBody::from(serde_json::to_string(&request)?))?;
+    let mut response = client.send(request).await?;
+    if response.status().is_success() {
+        let reader = BufReader::new(response.into_body());
+
+        Ok(reader
+            .lines()
+            .filter_map(|line| async move {
+                match line {
+                    Ok(line) => {
+                        let line = line.strip_prefix("data: ")?;
+                        if line == "[DONE]" {
+                            None
+                        } else {
+                            let result = serde_json::from_str(&line)
+                                .context("Unable to parse chat completions response");
+                            if let Err(ref e) = result {
+                                eprintln!("Error parsing line: {e}\nLine content: '{line}'");
+                            }
+                            Some(result)
+                        }
+                    }
+                    Err(e) => {
+                        eprintln!("Error reading line: {e}");
+                        Some(Err(e.into()))
+                    }
+                }
+            })
+            .boxed())
+    } else {
+        let mut body = String::new();
+        response.body_mut().read_to_string(&mut body).await?;
+
+        Err(anyhow!(
+            "Failed to connect to LM Studio API: {} {}",
+            response.status(),
+            body,
+        ))
+    }
+}
+
+pub async fn get_models(
+    client: &dyn HttpClient,
+    api_url: &str,
+    _: Option<Duration>,
+) -> Result<Vec<ModelEntry>> {
+    let uri = format!("{api_url}/models");
+    let request_builder = HttpRequest::builder()
+        .method(Method::GET)
+        .uri(uri)
+        .header("Accept", "application/json");
+
+    let request = request_builder.body(AsyncBody::default())?;
+
+    let mut response = client.send(request).await?;
+
+    let mut body = String::new();
+    response.body_mut().read_to_string(&mut body).await?;
+
+    if response.status().is_success() {
+        let response: ListModelsResponse =
+            serde_json::from_str(&body).context("Unable to parse LM Studio models response")?;
+        Ok(response.data)
+    } else {
+        Err(anyhow!(
+            "Failed to connect to LM Studio API: {} {}",
+            response.status(),
+            body,
+        ))
+    }
+}
+
+/// Sends an empty request to LM Studio to trigger loading the model
+pub async fn preload_model(client: Arc<dyn HttpClient>, api_url: &str, model: &str) -> Result<()> {
+    let uri = format!("{api_url}/completions");
+    let request = HttpRequest::builder()
+        .method(Method::POST)
+        .uri(uri)
+        .header("Content-Type", "application/json")
+        .body(AsyncBody::from(serde_json::to_string(
+            &serde_json::json!({
+                "model": model,
+                "messages": [],
+                "stream": false,
+                "max_tokens": 0,
+            }),
+        )?))?;
+
+    let mut response = client.send(request).await?;
+
+    if response.status().is_success() {
+        Ok(())
+    } else {
+        let mut body = String::new();
+        response.body_mut().read_to_string(&mut body).await?;
+
+        Err(anyhow!(
+            "Failed to connect to LM Studio API: {} {}",
+            response.status(),
+            body,
+        ))
+    }
+}

crates/semantic_index/src/embedding.rs 🔗

@@ -1,8 +1,10 @@
 mod cloud;
+mod lmstudio;
 mod ollama;
 mod open_ai;
 
 pub use cloud::*;
+pub use lmstudio::*;
 pub use ollama::*;
 pub use open_ai::*;
 use sha2::{Digest, Sha256};

crates/semantic_index/src/embedding/lmstudio.rs 🔗

@@ -0,0 +1,70 @@
+use anyhow::{Context as _, Result};
+use futures::{future::BoxFuture, AsyncReadExt as _, FutureExt};
+use http_client::HttpClient;
+use serde::{Deserialize, Serialize};
+use std::sync::Arc;
+
+use crate::{Embedding, EmbeddingProvider, TextToEmbed};
+
+pub enum LmStudioEmbeddingModel {
+    NomicEmbedText,
+}
+
+pub struct LmStudioEmbeddingProvider {
+    client: Arc<dyn HttpClient>,
+    model: LmStudioEmbeddingModel,
+}
+
+#[derive(Serialize)]
+struct LmStudioEmbeddingRequest {
+    model: String,
+    prompt: String,
+}
+
+#[derive(Deserialize)]
+struct LmStudioEmbeddingResponse {
+    embedding: Vec<f32>,
+}
+
+impl LmStudioEmbeddingProvider {
+    pub fn new(client: Arc<dyn HttpClient>, model: LmStudioEmbeddingModel) -> Self {
+        Self { client, model }
+    }
+}
+
+impl EmbeddingProvider for LmStudioEmbeddingProvider {
+    fn embed<'a>(&'a self, texts: &'a [TextToEmbed<'a>]) -> BoxFuture<'a, Result<Vec<Embedding>>> {
+        let model = match self.model {
+            LmStudioEmbeddingModel::NomicEmbedText => "nomic-embed-text",
+        };
+
+        futures::future::try_join_all(texts.iter().map(|to_embed| {
+            let request = LmStudioEmbeddingRequest {
+                model: model.to_string(),
+                prompt: to_embed.text.to_string(),
+            };
+
+            let request = serde_json::to_string(&request).unwrap();
+
+            async {
+                let response = self
+                    .client
+                    .post_json("http://localhost:1234/api/v0/embeddings", request.into())
+                    .await?;
+
+                let mut body = String::new();
+                response.into_body().read_to_string(&mut body).await?;
+
+                let response: LmStudioEmbeddingResponse =
+                    serde_json::from_str(&body).context("Unable to parse response")?;
+
+                Ok(Embedding::new(response.embedding))
+            }
+        }))
+        .boxed()
+    }
+
+    fn batch_size(&self) -> usize {
+        256
+    }
+}

docs/src/assistant/assistant.md 🔗

@@ -8,7 +8,7 @@ This section covers various aspects of the Assistant:
 
 - [Inline Assistant](./inline-assistant.md): Discover how to use the Assistant to power inline transformations directly within your code editor and terminal.
 
-- [Providers & Configuration](./configuration.md): Configure the Assistant, and set up different language model providers like Anthropic, OpenAI, Ollama, Google Gemini, and GitHub Copilot Chat.
+- [Providers & Configuration](./configuration.md): Configure the Assistant, and set up different language model providers like Anthropic, OpenAI, Ollama, LM Studio, Google Gemini, and GitHub Copilot Chat.
 
 - [Introducing Contexts](./contexts.md): Learn about contexts (similar to conversations), and learn how they power your interactions between you, your project, and the assistant/model.
 

docs/src/assistant/configuration.md 🔗

@@ -10,6 +10,7 @@ The following providers are supported:
 - [Google AI](#google-ai) [^1]
 - [Ollama](#ollama)
 - [OpenAI](#openai)
+- [LM Studio](#lmstudio)
 
 To configure different providers, run `assistant: show configuration` in the command palette, or click on the hamburger menu at the top-right of the assistant panel and select "Configure".
 
@@ -236,6 +237,25 @@ Example configuration for using X.ai Grok with Zed:
 }
 ```
 
+### LM Studio {#lmstudio}
+
+1. Download and install the latest version of LM Studio from https://lmstudio.ai/download
+2. In the app press ⌘/Ctrl + Shift + M and download at least one model, e.g. qwen2.5-coder-7b
+
+   You can also get models via the LM Studio CLI:
+
+   ```sh
+   lms get qwen2.5-coder-7b
+   ```
+
+3. Make sure the LM Studio API server by running:
+
+   ```sh
+   lms server start
+   ```
+
+Tip: Set [LM Studio as a login item](https://lmstudio.ai/docs/advanced/headless#run-the-llm-service-on-machine-login) to automate running the LM Studio server.
+
 #### Custom endpoints {#custom-endpoint}
 
 You can use a custom API endpoint for different providers, as long as it's compatible with the providers API structure.